

Finding Waldo: Geospatial Solutions to Cat Risk

Opening Poll

How do you use Geospatial Tools / Mapping in your normal workflow?

- A. Not at all
- B. I create Maps/Geospatial Analyses to share my work
- C. I consume Maps/ Geospatial Analyses to enhance my understanding
- D. Both B and C
- E. I don't use it personally, but my colleagues do

Leveraging Geospatial Technology for Portfolio Management

When you create maps and geospatial analyses, who are the intended audience?

- A. C-Level Executives/Management who only need 'Big Picture' level details
- B. Map Nerds
- C. People a little slow on the uptake
- D. Anyone looking for a different point of view on data
- E. People who consider themselves 'Visual Learners'
- F. Both A and C

Evaluating Accumulations

Exposure = Risk

- Unknown hazards can strike anywhere.
- Usually, exposures that are geographically close to one another have a high correlation of loss in the same hazard.

The Radius Problem

- What size radius accumulation should I be looking at?
- If Hazard is unknown, then its footprint is also unknown

Start Small

- Larger radius concentrations are usually located around smaller radius concentrations
- There is usually a reason for localized successful underwriting

Current Exposure Concentration Top 10 1-Square Mile Accumulations of TIV

You Don't Have to Pick Just ONE Radius!

Accumulations Around Points of Interest – Las Vegas

Managing Catastrophe Exposure Risk

• Develop clearly defined thresholds

When you consume maps and geospatial analyses, what are the usual subject matter?

- A. Event Response (i.e. NOAA Hurricane Cone of Uncertainty)
- B. Exposure Maps
- C. Single Event Maps (i.e. deterministic events- not real time)
- D. Geographic Data Trends (i.e. Census Data, COVID maps)
- E. Modeled Loss / Claims Data
- F. Something Else

Deterministic Events

- Real World Event: August 2020
 Derecho over Iowa
- Shape Files with bands per wind speed are readily available
- These can be mapped to your own exposure and claims data to get meaningful data on Damage ratios per Wind Field band
- Shape files can be moved over the map projection (your base map)
 - GIS Software is best used for this process
 - Keeps characteristics of shapefile in tact, while changing location

DETERMINISTIC EVENT | MINNESOTA DERECHO

<u>Wind Speed</u>	<u>Risk Count</u>	<u>TIV</u>
40	1,940	1,393,637,113
45	293	198,693,017
50	25,924	18,454,371,390
55	72,123	52,475,854,218
60	25,923	17,125,520,896
65	1,991	1,393,480,012
70	3,637	2,578,559,262
75	2,713	1,914,928,163
80	5,070	3,597,831,552
85	6,145	5,832,902,523
90	5,071	4,301,204,638
95	2,684	2,426,312,603
100	319	274,676,710

Max Speed
40 - 42.5
42.5 - 47.5
47.5 - 52.5
52.5 - 57.5
57.5 - 62.5
62.5 - 72.5
72.5 - 82.5
82.5 - 92.5
92.5 - 100

Damage ratios are specific to YOUR business and underwriting guidelines, and so can be more predictive than an off-the-shelf product.

Underwriting – Using Notional Portfolios

- Notional Portfolios can be excellent tools to evaluate impacts of growth
 - Evaluate impacts of potential underwriting guidelines
 - Understand hazard variability inside the vendor cat models

Underwriting – Distance to Coast

State	County	Dist to Coast	TIV	Model HU AAL	f(x) D2C→AAL
GA	COWETA	210.64	1,650,000	72.88	2.324
GA	BULLOCH	49.71	1,650,000	325.86	1.696
GA	WHITE	237.30	1,650,000	50.44	2.375
GA	BARROW	208.29	1,650,000	70.99	2.319
GA	LIBERTY	21.13	1,650,000	352.24	1.325
GA	ECHOLS	69.87	1,650,000	291.27	1.844
GA	JENKINS	77.87	1,650,000	234.10	1.891
GA	MCINTOSH	9.85	1,650,000	327.79	0.993
GA	MURRAY	282.89	1,650,000	44.85	2.452
GA	WEBSTER	131.23	1,650,000	175.19	2.118
GA	TOOMBS	83.33	1,650,000	180.72	1.921
GA	MORGAN	184.99	1,650,000	85.04	2.267
GA	FRANKLIN	203.47	1,650,000	83.69	2.309
GA	RABUN	234.13	1,650,000	54.99	2.369
GA	TALIAFERRO	140.19	1,650,000	105.30	2.147
GA	WORTH	112.72	1,650,000	195.26	2.052
GA	EARLY	89.47	1,650,000	315.51	1.952
GA	LEE	118.65	1,650,000	206.96	2.074
GA	WILKES	148.65	1,650,000	94.53	2.172
GA	MORGAN	169.58	1,650,000	89.10	2.229
GA	JEFF DAVIS	80.84	1,650,000	195.67	1.908
GA	SPALDING	209.97	1,650,000	86.29	2.322
GA	BURKE	82.50	1,650,000	212.74	1.916
GA	OGLETHORPE	161.91	1,650,000	89.46	2.209
GA	IRWIN	118.36	1,650,000	180.21	2.073
GA	LEE	118.65	1,650,000	200.99	2.074
GA	HANCOCK	137.63	1,650,000	105.99	2.139

Underwriting – Distance to Coast

Catastrophe Model Evaluation – SCS AAL

- Notional Portfolios also work well to evaluate a Catastrophe Model Hazard
- Putting the same risk across the state gives data showing geographical differentials in potential hazard
- This process can be repeated in different vendor models so that their outputs can be compared in better context
 - When comparing model output on real exposures, knowing the difference in geospatial hazard between the Cat Model Vendors will lead to a greater understanding of why those results differ.

Catastrophe Model Evaluation – SCS AAL

Leveraging Geospatial Technology for Portfolio Management

Thank You!