Ratemaking, Product and Modeling Seminar and Workshops

March 15–17, 2021
Virtual Conference
CAS Machine Learning
Working Party

Context and Key Issues in Ratemaking
Presenters

Marco De Virgilis - devirgilis.marco@gmail.com - Marco is a Senior Actuarial Data Scientist at Allstate in Chicago. He is currently working on developing ML solutions to actuarial problems in both ratemaking and reserving.

Navarun Jain - navarun.jain@luxactuaries.com - Navarun is an analyst at Lux Actuaries & Consultants based in Dubai. As a Vice-Chair of the Working Party, Navarun leads the workstream on practical use cases/applications of machine learning in the actuarial field.

Nathaniel Loughin – nloughin@kpmg.com - Nate is a Director with KPMG’s P&C Actuarial Practice, specializing in predictive analytics, large account pricing, and E&S Reserving and Operations.
Introduction
What is Machine Learning?

- Catch-all term for a lot of concepts
- *Usually* involves a flexible algorithm that is *iteratively* adjusted based on optimizing some function of the data
 - E.g., take all the data, apply some transformations, and calculate how far you are from the answer you wanted, make adjustments, repeat
- Usually no closed-form solution to optimization problem, which necessitates iterative solutions
 - Computer vision
 - E-mail spam filtering
 - Netflix recommendations
What is Machine Learning?
Machine Learning Pros

- Good for open-ended problems (like computer vision) where it would be hard to manually engineer a model
- Good for finding “hidden” relationships in data or selecting optimal subsets of predictors
- “On-line” learning and predicting possible
- Can fit highly non-linear functions that may be challenging for traditional approaches like GLMs
- Open-source software makes it easy!
Machine Learning Cons

- Not as transparent as statistical methods
- Not all statistical tools are available for evaluating model performance
- Can over-fit to data and create highly non-linear functions where you don’t expect
- Computational cost - many of these models take a long time and a lot of computing power!
Why Should We Care About Machine Learning?

- It can get much better results than more traditional models
- It can help explain results and identify patterns you might otherwise miss
- It’s going to be everywhere
- It’s cool, and it will make you cool!
Potential Applications to Ratemaking

- ML algorithms can enhance conventional models
- ML can enhance other insurance company functions
- ML can provide additional monitoring tools
- ML can enhance customer segmentation
- ML can expand profitability
- ...

[Image: CAS logo]
Practical Applications
ML in action
The data contains motor third-party liability policies from a French Insurer. Claim numbers and claim amounts, alongside a selection of risk features are available for analysis.
Variables

DRIVER
- Age
- Region
- Density

VEHICLE
- Age
- Brand
- Power
- Fuel Type

POLICY
- Exposure
- Bonus/Malus
- Claim Count
- Claim Amount
The Models
Models Considered

- GLMs - The Classic Generalized Linear Model
- GBM - An approach that uses many weak predictors to generate robust estimates
- NN - Layers of “neurons” that “learn” to reproduce desired output based on input
- MARS - An automatic GLM that only uses linear splines
- RF - A large number of big trees (vs GBMs which use small trees)
Models Considered

- **GBM**
 - RMSE: 1,994.93
 - Gini Index: 0.1077

- **RF**
 - RMSE: 2,007.76
 - Gini Index: 0.3800

- **NN**
 - RMSE: 1,995.17
 - Gini Index: 0.1686

- **MARS**
 - RMSE: 1,995.39
 - Gini Index: 0.0000

- **GLM**
 - RMSE: 1,995.22
 - Gini Index: 0.1646

- **MARS**
 - RMSE: 1,995.27
 - Gini Index: 0.0814

- **NN**
 - RMSE: 1,994.57
 - Gini Index: 0.1115

- **GBM**
 - RMSE: 1,995.63
 - Gini Index: 0.3133

- **RF**
 - RMSE: 2,007.76
 - Gini Index: 0.3800

Approach:
- Frequency/Severity
- Loss Cost
Comparison of Approaches across Models

<table>
<thead>
<tr>
<th>Approach / Model</th>
<th>Frequency/Severity</th>
<th>Loss Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBM</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>GLM</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>MARS</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>NN</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>RF</td>
<td>160</td>
<td>180</td>
</tr>
</tbody>
</table>
Communications Issues in ML
Towards Explainable AI (XAI)
Occam’s Razor

The simplest explanation is usually the best

“...accuracy and simplicity (interpretability) are in conflict. For instance, linear regression gives a fairly interpretable picture of the x, y relation. But its accuracy is usually less than that of the less interpretable neural nets.”

L. Breiman
Start by Considering the Audience

- **Technical Stakeholders**
 - Other Actuaries

- **Non-Technical Stakeholders**
 - **External**
 - Regulators
 - Auditors
 - **Internal**
 - Profit Center Executives
 - Sales & Marketing
 - Agents & Insureds
“...another actuary qualified in the same practice area could make an objective appraisal of the reasonableness...”
ASOP 41 - ML Issues

- The model includes the algorithm, data, hyperparameters, fitting methods
- ML is often “ad hoc” - many models are unique for their application
- ML algorithms and their underlying data are often proprietary
Regulators May Lack ML Capabilities

NAIC survey from 2017 indicates that:

- Not all states have personnel qualified to review GLMs
- Plurality of respondents note that filing complexity and/or lack of resources or expertise impeded their department’s ability to review GLMs
- Not all states have an effective mechanism to protect confidentiality of models or other information submitted with a rate filing
Regulatory Issues

- Need to demonstrate that rates are not inadequate, excessive, or unfairly discriminatory
 - “Unfairly discriminatory” may be a challenge unless we can explain why a model produces a particular outcome.
- Need to file a rating plan
 - Does a black box meet the legal definition of a “filed rate”?
 - Is it necessary to convert the ML model to relativities for implementation?
Internal Communications

- Is the price change consistent with the corporate strategy and messaging?
- How do we explain the change to our management?
- Will our agents be able explain the change to their insureds?
- What do you say to insured whose premium changes because the model changed?
- Who will be impacted the most?
Bridging the Communication Gap
Basic Idea

ML can be a black box - let there be light!
MODEL INTERPRETATION

GLOBAL

Trying to understand the predictions on an overall level – *In general, why does a model behave the way it does?*

LOCAL

Trying to understand predictions for specific records – *For a given record, what led the model to predict what it did?*
Global Interpretation Strategies

TECHNICAL
- Variable Importance
- Interaction Effect Analysis
- Feature Effect Analysis
- Model Lift
- Gini Index/Gini Plot

NON-TECHNICAL
- Partial Dependence Plots
Partial Dependence Plots
Partial Dependence - DensityBand

- Level
- Value

Data points:
- (0,50): 102.01
- (1e+03, 2e+03]: 136.82
- (2e+03, 3e+03]: 131.68
- (3e+03, Inf]: 126.37
- (50, 100]: 103.74
- (100, 200]: 124.27
- (200, 400]: 123.02
- (400, 1e+03]: 134.89
Variable Importance

- Based on Permutation-based Loss Dropout
- Each rating variable is shuffled and model recomputed
- Degree of difference in RMSE w.r.t. original model indicates variable importance
Interaction Effects

- Based on Partial Dependence (PD) - studies how model predictions depend on individual predictors
- Uses the Friedman H-Statistic
- Measures the degree of impact the joint PD of 2 variables has on the overall PD of the combination, intuitively,

\[PD(X, Y) = PD(X) + PD(Y) + PD(X \& Y) \]
Non-Technical Communication Strategies

- For the rating plan, the model must be converted to relativities.
 - Tools such as Lime may be needed to generate the relativities.

- ML can replace “judgement” in some rating plan components. For example:
 - Clustering used in a classification analysis
 - AI used to generate a brush-fire hazard map

- Rating examples help stakeholders can get a “feel” for what the model does.
References

References, Continued

Wuthrich, Mario V., Neural Networks Applied to Chain-Ladder Reserving (July 6, 2018). Available at SSRN: https://ssrn.com/abstract=2966126 or http://dx.doi.org/10.2139/ssrn.2966126

References, Continued

<table>
<thead>
<tr>
<th>ML Working Party Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Lupton (Chair)</td>
</tr>
<tr>
<td>Nathaniel Loughlin (Vice Chair)</td>
</tr>
<tr>
<td>Navarun Jain (Vice Chair)</td>
</tr>
<tr>
<td>Ralph Dweck</td>
</tr>
<tr>
<td>Peter Dyson</td>
</tr>
<tr>
<td>James Ely</td>
</tr>
<tr>
<td>Harsh Karthik</td>
</tr>
<tr>
<td>Hao Li</td>
</tr>
<tr>
<td>Liam McGrath</td>
</tr>
<tr>
<td>Sharon Mott</td>
</tr>
<tr>
<td>Marjan Qazvini</td>
</tr>
<tr>
<td>Seth Roby</td>
</tr>
<tr>
<td>Les Vernon</td>
</tr>
<tr>
<td>Marco De Virgilis</td>
</tr>
</tbody>
</table>