
Key Words
Stochastic Loss Reserving, Bayesian MCMC, Capital Requirements, Risk Margins

A Cost of Capital Risk Margin Formula
For Non-Life Insurance Liabilities

Glenn Meyers, FCAS, MAAA, CERA, Ph.D.

January 5, 2017

Abstract

A Bayesian MCMC stochastic loss reserve model provides an arbitrarily large number 
of equally likely parameter sets that enable one to simulate future cash flows o f the 
liability. Using these parameter sets to represent all future outcomes, it is possible to 
describe any future state in the model’s time horizon including those states necessary 
to calculate a cost of capital risk margin. This paper shows how to use the MCMC 
output to: (1) Calculate the risk margin for an “ultimate” time horizon; (2) Calculate 
the risk margin for a one-year time horizon; and (3) Analyze the effect of diversification 
in a risk margin calculation for multiple lines of insurance.

Casualty Actuarial Society E-Forum, Winter 2017 1



1 Introduction

With the growing influence of Bayesian MCMC models in stochastic loss reserving such as
Meyers (2015) this paper will illustrate one way to use such a model to calculate a cost of
capital risk margin for non-life insurance liabilities. The need for such a calculation is found
in the “technical provisions” specified in the European Union’s Solvency II act.1

These technical provisions refer to the insurer’s liability for unpaid losses. Specifically:

1. “The value of the technical provisions shall be equal to the sum of a best estimate and
a risk margin.”

2. “The best estimate shall correspond to the probability-weighted average of future cash
flows, taking account of the time value of money using the relevant risk-free interest
rate term structure.”

3. “The risk margin shall be calculated by determining the cost of providing an amount
of eligible own funds equal to the Solvency Capital Requirement necessary to support
the insurance obligations over the lifetime thereof.”

4. “Insurance undertakings shall segment their insurance obligations into homogeneous
risk groups, and as a minimum by lines of business, when calculating the technical
provisions.”

A Bayesian MCMC stochastic loss reserve model provides an arbitrarily large number
(say 10,000) of equally likely parameter sets that enable one to simulate future cash flows
of the liability. From these parameter sets, it is possible to describe any future state in the
model’s time horizon including those states necessary to calculate the technical provisions.
That is what this paper will do.

Here is a high-level description of that cash flow.

1. At the end of the current calendar year (call this time t = 0), the insurer posts its best
estimate of the liability. The insurer also posts the amount of capital, C0, needed to
contain the uncertainty in this estimate. It invests C0 in a fund that earns income at
the risk-free interest rate i.

1The provisions quoted here are stated in Section 2, Article 77 and Article 80, of Chapter VI of the act,
p 222. http://register.consilium.europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf.
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2. At the end of the next calendar year, at time t = 1, the insurer uses its next year of loss
experience to reevaluate its liability. It then posts its updated estimate of the liability
and the capital, C1, needed to contain the uncertainty in this estimate. The difference
between C0 · (1 + i) and C1 is returned to the investor. If that difference is negative,
as it occasionally will be, the investor is expected to contribute an amount to make up
that difference.

3. The process continues for future calendar years, t, with the amount,

Ct−1 · (1 + i)− Ct,

being returned to (or being contributed by) the investor.

4. At some time t = u, the loss is deemed to at ultimate, i.e. no significant changes in
the loss is anticipated and so we set Ct = 0 for t > u. For the examples in this paper,
u = 9.

The present value, discounted at the risky rate r, of the amount returned is equal to

u∑
t=1

Ct−1 · (1 + i)− Ct

(1 + r)t
.

Since r > i, this present value will be less than the initial capital investment of C0. To
adequately compensate the investor for taking on the risk of insuring policyholder losses, the
difference can be made up at time t = 0 by what we now define as the cost of capital risk
margin, RCOC .

RCOC ≡ C0 −
u∑

t=1

Ct−1 · (1 + i)− Ct

(1 + r)t
= (r − i) ·

u∑
t=0

Ct

(1 + r)t
(1)

with the second equality coming after some algebraic manipulations.

Note that RCOC is similar to, but not identical to, the Solvency II risk margin.

RSII ≡ (r − i) ·
u∑

t=0

Ct

(1 + i)t
(2)

The problem that now needs to be addressed is the calculation of the Cts. A straight-
forward way to project a future cash flow for this process would be to take a fitted Bayesian
MCMC model and simulate an additional calendar year of losses for t = 1. Then fit another
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Bayesian MCMC model to the original data and the simulated data to get the loss estimate
and capital requirements for t = 1. Then continue this process for t = 2, . . . , u.

While the execution speed of Bayesian MCMC software has significantly increased in
recent years, repeating this for 10,000 simulated future cash flows would undoubtedly strain
the patience of most practicing actuaries. This paper will propose a faster, but conceptually
identical, way to calculate the capital requirements for this process.

Now that we have defined the cost of capital risk margin, here is the route this paper
will take to address the problems that need to be solved to calculate the risk margin.

• First we show how to use the Bayesian MCMC machinery to calculate the cash flows
and corresponding loss estimates implied by the model.

• Then we show how to calculate the best estimate and the risk margins from the cash
flows.

• Then we will investigate the effect of insurer size and line of business on risk margins.

• Then we will address the effect of diversification by line of business.

While the examples this paper focus on an “ultimate” time horizon, jurisdictions such
as the European Union require insurers to calculate their capital requirements and their risk
margin based on a one-year time horizon. The final section will show, with an example,
how to adjust the models so that the one-year time horizon can be incorporated within the
framework of this paper.

The data for the examples in this paper are taken from the CAS Loss Reserve Database.
The data consist of 50 loss triangles in the Commercial Auto (CA), Personal Auto (PA),
Workers’ Compensation (WC) and Other Liability (OL) lines of insurance. The loss triangles
used in this paper were selected from the list given in Appendix A of Meyers (2015).

The algorithms described in this paper are computationally intensive. As one reads
this paper, they might question if the computations can be done in a reasonable time. The
answer is yes. The scripts that are included with the paper were run on my standard issue
high-end laptop. The run times for the calculations are about two minutes per loss triangle
for the model in Section 3 and about seventeen minutes per triangle for the model in Section
5.
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2 Cash Flows and Statistics of Interest

This paper will use the Changing Settlement Rate (CSR) model described in Meyers (2015)
as modified in Meyers (2016). As shown in these papers, this model has been successfully
validated on the lower triangle holdout data for a set of 200 loss triangles, 50 from each of four
lines of business. The model is fit to a cumulative paid loss triangle, T0 ≡ {Xw,d} where the
accident year, w = 1, . . . , 10 and the development year, d = 1, . . . , 11−w. This model allows
for accident year effects, development year effects and a variable claim settlement rate. The
details of the model are in the references above. What is relevant for this paper is that given
the loss triangle, T0, the model uses Bayesian MCMC to obtain a sample of 10,000 equally
likely lognormal,{µj

w,d, σ
j
d}

10,000
j=1 , parameter sets from the posterior distribution, {µw,d, σd|T0}.

This paper assumes that these parameter sets can be used to describe the possible future
cash flows by a simulation.

With these parameter sets we can calculate the best estimate as the probability weighted
average of the present value of expected future cash flows. This will be equal to the expected
value of the differences in the cumulative payments between development years, i.e.

EBest =

∑10,000
j=1

∑10
w=2

∑10
d=12−w exp

(
µj
w,d + (σj

d)
2/2
)
− exp

(
µj
w,d−1 + (σj

d−1)
2/2
)

10, 000 · (1 + i)w+d−11.5 (3)

This calculation assumes that the losses are paid one half year before the end of future
calendar year t = w + d− 11.

For the scope of this paper, let’s also select the ultimate loss, Uj, associated with the
jth parameter set to be the sum of the expected values of the losses for d = 10 over all the
accident years. i.e.,

Uj =
10∑

w=1

exp
(
µj
w,10 + (σj

10)
2/2
)

(4)

For those wishing to allow for loss development after d = 10, I suggest that a Bayesian
MCMC version of Clark (2003) would be a good place to begin.

For the lower triangle of {Xj
w,d}

10,000
j=1 , define the simulated loss trapezoid for future

calendar year t that includes the upper loss triangle, T0, and the first t diagonals of from the
lower loss triangle, i.e.

T j
t ≡

{
Xw,d for w = 1, . . . , 10 and d = 11− w, . . . , 10
Xj

w,d for w = t+ 1, . . . , 10 and d = 12− w, . . . ,min(11− w + t, 10)
(5)
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where Xj
w.d is simulated from a lognormal distribution with parameters µj

w,d and σj
d.

Let’s temporarily drop the assumption that we know the parameter set index j. All we
have is an observed loss trapezoid, Tt. Then using Bayes’ Theorem and the fact that initially,
all j are equally likely, the probability that the parameter set index is equal to j given Tt is
given by

Pr [J = j|Tt] =

∏
Xw,d∈Tt

φ
(
log(Xw,d)|µj

w,dσ
j
d

)
10,000∑
k=1

∏
Xw,d∈Tt

φ
(
log(Xw,d)|µk

w,dσ
k
d

) (6)

where φ is the probability density function for the normal distribution.

At this point, there are a number of options one can choose to calculate the various
statistics that are of interest to insurer risk managers. For example, given Tt, one could
calculate the ultimate loss estimate, Et as

Et ≡ E

[
10∑

w=1

Xw,10|Tt

]
=

10,000∑
j=1

Pr [J = j|Tt] · Uj. (7)

If one accepts that the Bayesian MCMC output as representative of all future scenarios,
Equation 7 is exactly the right calculation for the loss estimate given Tt. But let’s consider
what one should do to calculate, say, the 99.5th percentile. First one should sort the scenarios
in order of increasing Uj. It is not uncommon to find a case where there is a scenario, j,
with Pr[J ≤ j|T9] = 0.9900 and Pr[J ≤ j + 1|T9] = 0.9960. For cases such as this, I
tried a linear interpolation that occasionally yielded small discretization errors that gave
theoretically impossible results2.

To avoid these annoying cases, I decided to calculate the statistics of interest by first
taking a random sample of size 10,000 (with replacement), {St}, of the Ujs with sampling
probabilities Pr[J = j|Tt] . This is subject to an additional simulation error, but it should
be small.

The “statistics of interest” for risk margin are, for t = 0, . . . , 9:

1. The mean, Et, which is equal to the arithmetic average of {St}.

2. The Tail Value-at-Risk at the α level (TVaR@α), which is equal to the arithmetic
average of the (1− α)·10,000 highest values of {St}3.

2Such as a negative capital when the required assets were determined by the TVaR measure of risk.
3While this paper does not use the Value-at-Risk (VaR) in its examples, one could calculate the VaR@α

as the (1− α) · 10, 000th highest value of {St}.
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Let’s denote the total required capital by Ct ≡ TVaR@α− Et.

We summarize the above in the following algorithm.

Algorithm 1 Calculate Capital Scenarios
1: for k = 1, . . . , 10, 000 do
2: for t = 0, . . . , 9 do
3: Simulate cash flows {T k

t } using the parameter set {(µk
w,d, σ

k
d)}

4: Use Equation 6 to calculate Pr
[
J = j|T k

t

]
for each j = 1, . . . , 10, 000

5: Take a random sample of size 10,000 with replacement, {Sk
t }, of {Uj}10,000j=1 with

sampling probabilities Pr
[
J = j|T k

t

]
.

6: Set Ek
t equal to the arithmetic average of {Sk

t }.
7: Set Ck

t equal to the arithmetic average of the highest (1−α)·10,000 highest values
of {Sk

t }, minus Ek
t .

8: end for
9: end for

The examples in this paper use α = 97%. This selection is for illustrative purposes only.

Calculating Ek
t for t = 0, . . . , 9 yields the kth path that the loss estimate takes as it

moves toward its ultimate value. Of interest for what follows is the set of possible paths
that the loss estimate can take. Figure 1 shows the paths for the paths that contain the
100th, the 300th,. . ., and the 9,900th highest Ek

9 s of Insurer #353 for Commercial Auto in
the CAS Loss Reserve Database. This figure illustrates that the Ek

t s tend to become more
certain over time.
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Figure 1
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Also of interest is the paths of the required capital, Ck
t , for t = 0, . . . , 9. Figure 2 shows

the paths of Ck
t that correspond to the paths taken by Ek

t in Figure 1. This figure illustrates
that as the estimates of the Ek

t s become more more certain, the required capital, Ck
t , tends

to decrease over time.

Figure 2
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3 Risk Margins

This section applies the cost of capital risk margin formula, given by Equation 1, to the set
of required capital paths, {Ck

0 , . . . , C
k
9}

10,000
k=1 . Recall that the that formula defined the cost

of capital risk margin as the present value of the capital released as the loss reserve liability
becomes more certain. Figure 3 shows the paths of released capital that correspond to the
paths taken by the Ck

t s in Figure 2. In general, this figure shows that most of the capital
gets released early on, and that occasionally it is necessary to add capital.

Figure 3

Applying Equation 1 we get for each k

Rk
COC ≡ Ck

0 −
u∑

t=1

Ck
t−1 · (1 + i)− Ck

t

(1 + r)t
(8)
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Then the risk margin is given by

RCOC =
1

10, 000

10,000∑
k=1

Rk
COC (9)

Figure 4 shows a histogram of the Rk
COCs for our example.

Figure 4
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Of interest is the ratio of the risk margin and the size of the best estimate. To investigate,
I calculated the risk margins for all 200 loss triangles in our data. After some exploratory
analysis, I concluded that: (1) there are significant differences by line of business; and (2)
there is an approximate linear relationship between the log of the risk margin and the log of
the best estimate. Figure 5 shows the plots of the log(RCOC) against log(EBest), along with
the coefficients of an ordinary linear regression of the form

log(RCOC) = a+ b · log(EBest) (10)

Figure 54

4Three small volatile insurers had negative best estimates and were excluded from the linear regression.
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We can rewrite Equation 10 in the form

RCOC

EBest

= ea · (EBest)
b−1 (11)

Note from Figure 5 that that b < 1 for all four lines of insurance. This implies that
the risk margin to best estimate ratio decreases as the best estimate increases. As Figure
6 shows the ratio can be quite high for insurers with small best estimates. I can see where
some insurers might object, especially if the line with the high ratio is a small part of the
insurer’s book of business.

Figure 65

5A small number of estimates fell outside the range of these figures.
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4 Diversification

As stated in the introduction, the EU Solvency II provision states explicitly that “Insurance
undertakings shall segment their insurance obligations into homogeneous risk groups, and as
a minimum by lines of business, when calculating the technical provisions.” This means that
the total risk margin for a multiline insurer is the sum of the risk margins over its individual
lines of business.

Longtime observers of the insurance business have long recognized that multiline insurers
benefit from the diversification of their risk of loss. This being the case, they might well want
to reflect the benefits of diversification in their risk margins. The problem with a formal
recognition of diversification is that the benefits have been difficult to quantify. What many
are afraid of is the possibility that significant losses from the different lines of business could
happen at the same time. This possibility is often referred to as the “dependency problem.”

As such, the Solvency II non-recognition of diversification may appear to some to be
prudent.

Mathematical tools that can be used to describe dependency have been available for
quite some time. See, for example, Frees and Valdez (1998) and Wang (1998). The main
tool described in these papers is called a copula, which is a multivariate distribution on
an L-dimensional unit hypercube in which the marginal distributions have a uniform(0,1)
distribution. Given a copula C and samples {lSk

t }, (see Section 2) for each line l of L lines
of business, one begins to calculate RCOC by first executing the following algorithm.

Algorithm 2 Calculate Samples for Dependent Lines
1: for k = 1, . . . , 10, 000 do
2: for t = 1, . . . , 9 do
3: Simulate an L-tuple vector {P k

l }Ll=1 of uniform(0,1) numbers from the copula C .
4: For each line of business, l, select lQ

k
t to be the Pl · 10, 000 highest value of {lSk

t }.
5: end for
6: Set the total ultimate loss TS

k
t =1 Q

k
t + · · ·+L Q

k
t .

7: end for

Use the output of this algorithm to calculate, {TCk
t }

10,000
k=1 for t = 1, . . . , 9, and Equations

8 and 9 to calculate TRCOC .

So if one believes that the lines of business are correlated, it is possible to calculate the
risk margin for the total liability that reflects whatever diversification that is warranted by
one’s choice of a dependency structure. As it turns out, there has been some recent empirical
work on determining that structure.
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Let’s first look at Avanzi, Taylor and Wong (2016). The point of their paper is that
correlations can arise from an inappropriate model. To quote their abstract – “We show with
some real examples that, sometimes, most (if not all) of the correlation can be “explained’
by an appropriate methodology. Two major conclusions stem from our analysis.”

1. “In any attempt to measure cross-LoB correlations, careful modeling of the data needs
to be the order of the day. The exercise will not be well served by rough modeling,
such as the use of simple chain ladders, and may indeed result in the prescription of
excessive risk margins and/or capital margins.”

2. “Such empirical evidence as examined in the paper reveals cross-LoB correlations that
vary only in the range zero to very modest. There is little evidence in favor of the
high correlation assumed in some jurisdictions. The evidence suggests that these as-
sumptions derived from either poor modeling or a misconception of the cross-LoB
dependencies relevant to the purpose to which they are applied.”

Meyers (2016) arrives at a similar conclusion. This paper first shows how to fit a bivari-
ate CSR model, that allows for dependencies, to triangles for two lines of business from the
same insurer. It then compares the fit of the bivariate model to a similar bivariate model
that assumes independence for 102 within insurer pairs. Taking into account the additional
parameter introduced by the dependent model, it concludes that the model assuming inde-
pendence has a better fit for all 102 pairs of triangles.

In other words, the appropriate dependency structure is to assume that the lines of
business are independent. This assumes, as demonstrated in Meyers (2016) for the CSR
model used in this paper, that careful modeling has been carried out.

The independence assumption allows us to simplify the procedure described at the be-
ginning of this section. Given the samples {lSk

t },For each line l of L lines of business, one
begins to calculate RCOC by first executing following algorithm.

Algorithm 3 Calculate Samples for Independent Lines
1: for k = 1, . . . , 10, 000 do
2: for t = 1, . . . , 9 do
3: Set the total ultimate loss sample to be {TSk

t } = {1Sk
t }+ · · ·+ {LSk

t }.
4: end for
5: end for

Use the sample,{TSk
t }, to obtain {TCk

t }
10,000
k=1 for t = 1, . . . , 9. Then use Equations 8 and

9 to calculate the combined risk margin, TRCOC .
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The combined risk margins in this paper were calculated using the independence as-
sumption. This choice was not made for mathematical convenience. Meyers (2016) shows
how to estimate the parameters of a model with dependency between the lines. The steps
outlined at the beginning of this section show how to implement a dependency assumption
if warranted.

From the loss triangles studied in Meyers (2015) there were five insurers with a loss
triangle in all four lines. Table 1 gives the combined risk margin for these five insurers in the
“Total” rows in the “Allocated Risk Margin” column. Over all five insurers, the diversification
credit,

1− Combined Risk Margin
Total Standalone Risk Margin

,

ranged from 30.3% to 48.3%.

Of interest, if not essential, is to see how this combined risk margin is allocated down
to the individual lines of insurance. Allocating the cost of capital to individual lines is more
important for pricing than for financial reporting as the former case requires an insurer to
quote a price for an individual insurance contract. For the latter case, a risk margin need
only apply to the total insurer liabilities.

Allocating the cost of capital has been debated in the actuarial profession for decades.
About 15 years ago, there were a number of papers that address the issue in a pricing context.
Mango and Ruhm (2003) and Meyers (1999) are two of many papers that were published
around then. Forgoing the seemingly endless discussion that accompanies this topic, this
paper allocates combined capital to lines of insurance in proportion to the lines marginal
cost of capital.

Once one has done the coding necessary to calculate the combined risk margin, it takes
only a little additional computer run time to allocate the combined risk margin to individual
lines. So let’s proceed.

Given the samples, {lSk
t }, for each line l of L lines of business, one begins to calculate

marginal cost of capital for line l, (l)RCOC , by first executing Algorithm 4 below. Then for
each line l execute Algorithm 5.

The fourth column of Table 1 gives the marginal cost of capital, (l)RCOC , by insurer for
each line of insurance. Note that the sum of the marginal cost of capitals by line is less than
the combined cost of capital in the “Total” column. We then allocate the cost of capital by
line of insurance in proportion to the marginal capital by

(l)RACOC ≡(l) RCOC · TRCOC

(1)RCOC + · · ·+(L) RCOC

(12)
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Note that there are many instances where the diversification credit is in excess of 80%.
This occurs when a “small” line of insurance is part of the portfolio of a “large” insurer.
Regardless of what one thinks of allocating the cost of capital, one cannot deny that a
“small” line of insurance adds little to the risk of a large insurer. The insurer size effect
illustrated in Figure 6 can be significantly reduced by taking diversification into account.

Algorithm 4 Calculate Leave-Line-Out Samples
1: for k = 1, . . . , 10, 000 do
2: Set the total ultimate loss sample to be {TSk

t } = {1Sk
t }+ · · ·+ {LSk

t }.
3: for t = 1, . . . , 9 do
4: Set the leave-line-out ultimate loss sample for line l to be {(−l)Sk

t } = {TSk
t } −

{lSk
t }.

5: end for
6: end for

Algorithm 5 Calculate Marginal Cost of Capital
1: for l = 1, . . . L do
2: for t = 1, . . . 9 do
3: Use the sample, {(−l)Sk

t }, to calculate the leave-line-out capital, {(−l)Ck
t }

10,000
k=1 .

4: end for
5: Use Equations 8 and 9 to calculate the leave-line-out cost of capital risk margin,

(−l)RCOC .
6: Calculate the marginal cost of capital risk margin, (l)RCOC ≡ TRCOC −(−l)RCOC .
7: end for
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Estimated Best Marginal Allocated Standalone Diver.
Grp./Line Ult. Loss Esitmate Risk Margin Risk Margin Risk Margin Credit

1528/CA 88,756 13,822 464 852 1,447 41.1%
PA 311,659 36,507 542 996 1,519 34.4%

WC 129,762 13,207 61 111 550 79.8%
OL 19,143 4,697 243 447 1,065 58.0%

Total 549,320 68,233 1,310 2,406 4,581 47.5%

1767/CA 2,205,897 310,203 108 171 5,963 97.1%
PA 90,312,996 9,921,107 20,620 32,566 76,527 57.4%

WC 1,677,179 227,010 175 276 5,637 95.1%
OL 2,443,660 956,344 76,495 120,812 132,428 8.8%

Total 96,639,732 11,414,664 97,398 153,825 220,555 30.3%

3240/CA 97,298 18,684 346 554 1,653 66.5%
PA 1,092,757 136,373 1,862 2,983 3,208 7.0%

WC 38,960 4,155 42 67 467 85.7%
OL 13,774 2,638 36 58 459 87.4%

Total 1,242,789 161,850 2,286 3,663 5,787 36.7%

5185/CA 96,071 23,262 837 1,592 2,544 37.4%
PA 268,908 43,305 952 1,811 2,719 33.4%

WC 100,322 16,768 91 173 1,100 84.3%
OL 140,606 22,440 216 410 1,346 69.5%

Total 605,907 105,775 2,095 3,985 7,709 48.3%

14176/CA 28,929 11,759 982 1,716 2,191 21.7%
PA 144,563 26,494 380 663 1,439 53.9%

WC 111,498 20,075 263 460 1,229 62.6%
OL 5,290 1,287 35 61 326 81.3%

Total 290,280 59,615 1,660 2,900 5,185 44.1%

Table 1
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5 One-Year Time Horizon

The risk margin calculations above assumed an “ultimate” time horizon to establish the
required capital. Some regulatory jurisdictions, e.g. Solvency II, specify that the insurer
should assume a one-year time horizon. This section extends the methodology of the previous
sections to cover the one-year time horizon.

A high-level description of the methodology is to use a Bayesian MCMC model to obtain
10,000 equally likely scenarios that represent the future evolution of the line of business that
produced the loss triangle. Then, as new losses come in, it uses Bayes’ Theorem to update
the probability of each scenario. From these updated probabilities, one then calculate the
statistics that are needed to calculate the risk margin.

A key step in this methodology is to assign a unique ultimate loss estimate to each sce-
nario. As Figure 1 illustrates, changes in the ultimate loss estimate for the later development
periods are relatively rare, so the assignment of the ultimate loss estimate, Uj, specified in
Equation 4, to the jth scenario is a good approximation.

However as Figure 1 also illustrates, there is significant uncertainty in the ultimate loss
after one additional year of development. So the assignment of the ultimate loss estimate of
Uj to the jth scenario is not a good approximation.

Under a one-year time horizon capital requirement, the capital is determined by the
estimate of the ultimate losses after one more calendar year of loss experience. To calculate
the risk margin we will need the distribution of ultimate loss estimates at the end or each
calendar year. These estimates will depend upon the calendar year, t.

To get a good approximation, Ot,j, of the expected ultimate loss for the jth scenario, one
can simulate future loss experience from the parameter set of that scenario and calculate the
ultimate loss estimate, M times. Then set Ot,j equal to the average of those estimates. The
details are in the Algorithm 6 below.

Both the accuracy of the estimate of Ot,j and the computer run time increase with M . I
experimented with different values of M and found that M = 12 obtained results that were
sufficiently accurate given the intrinsic variation of the underlying MCMC simulation.

Use Algorithm 7 to calculate the risk margin for the one year time horizon. In this
algorithm, one simply substitutes Ot+1,j for Uj in the 5th step of Algorithm 1. Given the
output of Algorithm 7, one then calculates risk margins using Equations 8 and 9.
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Algorithm 6 Calculate Scenario Estimates by Calendar Year
for m = 1, . . . ,M do

for j = 1, . . . , 10, 000 do
for t = 1, . . . , 9 do

Simulate Tt using the parameters (µj
w,d, σ

j
d).

Use Equation 6 to calculate {Pr [N = n|Tt]}10,000n=1 .
Use Equation 7 to calculate the ultimate loss estimate, Om

t,j.
end for
Set Om

10,j = Om
9,j

end for
end for
for j = 1, . . . , 10, 000 do

for t = 1, . . . , 10 do
Set Ot,j = mean(Om

t,j).
end for

end for

Algorithm 7 Calculate Capital Scenarios for a One-Year Time Horizon
for k = 1, . . . , 10, 000 do

for t = 0, . . . , 9 do
Simulate cash flows {T k

t } using the parameter set {(µk
w,d, σ

k
d)}

Use Equation 6 to calculate Pr
[
J = j|T k

t

]
for each j = 1, . . . , 10, 000

Take a random sample of size 10,000 with replacement, {Sk
t }, of the {Ot+1,j}10,000j=1

with sampling probabilities Pr
[
J = j|T k

t

]
.

Set Ek
t equal to the arithmetic average of {Sk

t }.
Set Ck

t equal to the arithmetic average of the highest (1− α)·10,000 highest values
of {Sk

t }, minus Ek
t .

end for
end for
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Figures 7-9 show the one-year time horizon capital paths, release paths and risk margins
of Insurer #353 for Commercial Auto that correspond to Figures 2, 3 and 4, respectively for
the ultimate time horizon.

Figure 7
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Figure 8
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Figure 9
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6 Concluding Remarks

There has not been universal agreement on the assumptions underlying a cost-of-capital risk
margin formula. Beyond the underlying Bayesian MCMC stochastic loss reserve model, this
paper makes the the following key assumptions.

1. The required required assets for an insurer are determined by the TVaR@α measure
of risk.

2. The required capital calculation assumes an “ultimate” time horizon.

3. The distribution of outcomes for the different lines of business are independent.

In numerous advisory committee meetings held at International Actuarial Association
events, I heard the following argument supporting the one-year time horizon. Insolvency is
usually not an instantaneous event. If the insurer finds itself under stress within a year, it
will have time to make the necessary adjustments.

At the same meetings I also heard the following heuristic definition of a risk margin. The
risk margin is to provide sufficient funds to transfer its liability to another insurer. “Sufficient
funds” should include the cost of capital.

My approach to risk margins was governed by the following considerations.

1. The term of such a portfolio risk transfer contract is unlikely to be for a single year,
with the risk reverting back to the original insurer at the end of the year.

2. For a multi-line insurer, the risk being transferred is unlikely consist of a single line of
insurance.

3. Dependency between lines is model dependent. In Meyers (2016) I demonstrated that
the independence assumption is warranted for the CSR model used in this paper.

4. The theoretical advantages of the TVaR@α over the Var@α have been well-documented
by Artzner et. al. (1999). Whatever computational difficulty there may have been with
the TVaR is not an issue with the methodology used in this paper.

In recognition of the fact that reasonable people may differ on their assumptions, this
paper points the way to use alternative assumptions. The methodology described in this
paper should be readily adopted for any Bayesian MCMC model.

A Cost of Capital Risk Margin Formula for Non-Life Insurance Liabilities

Casualty Actuarial Society E-Forum, Winter 2017 24



7 Appendix

Included with this paper is a zip archive containing the following.

• RM 1Line.R - The script that produces the risk margin calculations in Sections 2 and
3.

• RM 4Line.R - The script that produces the risk margin calculations in Section 4.

• RM 1Line 1yr.R - The script that produces the risk margin calculations in Section 5.

• Risk Margins for 200 Triangles.xlsx - Risk margin single line calculations for all 200
triangles

The computer language for the scripts is R (https://www.r-project.org.) The com-
puter language for the MCMC calculations is Stan (http://mc-stan.org/interfaces/
rstan.html.)
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