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Introduction to Data Visualization 
John Deacon, Annie Fan, Brian Fannin, Jennifer Levine, Keith Quigley, Patrick Yu 

 _________________________________________________________________________________________  
Abstract: This paper summarizes some of the literature on the topic of basic data visualization techniques. We 
emphasize the importance of knowing the audience, and focusing on what message is intended to be sent. We 
provide visual examples of graph types and describe when to use the different types for different situations. We 
identify several decluttering and accentuating techniques and we share some of the basic research on how the 
human eye and brain work to interpret visual information. We provide a before-and-after example of the basic data 
visualization techniques, to show how much improvement can be achieved in delivering the intended message. 

keywords: data visualization, communication, gestalt principles 

 _________________________________________________________________________________________  

1. Definition of “Data Visualization” 
Visualizations are everywhere. Data and information are becoming more accessible all the time. To 

absorb value from all this data, we may leverage the power of “data visualization”. Simply: data 
visualization = data represented by a visual image. Some of the most common and basic data 
visualization applications include bar graphs, line graphs, and scatterplots. The general design concepts 
in this publication apply to any type of data visualization in any medium, e.g. business software such 
as Excel or PowePpoint, programming languages, data visualization software like Tableau, and 
websites. 

1.1. Why Do We Need Data Visualization? 
With the explosion of data and tools to analyze it, we need skills to communicate the message 

most effectively. By applying proven techniques, you can create data visualizations that maximize 
your audience’s absorption of your intended message(s). 

Actuaries excel at analyzing data and drawing conclusions from their work. However, visual 
communication skills (i.e., how to make effective graphs, charts, tables, etc.) are not represented on 
the CAS exam syllabus, nor are they regularly taught or reinforced. Nevertheless, actuaries must 
regularly communicate complex patterns, trends, conclusions, ideas, and concepts with each other or 
non-actuarial business partners. With some knowledge and practice, actuaries can create effective data 
visualization. 

We can do the best work with the best data resulting in the best conclusion, but if we can’t 
communicate it effectively, the message is lost. 

Many authors have produced books, papers, websites, and blogs on data visualization. We will 
summarize their general design concepts in this paper. The approach we will take is as follows: 

• First, we will focus on the audience, those individuals with whom we will be communicating. 

• Next, we will review some of the basic visualization types and how to choose from among 
them based on your data and your needs. 

• Finally, we will share thoughts about how to design a visualization for maximum impact. 
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2. Consider the audience and the message 
When we create data visualizations to present quantitative information, instead of jumping straight 

to the designing stage, we should first understand “the context for the need to communicate” (Knaflic 
2015). The context can be split into two parts: the target audience and the intended message. 

2.1. Who is the audience? 
If an image is displayed in an empty room, is it ever seen? An audience is a critical component in 

the creation of a data visualization. Without them, the image does not really exist at all. By the same 
token, a different audience may require a different sort of visual representation. Without a reasonable 
consideration of the consumers of our work, it may as well not exist. To properly consider our 
audience, we ask some basic questions. 

2.1.1. What is their role? What is their background? 
Actuaries can use different kinds of visualizations to communicate findings and recommendations 

to various groups such as other actuaries, regulators, underwriters, brokers, executives and many more. 
A common pitfall is that we tend to generalize the target audience group to “internal and external 
stakeholders” or “anyone who may be interested” (Knaflic 2015). These generic (“internal or 
external”) groups include audiences with different roles and backgrounds. 

We must tailor the visualizations to a specific audience group to maximize the effectiveness of the 
message. To narrow the target audience group, Knaflic recommends identifying the decision maker. 
Ask yourself: “What information and what considerations drive the decision-maker”? Asking the 
question: “Who is the audience?” may also determine whether the presentation should be 
live/interactive or whether it is appropriate to send the audience the visualizations to view on their 
own. 

2.1.2. How technical are they? What do they already know? 
After defining the target audience group, the presenter should know the audience’s technical 

knowledge level. Without careful attention to data visualization, actuarial analyses can be too technical 
and difficult for non-actuarial groups to comprehend fully, especially with the large collection of 
actuarial acronyms, terms, and methods. When designing visualizations for a non-actuarial audience, 
consider putting yourself in their shoes by asking yourself “What is their perspective?” and “What do 
they know?”. Even technical audiences, like actuaries, will understand and absorb the complex 
information more effectively if it is presented simply. 

2.2. What is the message? 
When crafting visuals, a content creator should continually ask themselves and fellow workers 

“What is the message?”. Asking this question and the other related questions below helps refine the 
content, complexity, and nature of visual presentations. 

2.2.1. What does the audience need know to influence the decision? 
After we understand the target audience’s role and technical background, we should think about 

how to make the visualization relevant for the audience. In other words, what information needs to 
be included in the visualization to help the audience make decisions. Knaflic clarifies an important 
distinction between exploratory analysis and explanatory analysis. Exploratory analysis refers to the 
preliminary work we do “to understand the data and figure out what might be noteworthy or 
interesting to highlight to others” (Knaflic 2015), and explanatory analysis refers to the “specific thing 
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you want to explain” or the “specific story you want to tell” (Knaflic 2015). We should focus on the 
explanatory aspect of our work in the visualizations to influence the audience’s decision. For example, 
an underwriter may prefer to see how a change in the selected tail factor affects the bottom line loss 
ratio, whereas another actuary may want to see all the indicated tail factors underlying the change in 
selected tail factor. Think about what impacts your audience and motivates their decisions. 

2.2.2. How much detail do they really need? How much will suit them? 
According to Knaflic, the communication mechanism determines how much control the presenter 

has on the way the target audience consumes the information, which in turn determines the level of 
detail a visualization needs (Knaflic 2015). For example, during a live presentation, the presenter has 
the most control over the flow of the storytelling process. If the audience has a question about a 
particular point, the presenter can answer right away and provide more details in person, so the 
visualizations in the presentation deck do not need to be over-filled with details. However, for 
documents viewed independently by the audience, the author has less control over when and how the 
audience will interpret the visualization. In this situation, more consideration and care is needed to 
create visualizations that communicate the intended message. Our tendency may be to provide more 
detail, but that may confuse, rather than clarify the message. 

2.2.3. What is the audience supposed to DO with the information? 
It’s important to remember that after we inform the audience about key insights on a topic, we 

should guide them to take action(s) to resolve it. We can explicitly state the next steps, provide 
recommendations, or encourage discussions for situations where the next step is unclear (Knaflic 
2015). It is reasonable to include an action statement within the title or visual. 

3. The Visualization Framework 
Having considered our audience, let’s take a moment to talk about how data visualization actually 

comes into being. Most actuaries have generated a time series or bar chart and may find the process 
fairly straightforward. It is, but this simplicity belies the mathematical structure and set of decisions 
that underly the mapping of data to image. 

3.1. The Tangibility of Data 
Because we interact with it so often, it may seem as though “data” is tangible. This sense comes 

from the way we interact with it: a visual representation of data. This image is generated from the 
photons of light emitted by your laptop, the bits of ink on a sheet of paper, or the electric charge 
stored in a computer’s memory. But these things are not actually the real-world elements, they are 
simply a representation of them. A “policyholder” is not a record in a database and would likely object 
to being referred to as such! 

Consider Table 1. This shows the first ten (of five thousand) records of a list of policyholders. 
Note that this is only a subset of the potential information which we might display. There could be 
claims, an address, demographics, marketing touch points, or any number of other characteristics. The 
data is no less real even though we choose to display a subset of it. 
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Table 1: The first ten policyholders 

territory policyholder effective_date expiration_date premium 

Athens Reyes 2001-08-15 2002-08-15 11,561 

Athens Villagomez 2001-07-21 2002-07-21 7,578 

Sparta al-Abdullah 2001-12-20 2002-12-20 10,294 

Sparta Jefferson 2001-12-17 2002-12-17 9,133 

Sparta el-Mina 2001-05-22 2002-05-22 9,812 

Athens Hamlin 2001-02-15 2002-02-15 10,702 

Sparta Hitchcock 2001-09-26 2002-09-26 8,917 

Athens Lease 2001-12-27 2002-12-27 10,743 

Sparta Rivera 2001-04-21 2002-04-21 8,620 

Athens al-Sami 2001-04-11 2002-04-11 8,554 

We are accustomed to thinking of the set of recorded properties of real-world entities - like what 
is shown in Table 1 as being the true, accurate “data”. Free yourself of that notion. Once you have 
taken that step, it will be easier to accept the authenticity of visualization as tangible “data”. 

3.2. The visual space 
When we create a visualization, we have a fixed space in which to place our data. It will be most 

useful to think of it as a rectangle, though this is not strictly required. Indeed, spherical coordinates, 
or certain mapping projections will result in non-rectangular plotting spaces. However, most 
visualizations are expressed sthis way. 

A rectangular space gives us two dimensions to work with. That is it, just two. We can introduce 
additional information via attributes like color and shape, but there are only two physical dimensions. 
Returning to our policy data, we can see one possible representation of the dimensions of the visual 
space in Figure 1. There is nothing within the space yet; we must begin by defining its size and scale. 

 
Figure 1: An empty visual space 
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We have naturally assumed that time should run along the horizontal, or 𝑥𝑥 axis, and that premium 
should run along the vertical, or 𝑦𝑦 axis. There is no requirement that we do so; it is simply a choice 
that we have made. Just because it is sensible should not lead us to think that we are adhering to any 
obvious rule. It works, but we would not be violating any natural law by transposing the axes, as shown 
in Figure 2. 

 
Figure 2: Transposing the axes 

Take a moment and compare the linear distance available for the effective date in Figures 1 and 2. 
Resist the temptation to think of that distance in temporal terms, and think only in physical terms. 
That is, think of distance as inches, centimeters, or pixels. There is more space in Figure 1 than there 
is in Figure 2 - our rectangle is longer than it is wide. However, there is a precisely equal amount of 
temporal space. We are able to do this by relying on the computer’s ability to scale the range of our data 
to the range of the axis. 

3.3. Categorical axes 
Physical distance is generally reckoned as coming from the set of real numbers. However, our 

plotting space is not bound by this rule. A dimension may be categorical - something which maps to 
the set of natural numbers - instead. The policy effective month is an obvious candidate for a categorial 
axis. 

 
Figure 3: Categorical data along the x-axis 
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There is often a natural preference for orderings categories, but this, too, is something which the 
analyst must choose. In Figure 3, we arranged the months in date order, but we could have chosen 
something different. In Figure 4, the months have been randomly sorted. 

 
Figure 4: Months arranged randomly 

We could just as well have chosen territory as one of the axes. Consider what information could 
be shown in Figure 5. 

 
Figure 5: Another option for categorical data on the x-axis 

3.4. Mapping 
The figures so far lack an obvious element: nothing appears in the plotting space. The process of 

expressing data visually requires a mapping of data to a visual element. We have already mapped two 
elements: the policy effective date (or month) and premium. In this case, we need do nothing more 
than inform our visual rendering engine what geometric shape to place in the plotting space. In Figure 
6, we see the data represented as points. Each point corresponds to a single policyholder. 
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Figure 6: A geometric shape as tangible data 

Figure 6 contains more information than Table 1, yet consumes less physical space. One might argue 
that Table 1 contains more detail and this is true, to a point. It is valid to say that Table 1 allows one 
to identify the specific premium and policy effective date for the first ten policyholders. If that is what 
the audience wants, you have succeeded in a way that Figure 6 has not. However, as we learned in 
Section 2, it is unlikely that is what your audience wants. What Figure 6 does is answer the following 
questions: 

• Is the business growing? 

• Is the business contracting? 

• Is there any seasonality to our revenue? 

• What is the average size of premium? 

• Are there any policies which are particularly large or small? 

We can use the same amount of visual space to introduce more information. As mentioned above, 
the two axis dimensions are already being used, but we could map a data element to color or shape. 
We see an example of this in Figure 7. 

 
Figure 7: Data represented via color 
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In this section, we have shown some of the mechanics of bringing a data visualization into being. 
We have also shown the result of one particular set of choices. In the next section, we will explore 
more options for visual representation and consider how to choose among them. 

4. How to Choose the Type of Data Visualization 
Now that we have established the audience and the message, it is time to design the visualizations. 

This section will help you identify the best forms for the data and message. 

4.1. Determine the Best Type of Visualization to Use 
Authors such as (Yau 2011) have described how to select the particular graph type that fits the data 

and message. Using the guide below, you can then experiment and decide which type of visualization 
to use. Remember that the ultimate judge of the appropriateness of a visual is: will the audience 
understand and act on the message? Repeatedly ask yourself: “What is the message?”, and decide 
whether it is clearly delivered. Try creating multiple visualizations for that message and ask a trusted 
colleague for feedback about which visualization works best for the intended message. 

4.2. Examples of the Main Types of Visuals and Key Uses 
4.2.1. Text 

There is no need to introduce geometric abstraction, when only a few key figures are involved. 
Simple text will suffice when you have one or two numbers to show. 

 
4.2.2. Tables 

Similarly, a simple table may be ideal when the data is simple and the user is interested in looking 
up precise values. 

 
Visualization may be introduced to communicate larger messages. For example, one may add color 

to the table. The hue is mapped to particular attributes of the data in order to emphasize relative 
importance — low and high values — or some other message. Because of their similarity to weather 
visualizatoin, these exhibits are commonly referred to as “heatmaps”. 
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4.2.3. Line 

Line graphs imply continuous data or a connection between the points. Line graphs can be 
augmented with a shaded range or confidence interval around the observations, or a model fit to the 
data. A basic line graph, like the one shown in Figure 8 are best used with time series and trends. They 
are also well suited to display of a deviation relationship such as a difference from plan. In a smoothed 
form, line graphs are familiar to actuarial students as expressing probability distributions. 

 
Figure 8: A standard line graph 

Sparklines are line graphs which are presented in a minimalist fashion, often included as a column 
in a table of other information, as shown in Figure 9. This can be valuable for seeing trends at-a-glance 
or highlighting minimum and maximum values. 
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Figure 9: A data table with sparklines 

A slopegraph is composed by mapping categorical data to the x-axis. The categories may originate 
from something quantitative like a point in time, or they could relate to regions, or rating classes. 
There are typically only two categories and rarely more than three. Slopegraphs can be useful when 
showing data for just two time periods and when you want to easily show relative decreases or 
increases among several categories. These graphs can get cluttered, and should be avoided when there 
are too many overlapping lines. 

 
4.2.4. Bar 

Similar to a slopegraph, a bar chart also maps categorical data to the x-axis. However, the treatment 
is such that more than a few columns may be displayed. 

Vertical bar charts are useful for time series graphs where you want to focus on the comparison 
between values of individual points, rather than on the overall pattern of values over time. Vertical 
bar charts can also be useful in showing deviation relationships (e.g., difference from plan) at a point 
in time. 

 
Additional categorical data may be introduced with a stacked vertical bar chart. Use caution in using 

stacked vertical bar charts, as it can be hard to compare sizes or values, especially if the baseline for a 
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given ‘stack’ is not the same. Thus, stacked vertical bar charts are best if there is a key category of 
focus, which should be placed as the bottom set of bars. Consider using absolute numbers in stacked 
vertical bar charts or using stacked vertical bars that each sum to 100%. Avoid using more than two 
or three sub-categories within bars, as this may obscure the intended message. 

 
Horizontal bar charts are great for displaying categorical data, especially if using the categories to 

rank the values. Horizontal bars are also useful for long category names that won’t fit as well for a 
vertical bar format. 

 
As with vertical bar charts, a horizontal bar chart may use stacking to encode categorical data along 

a different (data) dimension. 
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A histogram is a vertical bar chart used to display an empirical, or sample distribution. 

 
Waterfall charts are useful to show a starting point, incremental increases and/or decreases, and an 

ending point. 
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4.2.5. Scatterplot 
1. Exploratory data analysis 

2. Correlation between two variables 

3. Time series 

 
Scatterplots are useful to show the relationship between two variables or the correlations between 

them. Use care when using scatterplots as they are not well understood by all audiences. 

 
Dot plots are useful for nominal comparative relationships when you want to highlight differences 

that would be hard to see in a bar graph that has zero as the baseline. Dot pots are also useful for 
showing time series data not representing consistent intervals of time. 

4.2.6. Maps 
Maps are valuable for displaying geospatial information. One can use intensities of color by state 

or region to encode data. Maps are often preferred to tables which convey the same data. This 
leverages the fact that the viewer approaches a map with prior knowledge of the identity of the shapes 
being displayed. This permits the viewer to scan in any direction to “look up” the value associated 
with a particular territory. If the order of data is being emphasized, then one should consider a table or 
a bar chart. 
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4.2.7. Hybrid types 

Some displays combine point and lines into hybrid shapes. Box plots and violin plots are two such 
examples. They are both used to display central tendencies of sample data, while also indicating outliers 
and other elements of the observed distribution. 

Box plots display a large amount of distribution data in a single graphic: the highest and lowest 
values, the spread of values from highest to lowest, the median, and the 25th and 75th percentiles. 
Use box plots with care as percentiles are not readily understood by all audiences; consider simplifying 
to only show what is needed. 
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A violin plot shows more detail than a boxplot, similar to the difference between a density plot and 
a histogram. 

 
4.2.8. Small multiples 

Small multiples may also be called facet, or trellis plots. These exhibits repeat the same plot more 
than once, with subsets of data in each plot, as demonstrated in Figure 10. The plots are placed side 
by side to facilitate comparison. The subsetting is based on some categorical element like territory, 
vehicle class, predictor, etc. Small multiples are used to compare data across categories, to observe 
relationships or the correlation of each combination of two categories. 

 
Figure 10: Small multiples 

4.3. Visualizations to Avoid 
Many common visualizations do not actually communicate the message effectively. These are less 

effective due to the science of how the human eye and brain work, and what is most effectively 
deciphered. Below are some common graph types, with a brief description of why they should be 
avoided. 
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• Pies and Doughnuts - the human eye can not accurately compare angles and area of pie or 
doughnut slices. Try stacked bar. 

• 3D - due to the perspective, the human eye cannot accurately compare relative values three 
dimensionally. Try using color. 

• Area - the human eye does not decipher area effectively. Try vertical bars. 

• Double-Axis - too much for a reader to process quickly and effectively. Try separating the graphs 
vertically with the same x-axis and different y-axes. 

4.3.1. Questions to help determine which type of visualization to use: 
• What is the simplest way the information can be conveyed? 

• Have I tried other ways of displaying the information? 

• Have I shown a draft visualization to another person for feedback on how effectively it conveys 
the message? 

5. How to design the visualization 
In this section we provide some techniques for designing a data visualization to render a crisp 

graphic that highlights the message. Two techniques described in this section are: 

• Decluttering to remove what’s not needed, and 

• Accentuating to highlight what is crucial 

5.1. The Importance of Decluttering 
Clutter is the enemy in a graphic. Lines, colors, fonts, etc. in default graphics tend to be overly 

busy. One must expend the effort to declutter data visualizations to maximize the clarity of the 
message. Below, we describe a few concepts related to decluttering: cognitive load and data-to-ink 
ratio. 

5.1.1. Cognitive Load 
Cognitive load is a concept discussed in (Knaflic 2015). Consuming information takes brain power. 

A viewer has limits on their short-term working memory. Viewers can only store three to four pieces 
of information at a time, which means that cluttered and poorly designed data visualizations increase 
a viewer’s ‘cognitive load’ and reduce what they can retain. The data visualization author must design 
with the audience’s cognitive load in mind. Without this consideration, the message gets lost altogether 
or takes the audience more time and energy to absorb (i.e. more than they may be willing or able to 
expend). Decluttering reduces cognitive load by minimizing what the brain needs to see and process, 
which enables the reader to see the relevant data and message more clearly. Think “less is more”. 

5.1.2. Data-to-Ink Ratio 
Data-to-ink-ratio is a concept discussed in The Visual Display of Quantitative Information (Tufte 2001). 

Each dot of ‘ink’ on the visualization is valuable, and can be used to either display the data or to clutter 
a visualization. The author should create data visualizations with a focus on using ‘ink’ to display data 
in order to convey the message, compared to the amount of ‘ink’ used for text, lines, borders, or 
color/shading. 
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5.2. How to Declutter 
The following aspects of a graph are relatively easy to declutter: 

• Borders - delete them since they are generally not needed, and obscure key data ink 

• Axis lines - delete them since the eye automatically sees a line created by the vertical or horizontal 
labels, or bars 

• Gridlines - keep only if they serve a clear purpose, otherwise delete 

• Axis tick marks - remove the horizontal or vertical line marks ‘-’ 

• Gray color - use for data or text that is not the primary focus of the visualization 

• Axis names - use concise yet descriptive names to describe axes 

• Titles - combine the title and the message into a single phrase 

Legends are commonly used in graphs. However, the viewer must move their eyes back and forth 
from the graphed data to the legend, which takes time and increases cognitive load. If possible, place 
the label describing the data directly adjacent to the data. Apply the same color, weight, line-type, etc. 
for the text of the data label as used for its data (direct labeling). This approach may not work for all 
graph types or for all data. For example, if the lines in a graph are crossing each other, then direct 
labeling might not work effectively. 

Y-axis labels should not use vertical text. It is common to see y-axis labels that are oriented at a 
90-degree angle from the x-axis, reading upwards. No one naturally reads this way. Vertical orientation 
is more difficult to read and is a form of cognitive load; at a minimum it slows down the reader’s 
ability to quickly identify the axis. Instead, try arranging the vertical-axis label horizontally at the top 
left of the axis the way we naturally read, or include the vertical axis label within the graph title or a 
graph footnote. 

5.3. How to Accentuate to Make the Data ‘Pop’ 
We have any tools to draw our viewers attention, and highlight elements that important for message 

to stand out. We’ll discuss two (similar) schools of thought that describe ways that the human eye and 
brain perceive our world. 

5.3.1. Gestalt principles 
(Gestalt School of Psychology, 1912). These principles identified how the eyes and brain work to 

visually connect things together and make sense of our world. The following principles apply: 

• Proximity - The brain naturally groups together items that are closer together. We can design our 
data visualizations to direct the patterns our viewer sees, by placing the relevant items in close 
proximity. 

• Similarity - Objects with similar size, color, shape, font, or angular orientation are perceived by 
the brain to be part of the same group. 

• Enclosure - Using some type of border or shading can render data or multiple objects to be 
associated as grouped objects. 

• Continuity - The brain will attempt to enclose things (lines, objects) that are not fully enclosed 
by a solid line. The brain will ‘fill in’ a dashed line to perceive it as enclosing something if it can 
be interpreted that way. The brain may perceive a border to exist when objects are lined up; for 
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example, bars lined up along the x-axis could serve as a graph’s x-axis border even if the border 
isn’t shown. 

• Connection - Elements that are visually connected are perceived to be related. This principle is 
commonly used in line graphs to literally ‘connect the dots’ for the viewer. 

5.3.2. Pre-attentive Attributes (Few 2012) 
The phrase ‘quantitatively perceived’ means that the human eye and brain are programmed to 

perceive a specific set of visual attributes very quickly and with a high rate of accuracy as to the quantity 
expressed by the visual attribute. Some attributes may be quantitatively perceived generally (e.g. area), 
but the brain and eye cannot be relied to be accurate compared to other attributes. 

Attributes of Form 

• Length - can be quantitatively perceived. 

• Width - can be quantitatively perceived, but limited in accuracy. 

• Area & Volume - cannot be quantitatively perceived. 

• Spatial position - can be perceived and contrasted in vertical and horizontal position fairly well, 
but only in two dimensions not three dimensions 

• Shape - cannot be quantitatively perceived. 

• Location in 2-Dimensions- cannot be quantitatively perceived. 

Attributes of Color 

• Hue refers to color. Hue can be described by the location on a standard color wheel. Color 
combinations that work well together, and are distinct enough from one another, can be found 
on the website ColorBrewer.org. 

• Intensity refers to the ‘fullness’ of a color (saturation), and lightness or darkness of a given color. 

Below are some examples of how pre-attentive attributes could be used to distinguish and compare 
values or objects. 

 



Introduction to Data Visualization 

Casualty Actuarial Society E-Forum, Summer 2020  19 

• Note that area, volume, angle, and depth are all omitted from the list of pre-attentive attributes, since the 
human eye cannot easily decipher differences in these. This is why we should generally avoid pie, 
3D, area, and bubble charts. There are some exceptions. For example, some designers say it 
might be OK to use pie charts with only two variables. Others might say that it is OK to use 
treemap and bubble charts sparingly, to show generalities rather than precise differentiation 
between very similar quantities. 

5.4. Before-and-After Example of Data Visualization 
In the two graphs below, we show a before and after version of a graph. 

Before we’ve applied data visualization basic techniques using default settings, we can hardly 
see the data, and we certainly cannot tell what the message is or even what to focus on. 

 
• Too many border and axis lines, and the gridlines actually hide the lines representing the data 

• Too many Y-axis labels, the color is too dark and/or lines are too thick, all draw our attention 
away from the data and increase cognitive load 

• Color is used to differentiate the lines, and while they are color-coded with the legend, they each 
have bright colors so it isn’t clear where to focus 

• The legend requires the eye to look back and forth from the data lines to the legend 

• The title is long and cumbersome, and we still don’t know what the message is 

After we have applied basic data visualization techniques we can clearly tell what the message is 
from the title and color choices. The axis amounts and information is visible but given less emphasis 
with gray or muted color. 
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• No gridlines, border, or axis lines. 

• Fewer Y-axis labels; still allowing for reference for the lines 

• Color is used to differentiate the lines, but muted tones for other states and darker for the focus 
state. 

• The legend is omitted entirely, rather each line is direct-labeled 

• The title tells the reader what the message is, and uses color-matching with the line and line label. 

Which graph would you rather see as a viewer? With some effort and knowledge, you can see 
dramatic improvements in delivering the message, while reducing the cognitive load of the viewer. 

6. Conclusion 
With these basic principles and examples, you can start creating impactful, sleek, modern data 

visualizations that convey your message effectively. 

Think about your audience, what they know, and what they need to know. Keep asking yourself and 
others “What’s the Message?” throughout the data visualization design process. Your focus should 
be on identifying and displaying those things that best convey the message to your intended audience. 

Use the visualization that matches the type of data and message. Line graphs are good for time 
series and (smoothed) distributions. Bar graphs have many uses, including comparing values by 
category, and parts-to-a-whole with stacked bars. Use horizontal bar graphs when the data labels are 
long, since we read horizontally (not vertically, or on a 45-degree angle). 

Declutter visualizations, by removing extraneous axis lines, tickmarks, borders. Remove everything 
that does not help tell the message, or use gray font or line/bar color to de-emphasize non-essential 
elements. Let the data itself be the star of the show. 
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Accentuate the data so your message pops out for your audience. Draw attention to the most 
important data using length, width, shape, color, and other techniques to distinguish the data and 
highlight the message. Use Preattentive Attributes when designing your visualization (use length and 
relative position in 2D, rather than area and volume, for example). Use Gestalt principles, which reflect 
the science of how the human eye perceives lines, bars, dots, etc. in space. 

Be creative and have fun creating data visualizations that enlighten your audience and convey your 
message! 
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Segmenting Closed Claim Payment Data to Estimate Loss and 
ALAE Reserves for Construction Defects 

by James B. Kahn, FCAS, MAAA, Brad Tumbleston, FCAS, and Wilson Townsend 

 
Abstract: Actuaries looking to assess an entity’s ultimate liability for Construction Defect (CD) exposure often find 
themselves with many difficulties, not the least of which is the relative scarcity of accompanying literature within the 
Publications of the Casualty Actuarial Society.  Industry meetings still continue to have concurrent sessions around the 
complexities of CD estimation, with a few presentations available for use. 
 
This paper provides a few new considerations for estimating CD liability as well as providing suggestions and 
enhancements to techniques that are occasionally considered.  Specifically, it better allows a user to consider historical 
emergence, understand and amend selections and assumptions based on changes to the portfolio’s history, and consider 
future changes to assumptions.      
 
Noteworthy to consider, the methodology described within this publication:  

  
(i) Notes particular instance of the time from when a claim is reported and how long it remains open prior to 

closure.  We have observed that this relationship is a significant driver of differences in characteristics of 
claims, and assumptions should be reflected accordingly. 

(ii) Selectively limits loss claim severity to temper or avoid distortions that accompany unusual large claim 
emergence that may not be reflective of the overall characteristics of the book of business being reviewed.  

(iii) Further segments the traditional Closed with Payment claim grouping into Closed with Payment (regardless 
of ALAE payment) and Closed with Paid ALAE only, allowing separate frequency and severity selections 
for each.  This split considers the different historical emergence patterns we have observed for the different 
segments themselves.   

(iv) Provides a platform to amend reporting assumptions should the historical relationships between 
Accident/Loss Year and Report Year be different from current or future time periods.  

(v) Provides for the establishment of an excess “load” based on historical and current observations to handle 
severity limitations noted earlier.  It could similarly consider a load for the liability associated with future 
reopened claims noted from historical percentages; and 

(vi) Utilizes relatively simple data collection that can be used even with information from an Inception to Date 
loss run for Loss, ALAE, and Claims activity.  

 

1. INTRODUCTION 

Accurately estimating future CD liabilities is different from estimating other commercial lines due to 

the complexity of construction, the nature of the litigation, and the number of parties.  The list of issues 

includes:  

 Differing contract terms and conditions at the outset of the building process. 

 Late reporting due to the long latency periods that complicates the identification of accident 

dates. 

 The large number of developers, contractors, and subcontractors involved with multiple 

attorneys. 

 The quality of workmanship and training of contractors and subcontractors. 

 Aggressive homeowner’s counsel. 

 Litigious nature of CD claims. 

 Multi-family homes versus single-family homes. 
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 Evolving and changing terms and conditions of the insurance coverage. 

 “Risk transfer” contractual mechanisms between general contractors (GCs) and 

subcontractors including Additional Insured (AI) endorsements and contractual indemnity 

resting unequally among the defendants. 

 A multitude of changes to insurance coverage, like the advent of Owner Controlled 

Insurance Program or “Wrap” coverage, changing the landscape of CD litigation.  

Insurers responded to these rapid changes by changing the mix of business they underwrote, adding 

restrictive policy language including limiting the number of policies triggered by any one case, and 

increasing self-insured retentions (SIRs) and deductibles.  Many insurers stopped underwriting residential 

exposures or construction risks altogether.  Because of many of these rapid changes, those who review 

CD business often note vast differences of development and emergence patterns even within books of 

CD.  Additionally, with no meaningful industry information available for comparison purposes from 

standard schedules within the Annual Statement, CD business is often one of the more difficult segments 

to project using traditional actuarial standard reserving techniques. 

This paper lays out a methodology to address the various uncertainties, by segmenting the data and 

performing projections of ultimate reserve liability separately for each segment.  It is also the intent of 

the authors to lead the readers to think of additional data segmentation that could be considered to deal 

with the impact of various changes and differences within CD books of business. 

As a result of a few of the issues previously cited, actuaries have often used a frequency/severity type 

of Report Year methodology similar to what is used in other lines of business.  Changes in the makeup 

of the book can lead to difficulties in considering future claim emergence.  In addition, since CD business 

is not written on a stand-alone basis, considerations of frequency to an exposure base is not relevant for 

future projections.  Once estimates of claims are determined, understanding of future claims that close 

with indemnity payment could have their own distortions if the makeup of the book has changed over 

time (whereby the future claim reports may not be reflective of what has been seen historically in the 

data).  A few of the uncertainties seen for many CD methods (in particular, the number of future 

reported claims) are not specifically addressed within this paper. However, changes to the historical 

emergence can be more readily observed, with anticipated future changes considered more rapidly. 

Accordingly, we have found this method to be more responsive than many others. 

Estimating severity has its own challenges as well. The value of homes that have incurred damage is 

often independent of the contractors’ historical work.  Any changes to the mix of business, new home 

values, size of development or project, etc. from historical amounts will have an impact. This is especially 

challenging when dealing with a report year methodology, since its result likely contains several policy 

years’ worth of information.   
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CD portfolios have among the highest percentage of allocated loss adjustment expense (ALAE) or 

defense and cost containment (DCC) costs (collectively referred to as “ALAE” throughout the paper) 

of any reviewed segments, with overall costs equal to or even excess of the loss itself.  ALAE costs are 

not only large when associated with underlying loss payments, but expenditures also need to be 

understood for claims that will be closed with no indemnity payment but with an ALAE payment.  The 

latter may even be relevant when considering the emergence of claim reports beyond the relevant statutes 

of limitations or statutes of repose (similar to a statute of limitation, but where the deadline is based on 

the occurrence of a certain event that doesn’t itself cause harm or is incapable of discovery with 

reasonable efforts) of the states where the claims are reported.  The ALAE patterns between these two 

situations (indemnity paid, indemnity not paid) may be quite different in understanding exposure for 

future claim expense liabilities. 

Transfer of risk adds another component of ALAE that often needs to be segmented due to its 

different characteristics.  ALAE incurred in the defense of the named insured (NI) and ALAE incurred 

to defend additional insureds do not behave similarly.  Understanding the book, the prevalence of AI 

endorsements, and the mix of contractors is critical to understanding the differences in the amount of 

ALAE. 

The authors discuss ways of addressing the issues above in the main body of the paper.  We also note 

that data segmentation and collection for this technique are relatively simple and can be used with a loss 

run that is easily compiled and maintained for both current and future evaluation periods. Coordination 

and communication between the claims professionals and actuarial teams are critical to the process and 

are the only ways for an actuary to truly understand some of the shifts and trends within a portfolio.     

The authors’ hope is that the techniques discussed within can either be utilized or at least amend 

current techniques for specific CD books to better estimate liabilities and scenario test reasonable 

alternatives accordingly. 

2. BACKGROUND ON CURRENT METHODOLOGIES AND CAS 
HISTORICAL PUBLICATIONS 

It has been close to 20 years since Green et al [1] published “Reserving for Construction Defects” as 

a reserving call paper (Green paper).  That paper detailed background on CD at the time, with 

methodologies to project reserve liability and concluded by wondering whether the observed CD 

emergence from the late 1990s would continue in future periods.  Now with the benefit of hindsight, we 

can conclusively say that CD continues to be as unique a segment as ever, with many aspects that would 

need special consideration in making projections. 

There have not been many, if any, specific CAS publications on performing CD liability projections 

since the Green paper.  CAS conferences still have occasional presentations pertaining to CD liabilities, 
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providing many specific examples of relevant changes to background and landscape, with fewer 

providing detail on methodologies to project ultimate reserve liability. 

This paper will take the readers through the “Kahn-Tumbleston-Townsend” (KTT) methodology to 

address a number of CD projection nuances while describing situations that led to the design.  A number 

of considerations, differences, and enhancements to existing methodologies, including those considered 

by Green, were noted earlier in the Abstract.  The authors have found that the methodology detailed has 

consistently performed better than others we have used (such as estimation of IBNR using estimated 

exposure distributions) with a better ability to understand and incorporate changes within the particular 

segments being reviewed. 

Any user of this publication should feel free to adapt as needed to their own books of business, 

including any further segmentation of data and classes that may be deemed relevant and/or credible. 

3.  CONSTRUCTION DEFECTS 101 

Special care and consideration should be given when projecting liability for CD segments, given a few 

unique characteristics of the losses themselves as well as the way corresponding coverage would be 

applied.  Many of the peculiarities have become so systemic in some states, that it is actually quite rare that 

any condo, townhome, or development would completely escape litigation in today’s litigious 

environment.   

3.1. What Defines a Defect?  

A construction defect is the failure of a building or any building component to be erected in a 

reasonably workman-like manner, or to perform in the manner intended by the manufacturer or 

reasonably expected by the buyer which proximately causes damage to the structure. For insurance 

purposes, a defect is only for resulting property damage in third-party liability situations.    

Defects themselves are defined to be either “patent” where the defect is readily observable or evident 

or “latent” where the defect is present but not readily detectible by reasonable inspection.  A typical 

example of a latent defect in a CD case is water infiltration behind drywall, which would not be readily 

evident to the homeowner.    In the cases of latent defects, it most likely would take a significantly longer 

time for the defect to become detectible, even with the implementation of routine inspections to a 

property.   

3.2. Homebuilding  

The process of building homes, whether it be single-family homes or multi-family homes (including 

condominiums, townhouses, apartments, and mixed-use developments) involves multiple contractors 

with specific expertise.  Builders or developers usually initiate projects and hire general contractors or 
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project managers to oversee the construction.  For developments with hundreds of units, this is a complex 

job requiring planning and coordinating resources under tight timelines.  Mass graders prepare the land 

for development and lots for building. Concrete subcontractors pour foundations, framers construct the 

buildings, and roofers work to make the building weather tight. Once these structural components are put 

into place, window installers, stucco subcontractors, plumbers, electricians, multiple flooring specialists, 

finish carpenters, and other subcontractors (of which there could be many) finish the interior.  Fine 

graders, landscapers, and irrigation companies complete the outside of the home.  While a typical CD 

claim may involve ten subcontractors, larger developments can have twenty or more.  

3.3. Number of Years Eligible to File Claims  

Statutes of limitations and statutes of repose serve to limit the time period a lawsuit may be brought.  

Patent defects often require that legal action be filed three years from the date of first notice.  This period 

can be from one to six years, with three years being a typical threshold.  Latent defects, which are often 

not noticed for several years, are given special consideration under the law.  In instances of latent defects, 

statutes of repose often provide homeowners with a ten-year window in which to file claims.  In some 

states, this could be as few as six years.   It is possible to have costs beyond the various statutes of repose.  

Examples include, but are not limited to, (1) rules that grant an additional two years after discovery to file 

a claim if it is within the window of allowed claims, and (2) additional ALAE costs required to deny 

liability, even if denials are based on statutes of repose.  A few states have stretched the statute deadlines 

even further with expensive processes for a defendant to escape liability.  

3.4. Notice and Opportunity to Repair  

A mandatory notice and opportunity to repair process was instituted in many states after builders and 

contractors faced numerous lawsuits without ever receiving notice of an issue.  Beginning in the early 

2000s1, these laws generally required homeowners to provide notice to builders and gave them the right 

to repair the alleged defects prior to filing CD claims.  The acts usually apply to residential construction 

and improvements to real property where building components do not meet industry standards that are 

specifically enumerated in the statutes.  These acts typically prescribe a process for the homeowner to 

notify the developer/builder of the alleged deficiencies and give the builder time to remedy the alleged 

defect. Rather than serving to resolve defect claims earlier, these processes often add to the time between 

claim reporting and ultimate closing.  

 
 
 
 
 

                                                      
1 SB 800 California Civil Code 895 – 945.5 
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3.5. Insurance Coverage for CD  

Insurance coverage is triggered2 by an “occurrence” resulting in covered “property damage” during 

the policy period in most states3.  The most prevalent trigger calls for the insured to establish actual 

physical injury during the policy period. In a claim where water infiltration is the main driver of the 

litigation, each policy is generally triggered from the time the home was completed, e.g., when the water 

infiltration first started, to the filing of the lawsuit, if the insured can establish physical injury during each 

policy period.  Courts rely on the definition of occurrence, which states in part, “continuous or repeated 

exposure to substantially the same general harmful conditions.”  Other states still rely on “manifestation” 

which only triggers the single policy in effect at the time of the discovery.  

Understanding these subtle differences often affect reporting patterns and the amount of time a claim 

remains open. Insurance coverage applies only for the resulting property damage caused by the 

contractor’s alleged negligent work.  Commercial General Liability (CGL) insurance does not cover the 

actual work or product installed by the contractor.  The language in the Insurance Services Office (ISO), 

Inc. Commercial General Liability Coverage Form [4] excludes “damage to your product and damage to 

your work.”  In almost all cases, the liability or negligence for workmanship of the contractor that leads 

to property damage to another component is covered.  However, the work directly performed on the 

product installed or the work to install it is excluded from coverage. CGL polices are not guarantees and 

do not act as bonds. 

3.6. Exposure Period of Latent Claims and Differences by Jurisdiction 

Following the second Montrose Decision in California in 19954, most states adopted a “continuous 

trigger” of coverage where coverage existed from the time the property damage first took place (often 

when a home was completed) until a lawsuit was filed.  In such cases, each carrier would be responsible 

for their portion of the property damage over all of the insured years for the loss.  Indemnity was often 

allocated to each carrier providing coverage for the years following the home completion until the suit 

was filed.  They would then be potentially responsible for their equitable share of the total damages 

awarded or settled.  

Some jurisdictions continue to rule that when the damage first manifests, the date of such discovery is 

the sole trigger of coverage.  A minority of rulings over the past twenty years have expanded coverage.  

For the purpose of monitoring claims history and making projections for future liabilities based on 

reasonable loss patterns, it is important to be able to separate the various claims by jurisdiction to 

understand the loss history as well as the expected future claims and liability emergence.  

                                                      
2 Trigger of Coverage Chart, (https://www.alfainternational.com/insurance-law-compendia) 
3 Insurance Services Office, Inc., Commercial General Liability Coverage Form, CG 001 ed. 07/98, Appendix C  
4 Montrose Chemical Corp. V. Admiral Ins. Co., 10 Cal.4th 645, 42 Cal.Rptr.2d 324 (1995) 
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3.7. Owner Controlled Insurance Programs 

In response to the growing volume and the expense of CD claims, a new insurance product was 

developed: Owner Controlled Insurance Programs (OCIPs), commonly known as “Wrap” policies.  

Wraps were intended to insure a single project or development rather than focus on a single insured.  

While the owners or developers controlled the insurance program, subcontractors working on the project 

were required to enroll in the Wrap and pay their portion of the premium.  In practice, Wraps were issued 

on many commercial and municipal projects and later on in the residential projects.  Meant to limit cross 

litigation between defendants, the Wraps worked well on some projects where the defendants could align 

behind a focused defense.  In reality, some of the old problems of cross litigation and indemnification 

suits are still problematic in driving up costs.  Good claims management is needed for the policies to 

operate as intended. 

3.8. Differences in Programs or Books of Business  

Several factors drive inconsistencies between programs which make it difficult to rely on data from 

other programs.  Who originated the business or whether origination was from a broker, agent, or 

Managing General Agent (MGA), can determine underwriting differences, rating differences, and mix of 

business. The mix of business between high severity claims of developers and general contractors, or the 

lower severity and higher volume of artisan subcontractor claims are distinctions that must be understood.  

Even within the subcontractor category, there are significant differences in exposure from structural and 

building envelope subcontractors or artisan contractors. Underwriting changes are frequently made over 

the history of a program.  These changes can be driven by underwriting results from high loss and 

combined ratios; poor litigation results when defending policy language; and insurer risk appetite. Over 

the last twenty years, insurers and risk bearers have sought to limit coverage to a single policy year by 

adding prior work, prior acts, and pre-existing damage exclusions, some of which have succeeded in 

limiting coverage, while others have not stood up to judicial scrutiny.  Some carriers tried to reduce their 

risk by eliminating condominiums, townhouses, apartments, and even residential homes from coverage.  

Other endorsements were utilized to limit coverage by excluding roofers, any subcontractor involved in 

moving earth or preparing the land for concrete pads/foundations, building envelope subcontractors 

(such as stucco professionals), and to assure insureds stayed within their business classifications. Common 

endorsements and exclusions are shown on Appendix B. 
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3.9. Costs Associated with CD Claims  

The duty to defend is greater than the duty to indemnify.5  As CD claims have proportionately high 

ALAE payments due to litigation practices of the developers/general contractors who often name 

subcontractors as cross or third-party defendants without completing an investigation into the alleged 

property damage, questions as to date of occurrence and whether the statute of repose is still valid, whether 

or not insurance coverage pertains, which of several contractors may be ultimately liable, and the allocation 

of damages to triggered policies negotiated between insurers.  In addition, many of these claims close with 

no loss payment which also lead to an overall higher ALAE to loss ratio.  Some insurers and large self-

insureds have entered into variable or fixed fee types of arrangements with defense counsel where a series 

of payments are made to correspond with the level of work.  Subtle differences exist within these types 

of arrangements.  

Historically, ALAE costs were associated with claims where construction experts were needed to testify 

on differences as to what building procedures should have been performed as well as whether building 

standards were followed.  These types of costs are less frequent in today’s environment as carriers look to 

limit the total cost of the claim.  However, certain trades remain very expensive to defend —

concrete/foundation subcontractors for example typically require soil engineers and geotechnical 

engineers regarding claims of compression and concrete strength.  

3.10. Risk Transfer  

The developers and GCs employ their leverage contractually so they can be indemnified by their 

subcontractors in the case of any property damage “arising out of the work” of the subcontractor.  Under 

the terms of the contract, the subcontractors are required to name the developer and general contractors 

as an AI on a subcontractor’s policy.  In some instances, developers include a Prevailing Party clause in 

the contract giving them another chance to recover their litigation costs.  As a result, a majority of litigation 

costs incurred by a developer and general contractor are passed to the subcontractors’ insurers.  Over the 

last twenty years, there have been many changes to the ISO AI Endorsement, in the law, and how insurers 

manage the resultant data.   

Over time, many of the same coverage questions continued to emerge in new jurisdictions, requiring 

more experts.  Anecdotally, we see that the additional number of experts reviewing similar issues has 

resulted in a modest decrease in such costs.  Still, it continues to be common practice for a GC to bring 

in several experts on many related issues, especially with large construction projects. Understanding the 

differences between costs incurred by the NI (in this case the subcontractors) versus the AI, and 

segmenting that data appropriately in any type of analysis or projection, can be critical in some programs 

where AI Endorsements were issued freely. 

                                                      
5 Gray vs. Zurich Insurance Co., 65 Cal.2d 263 (1966) 
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3.11.  Potential Large Claim Emergence Throughout the History of the Portfolio 

Common insurance lines of business such as Private Passenger Automobile tend to have their more 

severe loss emergence the longer a reported claim is from the beginning of an accident date or policy 

inception date.  Easier-to-settle claims are usually closed quicker and tend to be of smaller value.  In CD, 

large claims can emerge very close to the project completion date or several years thereafter. The nature 

of CD losses does not necessarily lend itself to large claim emergence several years after a particular 

property is completed.  In fact, many CD claims reported close to the statutes of limitation or statutes of 

repose are denied almost immediately.  As another example, a latent claim could emerge whether or not 

the specific property is a high-cost or low-cost home.  Losses are rarely for full value of a property.  As 

such, there is less of a likelihood that emerged losses would vary as much based on costs of the property.  

Additionally, if early signs of damage are recognized, expenditures could potentially be mitigated.  

3.12. Changes to Nature of Originally Filed Claim  

Patent losses are often filed initially to establish the beginning claims docket.  Following this, further 

inspection of properties may unearth additional defects (both patent and latent are possible).  Accordingly, 

in these situations, it is possible that the final claim or set of claims could conceivably have little 

resemblance to the claim initially reported.  

3.13. High Percentage of Claims That Close Without Payment  

There are higher ratios of claims that are closed with no payment (CwoP) for this segment than we see 

in most other portfolios given the duty of insurers to defend litigation due to coverage issues, statutes of 

repose for filing claims, and exclusionary language within insurance contracts.  The approach and filing 

practices of the homeowners’ attorneys, naming many subcontractors often without allegation of defects 

attributable to their work, also contributes.  The large percentage of CwoP claims, as well as understanding 

historical shifts in these ratios over time, should be considered in reserve estimates and understood by 

relevant interested parties such as underwriters and claims personnel.  

4. UNIQUE ACTUARIAL CONSIDERATIONS REGARDING 
CONSTRUCTION DEFECTS 

4.1 Use of Report Year Methodologies 

With the difficulty in determining accident date assignment for latent claims, CD liability projections 

are often performed on a report year type basis, estimating historical exposure bases (even though 

underlying policies would rarely, if ever, be written on a claims-made basis like most actuarial segments 

that use report year methodologies).  The difficulty in defining accident years (and subsequently policy 
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years) for CD as well as the potential latent emergence of covered losses (many reporting greater than 5 

years following the building of the properties in question) adds to the reasons to consider report year 

methodologies with the various projection methods.    

4.2. Pitfalls of Utilizing Premium as an Exposure Base  

Projections for CD coverage have rarely been standardized.  Experience is difficult to quantify because 

CD coverage itself is not specifically written as a stand-alone policy.  It is often a subset of General Liability 

coverage, where it becomes difficult to assign an appropriate exposure base (such as earned premium) to 

accompanying losses. Report Year CD methods often estimate a calendar/accident year premium and 

estimate the premium earning for the various years into future report years based on approximating the 

emergence of historical reported claims.  Actuaries then perform projections using the premium as an 

exposure base for Bornhuetter-Ferguson methods or to determine a frequency of future claims for a 

frequency/severity type of method.   

These premium based methodologies rely on a number of difficult assumptions: 

4.2.1. Estimation of Premium Itself  

Estimating premium by accident year is often subjective in determining the percentage of CD premium 

from within overall contractors premium. 

4.2.2. Impact of Historical Rate Changes  

Ideally, we should understand historical rate changes to the premium used so that there is an 

appropriate comparison of on-level premium for the different accident years.  It is often very difficult to 

determine rate changes for the different types of contractors classes, and the application of schedule 

credits could conceivably mask the overall reduction in premium from one period to another.  The 

methodology itself would assume that reduction in premium corresponds to an exact decrease in losses 

by the same percentage.  Failure to properly account for rate changes would add another level of 

complication to these types of projections.  

4.2.3. Complications from Shifts in Mix of Business  

Contractors business notoriously is driven by macro conditions such as the economy, housing starts, 

etc., with peaks and valleys of historical writings.  Given the changing population over time, it is certainly 

possible that the projection of claim reports would not behave identically for different contractors or 

building projects that enter and exit the population over time.  Accordingly, the fundamental assumptions 

as to premium earning would be violated in such a situation.  
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4.2.4. Use of Multiple Earnings Patterns  

With the various accident year premium exposures being allocated to future report years based on 

perceived earnings, each resulting report years’ estimated premium consists of several historical policy 

years that may have very little in common; this phenomenon could continue indefinitely.  Given the 

composition of this estimated premium, it becomes extremely difficult to understand underlying causes 

that may cause relevant report years’ experience (such as observed loss ratios or frequency) to look 

different among the various periods. Changes within a book by policy year or accident year (such as 

fundamental changes in underlying exposure, terms and conditions, etc.), would be difficult to understand 

and quantify with these types of methods. When we also consider the uncertainty of estimating historical 

rate changes, it becomes difficult to rely upon methods that utilize premium estimates with any degree of 

certainty. 

4.3. ALAE Costs with or Without Corresponding Loss Payments  

As we noted, there are often extensive ALAE payments in CD as disputes arise as to coverage, ultimate 

liabilities, validity of endorsement exclusions, application of statutes of limitation, where to file claims, etc.   

We have found that sometimes ALAE costs correspond to matters that are much simpler to handle.  For 

instance, events that could lead to early denial include obvious statutes or where policy periods pertained 

to periods significantly different than the filed claims.  Often, there would not be corresponding loss 

payments associated with such ALAE payments.  Actuarial techniques shown have rarely, if ever, 

considered these differences by segregating their various projections. 

4.4. Claims That Close Without Payment  

As noted earlier, CD claims often result in closings without any associated payments.  It is important 

for actuaries to consider CwoP claims in projections of future claim counts, with many methods often 

considering a companion severity estimate for claims that close with given payments.  Given the multiple 

policy years of coverage that make up a corresponding report year, changes to business mix can sometimes 

have a profound impact on CwoP percentages (as well as any other CD related characteristics) that may 

ultimately bear little resemblance to historical observations:   

4.4.1. Changes to State Mix  

Any changes to state mix over the course of time could create situations where the future CwoP ratios 

look different than historical averages.  Recall that states have different allowable triggers, with some 

considering coverage for continuous triggers, whereas other state laws allow only a claim manifestation 

trigger.  Additionally, some states may allow additional time for filing a valid claim (leading to a possibility 

of claims closing with a payment) whereas others would not (as such, a claim would be closed with no 

payment).   
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4.4.2. Changes to Law  

Changes to law (either tort or legislative) can have an impact on CwoP liability as coverage viewpoints 

may change to make establishment of liability either more or less difficult than what was observed 

historically.  The insurance industry for example has seen non-CD examples such as molestation claims 

where the statute of limitation has lengthened, allowing formerly barred claims to be filed. Similar changes 

have taken place to historical laws (such as allowing additional years to file claims) or rules concerning CD 

that may need to be considered for future evaluations.  Any other changes such as revisions to triggers, 

excluded classes, choice of law, etc. can impact liability considerations.  

4.4.3. Claim Filings for One Time Events with Low Cost Claims 

On occasion, the authors have found situations leading to an increase in smaller claims for a specific 

event such as a class action.  Any such event should receive consideration for further data segmentation.  

This one-time increase in claim counts (that do settle with small indemnity payments) needs to be 

understood for projections as this type of distortion would impact historical claim frequency (higher), 

CwoP percentage (lower), and historical severity (lower).  

4.4.4. Consideration of Policy Limit Caps  

It may be possible in some situations where numerous valid claims would be filed historically, but the 

corresponding insurance policy cap would have already been reached.  As such, there would be no more 

loss coverage remaining, even if there remain appropriate types of claims open or being filed.  

4.4.5. Use of Endorsements and Exclusions in Policy Language 

Certain types of losses that were previously covered as valid claims, may not be allowable under revised 

language or exclusionary endorsements.  In such cases, previously covered losses may not have valid 

coverage with the use of court tested exclusions.  

4.4.6. Changes to CwoP Percentages as Claims Approach the Statutes of Repose  

We have seen evidence in some books of business where additional claims were filed as the opportunity 

to file claims began to run out.  If these claims are less likely to have valid coverage and are only being 

filed because of the ending of the filing opportunity, it would be more likely for such claims to close 

without corresponding loss payment.  The possibility also exists that these claims do result in much smaller 

settlements (simply reducing the operational and ALAE costs), but where similar percentages of claims 

close with payment.  It would be worthwhile to understand the impact of these filings prior to making 

projections for these specific CD books of business. 
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4.4.7. Relevant Operational Changes  

Any relevant operational changes in procedure or definition should be fully understood to project 

future CwoP percentages.  As an example, the authors have observed situations where several successive 

policy years existed for a given insured, and an insurance company’s practice was to assign a filed claim to 

each historical policy year.  Upon discovery of which policy would have the ultimate liability, the remaining 

assigned claims would be closed with no payment.  Supposing in this example, the company had several 

old existing policies that were constantly renewed, but have recently begun to grow by writing new policies.  

In the updated situation, as policies were renewed, the practice of assigning claims to each policy period 

would as a result have fewer impacted policy periods.  Upon the final assignment, the CwoP percentage 

could be much lower than what was seen historically, as there would be fewer policy periods that would 

close the claim with no loss payment.  

Any other noteworthy changes (definitions of claim counts, inconsistencies upon definitions or claims 

handling within historical TPAs, coding issues, etc.) should be understood and adjusted as needed. 

4.5. Differences by State  

As mentioned, there are important differences by state in terms of deemed occurrence dates 

(continuous trigger, manifestation, etc.), risk transfer, and various reporting statutes.  Accordingly, it is 

important for any projections to consider segmentation of data into similar portfolios.  Such groupings 

could include separation of individual states or possible groupings of states with similar characteristics in 

treatment of CD claims.  Any corresponding changes to historical state mix should be understood 

including the potential impact on assumptions.   

Another issue is that some states allow for suits against the insurers in addition to the trades (direct 

action states). These often increase costs dramatically. The venue is critical in determining exposure as 

some states are widely known for being more plaintiff-friendly.  Exposure in these jurisdictions can be 

dramatically higher.  

4.6. Difficulty Benchmarking to Other Peer Companies  

Information in the marketplace is difficult to access as publications such as an Annual Statement 

consider CD losses within the General Liability segments.  Publications of specific studies pertaining to 

only CD losses are even more rarely produced or shared within the insurance industry. 
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5. PROPOSED ACTUARIAL SOLUTION AND CORRESPONDING 
METHODOLOGY 

Because of the elements noted earlier, projections of CD liabilities are continually re-evaluated 

in practice.  Report year methodologies essentially behave like calendar year methodologies and 

accordingly would be quite sensitive to both frequency components and severity estimations.  

Additionally, report year methods by their very nature are made up of several historical policies or accident 

year periods, which can be inconsistent in a segment like CD with all the potential historical changes (over 

several policy years) noted earlier. 

We already mentioned changes that can take place including (1) changes in historical coverage and 

liability as a result of the application of limitations and endorsements, (2) internal operational changes 

including claims practices or definitions of terms such as claims, closed claims, ALAE, etc., (3) changes in 

mix of business being written both in terms of the underlying nature of business as well as location of 

liability or insured parties, and (4) changes in laws and torts through judicial rulings and case review.  All 

these elements can have profound impact over time, and lead to instability with many actuarial 

methodologies used to project CD liabilities. 

In particular, elements of establishing appropriate exposure bases for CD liabilities, including 

approximation of premium and their accompanying earning patterns, often have pitfalls as noted in earlier 

sections.  

It is the intention for the KTT methodology to be better able to segment and identify changes within 

the various books of business as well as perform projections that may better capture elements that are 

more meaningful in understanding observed and future emergence.  The KTT methodology exclusively 

uses Paid Loss and ALAE methodologies for closed claims, which the authors believe gives a more 

reflective viewpoint on observed historical emergence within the various CD segments.  The motivation 

for this change is that upon examining the history of several internal CD portfolios, we 

determined that the lag between report year and close year was the most predictive factor for both 

whether a claim will close with payment and the average severity of such claims that do close 

with payment.  The change in severity over time to closure was much more of an indicator of increases 

to larger claims than time since an accident or time since construction.  This was another incentive for the 

use of payment methodologies in our projections. 

Anyone using the KTT methodology should feel free to further split data into more homogenous 

segments to the extent their data would be credible enough to do so.  

Given how impactful any changes from historical practice and makeup to a book of business can be 

for estimations within this segment, it is absolutely critical that open communication takes place between 

actuaries and other departments such as claims or underwriting both from a proactive sense (where 

actuaries can adjust assumptions based on input from these specialties) as well as an observed sense 
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(situations in which the actuaries can better explain observations of changes to data and projections to 

other interested parties).   

5.1. Data Elements, Indicators and Requirements  

The data elements needed for the projection are largely items that are captured in typical systems and 

may even be simpler than what is needed in many CD projection methods currently used by actuaries.  

Additional elements can be established early in the creation process and would likely be available in most 

companies’ typical flat files: 

5.1.1. Data Requirements  

This KTT projection methodology does not require transactional data.  Instead, all that is needed is an 

inception-to-date (ITD) loss run with the following fields: 

 Claim ID 

 Loss Year /Accident Year 

 Report Year 

 Close Year 

 ITD Paid Loss 

 ITD Paid ALAE 

 Case Loss 

 Case ALAE 

See Appendix A, Section 1: Data Requirements for examples. 

5.1.2. Loss Limitations  

With Construction Defect liabilities, large loss emergence and manifestation can occur at any point in 

a traditional loss triangle, making it difficult to select loss development factors or severities.  Issues related 

to poor workmanship are often independent of whether an incident is on a lower cost starter home or a 

more expensive home that may or may not have utilized expensive products.  This contradicts many 

typical rules of thumb for actuarial thinking mentioned historically by Salzmann [8] and others that 

associate higher severity amounts as the age of a claim becomes greater.  

The sporadic large loss emergence for CD portfolios, can be mitigated by selecting a loss limit - a split 

between what we’ll consider “limited loss” versus what we consider “excess loss”.  The limited losses are 

used in the method’s triangle based projection methods, and a load for excess loss will be incorporated 

following. 

The loss limit should be selected such that the distortions from extremely large losses are dampened.  

For example, one might choose a loss limit such that ninety percent of claims closed with a paid loss do 
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not exceed the limit.  If the book does not exhibit extremely large losses with high variation in timing, the 

loss limit may not be necessary.   

This limitation would also provide an opportunity to specifically account for known large losses that 

have individual case reserves that claims handlers would be comfortable with.  By removing these large 

losses and then including them as specific individual estimates later, distortions for these known outliers 

can be considered in a more reliable estimate (similar to how property catastrophe claims are often 

handled). 

5.1.3. Derived Data Fields  

Following the establishment of a loss run and loss limits, we can now look to derive additional fields 

as seen on Appendix A, Section 1: Data Requirements.  

5.1.3.1. Open or Closed Claims  

Claims can be classified as Open or Closed, based either on the Close Year or on the case reserves 

(where a case reserve of $0 would signify a closed claim).  Closed claims can then be partitioned into three 

categories: 

 Closed with Paid Loss (CwPL) – whether or not ALAE has also been paid 

 Closed with Paid ALAE Only (CwPAO) 

 Closed without Payment (CwoP) 

5.1.3.2. Excess Loss Identifier  

Once the CwPL claims have been identified, another indicator should be added for Closed with Paid 

Excess Loss (CwPL XS) claims.  Note that these CwPL XS claims are a subset of the CwPL counts, rather 

than additional claims themselves. 

5.1.3.3. Paid Loss Segmentation 

Paid Loss can now be partitioned into three categories: 

 Limited Paid Loss on CwPL claims 

 Excess Paid Loss on CwPL claims 

 Paid Loss on Open claims 

5.1.3.4. Paid ALAE Segmentation  

Paid ALAE is partitioned into three categories: 

 Paid ALAE on CwPL claims 

 Paid ALAE on CwPAO claims 

 Paid ALAE on Open claims 
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5.2. Claim Count Projection Methodologies 

This section details the many elements included in the projections of ultimate reserve liability.  As 

noted earlier, this method largely tracks and considers methodologies involving claim counts and historical 

closed paid severity calculations.  Consideration is also given for claim closures including those that may 

or may not close with a loss payment, with a similar breakdown within ALAE for those that close with or 

without a loss payment:  

5.2.1. Reported Claim Count Projection  

Following the establishment of a loss run and loss limits, we can now look to derive additional fields 

related to claim counts. 

Using the loss run, a triangle of cumulative reported counts aggregated by loss year and by age of the 

report year from the loss year, can be constructed.  This would be the only triangle in the method 

aggregated by loss year - all others rely on the report year.   

The projected ultimate reported claim counts methodology uses traditional chain ladder development 

techniques.  The next step in the process is to transform the triangle from cumulative counts to 

incremental counts, and then “square the triangle” - that is, fill the empty space below and to the right of 

the triangle with the projected future reported claim counts.  Any standard methodology should suffice; 

see the Friedland [3] text for an entry-level walkthrough of many such methodologies. 

Moving up and to the right for each diagonal would correspond to a particular report year. The sum 

of each diagonal determines the ultimate reported claim counts by report year.  This process can be seen 

on Appendix A, Section 2: Reported Claim Count Projection. 

5.2.2. Ratios of Closed Claim Counts  

The next step in the process is to construct a triangle of cumulative closed claims further segmented 

by age of the close year from the report year.  Using this triangle, a second triangle is constructed that 

divides each value from the first triangle by the ultimate reported claim count for the corresponding report 

year.  The resulting second triangle depicts the cumulative close ratios for each report year. 

The user would then need to select a cumulative close ratio for each age, and transform those selections 

from a cumulative basis to an incremental one.  Similar to any other methodology, one should consider 

whether the incremental selections would make intuitive sense.  For example, if the age 48-60 incremental 

closed ratio is three times larger than the 36-48 ratio, does that seem reasonable?  Is there a known story 

that explains the observation, or is further investigation required?  Policy language and exclusions, as well 

as changes over time as discussed earlier would likely have strong impacts on the closure ratios. 

When this process is complete, apply the selected incremental closed ratios to open and yet-to-be-

reported claim counts to project incremental closed claim counts by age of close year from report year.  
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Appendix A, Section 3: Closed Claim Count Projection shows a calculation for both future report years as well 

as the allocation procedure to better understand existing report years. 

5.2.3. Note on Characteristics of the Triangles  

From this point forward in the methodology, all triangles will have the following characteristics: 

 Incremental, rather than cumulative 

 Aggregated by report year and by age of the close year from the report year 

 Contain only data from closed claims as a consequence of the last point 

There are a number of resulting ramifications that should be considered.  First, paid amounts and case 

reserves for open claims will not be found in any triangles from this point forward.  Second, when 

comparing the same triangle at two different valuation dates (e.g., this year’s analysis versus last year’s), 

there may be significant differences within the interiors of the triangles.  This is because the close year of 

a claim could change over time.  As an example, suppose the claim was initially dismissed within a year of 

being opened, but was subsequently reopened and closed at a later period with Paid Loss.  Changes to 

interiors of triangles result in a continual restatement of historical values to be most reflective of the latest 

situations.  Finally, as all triangles are compiled on an incremental basis, there may be few claims beyond 

a certain age.  It may be uncommon for claims to take more than five years to close after being reported 

to the insurer.   In such a case, the actuary should consider combining all ages 60 months or greater. 

5.2.4. Closed with Payment Ratios 

The user will need to construct the following three triangles, understanding that they will also need to 

be complied on an incremental basis and then aggregated by report year and age of the close year from 

the report year. 

 Closed Claim Counts 

 Closed with Paid Loss (CwPL) Claim Counts 

 Closed with Paid ALAE Only (CwPAO) Claim Counts 

The authors have noticed considerable differences across all calculated functions between ALAE only 

claims, ALAE claims where a loss payment was made as well, and loss payments.   Dividing the CwPL 

Claim Counts triangle by the Closed Claim Counts triangle derives a triangle of incremental CwPL ratios.  

The user would then select an incremental CwPL ratio for each age, similar to how one would select loss 

development ratios from a traditional loss development triangle. 

Intuitively, one would think that there would be a positive correlation between the length of time it 

takes a claim to close and the likelihood that this claim closes with a Paid Loss.  Nuisance claims would 

often be denied without a loss payment very quickly after being reported to the insurer.  On the other 

extreme, claims that would remain open for five years or more would typically have a higher rate of being 
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closed with a Paid Loss.  If the selected CwPL ratios do not reflect this correlation, the incremental CwPL 

ratio triangle can be an excellent tool for discussions with the Claims Department about why actual 

observations would deviate from intuition. 

Finally, the user would need to derive a triangle of incremental CwPAO ratios in an identical manner, 

and select a ratio for each age.  The same intuitions about the correlation between time-to-close and 

likelihood of closing with paid ALAE only may not hold.  It may hold for the first few ages, but particularly 

as the CwPL ratio increases by age, the ceiling for CwPAO ratio selections must decrease because the sum 

of the CwPL and CwPAO ratios for any given age cannot exceed 100%. The derivation of CwPL and 

CwPAO frequencies can be seen on Appendix A, Section 4: CwPL and CwPAO Ratio Selections. 

5.2.5. Claim Count Projections by Category  

Earlier in this method and descriptions, reported claim counts were projected for future report years 

and future closed claim counts were projected by report year and by age of close year from report year.  

The next step is to apply the appropriate selected incremental CwPL and CwPAO ratios to the future 

closed claim counts.  The resulting projections seen on Appendix A, Section 5: Future Count Projections are 

CwPL and CwPAO claim counts by report year and by age of close year from report year. 

Projections in this format have the advantage of being ready-made for “actual versus expected” types 

of analyses, in that the “expected” closed (or CwPL, or CwPAO) claim counts for each future calendar 

year, which may ordinarily be difficult to derive, would be observed simply by taking the sums of the 

projected diagonals. 

5.3. Loss Related Projections, Severities, and Considerations  

Developing final estimates of ultimate loss liability involves utilizing the development of future closed 

claim counts and combining them with an estimate of severities for future years.  Those pertaining to the 

loss only component are noted in this section:  

5.3.1. Limited Loss Severities  

The user now constructs a triangle of limited Paid Loss amounts on closed claims, and similarly 

aggregates these by report year and by age of close year.  Dividing this triangle by the incremental CwPL 

claim count triangle determined from the previously detailed steps results in a triangle displaying CwPL 

limited loss severities.  Finally, one should select a CwPL limited loss severity for each age, similarly to 

how one would select loss development ratios from traditional methodologies and severity triangles as 

shown on Appendix A, Section 6: Limited Paid Loss Projection. 

Intuitively, there would be a positive correlation between the length of time it takes a claim to close 

with paid loss and the size of the Paid Loss.  Small claims tend to be resolved relatively quickly after being 

reported to the insurer, while larger claims are more likely to enter litigation and therefore take significantly 
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longer to settle.  If the selected CwPL limited loss severities do not reflect this correlation, one could 

consider whether the selected loss limit is set at too high a value (allowing larger losses to potentially 

distort earlier ages).  If one concludes this to not be the situation, the CwPL limited loss severity triangle 

can be an excellent tool for discussions with the Claims Department about why practice deviates from 

intuition. 

5.3.2. Excess Loss Frequency and Severity Determination  

Similar to the limited loss calculations, one would need to construct a triangle of incremental closed 

with paid excess loss (CwPL XS) claim counts aggregated by report year and by age of close year.  Next, 

we compare this triangle to the incremental CwPL claim count triangle from previous steps to derive 

scenarios for an overall CwPL XS frequency.  For example, one could divide the sum of the entire first 

triangle by the sum of the entire second triangle to derive an all year weighted average frequency.  

Alternatively, one could divide the sum of the bottom X rows of the first triangle by the sum of the bottom 

X rows of the second triangle to derive an X-report-year weighted average. We would then select a single 

overall CwPL XS frequency. 

To determine severities, we’d need to construct a triangle of excess Paid Loss amounts on closed 

claims aggregated by report year and by age of close year.  Comparing this triangle to the incremental 

CwPL XS claim count triangle would lead the user to select a single overall CwPL XS severity (similar to 

the way the CwPL XS frequency was selected). This is detailed further in Appendix A, Section 7: Excess Paid 

Loss Projection. 

5.3.3. Ultimate Loss Projections  

Earlier, future CwPL claim counts were projected by report year and by age of close year from report 

year.  Next, the user applies the appropriate selected CwPL limited loss severities to the future CwPL 

claim counts.  The result is the projection of future CwPL limited Paid Loss by report year and by age of 

close year from report year, seen on Appendix A, Section 6: Limited Paid Loss Projection. 

The CwPL limited Paid Loss projection format also has the advantage of already determining future 

values for an “actual versus expected” analysis, similar to the earlier projections for CwPL and CwPAO 

claim counts. 

Finally, to determine the overall ultimate loss projection, one needs to multiply the sum of all future 

CwPL claim counts by the selected CwPL XS frequency and severity to arrive at the “load” for excess 

losses.  This is shown on Appendix A, Section 7: Excess Paid Loss Projection.  This excess load could be 

allocated to the limited losses in a format similar to the future limited loss or it could be left as a stand-

alone reserve without being assigned to specific report years, close years, or calendar years.  The advantages 

and disadvantages of either approach will vary according to specific circumstances. 
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5.4. ALAE Related Projections, Severities, and Considerations  

Developing final estimates of ALAE liability involves utilizing the development of future closed claim 

counts and combining them with an estimate of severities for future years.  Those pertaining to the ALAE 

only component are noted in this section.  Of note, the KTT methodology does not consider partial 

payments for ALAE within the observed payment history that derives the historical severities.  Rather, 

ALAE payments are only considered upon the year a claim is ultimately closed.  Accordingly, the user 

may need to separately compile historical ALAE payments on open claims and adjust the ALAE IBNR.  

This would avoid estimating a future liability for amounts that have already been paid.  We note that 

interim ALAE payments on claims that remain open are significantly more common than interim loss 

payments as claims are often litigated for several years until the final loss would be paid.  To the extent 

that interim loss payments have been made on open claims, a similar procedure could be considered.  

5.4.1. ALAE Severities  

The user creates a triangle of paid ALAE on CwPL claims aggregated by report year and by age of 

close year.  Dividing this triangle by the incremental CwPL claim count triangle from previous steps 

derives a triangle of CwPL ALAE severities. One then selects a CwPL ALAE severity for each age.   

The same process uses the triangles of paid ALAE on CwPAO claims and the previously constructed 

incremental CwPAO claim count triangle in order to analyze and select CwPAO ALAE severities.  

Projections are found on Appendix A, Section 8: Paid ALAE Projection for Future CwPL Claims and Appendix 

A, Section 9: Paid ALAE Projection for Future CwPAO Claims.  

No explicit adjustment is made for a limitation of ALAE payments. A user can make such an 

adjustment if they consider it relevant. 

The development of separate ALAE severities for claims that do and do not close with Paid Loss may 

aid strategy in addition to considering unique characteristics of each subset of ALAE in making 

projections.  As an example, suppose that claims that close without Paid Loss after 60 months have an 

average ALAE spend of $50,000, while claims that close after 60 months with Paid Loss have an average 

ALAE spend of $20,000 and an average loss severity of $90,000. These results may indicate an advantage 

of increasing the amount spent for defense. 

5.4.2. Ultimate ALAE Projection  

Earlier in this method description, future CwPL claim counts and future CwPAO claim counts were 

projected by report year and by age of close year from report year.  The next step would be to apply the 

appropriate selected CwPL ALAE severities to the future CwPL claim counts and the appropriate selected 

CwPAO ALAE severities to the future CwPAO claim counts.  The result is the projection of future paid 

ALAE by report year and by age of close year from report year seen on Appendix A, Section 8: Paid ALAE 

Projection for Future CwPL Claims and Appendix A, Section 9: Paid ALAE Projection for Future CwPAO Claims. 
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Similar to the earlier projections of CwPL and CwPAO claims counts and CwPL limited Paid Losses, 

the ALAE projection can be utilized easily for commonplace “actual versus expected” analyses. 

5.5. Summary of Projections  

The final step in the method is to aggregate the results of the projections by report year and in total as 

seen in Appendix A, Section 10: Summary of Projections.   

The current claim counts, projected future counts, and ultimate counts should be shown for each of 

the count types used in the analysis: reported, closed, CwPL, CwPL XS, CwPAO, and CwoP.  While the 

CwoP counts are not used explicitly in this method, they are easily derived by subtracting the CwPL and 

CwPAO counts from the total closed counts and may be useful in discussions about the reasonableness 

of results. 

Similarly, for loss and ALAE, the current, projected future, and ultimate paid amounts should be shown 

for each of the categories analyzed: CwPL limited loss, CwPL XS loss, CwPL ALAE, and CwPAO ALAE.  

Additionally, the current amounts of paid loss and ALAE on open claims and the case reserves for loss 

and ALAE must be included, as these are required to determine the current total paid amounts and the 

IBNR estimate. 

The examples shown in Appendix A do not allocate future CwPL XS counts or future CwPL XS paid 

loss to report year and are instead left as excess loads shown only in the totals.  The user may prefer to 

perform a different allocation.  One possible method could apply a portion of excess counts and losses to 

known large open claims and then allocate the remaining portion to future report years using CwPL counts 

as a distribution basis. 

Finally, because this method requires a number of partitions of the data that could be unfamiliar to 

others, this exhibit should include a simplified version that shows paid loss and ALAE, case loss and 

ALAE, and IBNR loss and ALAE, as well as ultimate totals on a combined basis. 

6.   CONCLUDING REMARKS 

The authors would recommend that users of this method consider further refinement of data to split 

into various different programs or books of business to the extent that any such segmentation (state, 

commercial/residential construction, AI/NI, general contractor/subcontractor, etc.) is relatively 

homogeneous and would be appropriate given credibility considerations. 

A couple of future potential enhancements are noted below to consider in potentially making business 

decisions and/or appropriate estimations and conclusions: 
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6.1. Reopened Claim Counts  

If claims reopen at a high enough frequency, it may be worthwhile to consider an explicit adjustment 

and projection accordingly.  Determining this could be accomplished simply by adding “Reopen Year” as 

a named field to the loss run.  It would then be possible to build reopened claim count triangles, which 

could be used to select ratios of reopened claims to prior closed claims by age.  Reopened claims could 

then be projected, which would be considered in addition to open and future reported counts when 

determining future closed counts. 

6.2. Adjusting for Negative IBNR Indications for Specific Report Years  

Given that the case reserves are not considered in any part of this projection method, it is possible that 

specific large losses are already known and may not settle for a number of years.  If the load for excess 

losses is allocated to report year without consideration for these known claims, the projected future loss 

for the noted report year could potentially be lower than the booked case reserves.  The user could adjust 

by allocating the overall excess estimated loss amount as appropriate.  One such approach could be to 

allocate the known case loss reserves exceeding the selected loss limit (with the remaining excess being 

assigned to the remaining years).  Other allocations may consider more judgmental assumptions, including 

consideration of specific estimates for known large cases as discussed previously. 

6.3. Final Thoughts 

The methodologies and considerations here should give the reader an appropriate methodology to 

project CD liabilities, have meaningful internal company discussions, and ultimately make more 

appropriate business decisions.  None of the assumptions supporting these projections should be 

considered within a vacuum both in terms of observed trends or knowledge of upcoming environmental 

changes.   

A segment like CD is perpetually changing, and the understanding of recent and future changes can 

lead to a more reflective projection or even adjustments to a selected method or assumptions.  The authors 

would welcome seeing the method detailed within this paper used by others as a “beginning” for 

estimating their own changing situations. We look forward to welcoming further thoughts. 
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Abbreviations and notations  

AI, Additional insured GC, General contractor 

ALAE, Allocated loss adjustment expenses  IBNR, Incurred but not reported loss (i.e., all unreported 
development beyond case reserves) 

   CAS, Casualty Actuarial Society ID, Identification code 

CD, Construction defect ISO, Insurance Services Office 

CDF, Cumulative loss development factor ITD, Incurred to date 

CGL, Commercial general liability KTT, Kahn-Tumbleston-Townsend Construction Defect 
liability projection method 

CwoP, Closed without payment LDF, Age-to-age loss development factor 

CwP, Closed with a payment MGA, Managing general agency 

CwPAO, Closed with payment for ALAE only NI, Named insured 

   CwPL, Closed with Paid Loss OCIP, Owners Controlled Insurance Program 

CwPL XS, Closed with Paid Loss on claims with an excess 
component 

SIR, Self-insured retention 

   DCC, Defense and cost containment TPA, Third party administrators 

   EIFS, Exterior insulation and finishing systems  
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Appendix A: Projection of Ultimate Liabilities 
 

 

APPENDIX A, SECTION 1: Data Requirements
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019 ($000's)

Exhibit A1-1: Abridged Fictional Construction Defect Loss Run and Derived Fields

Abridged Loss Run
[A] [B] [C] [D] [E] [F] [G]

Loss Report Close Paid Paid Case Case
Claim_No Year Year Year Loss ALAE Loss ALAE
CN000000001 2010 2010 2011 0 3 0 0
CN000000043 2010 2012 2014 584 22 0 0
CN000000059 2012 2012 2014 23 20 0 0
CN000000102 2010 2013 2013 0 1 0 0
CN000000149 2012 2014 2014 0 1 0 0
CN000000203 2010 2015 2016 0 0 0 0
CN000000222 2014 2015 2015 0 1 0 0
CN000000286 2014 2016 2016 0 1 0 0
CN000000299 2015 2016 2016 0 1 0 0
CN000000324 2015 2016 2018 0 0 0 0
CN000000335 2015 2016 2016 0 1 0 0
CN000000374 2013 2017 2018 20 17 0 0
CN000000393 2016 2017 0 0 59 48
CN000000414 2010 2017 2018 36 17 0 0
CN000000466 2015 2017 0 0 228 43

Derived Fields
[H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]

Loss-to- Report-to- Reported Open CwPL CwPL XS CwPAO CwPL Ltd CwPL XS CwPL CwPAO
Claim_No Report Lag Close Lag Count Count Count Count Count Paid Loss Paid Loss Paid ALAE Paid ALAE
CN000000001 12 24 1 0 0 0 1 0 0 0 3
CN000000043 36 36 1 0 1 1 0 200 384 22 0
CN000000059 12 36 1 0 1 0 0 23 0 20 0
CN000000102 48 12 1 0 0 0 1 0 0 0 1
CN000000149 36 12 1 0 0 0 1 0 0 0 1
CN000000203 72 24 1 0 0 0 0 0 0 0 0
CN000000222 24 12 1 0 0 0 1 0 0 0 1
CN000000286 36 12 1 0 0 0 1 0 0 0 1
CN000000299 24 12 1 0 0 0 1 0 0 0 1
CN000000324 24 36 1 0 0 0 0 0 0 0 0
CN000000335 24 12 1 0 0 0 1 0 0 0 1
CN000000374 60 24 1 0 1 0 0 20 0 17 0
CN000000393 24 1 1 0 0 0 0 0 0 0
CN000000414 96 24 1 0 1 0 0 36 0 17 0
CN000000466 36 1 1 0 0 0 0 0 0 0

Derivations

[H] = ([B] - [A] + 1) * 12 [K] = 1 if [C] is empty; otherwise 0 [O] = the lesser of [L] * [D] and 200 (the selected loss limit)
[I] = ([C] - [B] + 1) * 12 [L] = 1 if [K] = 0 and [D] > 0; otherwise 0 [P] = [L] * [D] - [O]
[J] = 1 [M] = 1 if [L] = 1 and [D] > 200; otherwise 0 [Q] = [L] * [E]

[N] = 1 if [K] = 0 and [D] = 0 and [E] > 0; otherwise 0 [R] = [N] * [E]

Exhibit A1-2: Summary of Data

Current Loss and ALAE
Current Counts CwPL CwPL CwPL CwPAO Open Open Case Case

Rept Yr Reported Closed CwPL CwPL XS CwPAO CwoP Ltd Loss XS Loss ALAE ALAE Paid Loss Paid ALAE Loss ALAE
2010 12 12 3 0 6 3 175 0 81 21 0 0 0 0
2011 19 19 8 0 7 4 490 0 324 68 0 0 0 0
2012 32 32 10 2 18 4 713 509 349 114 0 0 0 0
2013 40 40 15 0 11 14 881 0 724 20 0 0 0 0
2014 54 53 24 0 21 8 1,590 0 1,068 82 0 21 30 56
2015 93 91 30 3 40 21 2,041 818 932 125 0 0 130 63
2016 108 97 27 1 43 27 1,478 166 811 124 10 19 900 623
2017 134 103 30 0 50 23 1,206 0 747 153 26 107 1,534 1,079
2018 112 71 4 0 42 25 135 0 62 71 33 85 1,379 1,219
2019 105 45 2 0 30 13 26 0 11 30 26 65 1,421 951
Total 709 563 153 6 268 142 8,734 1,493 5,108 809 96 297 5,394 3,991

Abbreviations

CwPL Closed with Paid Loss CwPAO Closed with Paid ALAE Only
CwPL XS Closed with Excess Paid Loss (a subset of CwPL) CwoP Closed without Pay
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APPENDIX A, SECTION 2: Reported Claim Count Projection
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019

Exhibit A2-1: Cumulative Reported Counts by Age of Loss Year

Loss Yr 12 24 36 48 60 72 84 96 108 120
2010 12 22 35 43 52 69 80 86 90 91
2011 9 19 31 45 64 82 94 95 100
2012 9 22 32 48 64 81 85 88
2013 7 13 23 40 66 83 91
2014 15 30 48 74 100 133
2015 16 33 55 84 102
2016 11 22 34 47
2017 14 25 35
2018 8 15
2019 7

Exhibit A2-2: Age-to-Age Development Factors

Loss Yr 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
2010 1.833 1.591 1.229 1.209 1.327 1.159 1.075 1.047 1.011
2011 2.111 1.632 1.452 1.422 1.281 1.146 1.011 1.053
2012 2.444 1.455 1.500 1.333 1.266 1.049 1.035
2013 1.857 1.769 1.739 1.650 1.258 1.096
2014 2.000 1.600 1.542 1.351 1.330
2015 2.063 1.667 1.527 1.214
2016 2.000 1.545 1.382
2017 1.786 1.400
2018 1.875
2019

Selected 1.997 1.582 1.482 1.363 1.292 1.113 1.040 1.050 1.011

Exhibit A2-3: Cumulative Reported Counts by Age of Loss Year, Developed to Ultimate
Derived from Exhibits A2-1 and A2-2

Loss Yr 12 24 36 48 60 72 84 96 108 120
2010 12 22 35 43 52 69 80 86 90 91
2011 9 19 31 45 64 82 94 95 100 101
2012 9 22 32 48 64 81 85 88 92 93
2013 7 13 23 40 66 83 91 95 100 101
2014 15 30 48 74 100 133 148 154 162 164
2015 16 33 55 84 102 132 147 153 161 163
2016 11 22 34 47 64 83 92 96 101 102
2017 14 25 35 52 71 92 102 106 111 112
2018 8 15 24 36 49 63 70 73 77 78
2019 7 14 22 33 45 58 65 68 71 72

Exhibit A2-4: Incremental Reported Counts by Age of Loss Year, Developed to Ultimate
Derived from Exhibits A2-3

Loss Yr 12 24 36 48 60 72 84 96 108 120
2010 12 10 13 8 9 17 11 6 4 1
2011 9 10 12 14 19 18 12 1 5 1
2012 9 13 10 16 16 17 4 3 4 1
2013 7 6 10 17 26 17 8 4 5 1
2014 15 15 18 26 26 33 15 6 8 2
2015 16 17 22 29 18 30 15 6 8 2
2016 11 11 12 13 17 19 9 4 5 1
2017 14 11 10 17 19 21 10 4 5 1
2018 8 7 9 12 13 14 7 3 4 1
2019 7 7 8 11 12 13 7 3 3 1

Exhibit A2-5: Ultimate Reported Counts by Report Year
Sums of diagonals of Exhibit A2-4

Ult Rptd Ult Rptd Ult Rptd Ult Rptd
Rept Yr Counts Rept Yr Counts Rept Yr Counts Rept Yr Counts

2010 12 2015 93 2020 104 2025 16
2011 19 2016 108 2021 85 2026 8
2012 32 2017 134 2022 69 2027 4
2013 40 2018 112 2023 50 2028 1
2014 54 2019 105 2024 31
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APPENDIX A, SECTION 3: Closed Claim Count Projection
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019

Exhibit A3-1: Cumulative Closed Counts by Age of Report Year
Ultimate Reported Counts taken from Exhibit A2-5

Ult Rptd
Rept Yr 12 24 36 48 60 72 84 96 108 120 Counts

2010 4 10 10 12 12 12 12 12 12 12 12
2011 6 10 12 15 18 19 19 19 19 19
2012 12 21 28 31 32 32 32 32 32
2013 15 29 33 37 40 40 40 40
2014 18 28 36 44 53 53 54
2015 42 62 76 88 91 93
2016 37 70 86 97 108
2017 39 76 103 134
2018 50 71 112
2019 45 105

Exhibit A3-2: Cumulative Closed Ratios (Closed / Ultimate Reported)

Rept Yr 12 24 36 48 60 72 84 96 108 120
2010 33% 83% 83% 100% 100% 100% 100% 100% 100% 100%
2011 32% 53% 63% 79% 95% 100% 100% 100% 100%
2012 38% 66% 88% 97% 100% 100% 100% 100%
2013 38% 73% 83% 93% 100% 100% 100%
2014 33% 52% 67% 81% 98% 98%
2015 45% 67% 82% 95% 98%
2016 34% 65% 80% 90%
2017 29% 57% 77%
2018 45% 63%
2019 43%

Selected 37% 64% 78% 91% 98% 100% 100% 100% 100% 100%
Incrmntl 37% 27% 14% 13% 8% 1% 0% 0% 0% 0%

Exhibit A3-3: Incremental Closed Counts by Report-to-Close Lag, Developed to Ultimate
Above the dotted line: actual incremental closed counts by age
RYs 2016 and prior, age 60+: ultimate reported minus cumulative closed at age 48
All other: ultimate reported minus current closed for the report year, allocated to future age proportional to
incremental close ratios, adding actual current closed counts in for age 60+ for RYs 2015 and prior

Ult Rptd
Rept Yr 12 24 36 48 60+ Counts

2010 4 6 0 2 0 12
2011 6 4 2 3 4 19
2012 12 9 7 3 1 32
2013 15 14 4 4 3 40
2014 18 10 8 8 10 54 Examples
2015 42 20 14 12 5 93 RY 2015, age 60+:  93 - 88 = 5
2016 37 33 16 11 11 108 RY 2016, age 60+:  108 - 97 = 11
2017 39 37 27 18 13 134 RY 2017, age 48:  
2018 50 21 15 15 11 112    (134 - 103) * 13% / (13% + 8% + 1%) = 18
2019 45 26 13 12 9 105
2020 38 28 14 13 10 104 RY 2020, age 36:  
2021 31 23 11 11 8 85    (104 - 0) * 14% / (37% + 27% + ... + 1%)
2022 25 19 9 9 6 69       = 14
2023 18 14 7 6 5 50
2024 11 8 4 4 3 31
2025 6 4 2 2 2 16
2026 3 2 1 1 1 8
2027 1 1 1 1 0 4
2028 0 0 0 0 0 1
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APPENDIX A, SECTION 4: Closed with Paid Loss (CwPL) and Closed with Paid ALAE Only (CwPAO) Ratio Selections
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019

Exhibit A4-1: Incremental Closed Counts by Report-to-Close Lag
Derived from Exhibit A3-1

Rept Yr 12 24 36 48 60+
2010 4 6 0 2 0
2011 6 4 2 3 4
2012 12 9 7 3 1
2013 15 14 4 4 3
2014 18 10 8 8 9
2015 42 20 14 12 3
2016 37 33 16 11
2017 39 37 27
2018 50 21
2019 45

Exhibit A4-2: Incremental CwPL Counts by Report-to-Close Lag Exhibit A4-3: Incremental CwPL Ratios (CwPL / Closed)

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 1 0 2 0 2010 0% 17% 0% 100% 0%
2011 0 1 1 2 4 2011 0% 25% 50% 67% 100%
2012 0 3 4 2 1 2012 0% 33% 57% 67% 100%
2013 0 4 4 4 3 2013 0% 29% 100% 100% 100%
2014 1 2 6 6 9 2014 6% 20% 75% 75% 100%
2015 1 8 8 10 3 2015 2% 40% 57% 83% 100%
2016 1 6 11 9 2016 3% 18% 69% 82%
2017 0 15 15 2017 0% 41% 56%
2018 1 3 2018 2% 14%
2019 2 2019 4%

Selected 2% 28% 63% 81% 100%

Exhibit A4-4: Incremental CwPAO Counts by Report-to-Close Lag Exhibit A4-5: Incremental CwPAO Ratios (CwPAO / Closed)

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 2 4 0 0 0 2010 50% 67% 0% 0% 0%
2011 2 3 1 1 0 2011 33% 75% 50% 33% 0%
2012 8 6 3 1 0 2012 67% 67% 43% 33% 0%
2013 8 3 0 0 0 2013 53% 21% 0% 0% 0%
2014 12 5 2 2 0 2014 67% 50% 25% 25% 0%
2015 24 10 5 1 0 2015 57% 50% 36% 8% 0%
2016 22 15 4 2 2016 59% 45% 25% 18%
2017 28 15 7 2017 72% 41% 26%
2018 31 11 2018 62% 52%
2019 30 2019 67%

Selected 62% 47% 28% 16% 0%
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APPENDIX A, SECTION 5: Future Count Projections
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019

Exhibit A5-1: Incremental Future Closed Counts by Report-to-Close Lag
Exhibit A3-3 minus Exhibit A4-1

Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0
2011 0 0 0 0 0
2012 0 0 0 0 0
2013 0 0 0 0 0
2014 0 0 0 0 1
2015 0 0 0 0 2
2016 0 0 0 0 11
2017 0 0 0 18 13
2018 0 0 15 15 11
2019 0 26 13 12 9
2020 38 28 14 13 10
2021 31 23 11 11 8
2022 25 19 9 9 6
2023 18 14 7 6 5
2024 11 8 4 4 3
2025 6 4 2 2 2
2026 3 2 1 1 1
2027 1 1 1 1 0
2028 0 0 0 0 0

Exhibit A5-2: Incremental Future CwPL Counts by Report-to-Close Lag Exhibit A5-3: Incremental Future CwPAO Counts by Report-to-Close Lag
Product of Exhibit A5-1 and Selected CwPL Ratios in Exhibit A4-3 Product of Exhibit A5-1 and Selected CwPAO Ratios in Exhibit A4-5

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0 2010 0 0 0 0 0
2011 0 0 0 0 0 2011 0 0 0 0 0
2012 0 0 0 0 0 2012 0 0 0 0 0
2013 0 0 0 0 0 2013 0 0 0 0 0
2014 0 0 0 0 1 2014 0 0 0 0 0
2015 0 0 0 0 2 2015 0 0 0 0 0
2016 0 0 0 0 11 2016 0 0 0 0 0
2017 0 0 0 15 13 2017 0 0 0 3 0
2018 0 0 10 12 11 2018 0 0 4 2 0
2019 0 7 8 10 9 2019 0 12 4 2 0
2020 1 8 9 11 10 2020 24 13 4 2 0
2021 1 6 7 9 8 2021 20 11 3 2 0
2022 1 5 6 7 6 2022 16 9 3 1 0
2023 0 4 4 5 5 2023 12 6 2 1 0
2024 0 2 3 3 3 2024 7 4 1 1 0
2025 0 1 1 2 2 2025 4 2 1 0 0
2026 0 1 1 1 1 2026 2 1 0 0 0
2027 0 0 0 0 0 2027 1 1 0 0 0
2028 0 0 0 0 0 2028 0 0 0 0 0
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APPENDIX A, SECTION 6: Limited Paid Loss Projection
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019 ($000's)

Exhibit A6-1: Incremental CwPL Counts by Report-to-Close Lag
Identical to Exhibit A4-2

Rept Yr 12 24 36 48 60+
2010 0 1 0 2 0
2011 0 1 1 2 4
2012 0 3 4 2 1
2013 0 4 4 4 3
2014 1 2 6 6 9
2015 1 8 8 10 3
2016 1 6 11 9
2017 0 15 15
2018 1 3
2019 2

Exhibit A6-2: Ltd Paid Loss on CwPL Claims by Report-to-Close Lag Exhibit A6-3: CwPL Limited Loss Severities

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 38 0 137 0 2010 0 38 0 68 0
2011 0 29 51 170 239 2011 0 29 51 85 60
2012 0 108 297 239 69 2012 0 36 74 120 69
2013 0 188 123 204 366 2013 0 47 31 51 122
2014 11 50 220 466 843 2014 11 25 37 78 94
2015 10 251 388 939 453 2015 10 31 49 94 151
2016 8 193 742 534 2016 8 32 67 59
2017 0 652 554 2017 0 43 37
2018 27 108 2018 27 36
2019 26 2019 13

Selected 14 38 48 77 99

Exhibit A6-4: Incremental Future CwPL Counts by Report-to-Close Lag Exhibit A6-5: Incremental Future Ltd Paid Loss by Report-to-Close Lag
Identical to Exhibit A5-2 Product of Exhibit A6-4 and Selected CwPL Limited Loss Severities

in Exhibit A6-3

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0 2010 0 0 0 0 0
2011 0 0 0 0 0 2011 0 0 0 0 0
2012 0 0 0 0 0 2012 0 0 0 0 0
2013 0 0 0 0 0 2013 0 0 0 0 0
2014 0 0 0 0 1 2014 0 0 0 0 99
2015 0 0 0 0 2 2015 0 0 0 0 197
2016 0 0 0 0 11 2016 0 0 0 0 1,084
2017 0 0 0 15 13 2017 0 0 0 1,123 1,285
2018 0 0 10 12 11 2018 0 0 471 926 1,059
2019 0 7 8 10 9 2019 0 272 391 769 881
2020 1 8 9 11 10 2020 12 297 428 841 963
2021 1 6 7 9 8 2021 10 243 350 688 787
2022 1 5 6 7 6 2022 8 197 284 558 639
2023 0 4 4 5 5 2023 6 143 206 404 463
2024 0 2 3 3 3 2024 3 89 128 251 287
2025 0 1 1 2 2 2025 2 46 66 129 148
2026 0 1 1 1 1 2026 1 23 33 65 74
2027 0 0 0 0 0 2027 0 11 16 32 37
2028 0 0 0 0 0 2028 0 3 4 8 9
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APPENDIX A, SECTION 7: Excess Paid Loss Projection
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019 ($000's)

Exhibit A7-1: Incremental CwPL Counts by Report-to-Close Lag Exhibit A7-2: Incremental CwPL XS Counts by Report-to-Close Lag
Identical to Exhibit A4-2

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 1 0 2 0 2010 0 0 0 0 0
2011 0 1 1 2 4 2011 0 0 0 0 0
2012 0 3 4 2 1 2012 0 0 1 1 0
2013 0 4 4 4 3 2013 0 0 0 0 0
2014 1 2 6 6 9 2014 0 0 0 0 0
2015 1 8 8 10 3 2015 0 0 0 2 1
2016 1 6 11 9 2016 0 0 1 0
2017 0 15 15 2017 0 0 0
2018 1 3 2018 0 0
2019 2 2019 0

Exhibit A7-3: Excess Paid Loss on CwPL Claims by Report-to-Close Lag

Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0
2011 0 0 0 0 0
2012 0 0 384 125 0
2013 0 0 0 0 0
2014 0 0 0 0 0
2015 0 0 0 444 374
2016 0 0 166 0
2017 0 0 0
2018 0 0
2019 0

Exhibit A7-4: CwPL XS Frequency and Severity Selections

Frequency Severity
All-Year Weighted Average 3.9% 249
Wtd Avg of RYs 2015-2019 4.3% 246
Selection 3.9% 249

Exhibit A7-5: CwPL XS Load Development

Future CwPL Counts 244 Sum of Exhibit A6-4
Future CwPL XS Counts 10 Product of Future CwPL Counts and Selected CwPL XS Frequency in Exhibit A7-4
Future CwPL Excess Paid Loss 2,381 Product of Future CwPL XS Counts and Selected CwPL XS Severity in Exhibit A7-4



Segmenting Closed Claim Payment Data to Estimate Loss and ALAE Reserves for Construction Defects 
 

Casualty Actuarial Society E-Forum, Summer Volume 1                33 

 

APPENDIX A, SECTION 8: Paid ALAE Projection for Future Closed with Paid Loss (CwPL) Claims
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019 ($000's)

Exhibit A8-1: Incremental CwPL Counts by Report-to-Close Lag
Identical to Exhibit A6-1

Rept Yr 12 24 36 48 60+
2010 0 1 0 2 0
2011 0 1 1 2 4
2012 0 3 4 2 1
2013 0 4 4 4 3
2014 1 2 6 6 9
2015 1 8 8 10 3
2016 1 6 11 9
2017 0 15 15
2018 1 3
2019 2

Exhibit A8-2: Paid ALAE on CwPL Claims by Report-to-Close Lag Exhibit A8-3: CwPL ALAE Severities

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 9 0 72 0 2010 0 9 0 36 0
2011 0 16 17 57 234 2011 0 16 17 29 58
2012 0 73 78 94 103 2012 0 24 20 47 103
2013 0 89 110 287 239 2013 0 22 27 72 80
2014 3 89 125 197 654 2014 3 45 21 33 73
2015 4 133 221 416 158 2015 4 17 28 42 53
2016 4 121 264 423 2016 4 20 24 47
2017 0 329 418 2017 0 22 28
2018 3 60 2018 3 20
2019 11 2019 5

Selected 4 21 25 44 69

Exhibit A8-4: Incremental Future CwPL Counts by Report-to-Close Lag Exhibit A8-5: Incremental Future CwPL Paid ALAE by Report-to-Close Lag
Identical to Exhibit A6-4 Product of Exhibit A8-4 and Selected CwPL ALAE Severities in Exhibit A8-3

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0 2010 0 0 0 0 0
2011 0 0 0 0 0 2011 0 0 0 0 0
2012 0 0 0 0 0 2012 0 0 0 0 0
2013 0 0 0 0 0 2013 0 0 0 0 0
2014 0 0 0 0 1 2014 0 0 0 0 69
2015 0 0 0 0 2 2015 0 0 0 0 139
2016 0 0 0 0 11 2016 0 0 0 0 763
2017 0 0 0 15 13 2017 0 0 0 645 905
2018 0 0 10 12 11 2018 0 0 244 532 746
2019 0 7 8 10 9 2019 0 155 203 442 620
2020 1 8 9 11 10 2020 3 169 222 483 678
2021 1 6 7 9 8 2021 3 138 181 395 554
2022 1 5 6 7 6 2022 2 112 147 321 450
2023 0 4 4 5 5 2023 2 81 107 232 326
2024 0 2 3 3 3 2024 1 50 66 144 202
2025 0 1 1 2 2 2025 1 26 34 74 104
2026 0 1 1 1 1 2026 0 13 17 37 52
2027 0 0 0 0 0 2027 0 7 9 19 26
2028 0 0 0 0 0 2028 0 2 2 5 7
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Exhibit A9-1: Incremental CwPAO Counts by Report-to-Close Lag
Identical to Exhibit A4-4

Rept Yr 12 24 36 48 60+
2010 2 4 0 0 0
2011 2 3 1 1 0
2012 8 6 3 1 0
2013 8 3 0 0 0
2014 12 5 2 2 0
2015 24 10 5 1 0
2016 22 15 4 2
2017 28 15 7
2018 31 11
2019 30

Exhibit A9-2: Paid ALAE on CwPAO Claims by Report-to-Close Lag Exhibit A9-3: CwPAO ALAE Severities

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 2 19 0 0 0 2010 1 5 0 0 0
2011 2 13 14 40 0 2011 1 4 14 40 0
2012 8 40 34 32 0 2012 1 7 11 32 0
2013 8 12 0 0 0 2013 1 4 0 0 0
2014 13 12 36 22 0 2014 1 2 18 11 0
2015 23 33 51 17 0 2015 1 3 10 17 0
2016 25 44 24 30 2016 1 3 6 15
2017 27 69 58 2017 1 5 8
2018 35 36 2018 1 3
2019 30 2019 1

Selected 1 4 10 20 30

Exhibit A9-4: Incremental Future CwPAO Counts by Report-to-Close Lag Exhibit A9-5: Incremental Future CwPAO Paid ALAE by Report-to-Close Lag
Identical to Exhibit A5-3 Product of Exhibit A9-4 and Selected CwPAO ALAE Severities in Exhibit A9-3

Rept Yr 12 24 36 48 60+ Rept Yr 12 24 36 48 60+
2010 0 0 0 0 0 2010 0 0 0 0 0
2011 0 0 0 0 0 2011 0 0 0 0 0
2012 0 0 0 0 0 2012 0 0 0 0 0
2013 0 0 0 0 0 2013 0 0 0 0 0
2014 0 0 0 0 0 2014 0 0 0 0 0
2015 0 0 0 0 0 2015 0 0 0 0 0
2016 0 0 0 0 0 2016 0 0 0 0 0
2017 0 0 0 3 0 2017 0 0 0 59 0
2018 0 0 4 2 0 2018 0 0 43 48 0
2019 0 12 4 2 0 2019 0 47 36 40 0
2020 24 13 4 2 0 2020 25 51 39 44 0
2021 20 11 3 2 0 2021 20 42 32 36 0
2022 16 9 3 1 0 2022 16 34 26 29 0
2023 12 6 2 1 0 2023 12 25 19 21 0
2024 7 4 1 1 0 2024 7 15 12 13 0
2025 4 2 1 0 0 2025 4 8 6 7 0
2026 2 1 0 0 0 2026 2 4 3 3 0
2027 1 1 0 0 0 2027 1 2 2 2 0
2028 0 0 0 0 0 2028 0 0 0 0 0
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APPENDIX A, SECTION 10: Summary of Projections
Company XYZ Construction Defect Portfolio, Evaluated as of December 31, 2019 ($000's)

Exhibit A10-1: Summary of Projections

Current Counts Future Counts Ultimate Counts
Rept Yr Reported Closed CwPL CwPL XS CwPAO CwoP Reported Closed CwPL CwPL XS CwPAO CwoP Reported Closed CwPL CwPL XS CwPAO CwoP

2010 12 12 3 0 6 3 0 0 0 0 0 12 12 3 6 3
2011 19 19 8 0 7 4 0 0 0 0 0 19 19 8 7 4
2012 32 32 10 2 18 4 0 0 0 0 0 32 32 10 18 4
2013 40 40 15 0 11 14 0 0 0 0 0 40 40 15 11 14
2014 54 53 24 0 21 8 0 1 1 0 0 54 54 25 21 8
2015 93 91 30 3 40 21 0 2 2 0 0 93 93 32 40 21
2016 108 97 27 1 43 27 0 11 11 0 0 108 108 38 43 27
2017 134 103 30 0 50 23 0 31 28 3 0 134 134 58 53 23
2018 112 71 4 0 42 25 0 41 33 7 2 112 112 37 49 27
2019 105 45 2 0 30 13 0 60 34 18 8 105 105 36 48 21
2020 104 104 38 43 22 104 104 38 43 22
2021 85 85 31 35 18 85 85 31 35 18
2022 69 69 25 29 15 69 69 25 29 15
2023 50 50 18 21 11 50 50 18 21 11
2024 31 31 11 13 7 31 31 11 13 7
2025 16 16 6 7 3 16 16 6 7 3
2026 8 8 3 3 2 8 8 3 3 2
2027 4 4 1 2 1 4 4 1 2 1
2028 1 1 0 0 0 1 1 0 0 0
Total 709 563 153 6 268 142 368 514 244 10 181 89 1,077 1,077 397 16 449 231

Current Loss and ALAE Future Loss and ALAE Ultimate Loss and ALAE
CwPL CwPL CwPL CwPAO Open Open Case Case CwPL CwPL CwPL CwPAO CwPL CwPL CwPL CwPAO

Rept Yr Ltd Loss XS Loss ALAE ALAE Pd Loss Pd ALAE Loss ALAE Ltd Loss XS Loss ALAE ALAE Ltd Loss XS Loss ALAE ALAE
2010 175 0 81 21 0 0 0 0 0 0 0 175 81 21
2011 490 0 324 68 0 0 0 0 0 0 0 490 324 68
2012 713 509 349 114 0 0 0 0 0 0 0 713 349 114
2013 881 0 724 20 0 0 0 0 0 0 0 881 724 20
2014 1,590 0 1,068 82 0 21 30 56 99 69 0 1,689 1,138 82
2015 2,041 818 932 125 0 0 130 63 197 139 0 2,238 1,071 125
2016 1,478 166 811 124 10 19 900 623 1,084 763 0 2,562 1,574 124
2017 1,206 0 747 153 26 107 1,534 1,079 2,408 1,550 59 3,614 2,297 212
2018 135 0 62 71 33 85 1,379 1,219 2,456 1,522 92 2,590 1,584 163
2019 26 0 11 30 26 65 1,421 951 2,313 1,420 123 2,339 1,430 153
2020 2,541 1,556 159 2,541 1,556 159
2021 2,077 1,271 130 2,077 1,271 130
2022 1,686 1,032 106 1,686 1,032 106
2023 1,222 748 76 1,222 748 76
2024 757 464 47 757 464 47
2025 391 239 24 391 239 24
2026 195 120 12 195 120 12
2027 98 60 6 98 60 6
2028 24 15 2 24 15 2
Total 8,734 1,493 5,108 809 96 297 5,394 3,991 17,547 2,381 10,967 836 26,282 3,874 16,075 1,645

Loss ALAE Total
Paid 10,323 6,214 16,537
Case 5,394 3,991 9,385
IBNR 14,438 7,516 21,954
Ultimate 30,156 17,720 47,876

Derivations

Current Counts and Current Loss and ALAE are identical to Exhibit A1-2 Ultimate Counts and Ultimate Loss and ALAE derived by adding Current and Future

Future Reported Counts derived in Exhibit A2-5 Paid Loss = Current CwPL Ltd Loss + Current CwPL XS Loss + Open Paid Loss
Future Closed Counts derived in Exhibit A5-1 Paid ALAE = Current CwPL ALAE + Current CwPAO ALAE + Open Paid ALAE
Future CwPL Counts derived in Exhibit A5-2 Ultimate Loss = Ultimate CwPL Ltd Loss + Ultimate CwPL XS Loss
Future CwPL XS Counts derived in Exhibit A7-5 Ultimate ALAE = Ultimate CwPL ALAE + Ultimate CwPAO ALAE
Future CwPAO Counts derived in Exhibit A5-3 IBNR Loss = Ultimate Loss - Paid Loss - Case Loss
Future CwoP Counts = Future Closed - Future CwPL Counts - Future CwPAO Counts IBNR ALAE = Ultimate ALAE - Paid ALAE - Case ALAE

Future CwPL Ltd Loss derived in Exhibit A6-5
Future CwPL XS Loss derived in Exhibit A7-5
Future CwPL ALAE derived in Exhibit A8-5
Future CwPAO ALAE derived in Exhibit A9-5
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Appendix B:  Common CD Endorsements and Exclusions 

The following list of Endorsements and Exclusions are commonly used to change the scope of 

coverage, either by limiting or transferring liability associated with Contractors.  Differences may exist 

within the language of insurers’ endorsements. However, all may change evaluation of liabilities in 

Construction Defect cases, specifically regarding changes from previously seen emergence:  

Condominium/Town House Exclusion – In order to avoid large projects with multiple residential units, 

insurers started including the exclusions to limit coverage for multi-family projects.  Apartment complexes 

were added to the endorsement by many insurers to further limit exposure to multi-family dwellings.  

Continuous Injury Exclusion – This exclusion pertains to latent types of claims where the ongoing damage 

takes place throughout a specified period whereby an incident or occurrence (or accordingly multiple 

incidents or occurrences) could be considered to be taking place at any given point of time during a policy 

period. 

Contractors Limitation Endorsement – Insurers sometimes look to combine several common industry 

exclusions within one specific endorsement labelled as a “contractor’s limitation endorsement”.  These 

now typically include common CD types of exclusions (EIFS, mold, residential construction, etc.) that are 

often included on a stand-alone basis. 

Exterior Insulation and Finishing Systems (EIFS) Exclusion – Insurers provide language for exclusion to 

damage associated with Exterior Insulation and Finishing Systems.  Such claims associated with exterior 

walls (including stucco) have been quite rampant in terms of CD litigation, especially in regions which are 

prone to high humidity (where water condensation often leads to drywall damage or mold to the 

underlying property). 

Known Loss Exclusion – Known injury or damage endorsements specifically exclude coverage for losses 

or potential losses, which the insured was aware of prior to the policy period. 

Mold Exclusion – Insurers have recently been providing language to exclude mold damage.  There are 

sometimes inconsistencies both in terms of types of contractors that would have the exclusion as well as 

broadness of coverage.  Many use the standard form provided by ISO that pertains to fungi, mold, or 

bacteria that causes injury or damage.  This form generally also excludes associated cleanup costs 

associated with bacteria or fungi. 

Prior Work Exclusion – The exclusion eliminates coverage for injury or damage resulting from the 

insured's work that was completed before a stated date. 

Residential Construction Exclusion – Insurers exclude coverage for specific types of coverage 

(apartments, condos, construction projects of X units or more, etc.) including being an additional insured 

on the policy of a subcontractor.  These endorsements were often included on commercial subcontractors’ 

policies.  
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Abstract
The current paper introduces regression based reserving models that allow for separate RBNS and
IBNR reserves based on aggregated discrete time data containing information about accident years,
reporting years, and payment delay, since reporting. All introduced models will be closely related to
the cross-classified over-dispersed Poisson (ODP) chain-ladder model. More specifically, two types
of models are introduced (i) models consisting of an explicit claim count part, where payments, in a
second step, are modelled conditionally on claim counts, and (ii) models defined directly in terms of
claim payments without using claim count information. Further, these general ODP models will be
estimated using regression functions defined by (i) tree-based gradient boostingmachines (GBM), and
(ii) feed-forward neural networks (NN). This will provide us with machine learning based reserving
models that have interpretable output, and that are easy to bootstrap from. In the current paper we
will give a brief introduction to GBMs and NNs, including calibration and model selection. All of
this is illustrated in a longer numerical simulation study, which shows the benefits that can be gained
by using machine learning based reserving models.

Keywords. Claims reserving, Reported But Not Settled Claims, Incurred But Not Reported Claims,
Gradient Boosting Machines, Neural Networks

1. INTRODUCTION
Claims reserving is a major component of the assessment of e.g. solvency and cap-

ital adequacy. The uncertainty of the reserves has become an important part of this
process, and many statistical models and approaches have been proposed in the liter-
ature. Underpinning all of these are the assumptions about the claims processes, and
they are often used in conjunction with management information and intervention.
This may require judgments to be made about how much to trust the data, what to
change from what the data tells you before simulating possible future outcomes, and
so on. In this paper, we seek to explore some of these issues using di�erent regres-
sion based reserving models combined with machine learning techniques. In order
to assess how well these approaches work, we have used the neural network based
simulation machine calibrated to Swiss insurance data introduced in [12].
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To be more specific, the methodological starting point of the present paper is
regression based reserving models that allow for separate reported but not settled
(RBNS) reserves and incurred but not settled (IBNR) reserves that make use of count
data. Examples of such models are the ones introduced in [26, 22, 27, 17]. Something
all these models have in common is that they rely on a description of detailed claim
dynamics, but the resulting reserve predictors may be defined only in terms of in-
cremental yearly accident year and development year data for payments and number
of reported claims. In particular, the assumptions about individual claim dynamics
result in aggregated incremental payments that can be expressed as conditional gen-
eral(ized) linear models, conditional on observed claim counts. Intuitively this means
that the observed claim counts will function as exposures. It is also important to stress
that due to the detailed constructive motivations used in [26, 22, 27, 17] all model pa-
rameters have clear interpretations that are easy to communicate to non-actuaries.
Further, due to the conditional linear model structure it is possible to estimate all pa-
rameters using e.g. (quasi-) likelihood theory or generalized least squares techniques.
Without going into details, the models from [26, 22, 27, 17] allow us to produce

• RBNS reserves, by predicting future remaining payments stemming from the
already observed claim counts,

• IBNR reserves, by first predicting the expected number of IBNR claim counts,
and then assuming that claim payments behave like the previously described
RBNS payments.

In the paper [27], payments are assumed to occur according to a discrete time Poisson
process, which allows us to obtain an over-dispersed Poisson (ODP) model for the
incremental payments, together with an ODP model for the claim counts. If one
wishes, this latter model may be parametrized so that it coincides with a standard
cross-classified Poisson chain-ladder model, see e.g. [24]. Thus,

• themodel from [27] may be expressed in terms of two standardODP regression
models,

• separate RBNS and IBNR reserves are straightforward to produce,

• all parameters have meaningful interpretations that can be communicated to
non-experts.

The main contribution of the present paper is that we will use the ODP regression
formulation of the model from [27] together with the underlying modelling ideas to
formulate regression based machine learning reserving models that
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(a) produce separate RBNS and IBNR reserves,

(b) are interpretable and, to some extent, possible to combine with expert judge-
ment,

(c) are easy to bootstrap.

The methodological focus will be on tree-based gradient boosting machines (GBM)
and neural networks (NN), which will be given a brief introduction in this paper,
mainly following the exposition in [7]. The overall ambition is to provide a smooth
transition from using more standard Poisson regression type models to more com-
plex algorithmic versions, and to describe how these more complex methods may be
calibrated, evaluated, interpreted and compared with more standard models. With
this said, our focus will primarily be on how to define models and combine these
with complex algorithmic regression functions, and how these can be estimated, dis-
cussing underlying principles. All numerical illustrations will be based on simulated
data produced using a neural network model calibrated to Swiss insurance data, see
[12], which will make all our results reproducible.

The disposition of the paper is as follows. Section 1.1 gives a literature overview,
Section 2 introduces the regression based reserving models that will be used, and
which will be combined with machine learning methods in Section 3. In Section 4 a
longer simulation study is used to illustrate how the regression based machine learn-
ing models can be calibrated and how to evaluate their performance. Concluding
remarks are given in Section 5, and supplementary analyses and technical remarks
are given in the appendix.

1.1 Literature overview
The modelling approach taken in the present paper can be thought of as being

on an intermediate level compared with pure “macro” models, such as chain-ladder
technique models (e.g. [19, 24]), and pure “micro” (individual claim) models, such as
point process models (e.g. [2, 23, 16, 1]). For a deeper discussion on pros and cons with
using individual level information in claims reserving, see e.g. [1, 25]. The current
paper is primarily focused on modelling based on information on the level used in
[4], where not only information about accident years and reporting years is used,
but also information concerning payment delay since reporting – still, working in
discrete time. We believe that this level of granularity is the first natural extension
whenmoving away frompure (discrete-time)macromodels. Further, from a practical
point of view, this level of information is easy to deal with, still corresponding to
standard grouping and aggregation of data, which is much less detailed and complex

Casualty Actuarial Society E-Forum, Summer 2020 3



Machine Learning, Regression Models, and Prediction of Claims Reserves

to handle than continuous-timemicro level data. Due to this, themodelling approach
taken here will remain close to those used for standard macro reserving models, and
in particular be close to the cross-classified ODP (ccODP) chain-ladder model, see
[24].

When turning to machine learning techniques, focus will be on tree-based gradi-
ent boosting machines (GBM), see e.g. [9], and feed-forward neural networks (NN),
see e.g. [13], and general references that cover both techniques (and much more) are
e.g. [14, 7]. Both of these techniques belong to the class of “supervised learning” meth-
ods that can be thought of as methods to perform flexible curve (or surface) fitting,
subject to a chosen loss function. This makes these methods natural to combine with
the ODP regression models we have in mind, since given an ODP model structure,
flexible machine learning based regression functions can be used to approximate the
true, unobservable mean function, by choosing an ODP likelihood as loss function.
How this is can be done in general for GBMs and NNs is discussed in e.g. [7, Ch. 17.3,
Ch. 18]. When turning to reserving, [11] uses this idea and introduces a feed-forward
neural network extension of the ODP chain-ladder model from [24], and describe
how to calibrate and “train” the NN based on partially observed claims data. See also
[30] for a condensed discussion on how to combine GLMs and NNs. As mentioned
previously, there is a close connection between the ccOPD chain-ladder model and
the so-called collective reserving model (CRM) from [27], which will make it natu-
ral to use similar techniques in the current setting. Other approaches working with
deep neural networks on aggregated data can be found in e.g. [29] which discusses an
extension of Mack’s distribution-free chain-ladder model, [15] which uses aggregated
data and gated recurrent units, and [10] which is closer to the ccODP model but also
include a neural network model for count data. An example of an individual loss
reserving model using deep neural networks is given in [28]. For examples of other
machine learning techniques applied to individual loss reserving, see e.g. [18, 5] which
uses trees, and [6] which uses tree-based gradient boosting machines. For a more gen-
eral discussion of individual loss reserving and machine learning techniques, see e.g.
[25] and the references therein.

2. REGRESSION BASED RESERVING MODELS
The basic building block in the present paper is regression models, and in partic-

ular over-dispersed Poisson (ODP) regression models. That is, if we let Y denote the
response of interest, and let c = (c1, . . . , cp)

′ be an arbitrary covariate vector such
that c ∈ C, we then say that Y | c ∼ ODP(µ(c;β), ρ) with link-function u(·), if

u(E[Y | c]) = µ(c;β),
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where µ(c;β) > 0 is some arbitrary mean function, and

E[Y | c] = Var(Y | c)/ρ.

Note that we will sometimes stress the dependence on the parameters by using the
notation E[Y | c;β] and Var(Y | c;β, ρ).

Remark 1

(a) The “Poisson” part of ODP comes from that if Y | c ∼ Po(µ(c;β)), it holds that
E[Y | c] = Var(Y | c). From this perspective, the parameter ρ introduces an additional
degree of freedom which allows for “over-dispersion”. For more on ODP models, see e.g.
[20] or [8, 3], in an actuarial context.

(b) ODP models may be estimated using quasi-likelihood theory so that µ(c;β) may be
estimated with a standard Poisson likelihood. The over-dispersion parameter ρ may
thereafter be estimated using Pearson (or deviance) residuals.

Concerning reserving models more specifically, as mentioned in the introduction
the so-called “collective reserving model” (CRM) from [27] will serve as the starting
point for our analyses. Let Xi, j denote the total amount of payments from claims that
occurred during accident year i, i = 1, . . . ,m, that where made during development
year j , j = 0, . . . ,m− 1+ d, where d corresponds to the maximal delay of a payment
since the time since reporting. Further, let Ni, j denote the total number of claims
from accident year i, i = 1, . . . ,m, that are reported j , j = 0, . . . ,m − 1, years later.
Moreover, let N0 := σ{Ni, j : i + j ≤ m, i = 1, . . . ,m, j = 0, . . . ,m − 1} and
N := σ{Ni, j : i = 1, . . . ,m, j = 0, . . . ,m − 1}. This allows us to define our baseline
model: This allows us to define our baseline model:

Model 1 The CRM based on Xi, j and Ni, j data from [27] can be written on the form

Xi, j | N ∼ ODP

( j∧d∑
k=0

ψi, j−k,k Ni, j−k, ϕ

)
,

and
Ni, j ∼ ODP

(
νi, j, φ

)
,

that is,

E[Xi, j | N] =

j∧d∑
ψi, j−k,k Ni, j−k = Var(Xi, j | N)/ϕ,

k=0
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and
E[Ni, j] = νi, j = Var(Ni, j)/φ.

All Xi, j are assumed to be conditionally independent, given N , and all Ni, j are assumed to
be independent.

Remark 2

(a) Note thatE[Xi, j | N] is given by a sum, which makes it impossible to estimate theψi, j,k s
using anything but the identity link-function, whereas the parameters of the Ni, j model
can be estimated using any link-function.

(b) Going from the micro-level assumptions to this formulation of the CRM relies on a num-
ber of assumptions, which can be summarised as that all individual claims occur indepen-
dently, all claims with the same accident year and reporting year have the same payment
dynamics, and all payments occur independently between claims. For more on these as-
sumptions, see [27]. For the purposes of this paper, the important thing is to think about
the model, what the parameters mean in practice and how they can be estimated and used
to produce reserve estimates etc.

(c) Based on the individual claim dynamics from [27], the interpretation of ψi, j,k is that it
corresponds to the average amount paid for a claim that occurred during accident year i
that was reported j years after the accident occurred, and paid k periods after reporting.
Thus, ψi, j,k may be represented as ψi, j,k = µi, j,kλi, j,k , where µi, j,k denotes the expected
size of a single payment for a claim that occurred in year i, was reported j years later, and
paid k years after reporting, and λi, j,k denotes the expected number of claim payments
in analogy with µi, j,k . Further, from the definition of Model 1 there is a single over-
dispersion parameter ϕ. From [27] it follows that ϕ equals

ϕ :=
σ2

i, j,k + µ
2
i, j,k

µi, j,k
,

implying that σ2
i, j,k := µi, j,k(ϕ − µi, j,k) ≥ 0 must hold, i.e. it is not possible to choose

both µi, j,k andσ2
i, j,k freely – either, will in this sense, determine the other when assuming

a constant ϕ.

(d) Note that by having a single ϕ which is independent of the indices i, j , and k , means
that from a quasi-likelihood perspective, all the ψi, j,k s can (in theory) be estimated using
a standard Poisson likelihood, and in a second step ϕmay be estimated using e.g. Pearson
or deviance residuals.
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(e) The model for Xi, j conditional onN given by Model 1 corresponds to an ODP model with
identity link function expressed in terms of ψi, j,k s, and may be estimated using standard
statistical software such as R. However, the fully general parametrization in terms of
ψi, j,k does not allow for estimation given Xi, j . Instead, one is either forced to consider
more restricted models, such as

ψi, j,k = µλ j,k,

or

ψi, j,k = αiβ jγk (1)

or to consider data on a more granular level, which we will get back to further on. More-
over, given that the ψi, j,k s have been estimated using maximum quasi-likelihood, to sepa-
rate these into their constituent components, e.g.ψi, j,k = µλ j,k , there is need of additional
information, such as e.g. an estimate of µ. Similarly, for the count model, the perhaps most
common parametrisation is obtained by assuming νi, j = αiβ j with

∑
j β j = 1 we may

estimate the parameters using a log-link function, i.e. log(E[Ni, j]) = α̃i + β̃ j , which
exactly corresponds to the cross-classified over-dispersed Poisson chain-ladder model of
[24].

Concerning reserve estimators, let RRi denote the outstanding RBNS claim payments
for accident year i and let RIi denote the corresponding outstanding IBNR claim
payments, i.e.

Ri := RRi + RIi .

From Eq. (6) – (9) in [27] it follows that

hRi (ψ;N0) := E
[
RRi | N0

]
=

m−1+d∑
j=m−i+1

j∧d∑
k= j−m+i

ψi, j−k,k Ni, j−k, (2)

hIi (ψ, ν) := E
[
RIi | N0

]
=

m−1+d∑
j=m−i+1

( j−m+i−1)∧d∑
k=0∨( j−m+1)

ψi, j−k,kνi, j−k, (3)

which, by replacing all unknown model parameters with estimators, gives us the fol-
lowing computable RBNS- and IBNR-reserve estimators

R̂Ri := hRi (ψ̂;N0) (4)

and

R̂Ii := hIi (ψ̂, ν̂). (5)
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Although Eq. (2) and (3) are slightly more general than the formulation in [27], the
proofs are identical, and it is also possible to calculate RBNS and IBNR reserve pro-
cess variances explicitly following the arguments in [27], see Appendix C.2 for details.

Remark 3

(a) Eq. (2) and (3) are expressed in terms of ψi, j,k s whose index combinations have not yet
been observed. Consequently, apart from that the general formulation of Model 1 is not
possible to estimate (see Remark 2(c) and (e)), the model is neither possible to use for
prediction unless further structural assumptions are made such as e.g. ψi, j,k = µλ j,k or
ψi, j,k = αiβ jγk .

(b) The aggregate level formulation of the CRM from Model 1 is not su�ciently detailed in
order to be able to derive Eq. (2) and (3). In particular, unless the micro-level assumptions
discussed in Remark 2(b) are fulfilled, it is not possible to claim that the reserves given
by (4) and (5) actually correspond to proper RBNS and IBNR reserves.

As commented on in Remark 2(c) and (e) it is not possible to allow freely varying in-
dividual claim payment distributions, and one aspect of this (relating to Remark 2(d)
and the assumption of a single over-dispersion parameter) is that such models may
be impossible to estimate. This, however, is partly a consequence of having too many
parameters in relation to modelling based on aggregated Xi, j level data, and partly
due to that a too flexible parametrization does not allow us to observe all data needed
w.r.t. specific (i, j, k)-combinations. Thus, by using slightly less aggregated data, in-
troducing Xi, j,k , which denotes the total amount of payments from accident year i,
that come from claims that are reported with j years delay, and that are paid k years
after reporting, it is natural to define the following model:

Model 2 The CRM based on Xi, j,k and Ni, j data from [27] can be written on the form

Xi, j,k | N ∼ ODP
(
ψi, j,k Ni, j, ϕ

)
,

and
Ni, j ∼ ODP

(
νi, j, φ

)
,

that is,
E[Xi, j,k | N] = ψi, j,k Ni, j = Var(Xi, j,k | N)/ϕ,

and
E[Ni, j] = νi, j = Var(Ni, j)/φ.

All Xi, j,k are assumed to be conditionally independent, givenN , and all Ni, j are assumed to
be independent.
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But, a closer inspection of the derivations in [27] (as well as in [26, 22, 17]) Xi, j,k
level data is actually what is used in intermediate steps. This level of granularity
has also been used in e.g. [4] and is still considerably less demanding to use than the
continuous time micro-data needed in e.g. [23, 1].

Remark 4

(a) Model 2 uses less aggregated data than Model 1, see Remark 2(b), and these two models
will not produce the same parameter estimates. Concerning parametrisations, note that
Model 2 can be expressed as

log(E[Xi, j,k | Ni, j]) = log(Ni, j) + ψ̃i, j,k,

or
E[Xi, j,k | Ni, j] = Ni, j eψ̃i, j,k,

making it natural to estimate the ψi, j,k s an ODP model with log-link function and the
log(Ni, j)s as o�sets, conditionally on the Ni, j s.

(b) Model 2 will produce the same theoretical RBNS and IBNR reserves as Model 1. The same
holds true for the process variances, which are identical with those for Model 1. For more
on this, see Appendix C.2.

However, note that by working with Xi, j,k data it is no longer necessary to include
Ni, j count data information in order to be able to produce separate RBNS and IBNR
reserves, also recall Remark 3(b), since

RRi :=
m−i∑
j=0

∑
k>m−(i+ j)

Xi, j,k,

and

RIi :=
m−1∑

j=m−i+1

∑
k

Xi, j,k .

This last observation suggests to introduce the following model:

Model 3 Let Xi, j,k be defined as an over-dispersed model according to

Xi, j,k ∼ ODP
(
ψi, j,k, ϕ

)
,

with

E[Xi, j,k ] = ψi, j,k = Var(Xi, j,k )/ϕ,

where all Xi, j,k are assumed to be independent.
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Note that Model 3 does not only have very simple RBNS and IBNR reserve pre-
dictors, being sums of suitably indexed ψi, j,ks, but also the corresponding process
variances are easily obtained due to that all Xi, j,ks are assumed to be independent.
This independence assumption may, of course, be questioned, since in reality the
underlying claims dynamics should correspond to something similar to the micro-
level assumptions that underpin the CRM model (Model 1). Nevertheless, Model 3
defines a flexible statistical model in its own right, and whose performance will be
evaluated in Section 4. Still, as forModel 1 andModel 2, Model 3 will need additional
parameter restrictions in order to be able to be used in practice.

Before proceeding further, note that Model 1 - Model 3

(i) have enough flexibility to be able to capture e.g. “inflation” or “calendar year”
e�ects using e.g. ψi, j,k := µi+ jλ j,k (although these parameters may be hard to
estimate in practice due to the number of parameters, and hard to extrapolate
for prediction purposes),

(ii) are straightforward to bootstrap, see Appendix C.2 for details.

Concerning the problems with estimating ψi, j,k s and extrapolating these for reserve 
predictions, these problems can at least partly be addressed by replacing the ψi, j,k s 
with general functional forms that can be estimated using regression based machine 
learning techniques.

3. MACHINE LEARNING BASED RESERVING MODELS
In Section 2 three di�erent over-dispersed Poisson models have been introduced 

and discussed, Model 1 - Model 3. All of the models are flexible w.r.t. 
parametrisation and estimation, and may be used to produce separate RBNS and 
IBNR reserves using simple formulas. Still, the models’ most general formulations 
will have too many parameters for reliable estimation, but the general ψi, j,k 
parametrisation will not lend itself to extrapolation, see Remark 2(c) and (e), and 
Remark 3(a). Moreover, even though it would be possible to estimate all ψi, j,k s, 
these estimators will likely be unstable. We may instead use functional forms, but 
then the question is, which functional forms will serve as appropriate 
approximations.

In the current section these questions will be addressed by using tree-based gradi-
ent boosting machines (GBM) and neural network (NN) regression functions com-
bined with the ODP models from Section 2.

We will start by discussing these questions in a reserving context without explic-
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itly stating any particular machine learning technique. The specific GBM and NN
estimated models will be discussed in Section 3.3 and 3.4 below.

3.1 General considerations
The general focus will be on reserving models based on Xi, j,k-level data with re-

gression functionsψ(i, j, k ;θ) and ν(i, j ;θ) corresponding to general functional forms
defined in terms of a parameter vectorθ, whichwewill try to approximate using com-
plex algorithmic techniques. Further, all models that we will consider will be ODP
models parametrised using log-link functions, unless stated otherwise. In practice,
this simply means that the ψi, j,ks and νi, js from Section 2 are defined according to
ψi, j,k := ψ(i, j, k ;θ) and νi, j := ν(i, j ;θ), and that a specific link-function is being
used. That is, Model 2 may be parametrized according to{

Xi, j,k | Ni, j ∼ ODP(log(Ni, j) + ψ(i, j, k ;θ), ϕ),
Ni, j ∼ ODP(ν(i, j ;θ), φ),

where
E[Xi, j,k | Ni, j] = Ni, j exp{ψ(i, j, k ;θ)},

(recall Remark 4(a)) and

E[Ni, j] = exp{ν(i, j ;θ)}.

Similarly, Model 3 can be parametrized as

Xi, j,k ∼ ODP(ψ(i, j, k ;θ), ϕ),

with
E[Xi, j,k] = exp{ψ(i, j, k ;θ)}.

These parametrizations of Model 2 andModel 3 are very close to the regression func-
tion parametrizations that will be introduced and used when fitting the GBMs and
NNs discussed in Section 3.2. Note that using this specific parametrization will not
change the interpretability of e.g. ψ, see Remark 2(c). Furthermore, this fact will also
hold when these regression functions are estimated by using the functional forms
described by the machine learning methods. Consequently, due to the possibility to
interpret the underlyingmodel structure, it will be possible to include expert opinion
into this type of machine learning based regression models, e.g. by scaling estimated
ψs based on expert opinions.

At this point we have not yet discussed any particular machine learning tech-
niques in detail, but the overarching idea is that these techniques will allow us to
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model complex functional relationships such as higher order non-linear relationships
between covariates without explicitly stating how these should look. In general these
methods involve a lot of parameters defining the functional forms that are being used
to approximate the true regression functions (ψ and ν). Due to this, it is of great im-
portance to discuss how to avoid overfitting, which is done in the next section.

3.2 Estimation and calibration of machine learning models
Before going into details on specific machine learning methods and reserving, let

us take a step back to the general regression setting that was starting point of Sec-
tion 2. That is, let Y | c ∼ ODP(µ(c;β), ρ) where µ(c;β) is some unknown func-
tional form that we want to approximate, which in particular means for a specfic
link-function u(·) it holds that

µ(c;β) = u(E[Y | c;β]).

Moreover, recall from Remark 1 that when estimating the mean function in an ODP
model it is possible to do this separately from the over-dispersion parameter ρ by
using a standard Poisson-likelihood. Consequently, what we will do next is to use
machine learning techniques to

• approximate the unknown µ(c;β) function by using a flexible function class
f (c;γ),

• do the optimization of f (c;γ) using a loss function corresponding to a Poisson
likelihood.

The machine learning techniques to be discussed below will introduce flexible func-
tional forms f (c;γ), where the parameter vector γ will be (potentially very) high-
dimensional and it is, therefore, important to avoid overfitting. The general approach
to tackle overfitting of complex algorithmic methods is to use out-of-sample valida-
tion, see e.g. [7, Ch. 12]. This is done by splitting the available data into two sub-sets:
one used for training (“parameter estimation”) and one used for validating the pre-
dictive performance of the trained model. Further, the numerical procedures that
will be introduced below to estimate γ will be based on iterative numerical updating
procedures. A problem with these procedures when it comes to complex algorithmic
methods is that, unless you stop the iterative numerical procedure used for approx-
imating µ(c;β) (or in our reserving models the functions ψ(·) and ν(·)) early, you
will likely end up with a fully saturated model - a model with a unique parameter
for each observed data point. In the extreme situation γ may have more parame-
ters than observations (which will be the case in our reserving situation discussed in
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Section 4). This premature stopping is what is often referred to as “early stopping”,
and can be thought of as an informal regularization technique, see e.g. [7, Ch. 18.2].
Consequently, what often is done in practice, is that the number of optimization
steps used are determined based on the trained model’s out-of-sample performance
based on the validation data. Unless done properly, from a statistical perspective this
may result in a kind of cheating – you are not allowed to estimate a parameter, in this
context the number of iterations, based on validation data. Still, given a su�cient
amount of data you can always split your data set into three parts: one part used
for training, one part used for determining the number of steps that the optimiza-
tion procedure should be run, corresponding to a pseudo-validation data set, and a
final third sub-set used for proper out-of-sample validation once the model has been
properly trained (without any prior peeking!). This procedure allows us to evaluate
di�erent parametrizations and configurations of our machine learning models and
serves as a generic way of doing model selection. Further, since the models of interest
belong to the family of ODP models, it is natural to evaluate the performance w.r.t.
deviance residuals. This corresponds to that the parameter vector γ is optimized
w.r.t. the standard ODP likelihood loss function. That is, this choice corresponds to
standard maximum likelihood optimization, but w.r.t. complex parametric function
f (c;γ).

When trying to implement these ideas in a reserving context the first problem is
that we ideally would like to have fully developed payment data to be used to evaluate
the prediction of outstanding claim payments. This is rarely the case. In order to at
least partly circumvent this issue we adopt the procedure from [11]:

(i) Split the un-aggregated individual claim data into two parts,

(ii) Depending on the model that you want to train, aggregate the separate individ-
ual data sets into Xi, j, Xi, j,k , and Ni, j form. Let X (t)i, j denote “training” data and

let X (v)i, j denote “validation” data, and analogously for Xi, j,k and Ni, j .

(iii) Train your models on X (t)i, j , X (t)i, j,k , and N (t)i, j data, validate the model performance

based on using X (v)i, j , X (v)i, j,k , and N (v)i, j data.

Remark 5

(a) The above algorithm is only described in terms of splitting the historic data in two, but
you may, of course, make another implicit split of the data set used to construct e.g. X (t)i, j
to be able to carry out the above described three step procedure.
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(b) By using the above algorithm we will train our models based on observed in-sample data,
and we will use another set of in-sample data not used for training to construct “out-
of-sample” validation data. This is most likely sub-optimal, but the best we can hope
for.

(c) It is important that the mechanism used for splitting the original data sets into sub-sets
does not create severe imbalances in terms of overall exposures per accident year. The
procedure used in [11] corresponds to a random 50 / 50 split of the original individual
claim data.

Wewill return to Remark 5(b) when discussing GBM and NNmodels in more detail.

Next, we will describe two specific choices of functions f (c;γ) using GBMs and
NNs.

3.3 Tree-based gradient boosting machines
The current sectionwill give a brief introduction to regression trees and tree based

gradient boosting. A comprehensive introduction to these subjects can be found in
e.g. [14, 7], which form the basis for the current exposition. More technical parts of
the exposition can be found in Appendix C.1.

To start o�, we consider the situation with data is in the form of pairs (yi, ci), i =
1, . . . ,m, where yi corresponds to the observed response i with corresponding co-
variate vector ci := (ci,1, . . . , ci,p)

′ ∈ C. As a notational convention all references to
c = (c1, . . . , cp)

′ are with respect to a general covariate vector. In the current paper
we will focus on binary regression trees. A binary regression tree is, like any other
regression model, a model that takes a covariate vector c and parameter vector γ as
input and produces an expected value of Y | c as output. More specifically, we will
focus on ODP models, which means that given a link-function u(·), we let

r(c;γ) := u(E[Y | c;γ]),

and where the distribution of Y | c will imply a specific loss function to be used
when estimatingγ – in our case a Poisson likelihood. More specifically, in its simplest
form, a binary regression tree of “depth” k will partition C into 2k di�erent regions
A j, j = 1, . . . , 2k , where each region is assigned a single value δ j , which means that
r(c;γ) may be represented according to

r(c;γ) :=
2k∑
j=1

δ j1{c∈A j }, (6)
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where γ is the vector containing all δ js and all additional parameters needed to de-
fine the A js. Consequently, given that the A js are known, in our ODP-regression
situation, we would get that the δ js are obtained by optimizing

δ j := argmin
δ

∑
i:ci∈A j

L(yi, r(ci ;γ)),

where
r(ci ;γ) = δ j, i : ci ∈ A j,

and where L corresponds to the Poisson log-likelihood function1. Further, to see
how to construct the A js, we will use the “tree” interpretation of this regression
procedure. That is, the reason why this is referred to as a regression “tree” is because
the procedure to arrive at the 2k partitioning splits of C can be represented as a
binary decision tree consisting of k binary decisions, where each decision is based
on a single component of the covariate vector c. That is, the A j regions can be
thought of as being constructed using a sequence of k binary decisions expressed in
terms ofAl, j, l = 1, . . . , 2 j, j = 1, . . . , k , and theA j regions are often referred to as
“leaves”. An example of a binary decision tree of depth 2 is shown in Figure 1, where
c = (c1, c2) and where

Al, j := A(πl, j, κl, j) = {cπl, j ≤ κl, j}.

Further, Figure 1 implies that it will be computationally complex to estimate all δ js
and allAl, js simultaneously. As a consequence of this, a so-called “greedy” algorithm
is used. This is a sequential algorithm where the tree is allowed to grow from depth
1 to k , where the Al, js, together with the associated δ js, are optimized for the next
depth level of the tree. That is, given that you have reached depth s of the tree, you
only optimize theAs, js and the associated δ js as if these would be the terminal depth
of the tree, leaving the previously estimated Al, j, l < s, fixed. This depth-by-depth
level optimization is continued until you reach depth k , which gives you your final
A j and δ js. Note that in practice Al, j = A(πl, j, κl, j) = {cπl, j ≤ κl, j}, meaning
that you optimize w.r.t. which covariate component to base your split on (πl, j), and
which covariate threshold to base your split on (κl, j). This procedure allows the same
covariate to appear on di�erent levels in the same tree, which is seen in Figure 1.
Also note that eachAl, j is associated with two δ-values, depending on which binary
decision that was made based on Al, j . For more on this, see Appendix C.1 and the
previously mentioned references.

The above described procedure for how to construct a tree will always produce
a tree with 2k leaves. It is, however, common to use so-called “pruning”, where the

1Note that the objective function used for optimizing δj corresponds to the sample average esti-
mator of E[L(Y, r(c;γ)) | c].
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δ-values associated with leaves estimated based on e.g. few observations are removed.
Further, trees, as the one depicted in Figure 1, are easy to interpret in terms of the
A j regions, and trees allow for non-trivial interactions between the covariates. More-
over, trees scale nicely when having many covariates, i.e. c = (c1, . . . , cp) with large
p, but trees that are estimated with large depth may be unstable w.r.t. overfitting,
introducing large estimation error variance. Due to this, techniques such as random
forests and bagging are used, which are based on averaging trees of lower depth, where
not all covariates are allowed to be used in each optimization step when building the
trees.

Another alternative to building a single complex tree-based regression model is to
use a sequential learning procedure known as gradient boosting. Unlike forests which
average a large number of smaller (approximately uncorrelated) regression trees, tree-
based gradient boosting instead uses trees of low depth, e.g. k ≤ 10, to approximate
the pointwise gradient of the loss function given the current fit. That is, let Ĝ0(c) =
0, and for each b, b = 1, ..., β, calculate

gi = −
∂

∂z
L(yi, z)

���
z=Ĝb−1(ci)

, i = 1, . . . ,m,

and fit a tree with low depth to these gradients according to

γ̂b = argmin
γ

m∑
i=1

(gi − r(ci ;γ))2.

The fit is thereafter updated according to

Ĝb(c) = Ĝb−1(c) + εr(c; γ̂b),

where ε > 0 corresponds to the so-called shrinkage factor or learning rate, which
after β iterations results in

Ĝβ(c) := Gβ(c; ε, γ̂b, b = 1, . . . , β) = ε
β∑

b=1

r(c; γ̂b).

The above described procedure corresponds to Algorithm 17.4 in [7], and this means
that our gradient boosting machine predictor f GBM(c; γ̂) is given by

f GBM(c; γ̂) := ε
β∑

b=1

r(c; γ̂b).

In Section 4 the R-package gbm will be used, and we refer to the documentation of
this software for the precise implementation of the exact GBM configuration that is
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c

A1,1= {c : c1 ≤ 2}

A2,1= {c : c2 ≤ 3}

A1

δ1

A2

δ2

A2,2= {c : c1 ≤ 4}

A3

δ3

A4

δ4

Figure 1: Example of tree of depth 2, where A1 = {c : c ∈ A1,1 ∩ A2,1} = {c : c ∈
{c1 ≤ 2, c2 ≤ 3}}, and analogously forA2,A3, andA4.

being used. Further, as discussed in Section 3.2, how to choose the learning rate ε , the
depth of the trees used for gradient approximations, and the number of iterations β,
can be done by splitting the data into training and validation sets. We will return to
this in more detail in Section 4.

3.3.1 Reserving models
From the general definition of Model 2, using log-link functions according to the

discussion on parametrizations in Section 3.1 and Remark 4(a), it follows that its
GBM estimated version will produce the following estimates

Ê[Xi, j,k |Ni, j] = Ni, j exp{ f GBMψ (i, j, k ; θ̂)}

= Ni, j exp{ε
β∑

b=1
rψ(i, j, k ; γ̂b)}

Ê[Ni, j] = exp{ f GBMν (i, j ; θ̂)}

= exp{ε
β∑

b=1
rν(i, j ; γ̂b)}

(M2 - GBM)

and where ϕ̂ and φ̂ corresponds to estimates based on e.g. Pearson or deviance resid-
uals. Note that this is all the information that is needed in order to produce separate
RBNS and IBNR reserves based on Eq. (4) and (5). Further, when it comes to boot-
strapping the GBM-estimated version of Model 2, we will use Model 2, but using the
“plug-in” estimates from (M2 - GBM). For more details on this, see Appendix C.2.
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Analogously, the GBM estimated version of Model 3 will produce

Ê[Xi, j,k] = exp{ f GBMψ (i, j, k ; θ̂)} (M3 - GBM)

= exp{ε
B∑

b=1

rψ(i, j, k ; γ̂b)}.

3.4 Neural networks
As in Section 3.3 we start with the general setting with a responseY that we want

to regress on c ∈ C, and the neural network (NN) model will define a general regres-
sion function parametrised using a specific link-function u(·) according to

f NN(c;w) = u(E[Y | c;w]),

defining the mean of, in our reserving context, an ODP model. The reason for using
“w” instead of the previous “γ”, is becausew will correspond to weights. We will here
focus on so-called feed-forward neural networks and base our exposition on [14, 13, 7].
A feed-forward neural network is most easily understood from an example as the
one given in Figure 2. Based on this figure it is natural to give f NN(c;w) a recursive
representation, which leads us to the following definition of f NN(c;w) for a general
feed-forward neural network with λ layers:

f NN(c;w) = a(λ), (7)

a(l)j = g(l)(w
(l−1)
j,0 +

pl−1∑
i=1

w
(l−1)
j,i a(l−1)i ), 2 ≤ l ≤ λ − 1, j = 1, . . . , pl,

a(1)j = c j, j = 1, . . . , p,

where the ws are weights to be estimated, pl corresponds to the number of “neu-
rons” (or nodes) in layer l, and the g(l)-functions are the (parameter-free) so-called
“activation functions”, that often have a sigmoid shape, such as the hyperbolic tan-
gent function (tanh). Further, the first layer is called the “input” layer, the last layer
is called the “output” layer, and all intermediate layers are called “hidden” layers. A
feed-forward neural network with more than 2 hidden layers is what usually is re-
ferred to as being a “deep” (feed-forward) neural network. Further, from the above it
is clear that this type of model, consisting of a large number of parameters and itera-
tive composition of functions, will be very flexible making them so-called “universal
approximators” (Cybenko’s universality theorem). Moreover, due to that f NN(c;w)
is expressed in terms of compositions of g(l)-functions, it is possible to obtain explicit
gradients using so-called “backpropagation”, see e.g. [7, Alg. 18.1]. By using these gra-
dients the parameter estimates can be updated iteratively. Usually not all input data
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is used in each gradient update step, but rather the gradient update is based on a sam-
ple of input data (“batch”) chosen at random. This is primarily used if input data is
very large. Due to this the concept of “epochs” has been introduced, where an epoch
corresponds to that all input data has been used for a parameter estimate update.
That is, if all data is used in each step of the gradient updating procedure, an epoch
is the same as a standard iteration. If batches are used, several gradient updates will
be done within each epoch.

The flexibility of NN models is partly due to the large number of parameters,
often thousands, which will make the models heavily overparametrized, with the
risk of overfitting if you run too many epochs (iterations). The problem with over-
parametrization can be addressed by using regularization techniques, by adding e.g.
Ridge or Lasso penalization to the likelihood, see e.g. [14, 7]. A technique related
to regularization that will be used in the current paper is to use what is known as
“dropout”, which corresponds to that a fraction of all weights for each layer in the
network are randomly set to zero in each epoch.

Further, recall that the starting point of the current paper is GLM models. One
way to improve the performance of a feed-forward NN in this context is to use the
approach taken in [11, 30] where one first fit a GLMmodel, and use these parameters
as o�sets (or non-trainable parameters) in an NNmodel. That is, the NN model will
essentially be fitted to the residuals from the GLM model, which may be thought of
as so-called regression or residual boosting the GLM model using a NN model, see
e.g. [7, Ch. 16.7, Ch. 17.2]. Given that the GLM model provides a reasonable fit, the
NN model will likely need less training. Still, this procedure will not provide initial
weightsw.

Concerning other aspects of tuning of NN models, you can choose the number of
layers, the number of neurons (or nodes) in a layer, activation functions (that often
are di�erent for di�erent layers), and the number of epochs used for training. All
of these decisions can be evaluated using the techniques discussed in Section 3.2 by
splitting the data into training and validation sets. We will comment more on this in
Section 4.

3.4.1 Reserving models
In analogywith theGBMestimatedmodels fromSection 3.3.1, using log-link func-

tions, it follows that the NN estimated version of model 2 will produce{
Ê[Xi, j,k |Ni, j] = Ni, j exp{ f NNψ (i, j, k ; ŵ)}
Ê[Ni, j] = exp{ f NNν (i, j ; ŵ)}

(M2 - NN)
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c

Input layer Hidden layers Output layer

c1

c2

c3

f (c;w)

w(1) w(2) w(3)

Figure 2: Example of feed-forward neural network taking c = (c1, c2, c3)′ as input
covariates with λ = 4 layers, where 2 are hidden layers with p2 = p3 = 4 neurons,
wherew(l), l = 1, 2, 3, corresponds to weights.

with f NN• (· ; ŵ) from (7), and where ϕ̂ and φ̂ correspond to estimates based on e.g.
Pearson or deviance residuals. Again, as discussed in Section 3.3.1 this is su�cient
information in order to be able to produce separate RBNS and IBNR reserves, as well
as to produce bootstrapped reserves.

As before, the NN estimated version of Model 3 will produce

Ê[Xi, j,k] = exp{ f NNψ (i, j, k ; ŵ)}. (M3 - NN)

4. NUMERICAL ILLUSTRATION
In this section, we give an illustration of how we, in practice, can use the ma-

chine learning techniques described in this paper. For this, we consider six di�erent
portfolios of simulated data generated by the individual claims history simulation
machine of [12]. These six portfolios will be referred to as Lines of Business (LoBs)
1-6 and are identical to those in [11]. For a detailed description of these LoBs and
their characteristics, see Section 2.3 and the appendix in [11]. For R-code showing
how to generate the individual-level data, see Listing 1 in the same paper. We will
not describe the data and simulation machine in detail here. In short, the simulation
machine uses neural networks calibrated on Swiss insurance data to simulate syn-
thetic claims histories. The 6 LoBs are generated independently of each other, with
the di�erences between them being that the first three use one stochastic generator
and the last three another one. The di�erence between the LoBs within the same
group, i.e. LoBs 1-3 and 4-6, are that their underlying features, which are the size,
growth, and covariate structure of the portfolios, are di�erent. The synthetic data
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that we will look at here can be simulated following Listing 1 of [11] using seed 75,
implemented using the R-package keras.

As mentioned in Section 3.2, to alleviate overfitting, we perform early stopping
in training our GBMs and NNs, which we illustrate further on in this section. To
do this, we need to split the data into a training and a validation set, and we do
this following [11] by, for each LoB and AY, dividing the individual claims into two
datasets of equal size according to Listing 2 in [11]. As is described in [11], the two
datasets should be of equal size since parameters may be volume-dependent, see also
the discussion in Section 3.2 above. In Listing 1 of the present paper, we have included
code that aggregates the individual-level data from the simulation machine into data
corresponding to the Xi, j,ks and Ni, js.

Table 1 shows the number of individual claims and the total payments generated
for each LoB, together with the proportion of these that are RBNS. From this table,
we can note that extended reporting and payment delays are not a prominent feature
of the data generated by this simulation machine since most claims are RBNS at the
current time. Still, the simulated data contain claims that have longer reporting and
payment delays, see e.g. Figure 3.

Table 1: Number of generated individual claims per LoB.
LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6

Number of individual claims 250,040 250,197 99,969 249,683 249,298 99,701
Percent RBNS 99.4% 99.4% 99.2% 99.2% 99.2% 99.1%

Percent RBNS in last AY 93.6% 93.7% 93.3% 91.5% 91.5% 91.6%
Total payments 285,989 278,621 108,345 429,344 437,728 171,482

Total outstanding payments 39,689 37,037 16,878 71,630 72,548 31,117

Given that we simulate data, we know all payments, both current and future.
Therefore we will be able to compare the reserves of the di�erent models and meth-
ods to what the real outstanding amounts are. One metric we will use to assess the
performances is the relative bias (error). The relative bias of a prediction R̂ of the
true reserve R is defined as R−R̂

R . In Table 2, we show the reserves of four bench-
mark models, the chain-ladder (CL) technique, the standard CRM using Xi, j,k-data
(Model 2) with a log-link and the parametrization logψi, j,k = αk , the CRM using
the parametrization logψi, j,k = αi + β j + γk — from now on referred to as the gen-
eralized CRM (GCRM) — and the neural network of [11] (GRWNN). The standard
CRM severely underestimates the true reserve, which is not necessarily surprising
since the CRM assumes that payments are only dependent on the payment delay.
Therefore, this underestimation could be due to there being some accident year or
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reporting delay e�ect in the data that the standard CRM cannot capture. We see
that the simple extension to the GCRM already alleviates this problem to a large
extent and performs similarly to the CL. Although the neural network (GRWNN)
yields the smallest biases across the board; however, it does not allow for the compu-
tation of individual RBNS and IBNR reserves. It is also not as interpretable as the
conditional ODP models discussed in this paper, which can be connected to detailed
individual-level assumptions. In Table 7 in the appendix, a version of Table 2 for
IBNR and RBNS reserves are shown, and it is clear that the GCRM performs better
than the standard one. It seems that we, in general, underestimate RBNS reserves
while overestimating IBNR reserves.

Table 2: True reserve compared to CL, the CRM and [11] (GRWNN) reserves. Rela-
tive bias (error) of the predictions in the parentheses.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True reserves 39,689 37,037 16,878 71,630 72,548 31,117

CL reserves
38,569
(-2.82)

35,460
(-4.26)

15,692
(-7.02)

67,574
(-5.66)

70,166
(-3.28)

29,409
(-5.49)

CRM reserves
32,485
(-18.15)

29,901
(-19.27)

13,040
(-22.74)

55,782
(-22.12)

59,390
(-18.14)

24,403
(-21.58)

GCRM reserves
38,293
(-3.52)

35,117
(-5.18)

15,448
(-8.47)

66,961
(-6.52)

69,397
(-4.34)

29,104
(-6.47)

GRWNN
39,233
(-1.15)

35,899
(-3.07)

15,815
(-6.30)

70,219
(-1.97)

70,936
(-2.22)

30,671
(-1.43)

It is di�cult to say why we see these underestimated RBNS and overestimated
IBNR reserves, except for the CRM. For the CRM, it is clear that only taking pay-
ment delay into account leaves a lot of room for error. If there is some accident year
e�ect, for instance, then we would have no way of capturing it. The GCRM, on the
other hand, can catch this potential accident year e�ect. Nonetheless, it still un-
derestimates the reserve for all LoBs. This underestimation could be due to many
di�erent reasons. For instance, as [11] notes, there may be some interaction that the
cross-classified model structure cannot capture. That is, there may be some interac-
tion e�ect between, for instance, payment and reporting delay that a�ects how large
payments are. This suspicion is strengthened by Figure 3, which shows the average
development of the payments from an individual claim as a function of the payment
delay and the first three periods of reporting delay for each LoB. If there is no inter-
action between reporting and payment delay, the curves in this figure should overlap,
which they do not. The cross-classified model structure does not allow us to capture
this di�erence in patterns. In addition to interaction e�ects, there could also be some
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calendar year or inflation e�ect, which these cross-classified model structures likely
will not capture.

LoB 4 LoB 5 LoB 6
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Figure 3: Average cumulative development of the payments from an individual claim
as a function of payment delay, stratified on LoB and the first three periods of re-
porting delay, for all claims in all accident years.

In Figure 4, we show heatmaps of the relative biases of the predicted payments
from the two versions of the CRM in each combination of accident year and devel-
opment year for LoB 1. The CRM overestimates payments in the upper left trian-
gle, while the opposite is true in the bottom right triangle. The GCRM has a much
weaker, but similar pattern. A potential explanation is that the GCRM has picked
up on some accident year e�ect, while not being able to capture some calendar year
e�ect. To illustrate this further, Figure 5 shows how the average total size of the pay-
ments for individual claims evolves over the accident years. We see that there is a
clear trend upwards for all of the LoBs. This trend upwards could be due to some
type of inflation e�ect that the (generalized) CRM cannot capture.

We now move on to the machine learning methods, i.e. the GBM and NN. We
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Figure 4: Heatmap for the relative biases (errors) of the prediction within a spe-
cific accident year and development year combination for LoB 1 using the CRM and
GCRM.

will look at tunings of these algorithms that are, in some sense, standard. For the
neural networks, we use the architecture of [11]. Their code, see Listing 4 in [11],
can be used without modification for the model of the number of reported claims.
However, for the payment part of the model, we have to adapt it to our situation
with more granular data. This adaptation is straightforward to implement given the
already available code from [11], which uses the R-package keras; see Listing 3 in the
appendix.

For the number of epochs in training the neural networks, we set an upper limit
at 10,000. If we consider LoB 1 and the number of reported claims part of Model M2
- NN, running 10,000 epochs takes around 47 seconds while it takes 174 for the pay-
ment part of the model2 Therefore, in the worst-case scenario, we run 20,000 epochs
taking around 220 seconds, which is still a feasible amount of computation time.
However, if we want to compute an MSEP using bootstrapping, then we would need
to repeat this fitting procedure several times. Assume we are satisfied with 100 simu-
lations in the bootstrap, a rather small number for estimating the MSEP, which may
be skewed and heavy-tailed, the bootstrap would take ca 6 hours to run. If we in-
crease the number of bootstrap simulations to a thousand, the run-time would be
about two and a half days for a single line of business. Now, given a faster computer,

2These and all other computations in this section are performed on a stationary PC with an Intel
Core i7-7700 processor @ 3.60Ghz and 8GB RAM.

Casualty Actuarial Society E-Forum, Summer 2020 24



Machine Learning, Regression Models, and Prediction of Claims Reserves

0

500

1000

1500

2000

1994 1996 1998 2000 2002 2004
Accident year

A
ve

ra
ge

 s
iz

e 
of

 p
ay

m
en

ts LoB

1

2

3

4

5

6

Figure 5: Average size of payments within the di�erent combinations of reporting
and payment delay for each accident year.

this number would naturally be smaller. For this illustration, we will stick to a maxi-
mum of 10,000 epochs, and simply state that the performance of the neural networks
might be a lower bound on how well they could perform given more computation
time.

For the GBMs, we start with the standard tuning in the gbm-function of the gbm-
package in R and perform a rudimentary tuning of these by slightly changing one
tuning parameter at a time and investigating how this a�ects the validation loss and
actual out-of-sample performance (lower right triangle). This latter out-of-sample
check cannot be done in practice. Nonetheless, since we can simulate data, we can
investigate how tuning these parameters seem to perform over a number of simulated
data sets generated by the same underlying dynamics.

The standard set of parameters in the gbm-function is a tree depth of 1 with a
shrinkage factor of 0.1, a bagging fraction of 0.5, and a minimum of 10 observations
per node. We will call this the standard tuning and now discuss how our tuning re-
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lates to it and how we arrive at it. First of all, we set the maximum number of trees
to 10,000 and then decide how many are needed based on the validation loss when
fitting the models to the training data. For the GBMs, for both the payment part of
the model and the number of reported claims part, our tunings seem to suggest that
we get similar results with a smaller shrinkage of 0.01 as with 0.1, although then we
need about ten times more trees. This can be seen in the upper left graph of Figure 6,
where we illustrate the training and validation loss as a function of the number of
trees in the GBM for the payment part of Model M2 - GBM applied to LoB 5 with
our tuning using these two shrinkage factors. We see that the results are almost iden-
tical, with the larger shrinkage factor allowing us to reach the minimum validation
loss faster. Whichever shrinkage factor we choose, the algorithm is reasonably quick.
Fitting 10,000 trees takes ca half a second, which is feasible even within a bootstrap
— increasing the number of trees to 100,000 increases the computation time ten-
fold, which should not be a problem in practice. Although, seeing as the results are
almost identical, to keep computation times within reason, we settle for a shrinkage
factor of 0.1. In practice, if the validation loss looks volatile, one usually decreases the
shrinkage factor, making the loss more stable (smooth). It should be noted that the
computation time here is orders of magnitude smaller than for the neural networks.

In the upper right graph of Figure 6, we illustrate the e�ect of varying the bagging
fraction. In our case, bagging does not seem to help us out, only resulting in noisy
deviance paths without, seemingly, decreasing the validation loss or yielding better
out-of-sample performance. We, therefore, set the bagging fraction to 1, i.e. no bag-
ging at all. Further, our data is quite small, and we seem to be helped by decreasing
the minimum observation per node to 1. This can be a problem since it is possible
that we base predictions on parameters estimated using only one observation, and
therefore possibly introducing a large amount of variance in the predictions. How-
ever, the aggregated data that we use is small, especially taking into account that
reporting and payment delays are so fast, and we thus have many zeroes – in particu-
lar for the claim counts. It can, therefore, be the case that we miss e�ects in the data
by forcing ten observations per node, i.e. we introduce bias. How to decide on this
trade-o� between bias and variance is up to the practitioner, possibly by minimizing
anMSEP. Based on the bottom left graph of Figure 6, there does not seem to be much
of a di�erence anyway, so we decide to allow for one observation per node.

Finally, the depths of the trees are slightly more complicated. Looking at the val-
idation data in the bottom right graph of Figure 6, we would be led to believe that
depth 2 is better than 1. This seems to be the case for the number of reported claims.
However, for the payment part of the model, this then leads to awful out-of-sample
(lower triangle) performance, which would seem to indicate that the GBM overfits
interactions in the observed data that are not representative of future payment pat-
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terns. This is not obvious from the training and validation loss, although the distinct
decrease in the training loss, which is not seen in the validation loss, may be seen as
an indication of overfitting. Further, the reason for illustrating the tuning for LoB 5
is that not all of the other LoBs has the pattern where a tree depth of 2 yields a lower
validation loss than a tree depth of 1. For some LoBs, the validation loss becomes
worse when using a tree depth of 2.
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Figure 6: Training and validation loss for our tuning of the GBM for the payment
part of Model 2 when varying the shrinkage factor (upper left),the bagging fraction
(upper right), the minimum number of observations per node (lower left), and the
tree depth (lower right).

Finally, it is straightforward to include transformations of the data when fitting
the GBMs. As we have seen, there is a potential inflation (or calendar year) e�ect in
the data, see Figure 4. Therefore, in addition to including the accident year, the re-
porting delay, and the payment delay as covariates, we also include the calendar time
of reporting, i.e. the sum of the accident year and the reporting delay. Technically the
GBM should be able to capture this transformed feature by itself; however, including
it does seem to help performance quite a bit. Nonetheless, the GBM without this
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inflation feature still performs well.

Another part of the calibration of machine learning methods is early stopping,
discussed in Section 3.2, i.e. the choice of the number of trees in the GBMs and the
number of epochs in training the NNs. [11] describe how to choose the number of
epochs when training a neural network, which we follow closely. For this reason,
we refrain from repeating what they have already described, and simply add that in
addition to what they do, we choose the number of epochs by finding the minimum
validation loss using a central simple moving average with window size 100. We use
this moving average since the validation loss becomes volatile when using the dropout
in the NNs. Without showing a graph, we note that the convergences are very slow
for the incurred claims part of the NN models. The number of epochs at which the
minimum (moving average) validation losses are attained can be seen in Table 3, in
whichwe report (forModel 2) the number of epochs used for theNNs and the number
of trees for the GBMs. Almost all LoBs need close to the maximum of 10,000 epochs
and allowing for more epochs may yield better results than those we will acquire.
For the payment part of the model, the minimum losses are reached much earlier for
most LoBs.

Now let us look at the analogous choice of the number of trees for the GBMs. In
Figure 7, we illustrate these choices for Model 2 by showing the training and vali-
dation loss (unscaled deviance) as a function of the number of trees for our and the
standard tuning. The dotted black lines indicate the minimum of the validation loss
as well as its position for our tuning. It is clear that our tuning and the standard tun-
ing yield similar results, with our tuning generally being more stable and achieving
slightly smaller losses. It is also clear that the validation losses for each LoB reach a
point where they do not decrease any more and, most often, start to increase. This
point is where we begin to overfit by addingmore trees. Thus, this will be the number
of trees that will be used in the GBMmodel when making the final prediction of the
outstanding payments based on all data (training + validation). As was mentioned
above, Table 3 shows these numbers of trees.

Table 3: Number of epochs used in training the NNs and the number of trees used in
the GBMs for Model 2.

Number of epochs/trees LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
Payment part NN 8,825 405 225 9,895 331 227

Incurred claims part NN 9,950 9,704 9,357 9,946 9,751 1371
Payment part GBM 279 200 251 171 357 206

Incurred claims part GBM 635 383 912 310 360 467
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Figure 7: Out-of-sample validation analysis for over-fitting (determining the number
of trees) in the GBM for Model 2. The dotted vertical and horizontal lines show the
minimum of the validation loss and the number of trees at which it is obtained for
our tuning.

While GBMs are still non-standard in the insurance industry, they are surprisingly
accessible given, for instance, familiarity with GLMs and R. Listing 2 in the appendix
shows how to use the GBMs in practice when fitting Model 2. This short snippet of
code is a lot more accessible than the corresponding code for the neural networks
using the R-package keras. Note that the keras code in Listing 3 is only for the
aggregated payments.

Table 4 shows the reserves produced by these machine learningmethods, as well as
the benchmarkmodels and the true reserves. Bothmachine learningmethods seem to
be performing well, especially the GBM for Model 2. In Figure 8, we show a heatmap
of the relative biases of the predictions generated by the GBM for Model 2. There
is not any visible pattern remaining in the data, which is in line with its excellent
performance. The only cell with a notable error is the bottom-right cell; however,
due to the quick reporting of claims, not many payments are made in that cell, and
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the importance of predicting it with a small margin of error is not crucial.

Table 4: True reserve compared to benchmark models and the GBMs and NNs. Rel-
ative biases of the reserve predictions in the parentheses.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True reserves 39,689 37,037 16,878 71,630 72,548 31,117

CL reserves
38,569
(-2.82)

35,460
(-4.26)

15,692
(-7.02)

67,574
(-5.66)

70,166
(-3.28)

29,409
(-5.49)

CRM reserves
32,485
(-18.15)

29,901
(-19.27)

13,040
(-22.74)

55,782
(-22.12)

59,390
(-18.14)

24,403
(-21.58)

GCRM reserves
38,293
(-3.52)

35,117
(-5.18)

15,448
(-8.47)

66,961
(-6.52)

69,397
(-4.34)

29,104
(-6.47)

GRWNN
39,233
(-1.15)

35,899
(-3.07)

15,815
(-6.30)

70,219
(-1.97)

70,936
(-2.22)

30,671
(-1.43)

GBM (Model 2)
39,697
(0.02)

37,253
(0.58)

16,508
(-2.19)

72,679
(1.46)

71,828
(-0.99)

31,941
(2.65)

GBM (Model 2) without inflation
38,324
(-3.44)

37,053
(0.04)

16,327
(-3.26)

73,386
(2.45)

70,486
(-2.84)

32,100
(3.16)

GBM (Model 3)
40,114
(1.07)

35,729
(-3.53)

15,761
(-6.62)

69,448
(-3.05)

72,418
(-0.18)

30,061
(-3.39)

NN (Model 2)
41,587
(4.78)

37,587
(1.48)

15,680
(-7.10)

71,155
(-0.66)

71,309
(-1.71)

28,984
(-6.86)

NN (Model 3)
39,757
(0.17)

38,719
(4.54)

16,245
(-3.75)

70,916
(-1.00)

74,600
(2.83)

28,943
(-6.99)

The conclusions based on these reserves are, of course, only based on one dataset.
Therefore, we simulate new datasets for each seed 1-100, and for each of these, re-
peat the reserve computations. We do this for the CL, CRM, GCRM, and the best
performing GBM (Model M2 - GBM) andNN (Model M2 - NN). Figure 9 shows box-
plots of the relative biases of these reserves for the simulated data using seeds 1-100.
All of these data sets have been generated using the same underlying model, and are
hence i.i.d., and we see that LoB 3 and 6 are those with most variation, probably due
to the lower portfolio sizes generating fewer claims. Further, recall Figure 3, which
tells us that, e.g., the realised simulated reporting delays may fluctuate quite a bit be-
tween simulations. In the appendix, Figures 10 and 11 show the corresponding graphs
for the RBNS and IBNR reserve predictions. The GBM model seems to be the one
with the least amount of bias; however, the NN has a predictor with smaller variance.
Which of these should be deemedmost important is to be decided by the practitioner
using the model. However, we usually pick models based on the mean squared error
of prediction, as this naturally balances the importance of bias and variance. Table 5
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Figure 8: Heatmap for the relative biases (errors) of the prediction within a specific
accident year and development year combination for LoB 1 using the GBM.

shows the average bias and the (true) root mean squared error of prediction across
the simulations. The NN yields the smallest root mean squared error of prediction
(RMSEP) except for LoB 3 and 6 where CL has slightly smaller RMSEP. Nonetheless,
CL does not allow for separate RBNS and IBNR predictions, speaking in favor of the
NN. It is, of course, also important to note that we have not allowed ourselves to run
more than 10,000 epochs and that we have not performed any tuning of the neural
networks, which could yield even better predictions.

4.1 Conditional mean squared error of prediction
We end this section by estimating the conditional MSEP for a subset of the mod-

els in this paper. First, for some predictor R̂ of the outstanding payments R, the
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Figure 9: Boxplots of relative biases from the 100 simulations.

Table 5: Biases and RMSEP from the simulations using seeds 1-100 for the CL, CRM,
GCRM, and the GBM and NN for Model 2.

bias LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
CL -2,035 -1,945 -886 -2,927 -2,724 -1,051

CRM -8,196 -8,017 -3,606 -14,310 -14.133 -5,889
GCRM -2,452 -2,328 -1,073 -3.672 -3.507 -1,384
GBM -1,162 -553 664 -937 -497 1,878
NN -1,077 -1,109 -840 -1,212 -1,352 -1,064

RMSEP LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
CL 2,649 2,587 1,507 3,716 3,775 2,045

CRM 8,453 8,284 3,885 14,652 14,574 6,311
GCRM 2,979 2,878 1,630 4,342 4,375 2,231
GBM 2,767 2,574 1,854 3,897 4,019 3,832
NN 2,252 2,225 1,517 2,769 3,391 2,107

conditional MSEP is defined as

MSEP(R, R̂|N0) := E
[(

R − R̂
)2����N0

]
= Var (R|N0) + (R − E[R̂|N0])

2,
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where the first term is usually referred to as the process variance and the second term
as the estimation error. Given theODP assumptions, it is straightforward to compute
the process variance analytically and to utilize a bootstrap to estimate the estimation
error. We detail how the process variances can be computed analytically and give a
cursory description of the bootstrap in Appendix C.2. We refer the reader to [21] for
further information on how to bootstrap CRM-type models.

The estimators of the conditional MSEPs for the CL, the GCRM, and the NN
and GBM for Model 2, are given in Table 6. It should be noted that these MSEPs
are estimated by analytical calculations and parametric bootstrapping that assume
the fitted models to be the true ones – recall the discussion in Section 3.3.1 and Sec-
tion 3.4.1, when introducing Model M2 - GBM and Model M2 - NN. Remember that
Table 5 shows the true MSEPs based on simulating new datasets form the simulation
machine, and are therefore taking model error into account. However, it is essential
to note that these are unconditional MSEPs and are therefore not directly compara-
ble to the estimated conditional ones in Table 6. Nonetheless, the conditional and
unconditional MSEPs are likely not going to di�er considerably, and comparing the
two tables indicates that the machine learning methods give much more accurate
representations of their true MSEPs than the CL, CRM, and GCRM do.

Table 6: Root mean squared error of prediction based on analytical calculation of the
process variance and bootstrapping of the estimation error for the CL, the GCRM,
and the GBM and NN for Model 2. nboot is the number of bootstrap samples used in
estimating the estimation error. Note that for the NNs we only use 100 due to the
computation time being much longer than for the other models. The numbers in the
parentheses are run-times (in seconds) of the bootstrap simulations.

LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6 nboot

CL
1,092
(3.4)

1,313
(3.4)

460
(3.3)

2,145
(3.3)

1,900
(3.3)

995
(3.2) 1,000

GCRM
1,044
(16)

1,147
(15)

670
(15)

1,691
(15)

2,430
(15)

1,254
(15) 1,000

GBM
1,854
(33)

2,691
(24)

1,210
(37)

5,802
(20)

4,715
(33)

2,890
(25) 1,000

NN
1,828
(9,060)

2,676
(4,800)

733
(4,600)

3,053
(9,700)

3,895
(4,900)

1,425
(910) 100

5. CONCLUDING REMARKS
In the present paper we have introduced regression based reserving models that

can produce separate RBNS and IBNR reserves based on aggregated data, and de-
scribed how their regression functions can be modelled using complex algorithmic
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machine learning techniques, including calibration and model selection. Our focus
has been on GBMs and feed-forward NNs, trying to use “standard” tuning to as a
wide extent as possible. Still, we have described how more detailed tuning can be
conducted, which may be needed in in real world applications. In the numerical il-
lustration of Section 4, focus has been on GBM models, since we are not aware of
work in this direction based on aggregated claims data. Concerning the NN models,
we have used the architecture (number of hidden layers, number of neurons per layer,
etc.) from [11], but the techniques discussed for choosing di�erent epochs applies to
how to choose di�erent architectures as well. For more on this, see e.g. [10]. One
obstacle in the reserving context is that model estimation and calibration is carried
out based on partially observed claims data, making it a risk to overfit to histori-
cal claims development patterns. This problem is not restricted to machine learning
techniques, but is a general problem, although the risk may be higher when using
very flexible complex models in these situations. In the current paper we have used
the training and validation setup from [11], see also Section 3.2 above together with
Remark 5. An alternative could be to use other splits of data, such as removing the
last diagonal from the training data.

The overall conclusion from the paper based on Section 4 is that by using o�-
the-shelf software and standard tuning, machine learning techniques can be used to
improve the predictive performance also in aggregated claims reserving modelling,
still producing interpretable output that can be communicated to non-experts, and
whose regression functions (e.g. the ψi, j,ks) may be altered based on expert opinions,
see the discussion in Section 3.1.
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A. NUMERICAL ILLUSTRATION APPENDIX

Table 7: RBNS and IBNR reserves. Relative biases of the reserve predictions in the
parentheses.

IBNR reserves LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True 1,596 1,537 603 3,593 2,739 1,048

CRM
1,867
(16.99)

1,821
(18.42)

921
(52.60)

3,823
(6.39)

4,001
(46.09)

1,817
(73.48)

GCRM
1,846
(15.68)

1,800
(17.09)

1,012
(67.64)

3,569
(-0.67)

3,479
(27.05)

1,643
(56.83)

GBM (Model 2)
1,643
(2.96)

1,652
(7.42)

957
(58.51)

3,197
(-11.02)

2,894
(5.67)

1,447
(38.11)

GBM (Model 3)
2,501
(56.75)

2,114
(37.48)

1,133
(87.76)

4,504
(25.35)

4,667
(70.41)

2,044
(95.08)

NN (Model 2)
1,780
(11.55)

1,773
(15.29)

955
(58.23)

3,293
(-8.34)

3,292
(20.20)

1,535
(46.55)

NN (Model 3)
1,889
(18.37)

1,624
(5.64)

930
(54.15)

3,407
(-5.17)

3,479
(27.05)

1,621
(54.74)

RBNS reserves LoB 1 LoB 2 LoB 3 LoB 4 LoB 5 LoB 6
True 38,093 35,500 16,275 68,037 69,810 30,069

CRM
30,619
(-19.62)

28,080
(-20.90)

12,119
(-25.53)

51,959
(-23.63)

55,390
(-20.66)

22,586
(-24.89)

GCRM
36,447
(-4.32)

33,317
(-6.15)

14,436
(-11.29)

63,392
(-6.83)

65,918
(-5.57)

27,461
(-8.67)

GBM (Model 2)
38,054
(-0.10)

35,601
(0.28)

15,551
(-4.44)

69,482
(2.12)

68,934
(-1.25)

30,495
(1.41)

GBM (Model 3)
37,613
(-1.26)

33,615
(-5.31)

14,628
(-10.11)

64,944
(-4.55)

67,751
(-2.95)

28,017
(-6.83)

NN (Model 2)
39,807
(4.50)

35,814
(0.88)

14,725
(-9.52)

67,861
(-0.26)

68,017
(-2.57)

27,448
(-8.72)

NN (Model 3)
37,868
(-0.59)

37,095
(4.49)

15,315
(-5.90)

67,509
(-0.78)

71,121
(1.88)

27,322
(-9.14)
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Figure 10: Boxplots of RBNS relative biases from the 100 simulations.
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Figure 11: Boxplots of IBNR relative biases from the 100 simulations. 
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B. R-CODE
Listing 1: Aggregation ofmicro data. The data.frame output is generated by Listing 1
in GRW.

1 library("dplyr")
2 library("reshape2")
3 library("tidyr")
4

5 # Aggregate the micro data
6 df_aggregated <- output %>%
7 dplyr::mutate(N = 1) %>%
8 dplyr::select(LoB, AY, RepDel, N, dplyr::starts_with(’Pay’)) %>%
9 dplyr::group_by(LoB, AY, RepDel) %>%
10 dplyr::summarise_all(sum) %>%
11 reshape2::melt(id = c("LoB", "AY", "RepDel", "N"),
12 variable.name = "PayDel",
13 value.name = "paid") %>%
14 dplyr::mutate(PayDel = as.numeric(substr(PayDel, start = 4, stop = 5)),
15 PayDel = PayDel - RepDel) %>%
16 dplyr::filter(PayDel >= 0)
17

18 # Add cells without any reported claims
19 dat_X <- df_aggregated %>%
20 tidyr::complete(LoB = 1:6,
21 AY = 1994:2005,
22 RepDel = 0:11,
23 PayDel = 0:11) %>%
24 dplyr::group_by(LoB, AY, RepDel) %>%
25 tidyr::fill(N) %>%
26 dplyr::mutate(paid = ifelse(is.na(paid), 0, paid),
27 N = ifelse(is.na(N), 0, N)) %>%
28 dplyr::filter(PayDel + RepDel <= 11)
29

30 # Create dataset for only the number of reported claims
31 dat_N <- dat_X %>%
32 subset(select = c(LoB, AY, RepDel, N)) %>%
33 dplyr::distinct()
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Listing 2: Fitting the GBMs for Model 2 to LoB 1.
1 library("gbm")
2

3 # Fit GBM to the number of reported claims for LoB 1
4 m_N_GBM <- gbm(
5 formula = N ~ AY + RepDel,
6 data = dat_N %>% dplyr::filter(LoB == 1, AY + RepDel + PayDel <= 2005),
7 distribution = "poisson",
8 interaction.depth = 2,
9 shrinkage = 0.1,
10 bag.fraction = 1,
11 n.trees = 10000,
12 n.minobsinnode = 1
13 )
14

15 # Fit GBM to the claims payments for LoB 1
16 m_X_GBM <- gbm(
17 formula = paid ~ offset(log(N)) + AY + RepDel + PayDel + I(AY + RepDel),
18 data = dat_X %>% dplyr::filter(LoB == 1, AY + RepDel + Paydel <= 2005),
19 distribution = "poisson",
20 interaction.depth = 1,
21 shrinkage = 0.1,
22 bag.fraction = 1,
23 n.trees = 10000,
24 n.minobsinnode = 1
25 )
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Listing 3: Neural network architecture of GRW adapted to the payment part of
Model 2.

1 # Declare features
2 AccYear <- layer_input(shape = c(1), dtype = "int32", name = "AccYear")
3 RepDel <- layer_input(shape = c(1), dtype = "int32", name = "RepDel")
4 PayDel <- layer_input(shape = c(1), dtype = "int32", name = "PayDel")
5 LogN <- layer_input(shape = c(1), dtype = "float32", name = "LogN")
6

7 # Define the embedding layers
8 AY_embed <- AccYear %>%
9 layer_embedding(
10 input_dim = 12, output_dim = 1, trainable = FALSE, input_length = 1,
11 weights = list(array(alpha_ODP_train, dim = c(12, 1))), name = "AY_embed"
12 ) %>%
13 layer_flatten(name = "AY_flat")
14

15 RepDel_embed <- RepDel %>%
16 layer_embedding(
17 input_dim = 12, output_dim = 1, trainable = FALSE, input_length = 1,
18 weights = list(array(beta_ODP_train, dim = c(12, 1))), name = "RepDel_embed"
19 ) %>%
20 layer_flatten(name = "RepDel_flat")
21

22 PayDel_embed <- PayDel %>%
23 layer_embedding(
24 input_dim = 12, output_dim = 1, trainable = FALSE, input_length = 1,
25 weights = list(array(gamma_ODP_train, dim = c(12, 1))), name = "PayDel_embed"
26 ) %>%
27 layer_flatten(name = "PayDel_flat")
28

29 # Concatenate the embedding layers and add them to the CC model part
30 concate0 <- list(AY_embed, RepDel_embed, PayDel_embed) %>%
31 layer_concatenate(name = "concate0")
32 CC0 <- list(AY_embed, RepDel_embed, PayDel_embed) %>% layer_add(name = "CC0")
33

34 # Define the 3 hidden layers of the NN model part
35 NN0 <- concate0 %>%
36 layer_dense(units = 20, activation = "tanh", name = "hidden1") %>%
37 layer_dropout(0.1, name = "dropout1") %>%
38 layer_dense(units = 15, activation = "tanh", name = "hidden2") %>%
39 layer_dropout(0.1, name = "dropout2") %>%
40 layer_dense(units = 10, activation = "tanh", name = "hidden3") %>%
41 layer_dropout(0.1, name = "dropout3")
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42 # Define the bCCNN model using the skip connection for the CC part
43 Response <- list(CC0, NN0, LogN) %>% layer_concatenate(name = "concate1") %>%
44 layer_dense(units = 1, activation = k_exp, name = "Response",
45 weights = list(array(c(1, rep(0, 10), 1), dim = c(10 + 1 + 1, 1)),
46 array(intercept_ODP_train, dim = c(1))))
47

48 # Define and compile the model
49 model <- keras_model(inputs = c(AccYear, RepDel, PayDel, LogN),
50 outputs = c(Response))
51 model %>% keras::compile(optimizer = optimizer_rmsprop(), loss = "poisson")
52

53 fit <- model %>% keras::fit(x = dat_train_lst, y = y_train, epochs = 1000,
54 batch_size = batch_size,
55 validation_data = validation_data)

C. TECHNICAL DETAILS

C.1 Details on fitting a regression tree
Let us consider depth l of a tree that is being estimated, which implies that there

are j = 1, . . . , 2l decision sets Al, j = A(πl, j, κl, j) to be determined together with
2l+1 δ-values. That is, for each Al, j there are two δ-values, δ

(1)
l, j which is assigned if

the condition is fulfilled, and δ(0)l, j if the decision is not fulfilled. Let

Il, j = {i : observation i should be evaluated usingAl, j, i = 1, . . . ,m},

where m corresponds to the maximal number of observations. This allows us to ex-
press the optimization problem for depth level l of the tree according to

min
πl,κl

min
δ(1)
l
,δ(0)

l

2l∑
j=1

∑
i∈Il, j

(
1{ci∈Al, j }L(yi, δ

(1)
l, j ) + 1{ci<Al, j }L(yi, δ

(0)
l, j )

)
.

This optimization step is repeated until the pre-defined tree depth k is reached.

The final A j regions are obtained by taking the intersection of all Al, j sets fol-
lowing the branches of the tree leading to this specific leaf. See also Figure 1.

C.2 Details on computing the conditional MSEP
In this section, we detail the estimation of the conditional MSEP by describing

how one can, given the ODP assumptions, analytically compute the process variance
and bootstrap to get an estimator of the estimation error.
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Let us first detail how we can compute the process variances analytically, focus-
ing on Model 2. By the ODP assumption, it holds that the process variances of the
outstanding RBNS payments, i.e. those Xi, j,ks with indices i + j ≤ m, are given by

Var(Xi, j,k |N0) = Var(Xi, j,k |Ni j) = ϕψi, j,k Ni, j . (8)

Since all cells are, conditionally on the Ni js, independent by assumption, it is straight-
forward to compute the RBNS variances by summing over appropriate indices. The
RBNS variance for accident year i is

Var(RRi |N0) =

m−i∑
j=0

∑
k>m−i− j

Var(Xi, j,k |N0)

= ϕ

m−i∑
j=0

∑
k>m−i− j

ψi, j,k Ni, j . (9)

The accident years are independent, so we can get the variance of the total outstand-
ing RBNS payments by summing these variances over all accident years.

The IBNR variances are only slightly more complicated to calculate. By variance
decomposition, the process variances of the outstanding IBNR payments, i.e. those
Xi, j,ks with indexes i + j > m, are

Var(Xi, j,k |N0) = Var(Xi, j,k)

= Var(E[Xi, j,k |Ni, j]) + E[Var(Xi, j,k |Ni, j)]

= ψ2
i, j,k Var(Ni, j) + ϕψi, j,kE[Ni, j]

= ψ2
i, j,kφνi, j + ϕψi, j,kνi, j

= (ψi, j,kφ + ϕ)ψi, j,kνi, j . (10)

Since we are not conditioning on the Ni js for the IBNR claims, Xi, j,k and Xi, j,k ′ are
dependent. Therefore we may not add these variances together as we did for the
RBNS claims. Instead, the process variance for the outstanding IBNR payments in
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accident year i is given by

Var(RIi |N0) =

m−1∑
j=m−i+1

Var

(∑
k

Xi, j,k

)
=

m−1∑
j=m−i+1

(
E

[
Var

(∑
k

Xi, j,k

�����Ni, j

)]
+ Var

(
E

[∑
k

Xi, j,k

�����Ni, j

]))
=

m−1∑
j=m−i+1

(
E

[∑
k

Var
(
Xi, j,k

��Ni, j
) ]
+ Var

(∑
k

ψi, j,k Ni, j

))
=

m−1∑
j=m−i+1

©­«E
[∑

k

ϕψi, j,k Ni, j

]
+

(∑
k

ψi, j,k

)2
φνi, j

ª®¬
=

m−1∑
j=m−i+1

(
ϕ + φ

∑
k

ψi, j,k

)
νi, j

∑
k

ψi, j,k (11)

As for the RBNS variances, these IBNR variances can be added together to get the
variance of the total outstanding payments from IBNR claims. Finally, since the
RBNS and IBNR claims are independent, to get the variance of the total outstand-
ing payments, we add the RBNS and IBNR variances together. Now we have all the
ingredients to compute the process variance, and we, therefore, move on to estimat-
ing the estimation error using a parametric bootstrap.

For the parametric bootstrap, we follow the algorithms in Section 6.2 in [21] to get
bootstrap samples of the RBNS and IBNR reserve predictions in CRM-type models.
These algorithms, adapted to our situation, is given at the end of this section. To
follow these algorithms, we need to simulate new in-sample data. There are many
possible ways of simulating from these ODP models. A standard approach is to use
the following (which is used in e.g. [10] and [11]): If

φNi, j ∼ Po(νi, j/φ),

then
Ni, j ∼ ODP(νi, j, φ).

That is, we may simulate from a Poisson distribution with mean νi, j/φ and then
multiply the observations with the dispersion parameter φ to get a random sample
from ODP(νi, j, φ). For this, however, we need an estimator of φ. Here we will use
the standard one based on the Pearson statistic (see e.g. p. 328 in [20]) which, for the

Casualty Actuarial Society E-Forum, Summer 2020 42



Machine Learning, Regression Models, and Prediction of Claims Reserves

number of reported claims part of the model, is given by

φ̂ :=
1

n − pν

∑
i+ j≤m

(Ni, j − ν̂i, j)
2

ν̂i, j
,

where pν is the number of parameters (pν = 2m − 1 for a cross-classified structure),
and n is the number of observations in the upper left triangle. The estimator ϕ̂ is
defined analogously as

ϕ̂ :=
1

n − pψ

∑
i+ j+k≤m

(Xi, j,k − ψ̂i, j,k Ni, j)
2

ψ̂i, j,k Ni, j
,

where n now is the sample size of the Xi, j,ks and pψ the number of parameters used
in estimating the ψi, j,ks, which would be 3m− 2 in a cross-classified model structure.

By computing the process variances according to (9) and (11), and bootstrapping
the estimation error using the below algorithms, we have all the ingredients needed
to estimate the conditional MSEP. To compute the estimation error for the total
reserve, we use the bootstrap samples acquired in Step 6 in the two algorithms below
by computing the sample average

1
B

B∑
b=1

(R̂R + R̂I − (R̂R,∗
(b) + R̂I,∗

(b) ))
2

The following algorithm follows the underlying principles from [21]:

Algorithm RBNS

Step 1. Estimation of the parameters. Estimate the payment part parameters of themodel
using the original data to get the estimators ψ̂i, j,k and ϕ̂.

Step 2. Bootstrapping the data. Keep the same counts Ni, j , but generate newbootstrapped
aggregated payments {X∗i, j,k : i+ j+k ≤ m} by simulating from Po(ψ̂i j k Ni j/ϕ̂)

and multiplying by ϕ̂.

Step.3 Bootstrapping the parameters. Compute the estimators ψ̂∗i, j,k using {Ni, j : i + j ≤
m} and the bootstrap data {X∗i, j,k : i + j + k ≤ m}.

Step 4. Bootstrapping the RBNS predictions. Using the original incurred claims {Ni, j :
i + j ≤ m} and the bootstrap parameters ψ̂∗i, j,k , compute the RBNS reserve

prediction R̂R,∗ according to (4).
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Step 5. Monte Carlo approximation. Repeat steps 2-4 B times to get an approximate
bootstrap distribution of the RBNS reserve from the bootstrapped {R̂R,∗

(b) }
B
b=1.

Algorithm IBNR

Step 1. Estimation of the parameters. Estimate the parameters of the model using the
original data to get the estimators ν̂i, j , ψ̂i, j,k , φ̂, and ϕ̂.

Step 2. Bootstrapping the data. Generate new bootstrapped data {N∗i, j : i + j + k ≤ m}
and {X∗i, j,k : i+ j+k ≤ m} by simulating the X∗i, j,ks exactly as described in Step

2 of the RBNS algorithm above and the N∗i, js by simulating from Po(ν̂i, j/φ̂) and
multiplying by φ̂.

Step.3 Bootstrapping the parameters. Compute the estimators ψ̂∗i, j,k using {Ni, j : i + j ≤
m} and the bootstrap data {X∗i, j,k : i+ j+ k ≤ m}, and compute the estimators
ν̂∗i, j using {N

∗
i, j : i + j ≤ m}.

Step 4. Bootstrapping the IBNR predictions. Using the bootstrap parameters ν̂i, j and ψ̂i j k ,
compute the IBNR reserve prediction R̂I,∗ according to (5).

Step 5. Monte Carlo approximation. Repeat steps 2-4 B times to get an approximate
bootstrap distribution of the IBNR reserve from the bootstrapped {R̂I,∗

(b) }
B
b=1.
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Joint Model for Individual-Level Loss Reserving: An 
Empirical Analysis 

A. Nii-Armah Okine, Edward W. Frees (FSA), Peng Shi (FSA) 

 ____________________________________________________________________________________________  

In non-life insurance, actuarial analysts commonly encounter situations where the duration of settlement is 
positively associated with the size of payments for individual claims. The history of paid losses could help predict 
both the settlement time and outstanding payments, hence ignoring the payment-settlement association could lead 
to inaccurate reserve prediction. This paper introduces a joint model framework where the payment process and 
the settlement process of the claim are joined via shared latent variables to help improve prediction accuracy. We 
present a detailed empirical analysis using data from a property insurance provider. The joint model is fitted to a 
training dataset, and the fitted model is used to predict the future development of open claims. The prediction 
results from an out-of-sample data show the joint model framework outperforms existing reserving models that 
ignore the payment-settlement association. We also propose a novel form of cross-validation for longitudinal data 
named double cross-validation. 

Keywords. Joint longitudinal-survival, micro-level loss reserving, RBNS reserve, dependence modeling, cross-
validation. 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

The loss reserve estimate is the most substantial liability on a non-life insurer’s balance sheet (Grace 

and Leverty 2012). Therefore, the accuracy in the reserve prediction is critical for insurers to prevent 

insolvency issues and remain competitive as reserve estimates do affect not only pricing decisions but 

also the decision making of internal management, regulators, and investors (Friedland 2010). 

In claims management, it is common that small claims are settled faster than large claims, because 

large and complicated claims naturally require experienced adjusters, demand special expertise, involve 

multiple interested parties, and are more likely to be litigated. As a result, the duration of settlement 

and size of payments for individual claims are often positively correlated. The payment-settlement 

association has important implications for the loss reserving practice. In loss reserving, actuaries 

predict the outstanding liabilities based on the claim history that is only observed up to a valuation 

date. When the settlement time and claim size are correlated and not accounted for, the historical 

claims that actuaries use for model building will not be representative of future payments, because 

large claims with longer settlement times will be more likely to be censored (not settled) by the 
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valuation date, a type of selection bias. Specifically, when larger claims take more time to settle, 

outstanding payments would be underestimated if the selection bias in the sampling procedure is not 

accounted for. Similarly, one would expect overestimation of future payments if the claim size and 

settlement time were negatively correlated.  

Further, the payment-settlement association means that payment history may help predict settlement 

time, which in turn feeds back into the prediction of unpaid losses. Then the relation between the two 

processes allows for the dynamic prediction of outstanding liabilities. The prediction is dynamic 

because, at a future date, when more information becomes available, the settlement time and ultimate 

payment predictions can be updated. 

This paper introduces the joint model (JM) for longitudinal and time-to-event data into the micro-

level loss reserving literature to account for the payment-settlement association. We present a detailed 

empirical analysis of the joint model framework using data from a property insurance provider with 

the focus on Reported But Not Settled (RBNS) reserve prediction. 

1.1 Research Context 
In non-life insurance, loss reserve prediction is usually based on macro-level models that use aggregate 

loss data summarized in a run-off triangle and the chain-ladder (CL) method is the most commonly 

used macro-level model (Wüthrich and Merz 2008). The main strengths of the macro-level models are 

that they are easy to implement and interpret, while the limited ability to handle heterogeneity and 

environmental changes are the most significant drawbacks, which may lead to inaccurate predictions. 

In this context, “environmental changes” refers to changes in the insurer’s business that can affect 

loss reserving, for example, underwriting practices, claims processing, mix of products, and so forth. 

When practicing actuaries believe that the losses are heterogeneous, then they are often segmented by 

specific discrete characteristics and compiled into multiple triangles. This approach to addressing 

heterogeneity becomes problematic when the source of heterogeneity is not clear or is a continuous 

variable. Further, the reduction in the number of claims in each portfolio can lead to credibility issues. 

Also, Friedland (2010) examined the effects of environmental changes on reserve prediction and 

found that the chain-ladder type methods are appropriate only in a steady state (stable environment). 

In the case of environmental changes, some of the commonly-used macro-models can generate a 
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reserve estimate without material errors. To handle environmental changes, macro-level methods 

consider either expected loss techniques that allow actuaries to incorporate a priori reserve estimate 

or trending techniques that treat environmental change as a trend to adjust the development 

projections. However, highly dependent on actuaries' judgments, both techniques could lead to 

problematic reserve estimates (Jin, 2014). 

Recently, micro-level reserving techniques have gained traction as they allow an analyst to use the 

information on the policy, the individual claim, and the development process in the prediction of 

outstanding liabilities. Granular covariate information allows one to account for both claim and policy 

specific effects, and thus naturally captures claim heterogeneities and environmental changes. Under 

the individual-level reserving literature, the marked Poisson processes (MPP) framework introduced 

by (Arjas 1989; Jewell 1989; Norberg 1993, 1999) and first applied in Antonio and Plat (2014) 

constitute the dominant family of research. The MPP represents events, such as claims or claim 

payments, as a collection of time points on a timeline with some additional features (called marks) 

measured at each point. Generalized linear models (GLMs), in conjunction with survival analysis, have 

also been applied to the loss reserving problem (Taylor and Campbell 2002; Taylor and McGuire 2004; 

Taylor, McGuire, and Sullivan 2008). In addition, a growing stream of research for individual-level 

reserving focuses on using machine learning algorithms. The machine learning algorithms do not 

assume a structural form for the claims data and provide a data-driven approach. Wüthrich (2018a) 

illustrates the use of regression trees, and Wüthrich (2018b) focused on the application of neural 

networks for individual-level reserving. 

1.2 Objective 
In this paper, we fit the joint model to a training dataset, and the association between the payment 

history and settlement time is captured, which helps to accurately predict the settlement time and the 

ultimate amount of unsettled losses. The RBNS prediction performance of the JM is compared to 

existing reserving models using out–of–sample data. Because of the time dimension involved with the 

RBNS reserve prediction, the traditional cross-validation techniques cannot be used to evaluate the 

robustness of the prediction results. Thus, we introduce a novel form of cross-validation for 

longitudinal data, which we call double cross-validation. 
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Concerning the CL method, the payment-settlement association is not entirely ignored. Under a steady 

state where the development triangle is homogeneous, if the length of the triangle is appropriate, there 

should not be any bias introduced because payment sizes and settlement times are correlated. 

However, there may be a bias for newer companies that may not have an extensive history. Further, 

the JM framework improves the accuracy in unpaid losses prediction compared to macro-level models 

by leveraging claim level granular information to control for heterogeneity and environmental changes. 

The JM framework also offers an improvement over the existing individual-level reserving models by 

explicitly accounting for the payment-settlement association, hence addressing the issue of selection 

bias. 

1.3 Outline 
The remainder of the paper proceeds as follows. Section 2 presents the joint model framework and 

describes the property insurance claims dataset and its important characteristics that motivate the joint 

modeling framework. Section 3 provides estimation results from the joint model using a training 

dataset and prediction results using a hold-out sample. Section 4 concludes. 

2. BACKGROUND AND METHODS 

2.1 Joint Model Framework 

The existing micro-level reserving methods do not explicitly capture the dependence between the 

payment history and settlement process. We further extend the literature by introducing the joint 

longitudinal-survival model (JM) framework to allow for such association. 

The joint model has been proposed in the medical statistics literature for modeling longitudinal and 

survival outcomes when the two components are correlated (Elashoff, Li, and Li 2016). Two general 

frameworks have received extensive attention, the pattern mixture model and the selection model 

(Little 2008). These two frameworks differ in the way the joint distribution is factorized. In the former, 

the joint distribution is specified using the marginal distribution of time-to-event outcome and the 

conditional distribution of longitudinal outcomes given the time-to-event outcome. In contrast, the 

joint distribution in the latter is specified using models for the marginal distribution of longitudinal 
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outcomes and the conditional distribution of time-to-event outcome given longitudinal outcomes. 

Diggle and Kenward (1994) were first to apply selection models to non-random drop-out in 

longitudinal studies by allowing the drop-out probabilities to depend on the history of the 

measurement process up to the drop-out time. The two model families are primarily applied with 

discrete drop-out times and cannot be easily extended to continuous time. 

The properties of the joint models have been well-developed in the biomedical literature in clinical 

studies (Ibrahim, Chu, and Chen 2010) and non-clinical studies (Liu 2009). Tsiatis and Davidian 

(2004), Yu et al. (2004), and Verbeke, Molenberghs, and Rizopoulos (2010) give excellent overviews 

of joint models. Besides, Rizopoulos (2010) and Rizopoulos (2016) develop R packages for joint 

models. 

2.1.1 General Framework 

In this section, we introduce the JM framework to the loss reserving problem, focusing on a subset of 

selection models called shared-parameter models. In shared-parameter models, a latent random effects 

vector 𝐛𝐛𝑖𝑖 is used to capture the association between the longitudinal and the time-to-event outcomes 

(Rizopoulos 2012). For the loss reserving problem, the longitudinal sub-model represents the payment 

process for a given claim where the sequence of payments from a reported claim forms the 

longitudinal outcomes, and the survival sub-model drives the settlement process of the claim where 

the settlement time of the claim is the time-to-event outcome of interest. 

For the 𝑖𝑖th claim (𝑖𝑖 = 1, … ,𝑁𝑁), we set the time origin for a claim as its reporting time. We denote 𝑇𝑇𝑖𝑖∗ 

and 𝑐𝑐𝑖𝑖 as the settlement time and valuation time, respectively. Assuming 𝑐𝑐𝑖𝑖 is independent of 𝑇𝑇𝑖𝑖∗, 

define 𝑇𝑇𝑖𝑖 = min(𝑇𝑇𝑖𝑖∗, 𝑐𝑐𝑖𝑖) and 𝛥𝛥𝑖𝑖 = 𝐼𝐼(𝑇𝑇𝑖𝑖∗ < 𝑐𝑐𝑖𝑖), where 𝐼𝐼(𝐴𝐴) = 1 when 𝐴𝐴 is true and 𝐼𝐼(𝐴𝐴) = 0 

otherwise. The pair (𝑇𝑇𝑖𝑖,𝛥𝛥𝑖𝑖) makes up the observable time-to-settlement outcomes for claim 𝑖𝑖, where 

𝛥𝛥𝑖𝑖 indicates whether the claim has been closed by the valuation time; if so, 𝑇𝑇𝑖𝑖 indicates the settlement 

time. Let {𝐘𝐘𝑖𝑖(𝑡𝑡): 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖∗}  be the payment process, and 𝐘𝐘𝑖𝑖∗ = {𝑌𝑌𝑖𝑖𝑖𝑖, 𝑡𝑡 ∈ 𝜏𝜏𝑖𝑖∗} be the vector of the 

complete cumulative payments for claim 𝑖𝑖 with 𝑛𝑛𝑖𝑖∗ payments at times 𝜏𝜏𝑖𝑖∗ = {𝑡𝑡𝑖𝑖𝑖𝑖; 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖∗}. 

Assume there are 𝑛𝑛𝑖𝑖 payments by the time of valuation, we define 𝜏𝜏𝑖𝑖 = {𝑡𝑡𝑖𝑖𝑖𝑖; 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖} as the 

observable payment times and denote 𝐘𝐘𝑖𝑖 = {𝑌𝑌𝑖𝑖𝑖𝑖, 𝑡𝑡 ∈ 𝜏𝜏𝑖𝑖} the vector of cumulative payments at 
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observed time of payments. Further denote 𝐘𝐘𝑖𝑖+ = {𝑌𝑌𝑖𝑖𝑖𝑖, 𝑡𝑡 ∈ 𝜏𝜏𝑖𝑖+} the vector of cumulative payments at 

future times 𝜏𝜏𝑖𝑖+ = {𝑡𝑡𝑖𝑖𝑖𝑖; 𝑗𝑗 = 𝑛𝑛𝑖𝑖 + 1, … ,𝑛𝑛𝑖𝑖∗} after the valuation time. Then the joint distribution 

𝑓𝑓𝐘𝐘𝑖𝑖∗,𝑇𝑇𝑖𝑖
∗(𝐲𝐲𝑖𝑖∗, 𝑡𝑡𝑖𝑖∗) is given by: 

 

 𝑓𝑓𝐘𝐘𝑖𝑖∗,𝑇𝑇𝑖𝑖
∗(𝐲𝐲𝑖𝑖∗, 𝑡𝑡𝑖𝑖∗)  = �𝑓𝑓(𝐲𝐲𝑖𝑖∗|𝐛𝐛𝑖𝑖)𝑓𝑓(𝑡𝑡𝑖𝑖∗|𝐛𝐛𝑖𝑖)𝑑𝑑𝑑𝑑(𝐛𝐛𝑖𝑖). (2.1) 

 

Figure 1 provides a graphical illustration of the cumulative payment process whose experience jumps 

at the time of each payment from the time of reporting to settlement. The left panel presents a closed 

claim where the entire development process of the claim is observed before the valuation time, 

i.e. (𝛥𝛥𝑖𝑖 = 1, 𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑖𝑖∗). The right panel provides an example of an open claim where only a part of the 

development process of the claim is observed at the valuation time, i.e. (𝛥𝛥𝑖𝑖 = 0, 𝑛𝑛𝑖𝑖 ≤ 𝑛𝑛𝑖𝑖∗). 

 

2.1.2 Longitudinal sub-model of claim payments 

We specify a generalized linear mixed effect model (GLMMs) for the cumulative payments 𝑌𝑌𝑖𝑖𝑖𝑖, where 

the claim-specific unobserved heterogeneity is accounted for through a vector of random effects 𝐛𝐛𝑖𝑖. 

The GLMMs extend GLMs by including random or subject-specific effects in addition to the 

traditional fixed effects in the structure for the mean (Antonio and Beirlant 2007). See Frees (2004) 

Figure 1: Graphical illustration of the cumulative payment process from the time of 
reporting to settlement.  
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and Molenberghs and Verbeke (2006) for details on GLMMs. Given the random effects 𝐛𝐛𝑖𝑖, the 

cumulative payment 𝑌𝑌𝑖𝑖𝑖𝑖 is assumed to be independent and from the exponential family. Using a link 

function 𝑔𝑔(⋅), the conditional mean is specified as a linear combination of covariates given by:  

 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖|𝐛𝐛𝑖𝑖]) =  𝐱𝐱′𝑖𝑖𝑖𝑖𝛃𝛃+ 𝐳𝐳′𝒊𝒊𝒊𝒊𝐛𝐛𝑖𝑖. (2.2) 

Here, 𝐱𝐱𝑖𝑖𝑖𝑖 and 𝐳𝐳𝑖𝑖𝑖𝑖 are the vectors of covariates in the fixed and random effects, respectively, and 𝛃𝛃 is 

the vector of the parameters for the fixed effects. In this model, we assume 𝐛𝐛𝑖𝑖 are independent and 

follow a multivariate normal distribution. 

2.1.3 Survival sub-model of claim settlement 
The association between the claim payment process and the settlement process is introduced through 

the effects of 𝜂𝜂𝑖𝑖𝑖𝑖 on the hazard of settlement. Then the time-to-settlement outcome 𝑇𝑇𝑖𝑖∗ of a claim is 

modeled using a proportional hazard model specified as:  

 ℎ𝑖𝑖(𝑡𝑡) = ℎ0(𝑡𝑡) exp{𝛄𝛄′𝐰𝐰𝑖𝑖𝑖𝑖 +  𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖}, (2.3) 

From (2.3), the survival function of 𝑇𝑇𝑖𝑖∗ is:  

 𝑆𝑆𝑖𝑖(𝑡𝑡) = exp �−� ℎ0(𝑠𝑠) exp{𝛄𝛄′𝐰𝐰𝑖𝑖𝑖𝑖 +  𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖}
𝑡𝑡

0
𝑑𝑑𝑑𝑑�. (2.4) 

where ℎ0(𝑡𝑡) is the baseline hazard, 𝐰𝐰𝑖𝑖𝑖𝑖 is a vector of covariates and 𝛄𝛄 is the vector of the 

corresponding regression coefficients. The strength of the association is measured by 𝛼𝛼, where a 

positive payment-settlement association given by a negative 𝛼𝛼 implies larger payments take a longer 

time to settle and vice versa. For the baseline hazard in (2.3) we consider the Weibull model or a more 

flexible model where the baseline hazard is approximated using splines. The Weibull baseline is given 

by:  

 ℎ0(𝑡𝑡) = λkt𝑘𝑘−1, (2.5) 

where 𝜆𝜆 is the scale parameter, and 𝑘𝑘 is the shape parameter. For the baseline hazard using splines, 

we have:  
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 logℎ0(𝑡𝑡) = 𝜆𝜆0 + �𝜆𝜆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝐵𝐵𝑘𝑘(𝑡𝑡, 𝑞𝑞). (2.6) 

Here, 𝜆𝜆 = (𝜆𝜆0, 𝜆𝜆1,⋯ , 𝜆𝜆𝐾𝐾) are the spline coefficients, 𝐵𝐵𝑘𝑘(⋅) is a 𝐵𝐵-spline basis function, 𝑞𝑞 denotes the 

degree of the 𝐵𝐵-spline basis function, and 𝐾𝐾 = 𝑞𝑞 + 𝑚𝑚; where 𝑚𝑚 is the number of interior knots. 

2.2 Joint Model Estimation 

In the joint model, it is assumed that the vector of time-independent random effects 𝐛𝐛𝑖𝑖 underlies both 

the longitudinal and survival processes. This means that conditioning on the shared random effects 

𝐛𝐛𝑖𝑖, the joint likelihood for unknown parameters can be formulated as separate models for the 

longitudinal payment process and the settlement process. The parameters of the joint model are 

estimated using a likelihood-based method, and the likelihood function for the observables (𝑡𝑡𝑖𝑖, 𝛿𝛿𝑖𝑖, 𝐲𝐲𝑖𝑖) 

of claim 𝑖𝑖 is shown as: 

 

L(𝛉𝛉; 𝑡𝑡𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝒚𝒚𝑖𝑖)  = �𝑓𝑓(𝒚𝒚𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉)𝑓𝑓(𝑡𝑡𝑖𝑖, 𝛿𝛿𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉)𝑑𝑑𝑑𝑑(𝐛𝐛𝑖𝑖;𝛉𝛉) 

= ��� (𝒚𝒚𝑖𝑖𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉)
𝑡𝑡∈𝜏𝜏𝑖𝑖

� 𝑓𝑓(𝑡𝑡𝑖𝑖, 𝛿𝛿𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉)𝑓𝑓(𝐛𝐛𝑖𝑖;𝛉𝛉)𝑑𝑑𝐛𝐛𝑖𝑖, 

(2.7) 

where 

 𝑓𝑓(𝑡𝑡𝑖𝑖 , 𝛿𝛿𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉) = (ℎ𝑖𝑖(𝑡𝑡𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉))𝛿𝛿𝑖𝑖𝑆𝑆𝑖𝑖(𝑡𝑡𝑖𝑖|𝐛𝐛𝑖𝑖;𝛉𝛉). (2.8) 

 

Here, 𝛉𝛉 = (𝛉𝛉1,𝛉𝛉2), where 𝛉𝛉1 summarizes the parameters of the longitudinal sub-model including 

both regression coefficients and variance components, and 𝛉𝛉2 summarizes the parameters of the 

survival sub-model that includes baseline hazard, regression coefficients, and association between 

claim payment and settlement. 
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2.3 Prediction Using Joint Model 

At the valuation time, an open claim 𝑖𝑖 is characterized by the time since reporting 𝑐𝑐𝑖𝑖 and the 

longitudinal claim history 𝒴𝒴𝑖𝑖(𝑐𝑐𝑖𝑖) = {𝑦𝑦𝑖𝑖𝑖𝑖, 0 ≤ 𝑡𝑡 ≤ 𝑐𝑐𝑖𝑖}. Since the claim is open, the settlement time 

𝑇𝑇𝑖𝑖∗ > 𝑐𝑐𝑖𝑖. With the fitted joint model, we can obtain the RBNS reserve prediction for an open claim at 

the valuation time, 𝑅𝑅�𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑖𝑖), using the following steps: 

a) Predict the future time when the 𝑖𝑖th claim will be settled, 𝑢𝑢�𝑖𝑖 , given 𝑇𝑇𝑖𝑖∗ > 𝑐𝑐𝑖𝑖 and 𝒴𝒴𝑖𝑖(𝑐𝑐𝑖𝑖) using an 

estimate of the conditional survival probability shown as: 

 𝜋𝜋�𝑖𝑖(𝑢𝑢|𝑐𝑐𝑖𝑖) =
𝑆𝑆𝑖𝑖�𝑢𝑢|𝜂̂𝜂𝑖𝑖𝑖𝑖,𝐰𝐰𝑖𝑖𝑖𝑖;𝛉𝛉��
𝑆𝑆𝑖𝑖�𝑐𝑐𝑖𝑖|𝜂̂𝜂𝑖𝑖𝑐𝑐𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑐𝑐𝑖𝑖,;𝛉𝛉��

, (2.9) 

where the 𝑆̂𝑆𝑖𝑖(⋅) is an estimate of (2.4) using the MLE estimates 𝛉𝛉�, 𝑢𝑢 > 𝑐𝑐𝑖𝑖, 𝜂̂𝜂𝑖𝑖𝑖𝑖 = 𝐱𝐱′𝑖𝑖𝑖𝑖𝛃𝛃� + 𝐳𝐳′𝑖𝑖𝑖𝑖𝐛̂𝐛𝑖𝑖 and 

𝜂̂𝜂𝑖𝑖𝑐𝑐𝑖𝑖 = 𝐱𝐱′𝑖𝑖𝑐𝑐𝑖𝑖𝛃𝛃� + 𝐳𝐳′𝑖𝑖𝑐𝑐𝑖𝑖𝐛̂𝐛𝑖𝑖. Here, 𝛃𝛃� are the fixed effects maximum likelihood estimates and 𝐛̂𝐛𝑖𝑖 are the 

empirical Bayes estimate for the random effects. The time-to-settlement for a RBNS claim, 𝑢𝑢�𝑖𝑖 =

𝐸𝐸(𝑇𝑇∗|𝑇𝑇𝑖𝑖∗ > 𝑐𝑐𝑖𝑖,𝒴𝒴𝑖𝑖(𝑐𝑐𝑖𝑖);𝛉𝛉�) is given by: 

 𝑢𝑢�𝑖𝑖 = � 𝜋𝜋�𝑖𝑖(𝑢𝑢|𝑐𝑐𝑖𝑖)
∞

𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑. (2.10) 

 

b) Predict the ultimate payment, given 𝒴𝒴𝑖𝑖(𝑐𝑐𝑖𝑖) and 𝑇𝑇𝑖𝑖∗ > 𝑐𝑐𝑖𝑖 using: 

 𝑌𝑌�𝑖𝑖(𝑢𝑢) = 𝑔𝑔−1�𝐱𝐱′𝑖𝑖u𝛃𝛃� + 𝐳𝐳′𝑖𝑖u𝐛̂𝐛𝑖𝑖�. (2.11) 

Here, 𝑔𝑔−1(⋅) is the inverse of the link function, and {𝐱𝐱𝑖𝑖𝑖𝑖, 𝐳𝐳𝑖𝑖𝑖𝑖} are covariates. With the time-to-

settlement 𝑢𝑢�𝑖𝑖 , 𝑌𝑌�𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈(𝑢𝑢�𝑖𝑖) is the predicted ultimate amount of the claim. 

c) With the cumulative payment for the 𝑖𝑖th claim at valuation time, 𝑌𝑌𝑖𝑖(𝑐𝑐𝑖𝑖), we have:  

 𝑅𝑅�𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑖𝑖) = 𝑌𝑌�𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈(𝑢𝑢�𝑖𝑖) − 𝑌𝑌𝑖𝑖(𝑐𝑐𝑖𝑖). (2.12) 

The total RBNS reserve amount is given by:  
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 𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐) = � 𝑅𝑅�𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
. (2.13) 

Here, 𝑚𝑚 is the number of open claims at the valuation time, i.e. 𝑚𝑚 = ∑ 𝐼𝐼(𝛿𝛿𝑖𝑖 = 0).𝑁𝑁
𝑖𝑖=1  

2.4 Data 

The data analyzed in this paper is from the Wisconsin Local Government Property Insurance Fund 

(Wisconsin LGPIF). The Wisconsin LGPIF was established to make property insurance available for 

local government units, such as counties, cities, towns, villages, school districts, library boards, etc. 

The Wisconsin LGPIF offers three major types of coverage for local government properties: building 

and contents, inland marine (construction equipment), and motor vehicles. The Fund closed in 2017. 

When it was operational, on average, it wrote approximately $25 million in premiums and $75 billion 

in coverage each year;  and it insured over a thousand entities. 

Exposure information is available from January 1, 2006, to December 31, 2013, and we focus on 

claims from the building and contents coverage. The training data contain claims that have occurred 

and were reported between January 1, 2006, and December 31, 2009, which we call the training sample. 

The training sample contains 3,393 reported claims, including 129 claims reported but with no 

payment transaction by the valuation date, and 34 claims with partial payments but not settled by the 

valuation date. The validation sample contains actual payments from January 1, 2010, to December 

31, 2013, on claims reported between January 1, 2006, and December 31, 2009. Thus, the validation 

sample contains 163 claims, with total actual unpaid losses of $4,511,490. The validation sample is 

used to evaluate the quality of the reserve predictions from the fitted models.  

Table 1 describes variables in the Wisconsin LGPIF dataset, including the covariate information about 

the policy, policy-holder, claim, and transactions used in the model building. There were other 

covariates like coverage amount not shown here because they were not statistically significant in either 

the survival or longitudinal sub-models of the fitted joint model. Figure 2 plots the distribution of 

ultimate payments against the settlement time in quarters (days/366 × 4) for claims in the training 

dataset. The settlement time of a claim is defined as the closed date minus the reported date plus one 

day. The solid line in the right panel is the fit of the loess scatterplot smoother. Both plots suggest a 
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strong positive relation between ultimate payment and settlement time, i.e., it takes longer to close 

larger claims. The insight provided from the payment-settlement association plot in Figure 2 shows 

that we can do a better job in reserve prediction by incorporating the payment-settlement association 

in the prediction process as the development of payment may yield early indications of an impending 

settlement. 

 
 

 
 

Table 1: Description of variables in the Wisconsin LGPIF data. 
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The left panel of Figure 3 shows the number of claims that occurred in each quarter from January 

2006 to December 2009. Similar seasonal fluctuations are observed over each year, with the lowest 

occurrence in the winter season. The right panel of Figure 3 shows the distribution of the reporting 

delays in quarters. Approximately 75% of the claims are reported within the first quarter of the 

accident occurrence, but the distribution appears to be highly skewed to the right. Note that a 

reporting delay of zero corresponds with reporting on the day of occurrence. Also, with the valuation 

date assumed to be December 31, 2009, the low number of reported claims in the year 2009, as seen 

in the left panel of Figure 3, is due to Incurred But Not Reported (IBNR) claims. 

Figure 2: Distribution of ultimate payments by settlement time using data from a 
property insurance provider. 
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Table 2 summarizes the distribution of the continuous covariates and the two outcomes of interest, 

i.e., the ultimate losses and the settlement duration. The significant associations between the 

continuous covariates and the outcomes of interest, as shown by the Spearman correlations (𝜌𝜌𝑆𝑆), 

suggest that they will be useful for predicting outstanding losses.  Also, it is seen that the deductible, 

and initial estimate distributions are right-skewed. To handle the skewness, we will utilize logarithmic 

transformations of deductibles and initial estimates. 

 
 
 

 

Figure 3: Left Panel: Number of claims occurred in each quarter from January 2006 to 
December 2009. Right Panel: Reporting Delay.  

 
 

Table 2: Summary statistics for closed claims. 
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3. RESULTS AND DISCUSSION 

3.1 Estimation Results  

The joint longitudinal-survival framework is applied to the micro-level reserving problem using the 

property data from the Wisconsin LGPIF. We begin by fitting a base model where for the longitudinal 

sub-model, we assume the observed cumulative payments follow a Log-Normal distribution, i.e. 𝑦𝑦𝑖𝑖𝑖𝑖 ∼

Lognormal(𝜂𝜂𝑖𝑖𝑖𝑖,𝜎𝜎2), and fit a proportional hazard model with a Weibull baseline hazard for the 

survival sub-model. We also assume a random intercept longitudinal sub-model to account for 

unobserved claim-specific effects, where the random effects follow a normal distribution, 𝒩𝒩(0, 𝜈𝜈). 

See the Appendix for the estimation results for the base model. 

3.1.1 Evaluation of survival sub-model fit 

The correct specification of the survival sub-model is necessary to obtain accurate prediction results. 

In the base model, the survival baseline function assumes a Weibull model. In this section, we compare 

the overall survival sub-model fit using the Weibull baseline function to a more flexible survival sub-

model with a spline baseline model. The spline baseline model was fitted with five equally-spaced 

internal knots in the quantiles of the observed event times. 

To examine the overall fit of the survival model, we compare the Kaplan-Meier estimate of the Cox-

Snell residuals from both survival sub-models to the function of the unit exponential distribution 

graphically (Rizopoulos 2012). Figure 4 plots the fit for the survival sub-model with a Weibull and 

spline sub-models assuming Log-Normal distribution for the longitudinal sub-model. The solid line 

is the Kaplan-Meier estimate of the survival function of the Cox-Snell residuals, and the dashed line 

is the survival function of the unit exponential distribution. It can be seen that both the Weibull and 

spline baseline fits the data very well. However, we choose the Weibull model because it is easier to 

interpret its components.   
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3.1.2 Evaluation of longitudinal sub-model fit 

For the evaluation of the longitudinal sub-model fit in the base model, we first investigate whether 

the fit of the longitudinal sub-model can be improved by assuming a Gamma regression with 

dispersion parameter 1/𝜎𝜎 and a log-link. The Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) for the joint model with Log-Normal distribution and a linear trend are 

74,117 and 74,488, respectively, and that of the Gamma model with a linear trend are 73,887 and 

74,258, respectively. Therefore, a comparison using AIC and BIC suggests the Gamma model offers 

a better fit. 

We also investigate whether the fit of the longitudinal sub-model can be improved by using a non-

linear payment trend in the systematic component of the Gamma model. The left panel of Figure 5 

plots the observed trend overlayed with the fitted linear trend, and the right panel plots the observed 

trend overlayed with the fitted non-linear trend using splines with an internal knot at payment time 5 

(payment time in quarters). The AIC and BIC are 73,850 and 74,240 for the non-linear payment trend 

using splines. The AIC and BIC suggest a slightly better fit with the non-linear trend, and since the 

correct specification of the payment trend plays a critical role in the prediction of unpaid losses, we 

choose the model with the non-linear payment trend. 

Figure 4: Evaluating the goodness of fit for survival sub-model 

 



Joint Model for Individual-Level Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2020 16 

 

 

The estimation results for the final fitted joint model, where 𝑦𝑦𝑖𝑖𝑖𝑖 follows a Gamma distribution with a 

non-linear payment trend and log link in the longitudinal sub-model and a Weibull baseline in the 

survival sub-model, are given in Table 3. We present the parameter estimates and standard errors of 

the continuous covariates. For the categorical covariates, we present their likelihood ratio test statistic, 

the degrees of freedom, and p-value to test the importance of the categorical variable in each sub-

model. For the survival sub-model, the association parameter 𝛼𝛼 = −0.407, and it measures the 

percentage reduction in hazard or risk of the settlement while expected payments increases by one 

percent. Note that 𝛼𝛼 is highly significant at a 5% significance level and being negative in the hazard 

model means that the association between the settlement time and payment size is positive. 

Figure 5: Evaluation of payment trend under the longitudinal sub-model.  
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3.2 Out-of-Sample Validation  

With our validation data that spans from January 1, 2010, to December 31, 2013, we can follow the 

actual future development trajectory of the RBNS claims after the valuation date and compare them 

to the predictions from the joint model and other reserving models. In this paper, we also consider 

two different estimation techniques known as the Independent model and the Two-Stage model. The 

Independent model sets 𝛼𝛼 = 0 in the survival sub-model and estimates the longitudinal and survival 

sub-model separately. The Two-Stage model's framework is similar to that of the joint model, but the 

Two-Stage model's parameters are estimated in two stages. The first stage estimates the longitudinal 

sub-model, and the second stage estimates the survival sub-model holding parameter estimates from 

the first stage fixed.  

Table 3: Estimation results for final joint model: Assuming Gamma distribution with a 
log link and non-linear payment trend for longitudinal sub-model and a Weibull 
baseline survival sub-model. 
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Further, we present results from the MPP model. The MPP framework allows for the modeling of 

the entire claim process, including occurrence, reporting, and development after reporting. Here, after 

reporting, the transaction occurrence times, the type of transaction, and the transaction’s payment 

amount are considered to be the marks (features of interest). Different models are specified for each 

component of the MPP model. Detailed model specifications for the MPP are provided in the 

Appendix. To understand the impact of open claims on the prediction of unsettled losses, we also 

provide results from a model that employs a GLM for ultimate payments in the payment sub-model, 

and a survival sub-model that is modeled separately setting 𝛼𝛼 = 0. In addition, we provide results 

from the chain-ladder model.  

3.2.1 Point prediction  

To get the RBNS reserve estimate from the fitted joint model, we follow the prediction routine in 

section 2.3. Given that we are using the splines in the longitudinal sub-model, prediction for the 

ultimate losses is continued linearly for predicted settlement times greater than the largest observed 

payment times. The Gamma distribution is assumed for the longitudinal sub-model for the JM, 

Independent, the Two-Stage, and the GLM model. The prediction routine for the Independent, the 

Two-Stage model and the GLM model is similar to that of the joint model. For the MPP, we specify 

a discrete survival model with piece-wise constant hazard rates for the transaction occurrence, a logit 

model for the transaction type, and a Gamma regression for the incremental payments and follow the 

prediction routine for the RBNS reserve in Antonio and Plat (2014). The prediction routine simulates 

the next transaction’s exact time, the transaction type (payment to a settlement, or intermediate 

payment), and the corresponding payment. For the chain-ladder, we employ a modified version of the 

Mack chain-ladder model (Mack, 1993), where claims in the run-off triangle are aggregated using 

reporting year and observation year instead of the occurrence year and development year. Then 

projections made from these development factors give us RBNS reserve estimates. Mack’s model can 

be considered as a weighted linear regression. The analysis was performed in R following the 

ChainLadder package (Carrato et al., 2020), based on the run-off triangles provided in the Appendix.  

Table 4 presents the reserve error, which is the expected RBNS reserve minus the actual unpaid losses 

and the error as a percentage of the actual unpaid losses for JM and other models. For all models 
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except the chain-ladder model, the estimated micro-level model is used to predict the RBNS estimate 

of each open claim and then aggregated to obtain the reserve estimate for the portfolio. In our out-

of-sample data, we consider two claims as “unusual claims” because they each had payments totaling 

over a million dollars at the valuation date. These claims were caused by hail damage to buildings of a 

school in the year 2007 and a roof collapse of a building in the year 2008 with total payments at the 

valuation date of $5,398,051 and $1,802,742, respectively. Further, the ultimate amounts of these 

claims are $6,615,117 and $1,842,242, respectively. At the valuation date, the average total payment 

of open claims, including the unusual claims, is $60,668, and that of open claims without the unusual 

claims is $16,696. Naturally, the analyst will remove these unusual claims before any prediction 

exercise, but as a robustness check, we provide the prediction results with and without the unusual 

claims.  

From the results, JM produced the least percentage reserve error at 0.41% without the unusual claims 

and a very competitive percentage error of -7.24% with the unusual claims. The results from the MPP 

are also competitive compared to JM. The performance of the Two-Stage and Independent model, in 

comparison to the JM, emphasizes that when the association between the payment process and 

settlement process and the endogenous nature of the payments process is ignored, it leads to 

inaccurate prediction of unpaid losses. Without any surprise, the GLM method, which only utilizes 

the ultimate payment for settled claims and ignores the payment-settlement association did not 

perform well. The results also show the chain-ladder method did not perform well in estimating the 

unpaid losses with the unusual claims but was very competitive without the unusual claims.  

 

 

 

Table 4: RBNS reserve point prediction results for the validation sample. 
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The left panel of Figure 6 shows the comparison of the distribution of actual ultimate losses and 

predicted ultimate losses from JM over time. It can be seen that JM provides accurate predictions over 

time. Another advantage of the joint model is that we can use it to predict the time to settlement for 

open claims, which will be particularly useful in the run-off operation of an insurer. The right panel 

of Figure 6 provides a comparison of actual settlement times and predicted settlement times using the 

joint model. The joint model accurately predicts the settlement times with a Spearman correlation 

coefficient of 83%. 

 

 

3.2.2 Predictive distribution   

Here, we are not only interested in the expected value of prediction but also the variability in 

prediction. As a measure of reserve uncertainty, we provide the standard error, which is the standard 

deviation of the predictive distribution accounting for only parameter uncertainty and the root mean 

squared error of prediction (RMSEP), which is the standard deviation of the predictive distribution 

after accounting for both parameter and process uncertainty (England and Verrall 2002). All the 

prediction results in this section are based on 10,000 replications. 

The predictive distribution of the expected outstanding payments is obtained by incorporating only 

the parameter uncertainty. For the joint model, we assume that the parameter estimates can be 

Figure 6: Left Panel: Distribution of the true and predicted ultimate payment over time (with 
unusual claims). Right Panel: Comparison of actual settlement times and predicted 
settlement times using JM (with unusual claims).  
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approximated by a multivariate normal distribution with the maximum likelihood estimates 𝛉𝛉� as mean 

and covariance matrix 𝑉𝑉𝑉𝑉𝑉𝑉� (𝛉𝛉�). The routine for the distribution of the expected outstanding payments 

is elaborated in Algorithm 1. The total RBNS liability for each replication is obtained by adding the 

RBNS prediction for all claims. The predictive distribution routine for the Independent, the Two-

Stage, and the GLM models follow a similar procedure as the JM. For the MPP, we repeat the 

prediction routine to predict the RBNS reserve in (Antonio and Plat 2014), but we take the expected 

values for the payment amounts model. To obtain the predictive distribution of the mean for the CL, 

we employ the bootstrapping algorithm in England and Verrall (2002) and implemented in R following 

the ChainLadder package (Carrato et al., 2020). 

For the predictive distribution of losses, in addition to the parameter uncertainty, we introduce process 

uncertainty to match the randomness of the development of losses. We generate the ultimate 

payments using the process distribution in the longitudinal sub-model at each replication. We repeat 

the steps in Algorithm 1 for introducing parameter uncertainty and introduce process uncertainty by 

simulating the ultimate payments from the process distribution of the longitudinal sub-model given 

each simulated set of parameters. The RBNS liability is then calculated for each simulated ultimate 

value, and the total RBNS liability for each replication is obtained by adding the RBNS prediction for 

all claims. Again, the predictive distribution for the Independent, Two-Stage, and GLM models 

follows a similar procedure as the JM. For the MPP, we introduce process uncertainty by simulating 

payments from a Gamma distribution. We account for the process uncertainty in the CL method by 

simulating payments in the future cells in the run-off triangle from the over-dispersed Poisson 

(England and Verrall 2002). 

  



Joint Model for Individual-Level Loss Reserving 

Casualty Actuarial Society E-Forum, Summer 2020 22 

Table 5: RBNS reserve predictive distribution results for the validation sample.(without  
unusual claims). 
 

 

Table 5 presents the reserve estimate, which was reproduced from Table 4, the standard error, and 

RMSEP for the out-of-sample data without the unusual claims. From the results, the joint model 

produced a significantly lower standard error than that of the chain-ladder. The higher predictive 

uncertainty of the chain-ladder is due to the loss of information from data aggregation. Also, building 

the reserving model with only information from closed claims, as seen with the GLM method, leads 

to a higher predictive uncertainty. The standard error from the MPP is higher compared to the joint 

model because the MPP model is composed of three sub-models compared to two sub-models from 

the joint model. By accounting for the payment-settlement association, i.e. an additional parameter, 

the joint model produced a slightly higher standard error compared to the Independent technique. 

Further, the Two-Stage technique produced a slightly lower standard error than the joint model, which 

could be the result of the Two-Stage technique ignoring the endogenous nature of the payments 

process hence understating the standard error. Figure 7 presents an illustration of the predictive 

distribution of the expected outstanding payments focusing on the out-of-sample data without 

unusual claims, and it can be seen that the JM provides both accurate mean prediction and low 

predictive uncertainty.  
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Figure 7: Predictive distribution of expected reserve estimates considering only parameter uncertainty 
(without unusual claims). 

Figure 8 shows the predictive distribution after accounting for both parameter and the process 

uncertainty from the JM and other models focusing on the out-of-sample data without unusual claims. 

It can be seen that the joint model is associated with a higher process variance hence higher RMSEP 

compared to the MPP and the chain-ladder.  The process variance from the joint model is higher 

because it is implemented using cumulative payments in the longitudinal sub-model. Also, as seen in 

Table 5, the process variance is higher for the micro-level models than the chain-ladder model. 
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3.2.3 Double cross-validation  

In this subsection, we quantify the prediction error of different individual reserving methods using a 

novel out-of-sample validation method, which we call double-cross validation. The novelty of this 

approach comes from the longitudinal nature of the claims payment process, which makes it 

impossible to utilize traditional cross-validation techniques. Here, on the time dimension, we split the 

data by the valuation date. On the cross-section dimension, we split the data by the reporting date. 

Therefore, the training data contains payment from claims that have been reported by the valuation 

date. Then, the out-of-sample data comprises two parts. The first part contains payments made after 

the valuation date on claims reported before the valuation date; we call this the validation dataset. The 

second part contains payments from newly reported claims during the out-of-sample period, and we 

call this the test dataset. The routine for a K-fold double cross-validation technique is outlined in 

Algorithm 2. See Figure 9 for an example of 10-fold double cross-validation. 

Figure 8: Predictive distributions (Parameter + Process Uncertainty) of the total RBNS 
reserve (without unusual claims).  
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We obtain the prediction error percentages from both the validation and test datasets, and Table 6 

provides the mean percentage error from the 10-fold double cross-validation for the JM and other 

micro-level models. Overall, the mean prediction percentage error for JM in the validation and test 

datasets are better than the results from other models, which highlights the robustness of the model. 

 
 

 
 

 

 
Figure 9: 10-fold double cross-validation technique. 

 
 

Table 6: Mean percentage error from 10-fold double cross validation (without unusual claims). 
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3.3 Discussion on IBNR Reserving 

This paper focuses on RBNS claims, so the practicing actuary would need to combine the joint model 

approach with a method for estimating IBNR claims to obtain the IBNR reserves. The general 

framework for estimating IBNR reserves can be broken down into two steps. The first step involves 

modeling the number of IBNR claims and their reporting delays with chain-ladder type strategies; for 

example, see Martínez-Miranda, Nielsen, and Verrall (2012) and Wüthrich (2018a). Further, 

Crevecoeur, Antonio, and Verbelen (2019) propose a granular approach to model the number of 

IBNR claims due to the heterogeneity of the reporting delay based on claim occurrence day and 

calendar day effects such as weekday and holiday effects. The second step involves modeling the 

development of the predicted IBNR claims with the proposed joint model fitted using the loss 

occurrence period and reporting delay as covariates. 
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4. CONCLUSIONS 

Actuarial analysts commonly encounter situations where the time of settlement is positively associated 

with the size of the claim. The payment-settlement association means settlement times will be 

impacted by paid losses, which affects the reserve prediction of open claims. Therefore, ignoring the 

payment-settlement association could lead to inaccurate predictions of outstanding payments.   

In this paper, to incorporate the correlation between the payment and the settlement processes, the 

joint longitudinal-survival model (JM) framework was applied to the reserving problem using data 

from a property insurance provider. The prediction results from the joint model are compared to 

existing reserving models, and the results show that accounting for the payment-settlement association 

leads to better prediction accuracy and lower reserve uncertainty compared to models that ignore it. 

We also introduced a novel cross-validation technique named double cross-validation as a result of 

the time dimension involved with claim development, which makes the use of the traditional cross-

validation techniques impossible. The double cross-validation technique provides two datasets 
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(validation and test datasets) for the evaluation of the robustness of the models. The validation dataset 

contains outstanding payments for claims reported by the valuation date. The test data contains 

payments from newly reported claims during the out-of-sample period. Again, the joint model 

displayed superior prediction accuracy using both datasets compared to models that ignore the 

payment-settlement association, which highlights the robustness of the model.   

The literature on joint models primarily focuses on the estimation aspect of inference. In this paper, 

we enrich the literature by applying joint models to the prediction of RBNS reserves. The application 

of this sophisticated model in a new setting will be of interest to statisticians and also to actuaries for 

accurate reserve prediction. 
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APPENDIX A: ESTIMATION RESULTS FOR BASE JOINT MODEL 

Estimation results for the fitted joint model where  𝑦𝑦𝑖𝑖𝑖𝑖 follows a Log-Normal distribution, with a 
Weibull baseline survival sub-model is given in Table 7.  
 
 

 

 

APPENDIX B: DETAILS FOR MARKED POISSON PROCESS FOR RBNS 

Under the Marked Poisson Process framework, the likelihood for the full development process of 
claim 𝑖𝑖 is given by (Jin, 2014): 
 

 𝐿𝐿 = 𝑓𝑓𝑇𝑇 × 𝑓𝑓𝑈𝑈|𝑇𝑇 × 𝑓𝑓𝑋𝑋|𝑇𝑇,𝑈𝑈 = 𝑓𝑓𝑇𝑇 × 𝑓𝑓𝑈𝑈|𝑇𝑇 × 𝑓𝑓𝑉𝑉|𝑇𝑇,𝑈𝑈 × 𝑓𝑓𝐸𝐸|𝑇𝑇,𝑈𝑈,𝑉𝑉 × 𝑓𝑓𝑝𝑝|𝑇𝑇,𝑈𝑈,𝑉𝑉,𝐸𝐸 (A.1) 

 

where 𝑇𝑇 and 𝑈𝑈 represent the claim occurrence times and reporting delay respectively. However, with 
the focus on RBNS reserve prediction, we are interested in the claim development process 𝑋𝑋 given 
by: 

Table 7: Estimation results for base joint model: Assuming Log-Normal distribution 
with a linear payment trend for the longitudinal sub-model and a Weibull baseline 
survival 
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 𝑓𝑓𝑋𝑋|𝑇𝑇,𝑈𝑈 = 𝑓𝑓𝑉𝑉|𝑇𝑇,𝑈𝑈 × 𝑓𝑓𝐸𝐸|𝑇𝑇,𝑈𝑈,𝑉𝑉 × 𝑓𝑓𝑝𝑝|𝑇𝑇,𝑈𝑈,𝑉𝑉,𝐸𝐸 (A.2) 

 

Where 𝑉𝑉 denotes the transaction occurrence times, 𝐸𝐸 denotes the type of transaction, and 𝑃𝑃 denotes 
the payment amount of the transaction. The transaction occurrence times 𝑉𝑉 are modeled by a discrete 
survival model with piecewise constant hazard rates. Following (Jin, 2014) and (Antonio and Plat, 
2014), the first transactions are modeled with a hazard rate 𝑔𝑔(𝑡𝑡), and the later transactions are modeled 
with a different hazard rate ℎ(𝑡𝑡). Let [0,𝑎𝑎𝐾𝐾] and [0, 𝑏𝑏𝐿𝐿] be the interval for first and later transactions. 
Then we have:  

 𝑔𝑔(𝑡𝑡) = � 𝑔𝑔𝑘𝑘1{𝑎𝑎𝑘𝑘−1 < 𝑡𝑡 ≤ 𝑎𝑎𝑘𝑘}
𝐾𝐾

𝑘𝑘=1
 (A.3) 

 

 ℎ(𝑡𝑡) = � ℎ𝑙𝑙1{𝑏𝑏𝑙𝑙−1 < 𝑡𝑡 ≤ 𝑏𝑏𝑙𝑙}
𝐿𝐿

𝑙𝑙=1
 (A.4) 

 

With cumulative hazard rates given by: 

 𝐺𝐺(𝑡𝑡) = � 𝑔𝑔(𝑠𝑠)
𝑡𝑡

0
𝑑𝑑𝑑𝑑 (A.5) 

 

 𝐻𝐻(𝑡𝑡) = � ℎ(𝑠𝑠)
𝑡𝑡

0
𝑑𝑑𝑑𝑑 (A.6) 

 

Then the cumulative density functions of transaction occurrence times are given by:  

 Pr(𝑉𝑉1 ≤ 𝑡𝑡) = 1 − exp (−G(t)) (A.7) 

 

 Pr�𝑉𝑉𝐽𝐽 ≤ 𝑡𝑡� = 1 − exp�−H(t)� , j > 1 (A.8) 

 

Let 𝑎𝑎𝐾𝐾 = 𝑁𝑁1 be regarded as the maximum waiting time to the first transaction, and 𝑏𝑏𝐿𝐿 = 𝑁𝑁2 is 
regarded as the maximum settlement delay. Then under these additional assumptions, the probability 
that the first transaction occurs at time 𝑘𝑘,𝑘𝑘 = 1,2, . . . ,𝑁𝑁1 is  

 Pr(𝑉𝑉1 = 𝑘𝑘|𝑉𝑉1 ≤ 𝑁𝑁1) =
exp (−G(𝑘𝑘 − 1)) − exp (−G(𝑘𝑘))

1 − exp (−G(𝑁𝑁1))
 (A.9) 
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And given the occurrence time of the first transaction, 𝑉𝑉𝑗𝑗−1 = 𝑠𝑠, the probability that transaction 𝑗𝑗 
occurs at time 𝑘𝑘,𝑘𝑘 = 𝑠𝑠 + 1, 𝑠𝑠 + 2, . . . ,𝑁𝑁2 is  

 Pr�𝑉𝑉𝑗𝑗 = 𝑘𝑘|𝑉𝑉𝑗𝑗−1 = 𝑠𝑠,𝑉𝑉𝑗𝑗 < 𝑁𝑁2� =
exp (−H(𝑘𝑘 − 1)) − exp (−H(𝑘𝑘))

exp (−H(𝑠𝑠)) − exp (−H(𝑁𝑁2))
 (A.10) 

 

For the Wisconsin LGPIF training dataset, the maximum waiting time for the first transaction is 17 
months, and the maximum settlement delay is 27 months. We assume that there is at most one 
transaction in each month, and the transactions can only occur at the end of a month. As noted in 
(Jin, 2014), this discrete setup is consistent with the fact that many insurers aggregate transactions on 
a monthly basis by the end of each month. Therefore, the piecewise-constant hazard rates is defined 
to have jumps every month, i.e. 𝑎𝑎1 = 0,𝑎𝑎2 = 1,⋯ ,𝑎𝑎17 = 17 and 𝑏𝑏1 = 0, 𝑏𝑏2 = 1,⋯ , 𝑏𝑏27 = 27. 

Furthermore, for the type of transactions 𝐸𝐸, we consider two types for claim 𝑖𝑖 at time 𝑣𝑣; a payment 
transaction that leads to settlement (𝑒𝑒𝑖𝑖𝑖𝑖 = 1) and an intermediate payment transaction (𝑒𝑒𝑖𝑖𝑖𝑖 = 0). With 
an intermediate transaction, the claim development process continues. Given a transaction at time 𝑣𝑣, 
the transaction type is determined by a logit model that accommodates heterogeneity by incorporating 
random effects 𝑎𝑎𝑖𝑖.The probabilities also depend on the time of the transaction and covariates 𝑥𝑥𝑖𝑖𝑖𝑖 
given by: 
 

 Pr(𝑒𝑒𝑖𝑖𝑖𝑖 = 1|𝒂𝒂𝑖𝑖) = 𝜋𝜋(𝐱𝐱′𝑖𝑖𝑖𝑖𝜷𝜷 + 𝒂𝒂𝑖𝑖) =
1

1 + exp (−(𝐱𝐱′𝑖𝑖𝑖𝑖𝜷𝜷 + 𝒂𝒂𝑖𝑖))
 (A.11) 

 

To model the incremental payments 𝑃𝑃, we specify a Generalized Linear Mixed-Effects Model. 

APPENDIX C: LOSS TRIANGLE FROM LGPIF DATA FOR RBNS 
RESERVE PREDICTION 

Table 8 summarizes the cumulative amounts paid arising out of building and contents 

coverage from the LGPIF data that occurred and were reported between January 1, 2006, 

and December 31, 2009, organized by reporting quarters and observation quarters. Then 

projections made from the development factors give us RBNS reserve estimates. Table 9 

provides the loss triangle without unusual claims. 
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Abbreviations and notations 
AIC, Akaike information criterion JM, joint model 
BIC. Bayesian information criterion LGPIF, local government property 

insurance fund 
CL, chain ladder MPP, marked Poisson process 
GLMM, generalized linear mixed-effects 
model 

RBNS, reported but not settled 

GLM, generalized linear model RMSEP, root mean squared error prediction 
IBNR, Incurred but not reported  
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Cash Flow and Unpaid Claim Runoff  Estimates Using Mack 
and Merz-Wüthrich Models 

Mark R. Shapland, FCAS, FSA, MAAA 
 ____________________________________________________________________________________________  
Abstract 

Motivation. For both Solvency II and IFRS 17 the actuary could use unpaid claim variability estimates for cash 
flows and the runoff of unpaid claims in addition to the more widely used accident year view of the unpaid claims. 
Under Solvency II, the concept of the one-year time horizon adds a new dimension to the estimates for unpaid 
claim distributions. Thus, the focus of this paper is to expand the accident year formulas developed by Mack, and 
modified by Merz & Wüthrich to address the 1-year time horizon, to include both runoff and cash flow formulas. 
 
Method. This paper is based on a review of the foundational Mack and Merz-Wüthrich formulas and their 
decomposition into process variance and parameter uncertainty, per future diagonal. The decompositions are then 
used to show how modifications to the accident year formulas can be used to calculate the standard deviations for 
cash flow and unpaid claim runoff estimates. In addition, an alternative view of the covariance adjustment is 
developed to aide comparisons with other models. 
 
Results. Merz & Wüthrich have previously addressed the runoff of the 1-year time horizon and England, Verrall 
& Wüthrich have proposed using this runoff of the Merz-Wüthrich formulas for risk margin estimates using the 
cost of capital method. In this paper, we will discuss how the original formulas can be modified to better fit the 
Solvency II time horizon concept. 
 
Conclusions. While the Merz-Wüthrich formulas (and by extension the England, Verrall & Wüthrich formulas) 
are an elegant bridge between the 1-year time horizon and the ultimate time horizon developed by Mack, the 
alternative formulation for the runoff of the 1-year time horizon provides a better fit for the Solvency II 
environment. 
 
Availability. In lieu of technical appendices, companion Excel workbooks are included that illustrate the 
calculations described in this paper. References to the Excel file “Mack & Merz-Wüthrich Runoff.xlsm” will be 
made in sections 3 to 5 of this paper in order to facilitate the comprehension of the formulas. The companion 
materials are summarized in the Supplementary Materials section and are available at 
https://www.casact.org/pubs/forum/20sumforum/. 
 
Keywords. Reserve variability, chain ladder, prediction error, mean square error of prediction, cost of capital, risk 
margin, risk adjustment, Solvency II, IRFS 17, value at risk, tail value at risk, one-year time horizon. 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

While there is now a large and growing volume of models that can be used for reserve variability 
estimates, one of the foundational models was introduced by Mack [5] in 1993. Because it is a closed 
form solution, which can be easily adapted in an Excel function or reserving software, it has gained 
widespread use.  

The Solvency II regulatory regime in Europe introduced the concept of the 1-year time horizon 
and Merz & Wüthrich [7] took up the challenge of modifying the Mack formulas to directly estimate 
the reserve variability of the claim development result for a 1-year time horizon. Like the Mack 
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formulas, the Merz-Wüthrich models have gained widespread use for Solvency II. 

For both the Mack and Merz-Wüthrich formulas, the papers only focus on an accident year view 
of the claim development, which is natural as this is the primary configuration for reserving data. 
Fortunately, as all the “parts” are included in the formulas it is a natural extension of these models to 
work out the calendar year formulas for calculating the variance of the cash flows and unpaid claim 
runoff. In addition to typical uses, examining both of these in more detail helps to decompose the 1-
year time horizon, which includes both parameter and process variance for the next calendar year, to 
estimate possible outcomes, and only parameter variance for the remaining future calendar years, to 
estimate reserves contingent on the possible outcomes in the next calendar year (i.e., over a 1-year 
time horizon). 

1.1 Research Context 
The model developed by Mack is widely used by actuaries and the Mack papers are well supported 

with derivations and proofs. The models developed by Merz & Wüthrich [7, 8] are similarly well 
supported with derivations and proofs. Thus, this paper will focus on a high-level discussion of the 
modeling frameworks and will not reproduce the derivations and proofs as the reader can find these 
in the original papers. 

This family of models is a distribution free method for calculating the variance of the chain ladder 
(CL) method by combining the process variance and parameter variance components of the mean 
squared error of prediction (MSEP): 

The use of colors for the process variance and parameter variance components of the formulas is 
useful for clarifying the calculations and tracing the components through the various formulas. 

1.2 Objective 
The calendar year view of the standard formulas is an important addition to the actuarial literature 

to support cash flow and unpaid claim runoff calculations for different regulatory and financial 
reporting regimes, such as Solvency II and IRFS 17, in addition to enterprise risk management uses. 
A recent paper by England, Verrall & Wüthrich [3] examines how the ultimate and time horizon views 
of the Mack and Merz-Wüthrich models, respectively, are connected. 

In England, Verrall & Wüthrich [3], the authors propose that the runoff of the time horizons using 
the Merz-Wüthrich formulas is ideal for uses such as the runoff of the capital for the cost of capital 
method of calculating a risk margin. We will examine this proposed use of the Merz-Wüthrich model 

MSEP ≈ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (1.1) 
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and suggest an alternative approach. 

1.3 Outline 
The remainder of the paper proceeds as follows. Section 2 will provide an overview of the notation 

used. In Section 3, the Mack model is described and then additional formulas for calculating the 
variance of the cash flows and runoff of the unpaid claims are specified. Next, Section 4 will focus on 
the Merz-Wüthrich models, which include the runoff of the time horizon beyond year one. Like the 
Mack model discussion, the cash flow formulas will be specified. Then, in Section 5 alternative 
formulas for the runoff of the time horizon beyond year one will be proposed. Finally, Section 6 will 
discuss conclusions based on results applying the formulas to a real dataset.  

2. NOTATION 

The notation in this paper is from the CAS Working Party on Quantifying Variability in Reserve 
Estimates Summary Report [1] since it is intended to serve as a basis for further research. Many models 
visualize loss data as a two-dimensional array, (𝑤𝑤,𝑑𝑑), with accident period or policy period 𝑤𝑤 and 
development age 𝑑𝑑 (think 𝑤𝑤 = “when” and 𝑑𝑑 = “delay”).1

 For this discussion, it is assumed that the 
loss information available is an “upper triangular” subset for rows 𝑤𝑤 = 1,2, … ,𝑛𝑛  and for 
development ages 𝑑𝑑 = 1,2, … ,𝑛𝑛. The “diagonal” for which 𝑤𝑤 + 𝑑𝑑 − 1 equals the constant, 𝑘𝑘, 
represents the loss information for each accident period 𝑤𝑤 as of accounting period 𝑘𝑘.2 

For purposes of including tail factors, the development beyond the observed data for periods 𝑑𝑑 =
𝑛𝑛 + 1,𝑛𝑛 + 2, … , 𝑢𝑢, where 𝑢𝑢 is the ultimate time period for which any claim activity occurs – i.e., 𝑢𝑢 is 
the period in which all claims are final and paid in full – must also be considered. 

The paper uses the following notation for certain important loss statistics: 

𝑐𝑐(𝑤𝑤, 𝑑𝑑): cumulative loss from accident year 𝑤𝑤 as of age 𝑑𝑑.3 

𝑞𝑞(𝑤𝑤,𝑑𝑑): incremental loss for accident year 𝑤𝑤 from 𝑑𝑑 − 1 to 𝑑𝑑. 

𝑐𝑐(𝑤𝑤, 𝑛𝑛) = 𝑈𝑈(𝑤𝑤): total loss from accident year 𝑤𝑤 when claims are at ultimate values at time 𝑛𝑛, or 

 
1 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of Casualty 

Actuarial Science [4], Chapter 5, particularly pages 210-226. 
2 Some authors define 𝑑𝑑 = 0,1, … ,𝑛𝑛 − 1 which intuitively allows 𝑘𝑘 = 𝑤𝑤 along the diagonals, but in this case the triangle 

size is 𝑛𝑛 × 𝑛𝑛 − 1 which is not intuitive. With 𝑑𝑑 = 1,2, … ,𝑛𝑛 as defined in this paper, the triangle size 𝑛𝑛 × 𝑛𝑛 is intuitive, 
while 𝑘𝑘 = 𝑤𝑤 + 𝑑𝑑 − 1 along the diagonals is less intuitive but still works. A way to think about this which helps tie 
everything together is to assume the w  variables are the beginning of the accident periods and the 𝑑𝑑 variables are at 
the end of the development periods. Thus, if years are used then cell 𝑐𝑐(𝑛𝑛, 1) represents accident year 𝑛𝑛 evaluated at 
12/31/ 𝑛𝑛, or essentially 1/1/ 𝑛𝑛 + 1. 

3 The use of accident year is for ease of discussion. All of the discussion and formulas that follow could also apply to 
underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or month. 
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with tail factors the equivalent notation is 𝑐𝑐(𝑤𝑤,𝑢𝑢) = 𝑈𝑈(𝑤𝑤).4 

𝑅𝑅(𝑤𝑤): future development after age 𝑛𝑛 − 𝑤𝑤 + 1 for accident year 𝑤𝑤, i.e., = 𝑈𝑈(𝑤𝑤) −
𝑐𝑐(𝑤𝑤,𝑛𝑛 − 𝑤𝑤 + 1). 

𝐹𝐹(𝑑𝑑): factor applied to 𝑐𝑐(𝑤𝑤,𝑑𝑑) to estimate 𝑐𝑐(𝑤𝑤,𝑑𝑑 + 1). 

𝑒𝑒(𝑤𝑤,𝑑𝑑): a random fluctuation, or error, which occurs at the 𝑤𝑤, 𝑑𝑑 cell. 

𝐸𝐸(𝑥𝑥): the expectation of the random variable 𝑥𝑥. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥): the variance of the random variable 𝑥𝑥. Or, alternatively 𝜎𝜎𝑥𝑥2. 

𝜎𝜎𝑥𝑥: the standard deviation of the random variable 𝑥𝑥. 

𝑥𝑥�: an estimate of the parameter 𝑥𝑥. 

𝑁𝑁: the total number of accident years.5 

The notation does not distinguish paid vs. incurred, but if this is necessary, capitalized subscripts 
𝑃𝑃 and 𝐼𝐼 could be used. The cumulative known data, 𝐷𝐷, used in the formulas in this paper can be 
illustrated as follows: 

  d       

  1 2 3 … n-1 n 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) 
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)  
 3 c(3,1) c(3,2) c(3,3)    
 … … …     
 N-1 c(N-1,1) c(N-1,2)     
 N c(N,1)      

To better illustrate the perspectives related to time between the Mack and Merz-Wüthrich models, 
the following notation and terms are used: 

𝑡𝑡: “at time” is equivalent to the valuation date used for financial accounting, with 
𝑡𝑡 = 0 representing the current valuation date and 𝑡𝑡 = 1,2,3, … representing 
future valuation dates. 

𝑇𝑇: “time horizon” is the period for which the full distribution, including both 
process and parameter variance, is estimated. 

 
4 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing 𝑛𝑛 to 𝑢𝑢 =
𝑛𝑛 + 𝑡𝑡, where 𝑡𝑡 is the number of periods in the tail. 

5 In a typical triangle the number of accident years, 𝑁𝑁, is the same as the number of development periods, 𝑛𝑛, but the 
number of development periods can be longer. Even when they are the same using 𝑁𝑁 vs. 𝑛𝑛 helps visualize the 
calculations in the formulas. 
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𝑇𝑇′: “time window” is the period between the valuation date and the time when the 
process variance and only a portion of the parameter variance is estimated. 

3. MACK MODEL 

Mack uses the common CL loss development model and demonstrates that, under specific 
assumptions, the best estimate of the age-to-age factors is the all-year volume weighted average:6 

Further, given the best estimate of the age-to-age factors, the best estimate of the ultimate value, 
given the known data, is calculated from the product of the age-to-age factors:7 

𝐸𝐸[𝑐̂𝑐(𝑤𝑤, 𝑛𝑛)|𝐷𝐷] = 𝑐𝑐(𝑤𝑤,𝑑𝑑) × 𝐹𝐹�(𝑑𝑑) × 𝐹𝐹�(𝑑𝑑 + 1) × ⋯× 𝐹𝐹�(𝑛𝑛 − 1) (3.2) 

3.1 Model Assumptions 
For Mack’s distribution free estimates of the variance, the formulas rest on three key assumptions. 

The first assumption is that the expected value of the next future cumulative value is the product of 
the previous cumulative value and the age-to-age factor: 

𝐸𝐸[𝑐̂𝑐(𝑤𝑤,𝑑𝑑 + 1)|𝐷𝐷] = 𝑐𝑐(𝑤𝑤, 𝑑𝑑) × 𝐹𝐹�(𝑑𝑑) (3.3) 

The second assumption is that the accident years are independent of one another: 

{𝑐𝑐(𝑖𝑖, 1), 𝑐𝑐(𝑖𝑖, 2), … , 𝑐𝑐(𝑖𝑖,𝑛𝑛)}  &  {𝑐𝑐(𝑗𝑗, 1), 𝑐𝑐(𝑗𝑗, 2), … , 𝑐𝑐(𝑗𝑗,𝑛𝑛)} are independent for all 𝑖𝑖 ≠ 𝑗𝑗 (3.4) 

The third assumption is that the variance of the next cumulative is proportional to the cumulative 
value: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑐̂𝑐(𝑤𝑤,𝑑𝑑 + 1)|𝐷𝐷] = 𝑐𝑐(𝑤𝑤,𝑑𝑑) × 𝜎𝜎𝑑𝑑2 (3.5) 

Testing of these assumptions has been discussed by Mack and other authors so, like the proofs, 
the details of this testing are not included with this paper.8 

3.2 Uncertainty by Accident Year 
Building on these assumptions, the first step in calculating the total variance by accident year is to 

calculate the variance of the development periods, 𝜎𝜎𝑑𝑑2. Mack demonstrates that the unbiased estimator 

 
6 See step 2 in tabs “Mack”, “M&W” and “Alternative” in the Excel file.  
7 See step 3 in tabs “Mack”, “M&W” and “Alternative” in the Excel file. 
8 For example, see Venter [10]. 

𝐹𝐹�(𝑑𝑑) =  
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑 + 1)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

 (3.1) 
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of the variance of the development periods is calculated using formula (3.6).9 

𝜎𝜎�𝑑𝑑2 =
1

𝑁𝑁 − 𝑑𝑑 − 1
× � 𝑐𝑐(𝑗𝑗, 𝑑𝑑) ×

𝑁𝑁−𝑑𝑑

𝑗𝑗=1

�
𝑐𝑐(𝑗𝑗,𝑑𝑑 + 1)
𝑐𝑐(𝑗𝑗,𝑑𝑑)

− 𝐹𝐹�(𝑑𝑑)�
2

;   1 ≤ 𝑑𝑑 ≤ 𝑛𝑛 − 2 (3.6) 

The interpretation of formula (3.6) is straightforward as this is the commonly used weighted 
standard deviation of the age-to-age factors, noting that 𝑁𝑁 − 𝑑𝑑 is the number of individual age-to-age 
factors for development period 𝑑𝑑. For the last age-to-age factor, if 𝐹𝐹�(𝑛𝑛 − 1) = 1 then we could 
assume that the development is finished and set 𝜎𝜎�𝑛𝑛−12 = 0. However, if 𝐹𝐹�(𝑛𝑛 − 1) ≠ 1 then Mack 
suggested that the value for 𝜎𝜎�𝑛𝑛−12  could be calculated by extrapolating using a loglinear regression of 
𝜎𝜎�1,𝜎𝜎�2, … ,𝜎𝜎�𝑛𝑛−2. Mack also suggested a simpler approach using formula (3.7), which is used in the 
examples that follow. 

𝜎𝜎�𝑛𝑛−12 = min [
𝜎𝜎�𝑛𝑛−24

𝜎𝜎�𝑛𝑛−32 , min{𝜎𝜎�𝑛𝑛−32 ,𝜎𝜎�𝑛𝑛−22 }] (3.7) 

Using the estimated variances by development period, Mack then demonstrates that the MSEP for 
the reserves by accident year can be calculated using formula (3.8).10 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+1−𝑤𝑤

× �
1

𝑐̂𝑐(𝑤𝑤,𝑑𝑑)
+

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� (3.8) 

Reviewing the formula for the variance of the unpaid claims by accident year, (3.8), we can 
distinguish between the process variance component,11 which is the variance of the column of 
observed development factors, and the parameter variance component,12 which is the variance of the 
calculated weighted average development factors. 

3.3 Total Uncertainty 
To calculate the total variance for all accident years combined, we can rely on basic principles of 

statistics as the unpaid claim estimates are assumed to be the expected values, so the total estimated 
unpaid claims is the sum of the estimated unpaid claims by accident year, as shown in formula (3.9). 

𝑅𝑅�(𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑅𝑅�(2) + 𝑅𝑅�(3) + ⋯+ 𝑅𝑅�(𝑁𝑁) (3.9) 

Similarly, the total variance for all accident years is the sum of the variances plus 2 times the 
covariance, as shown in formula (3.10). 

 
9 See step 5 in tabs “Mack”, “M&W” and “Alternative” in the Excel file. 
10 See step 8 in tab “Mack” in the Excel file. The covariance adjustment in step 8 will be discussed in the next section.  
11 See step 8a in tab “Mack” in the Excel file. 
12 See step 8b in tab “Mack” in the Excel file. 
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  𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑡𝑡𝑡𝑡𝑡𝑡)� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(2)� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(3)� + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑁𝑁)� + 2 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (3.10) 

Using these basic principles of statistics, Mack developed the formula for the total variance, as 
shown in formula (3.11), which completes the modeling framework.13,14 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑡𝑡𝑡𝑡𝑡𝑡)� = � �𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=2

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛)� � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+1−𝑤𝑤

� 

(3.11) 

It is convenient to segregate the “bottom” or covariance portion15 of (3.11) when showing the 
results of the Mack calculations as this makes it easier for the user to quickly calculate the total 
uncertainty with and without the covariance adjustment (CVA) – i.e., assuming no correlation in the 
accident years. To illustrate the calculations in all formulas in this paper, we will use the triangle from 
Taylor & Ashe [9] as our sample data, shown in Table 3.1. 

Table 3.1 – Sample Data Triangle 

 

 

 

 

 

 

 

Using formulas (3.8) and (3.11), the results for the sample data triangle are shown in Table 3.2. 
While formula (3.11) can be used to directly calculate the total variance of 2,447,095, segregating the 
covariance adjustment allows us to also directly calculate the total variance assuming zero correlation 
of 2,038,397. The coefficient of variation (CoV) column is the standard deviation divided by the mean. 

 
13 In some sense this modeling framework is not yet complete, as it does not include the tail variability. For ease of 

exposition, the tail variability is ignored in the paper but for completeness the companion Excel files include tail 
variability. The companion Excel files also allow the user to include exposure adjustments and exclude outliers. 

14 See step 9 in tab “Mack” in the Excel file.  
15 See step 9a in tab “Mack” in the Excel file (or step 9b if exposure-adjusted data) 

d
1 2 3 4 5 6 7 8 9 10

w 1 357,848       1,124,788       1,735,330       2,218,270       2,745,596       3,319,994       3,466,336       3,606,286       3,833,515       3,901,463       
2 352,118       1,236,139       2,170,033       3,353,322       3,799,067       4,120,063       4,647,867       4,914,039       5,339,085       
3 290,507       1,292,306       2,218,525       3,235,179       3,985,995       4,132,918       4,628,910       4,909,315       
4 310,608       1,418,858       2,195,047       3,757,447       4,029,929       4,381,982       4,588,268       
5 443,160       1,136,350       2,128,333       2,897,821       3,402,672       3,873,311       
6 396,132       1,333,217       2,180,715       2,985,752       3,691,712       
7 440,832       1,288,463       2,419,861       3,483,130       
8 359,480       1,421,128       2,864,498       
9 376,686       1,363,294       
10 344,014       

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

400.35 194.26 204.85 123.22 117.18 90.48 21.13 33.87 21.13

𝐹𝐹�(𝑑𝑑)
𝜎𝜎�𝑑𝑑
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Table 3.2 – Mack Estimated Unpaid Claims and Standard Deviations 

 

 

 

 

 

 

 

 

 

 

In addition to the commonly used display of the Mack estimates in the first three columns of Table 
3.2, an interesting alternative is to include the covariance adjustment with the accident years.16 Since 
the covariance adjustment in formula (3.11) includes portions related to each accident year, we can 
include the portion related to each accident year in an expansion of formula (3.8). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑤𝑤)′� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+1−𝑤𝑤

× �
1

𝑐̂𝑐(𝑤𝑤,𝑑𝑑)
+

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛)� � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+1−𝑤𝑤

 

(3.12) 

When using formula (3.12) to include a portion of the covariance adjustment, the formula for the 
total variance shown in (3.10) is revised as shown in formula (3.13). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑡𝑡𝑡𝑡𝑡𝑡)� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(2)′� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(3)′�+ ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�(𝑁𝑁)′� (3.13) 

This alternative view of the Mack estimates is also included in Table 3.2, starting with the column 
that shows the portion of the covariance adjustment “allocated” to each accident year.17 Note that for 
the alternative view the CoVs exhibit a smoother transition from the oldest year to the most current 
year, which may make comparisons to other models more consistent.  

 
16 See last columns in step 8 in tab “Mack” in the Excel file. 
17 Technically, the CVA column is only the covariance portion of formula (3.12) and the alternative standard deviation 

column can be calculated from the square root of the sum of the squares of the original standard deviation column and 
the CVA column. 

w 1 -                   -                   0.0% -                  -                   0.0%
2 94,634            75,535            79.8% -                  75,535            79.8%
3 469,511          121,699          25.9% 81,086            146,238          31.1%
4 709,638          133,549          18.8% 139,674         193,246          27.2%
5 984,889          261,406          26.5% 176,876         315,624          32.0%
6 1,419,459       411,010          29.0% 259,674         486,168          34.3%
7 2,177,641       558,317          25.6% 388,850         680,384          31.2%
8 3,920,301       875,328          22.3% 573,313         1,046,368       26.7%
9 4,278,972       971,258          22.7% 721,693         1,210,034       28.3%
10 4,625,811       1,363,155       29.5% 841,236         1,601,833       34.6%

CVA 1,353,961      1,353,961      
Total 18,680,856    2,447,095      13.1% 2,447,095      13.1%

Ex CVA 2,038,397      10.9%

𝑅𝑅�(𝑤𝑤) 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅� 𝑤𝑤 ]
� CoV CVA 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅� 𝑤𝑤 ′]

�
CoV
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3.4 Unpaid Claim Runoff Uncertainty 
Before looking at the formulas for the time horizon calculations introduced by Merz-Wüthrich, it 

is useful to start with the runoff of the unpaid claims.18 The Mack runoff formulas can be used to 
calculate the risk margin using the cost of capital method and it will be a useful comparison to the 
runoff using the Merz-Wüthrich formulas. 

In order to extend the Mack formulas for the runoff of the unpaid claims, we must first review the 
notation related to time. For this purpose we will designate the “at time” using a subscript 𝑡𝑡 =
0,1, … ,𝑢𝑢 and we will designate the “time-horizon” within the formulas using a superscript 𝑇𝑇 =
1,2, … ,𝑈𝑈. Including this new notation, we could restate the results from formulas (3.8) and (3.11) as 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅�0𝑈𝑈(𝑤𝑤)] and 𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅�0𝑈𝑈(𝑡𝑡𝑡𝑡𝑡𝑡)], respectively.19,20 In this case, since we are starting from the end of 
the known data, 𝐷𝐷, the subscript is zero and because both the process and parameter variances are 
being calculated over the entire time horizon this is commonly referred to as the “ultimate” time 
horizon, which is designated with the superscript 𝑈𝑈. 

If we start by running off the estimated unpaid claims, the notation in section 2 can be restated for 
𝑡𝑡 = 1, as shown in formula (3.14) for 𝑤𝑤 = 3, 4, … ,𝑁𝑁, and noting that the “new” latest diagonal is 
estimated by multiplying the last diagonal times the age-to-age factors from (3.1). 

𝑅𝑅�1(𝑤𝑤) = 𝑈𝑈�(𝑤𝑤) − 𝑐̂𝑐(𝑤𝑤,𝑁𝑁 − 𝑤𝑤 + 2) (3.14) 

We can generalize this further for any 𝑡𝑡 as shown in formula (3.15) for 𝑤𝑤 = 𝑡𝑡 + 2, 𝑡𝑡 + 3, … ,𝑁𝑁. 

𝑅𝑅�𝑡𝑡(𝑤𝑤) = 𝑈𝑈�(𝑤𝑤) − 𝑐̂𝑐(𝑤𝑤,𝑁𝑁 − 𝑤𝑤 + 𝑡𝑡 + 1) (3.15) 

Applying formulas (3.14) and (3.15) to the sample data we can show the runoff of the estimated 
unpaid claims in Table 3.3. 

  

 
18 As noted in Section 1.1, proofs for the original Mack formulas are not included with this paper and as the extensions in 

Sections 3.4 and 3.5 follow the same assumptions and formulations, although reorganized for the cash flows, they are 
included without proofs. 

19 Both the subscripts and superscripts are shown here as a bridge to the time horizon discussion that starts in section 4, 
but for any formula where the subscript is absent it can be assumed to be zero and when the superscript is absent it can 
be assumed to be 𝑈𝑈. 

20 In the Excel file (tab “Mack”), the steps / calculations are repeated for each valuation at time t = 1, 2, 3, etc. 
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Table 3.3 – Runoff of Estimated Unpaid Claims 

 

 

 

 

 

 

 

Running off the variance of the unpaid claims by accident year for 𝑡𝑡 = 1, formula (3.8) can be 
restated as formula (3.16) for 𝑤𝑤 = 3,4, … ,𝑁𝑁. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

× �
1

𝑐̂𝑐(𝑤𝑤,𝑑𝑑)
+

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� (3.16) 

Generalizing this further for any 𝑡𝑡 is shown in formula (3.17) for 𝑤𝑤 = 𝑡𝑡 + 2, 𝑡𝑡 + 3, … ,𝑁𝑁.21 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+1−𝑤𝑤

× �
1

𝑐̂𝑐(𝑤𝑤, 𝑑𝑑)
+

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� (3.17) 

Similarly, running off the total variance of the unpaid claims for all accident years for 𝑡𝑡 = 1, 
formula (3.11) can be restated as formula (3.18) for 𝑤𝑤 = 3,4, … ,𝑁𝑁. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑡𝑡𝑡𝑡𝑡𝑡)� = � �𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=3

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

� 

(3.18) 

Generalizing this further for any 𝑡𝑡 is shown in formula (3.19) for 𝑤𝑤 = 𝑡𝑡 + 2, 𝑡𝑡 + 3, … ,𝑁𝑁.22 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡)� = � �𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=𝑡𝑡+2

+ 2𝑐̂𝑐(𝑤𝑤, 𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+1−𝑤𝑤

� 

(3.19) 

 
21 See steps 8, 8a and 8b in tab “Mack” in the Excel file. 
22 See step 9 in tab “Mack” in the Excel file. 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 94,634            -                   -                   -                   -                   -                   -                   -                   -                   
3 469,511          93,678            -                   -                   -                   -                   -                   -                   -                   
4 709,638          462,448          92,268            -                   -                   -                   -                   -                   -                   
5 984,889          650,741          424,066          84,611            -                   -                   -                   -                   -                   
6 1,419,459       1,036,173       684,625          446,148          89,016            -                   -                   -                   -                   
7 2,177,641       1,572,093       1,147,592       758,242          494,122          98,588            -                   -                   -                   
8 3,920,301       2,610,043       1,884,254       1,375,463       908,802          592,237          118,164          -                   -                   
9 4,278,972       3,260,138       2,170,522       1,566,954       1,143,840       755,764          492,507          98,266            -                   
10 4,625,811       3,769,007       2,871,597       1,911,841       1,380,205       1,007,518       665,692          433,810          86,555            

Total 18,680,856    13,454,320    9,274,925      6,143,258      4,015,986      2,454,107      1,276,363      532,076         86,555            

𝑅𝑅�𝑡𝑡(𝑤𝑤)
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Applying formulas (3.16) to (3.19) to the sample data, we can show the runoff of the estimated 
standard deviations of the unpaid claims in Table 3.4. 

Table 3.4 – Runoff of Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

 

As expected, the standard deviations decrease in a similar fashion to the estimated unpaid claims 
and when 𝑡𝑡 = 8 there is no longer a covariance adjustment term since there is only one “cell” 
remaining. As another test of the entire runoff process, we can look at the coefficients of variation 
shown in Table 3.5. 

Table 3.5 – Runoff of Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

 

From Table 3.5 we can see that the total coefficient of variation increases as we progress from 𝑡𝑡 =
0,1, … ,8. This makes sense statistically as estimates further in the future should be relatively more 
uncertain. 

Adjusting the generalized formula (3.17) to include the covariance adjustment related to each 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   
3 121,699          74,931            -                   -                   -                   -                   -                   -                   -                   
4 133,549          120,373          74,041            -                   -                   -                   -                   -                   -                   
5 261,406          125,695          113,131          69,186            -                   -                   -                   -                   -                   
6 411,010          269,797          130,224          117,306          71,982            -                   -                   -                   -                   
7 558,317          437,273          287,714          139,969          126,301          78,029            -                   -                   -                   
8 875,328          623,100          489,142          323,291          159,581          144,441          90,307            -                   -                   
9 971,258          785,070          557,224          436,400          287,117          139,643          125,999          77,826            -                   
10 1,363,155       903,373          729,436          516,796          404,139          265,121          127,697          114,976          70,421            

CVA 1,353,961      1,039,055      773,477         556,945         384,712         263,965         170,358         79,424            -                  
Total 2,447,095      1,788,912      1,340,940      954,131         663,602         431,762         263,362         159,952         70,421            

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡(𝑤𝑤)]
�

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   
3 25.9% 80.0% -                   -                   -                   -                   -                   -                   -                   
4 18.8% 26.0% 80.2% -                   -                   -                   -                   -                   -                   
5 26.5% 19.3% 26.7% 81.8% -                   -                   -                   -                   -                   
6 29.0% 26.0% 19.0% 26.3% 80.9% -                   -                   -                   -                   
7 25.6% 27.8% 25.1% 18.5% 25.6% 79.1% -                   -                   -                   
8 22.3% 23.9% 26.0% 23.5% 17.6% 24.4% 76.4% -                   -                   
9 22.7% 24.1% 25.7% 27.9% 25.1% 18.5% 25.6% 79.2% -                   
10 29.5% 24.0% 25.4% 27.0% 29.3% 26.3% 19.2% 26.5% 81.4%

Total 13.1% 13.3% 14.5% 15.5% 16.5% 17.6% 20.6% 30.1% 81.4%

𝐶𝐶𝑝𝑝𝑉𝑉
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accident year, we can use formula (3.20).23 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡(𝑤𝑤)′� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+1−𝑤𝑤

× �
1

𝑐̂𝑐(𝑤𝑤,𝑑𝑑)
+

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+1−𝑤𝑤

 

(3.20) 

Using formula (3.20), the runoff of the standard deviations in Table 3.4 can be restated as shown 
in Table 3.6. 

Table 3.6 – Runoff of Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

The coefficients of variation comparing the standard deviations in Table 3.6 to the expected values 
in Table 3.3 are shown in Table 3.7. As noted above for Table 3.2, there is a smoother transition of 
all CoVs from the oldest year to the most current year. 

  

 
23 See last columns in step 8 in tab “Mack” in the Excel file. 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   
3 146,238          74,931            -                   -                   -                   -                   -                   -                   -                   
4 193,246          144,569          74,041            -                   -                   -                   -                   -                   -                   
5 315,624          182,890          136,340          69,186            -                   -                   -                   -                   -                   
6 486,168          322,928          185,489          139,093          71,982            -                   -                   -                   -                   
7 680,384          516,048          342,289          197,511          149,869          78,029            -                   -                   -                   
8 1,046,368       761,474          577,804          384,423          225,461          171,765          90,307            -                   -                   
9 1,210,034       960,541          700,295          528,807          351,362          210,222          156,485          77,826            -                   

10 1,601,833       1,125,689       893,426          647,922          488,300          326,547          191,615          139,742          70,421            
Total 2,447,095      1,788,912      1,340,940      954,131         663,602         431,762         263,362         159,952         70,421            

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡(𝑤𝑤)′]
�
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Table 3.7 – Runoff of Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

 

3.5 Cash Flow Uncertainty 
In order to extend the Mack formulas for the uncertainty of the cash flows we need to focus on 

the calendar year diagonals where 𝑘𝑘 = 𝑤𝑤 − 𝑑𝑑 + 1. Starting with the calendar year estimated unpaid 
claims, we can introduce new notation for cash flow, 𝐶𝐶𝐶𝐶(𝑘𝑘), and use the formula shown in formula 
(3.21) for 𝑘𝑘 = 𝑁𝑁 + 1,𝑁𝑁 + 2, … ,𝑁𝑁 + 𝑛𝑛.24 

𝐶𝐶𝐶𝐶� (𝑘𝑘) = � �
𝑐̂𝑐(𝑗𝑗,𝑘𝑘 + 1 − 𝑗𝑗) − 𝑐𝑐(𝑗𝑗, 𝑘𝑘 − 𝑗𝑗); 𝑘𝑘 = 𝑁𝑁 + 1
𝑐̂𝑐(𝑗𝑗,𝑘𝑘 + 1 − 𝑗𝑗) − 𝑐̂𝑐(𝑗𝑗, 𝑘𝑘 − 𝑗𝑗); 𝑘𝑘 > 𝑁𝑁 + 1�

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 (3.21) 

Of course, summing the estimated unpaid for all calendar years as shown in formula (3.22) should 
result in the same total estimated unpaid as in formula (3.9). 

𝐶𝐶𝐶𝐶� (𝑡𝑡𝑡𝑡𝑡𝑡) = 𝐶𝐶𝐶𝐶� (𝑁𝑁 + 1) + 𝐶𝐶𝐶𝐶� (𝑁𝑁 + 2) + ⋯+ 𝐶𝐶𝐶𝐶� (𝑁𝑁 + 𝑛𝑛) (3.22) 

Reorganizing Mack’s formula (3.8) for the variance of each accident year into a diagonal sum results 
in formula (3.23). Note, however, that while the variance for an accident year is based on the ultimate 
estimated amount for that accident year, for the calendar year each of the accident year component 
variances are based on the estimated cumulative amount for next year end, i.e., formula (3.23) uses 
𝑐̂𝑐(𝑗𝑗,𝑘𝑘+1-j)2 instead of 𝑐̂𝑐(𝑗𝑗,n)2. 25 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑘𝑘)� = � 𝑐̂𝑐(𝑗𝑗,𝑘𝑘 + 1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(𝑘𝑘-j)2

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

× �
1

𝑐̂𝑐(𝑗𝑗,𝑘𝑘-j) +
1

∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� (3.23) 

Like formula (3.10), the total variance for all calendar years is the sum of the variances plus 2 times 
the covariance, as shown in formula (3.24). 

 
24 See step 10 in tabs “Mack”, “M&W” and “Alternative” in the Excel file. 
25 See step 11 in tab “Mack” in the Excel file. The covariance adjustment in step 11 will be discussed below. 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   
3 31.1% 80.0% -                   -                   -                   -                   -                   -                   -                   
4 27.2% 31.3% 80.2% -                   -                   -                   -                   -                   -                   
5 32.0% 28.1% 32.2% 81.8% -                   -                   -                   -                   -                   
6 34.3% 31.2% 27.1% 31.2% 80.9% -                   -                   -                   -                   
7 31.2% 32.8% 29.8% 26.0% 30.3% 79.1% -                   -                   -                   
8 26.7% 29.2% 30.7% 27.9% 24.8% 29.0% 76.4% -                   -                   
9 28.3% 29.5% 32.3% 33.7% 30.7% 27.8% 31.8% 79.2% -                   

10 34.6% 29.9% 31.1% 33.9% 35.4% 32.4% 28.8% 32.2% 81.4%
Total 13.1% 13.3% 14.5% 15.5% 16.5% 17.6% 20.6% 30.1% 81.4%

𝐶𝐶𝑝𝑝𝑉𝑉
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𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑡𝑡𝑡𝑡𝑡𝑡)� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 1)� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 2)� + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 𝑛𝑛)� 
+2 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

(3.24) 

Similarly, formula (3.11) for the variance of the total of all accident years can be reorganized as the 
sum of the calendar years,26 plus the differences between the accident year variances from formula 
(3.8) and calendar year variances from formula (3.23), 27 as shown in formula (3.25). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑡𝑡𝑡𝑡𝑡𝑡)� = � �𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑘𝑘)�+ 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁
𝑁𝑁+𝑛𝑛

𝑘𝑘=𝑁𝑁+1

+ 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑁𝑁+𝑛𝑛−𝑘𝑘

�

+ � [𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(𝑘𝑘-j)2

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

× �
1

𝑐̂𝑐(𝑗𝑗, 𝑘𝑘-j) +
1

∑ 𝑐𝑐(𝑖𝑖,𝑘𝑘-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� 

(3.25) 

Table 3.8 – Mack Estimated Cash Flows and Standard Deviations 

 

 

 

 

 

 

 

 

 

As with other modeling frameworks, the sums of the means and variances by diagonal should be 
consistent with the sums by row, as seen in Table 3.8. In other words, the totals in the first three 
columns of Table 3.8 are the same as the totals in the first three columns of Table 3.2. Ideally, the 
CoVs should increase steadily as the future diagonals should represent more uncertainty, i.e., as 𝑘𝑘 
increases from 11 to 19, but for the data in the example the CoVs are relatively consistent from 𝑘𝑘 =
11, … ,18 and then jump significantly for 𝑘𝑘 = 19. 

 
26 See step 11a in tab “Mack” in the Excel file (or step 11c if exposure-adjusted data). 
27 See step 11b in tab “Mack” in the Excel file (or step 11d if exposure-adjusted data). 

k 11 5,226,536       665,562          12.7% 1,531,370      1,669,750       31.9%
12 4,179,394       609,716          14.6% 1,015,053      1,184,097       28.3%
13 3,131,668       558,467          17.8% 758,861         942,208          30.1%
14 2,127,272       445,167          20.9% 521,368         685,565          32.2%
15 1,561,879       353,389          22.6% 359,256         503,933          32.3%
16 1,177,744       248,729          21.1% 234,931         342,139          29.1%
17 744,287          142,151          19.1% 153,519         209,224          28.1%
18 445,521          118,457          26.6% 81,200            143,616          32.2%
19 86,555            70,421            81.4% -                  70,421            81.4%

CVA 2,106,547      2,106,547      
Total 18,680,856    2,447,095      13.1% 2,447,095      13.1%

𝐶𝐶𝐹𝐹� (𝑘𝑘) 𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹� 𝑘𝑘 ]
� CoV CVA CoV𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹� 𝑘𝑘 ′]

�
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Like the adjustment of the accident year variance in formula (3.12), the expansion to formula (3.23) 
to include a portion of the covariance adjustment by calendar year is shown as formula (3.26).28 The 
alternative view the CoVs in Table 3.8 exhibit a similar consistency from 𝑘𝑘 = 11, … ,18 and then jump 
significantly for 𝑘𝑘 = 19. Note that the covariance adjustment excludes the last diagonal, i.e., 𝑖𝑖 = 𝑤𝑤 +
𝑁𝑁 − 1 in formula (3.11), so none of the CVA is allocated to 𝑘𝑘 = 19 in Table 3.8. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑘𝑘)′� = � 𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

× �
1

𝑐̂𝑐(𝑗𝑗, 𝑘𝑘-j) +
1

∑ 𝑐𝑐(𝑖𝑖, 𝑘𝑘-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� 

+2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑁𝑁+𝑛𝑛−𝑘𝑘

 

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗, 𝑘𝑘 + 1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(𝑘𝑘-j)2
× �

1
𝑐̂𝑐(𝑗𝑗, 𝑘𝑘-j) +

1
∑ 𝑐𝑐(𝑖𝑖, 𝑘𝑘-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� 

(3.26) 

After revising formula (3.23) to include a portion of the covariance adjustment, formula (3.24) for 
the total variance is revised as shown in formula (3.27). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑡𝑡𝑡𝑡𝑡𝑡)� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 1)′� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 2)′� + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� (𝑁𝑁 + 𝑛𝑛)′� (3.27) 

4. MERZ & WÜTHRICH MODEL 

The premise of the 1-year time horizon is that if claims develop unfavorably over the subsequent 
12 months and capital becomes impaired then management could intervene. Based on this premise as 
implemented for the Solvency II regime, the Merz & Wüthrich model calculates the uncertainty in the 
reserves after one year given the total uncertainty (i.e., the possible outcomes) during the first year. In 
other words, over a 1-year time horizon (i.e., the first diagonal), all possible outcomes should be 
considered and then the new reserves, conditional on each possible outcome, are calculated. 

4.1 Uncertainty by Accident Year: One-Year Time Horizon 
The formulas developed by Merz & Wüthrich [7] to calculate the unpaid claim uncertainty over a 

1-year time horizon build on Mack’s formulas and assumptions shown in (3.1) to (3.7). Starting with 
Mack’s accident year uncertainty from (3.8), Merz-Wüthrich split the formula into components based 
on the first diagonal and the remaining diagonals as shown in (4.1).29 

 
28 See last columns in step 11 in tab “Mack” in the Excel file. 
29 See step 8 in tab “M&W” in the Excel file. The covariance adjustment in step 8 will be discussed in the next section. 
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𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+1−𝑤𝑤2

𝐹𝐹�(N+1-w)2
× �

1
𝑐𝑐(𝑤𝑤,N+1-w) +

1
∑ 𝑐𝑐(𝑗𝑗,N+1-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤, 𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

× �𝛼𝛼𝑑𝑑1 ×
1

∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 
(4.1) 

For the first diagonal, both the process and parameter uncertainty30 are included such that the 
results will exactly match the Mack results for the first diagonal as in formula (3.23). For the remaining 
diagonals, only the parameter uncertainty31 is included and it is also reduced a bit using a weight 
function, 𝛼𝛼𝑑𝑑1 , which is calculated using formula (4.2).32 

𝛼𝛼𝑑𝑑1 =
𝑐𝑐(𝑁𝑁 + 1 − 𝑑𝑑, 𝑑𝑑)
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁+1−𝑑𝑑
𝑗𝑗=1

; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 = 1,2, … ,𝑁𝑁 (4.2) 

The use of color for the weight components of the formulas is useful for clarifying the calculations 
and tracing the components through the various formulas.33 The weight function can be thought of 
as an adjustment to the development factor, 𝐹𝐹(𝑑𝑑), and the parameter uncertainty for the years after 
the time horizon. 

4.2 Total Uncertainty: One-Year Time Horizon 
Adjusting the Mack formula (3.11) for the total uncertainty for the 1-year time horizon, Merz-

Wüthrich developed formula (4.3), which also separates the covariance34 into the first diagonal and 
remaining diagonal components. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑡𝑡𝑡𝑡𝑡𝑡)� = � �𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=2

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

�

× �
𝜎𝜎�𝑁𝑁+1−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 1 − 𝑤𝑤)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 1 − 𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑1 ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

�� 

(4.3) 

Using formulas (4.1) and (4.3), the results for the sample data triangle are shown in Table 4.1. 

 
30 See steps 8a and 8c respectively in tab “M&W” in the Excel file. 
31 See step 8b in tab “M&W” in the Excel file. 
32 See step 6 in tab “M&W” in the Excel file. 
33 Alternatively, the weight functions could be colored as part of the parameter uncertainty but using a different color will 

help in later parts of the paper. 
34 See step 9a in tab “M&W” in the Excel file (or step 9b if exposure-adjusted data). 
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Comparing the results in the first three columns of Table 4.1 with the same columns in Table 3.2, note 
that for 𝑤𝑤 = 2 the uncertainty is entirely for the first diagonal and, as such, the standard deviations 
are exactly the same.35 For 𝑤𝑤 > 2 the uncertainties in Table 4.1 are a combination of the first diagonal 
and the remaining diagonals and, as such, the standard deviations are less than those in Table 3.2. 
Finally, the covariance adjustment for the total uncertainty in Table 4.1 is also less than in Table 3.2, 
resulting in a total standard deviation of 1,778,968 compared to 2,447,095. 

Table 4.1 – Merz-Wüthrich Estimated Unpaid Claims and Standard Deviations 

  

 

 

 

 

 

 

 

 

 

Like the alternative view of the covariance adjustment by accident year for the Mack model, a 
portion of the covariance adjustment in formula (4.3) can be included with formula (4.1) as shown in 
formula (4.4).36 

 
35 As the Merz-Wüthrich formulas only address changes to the Mack standard deviations, the expected values are the same 

– i.e., 𝑅𝑅�(𝑤𝑤) = 𝑅𝑅�1(𝑤𝑤). The identical standard deviations for both Mack and Merz-Wüthrich for 𝑤𝑤 = 2 is expected since 
the first diagonal includes both process and parameter variance for both formulas. 

36 See last columns in step 8 in tab “M&W” in the Excel file. 

w 1 -                   -                   0.0% -                  -                   0.0%
2 94,634            75,535            79.8% -                  75,535            79.8%
3 469,511          105,309          22.4% 81,086            132,910          28.3%
4 709,638          79,846            11.3% 129,729         152,332          21.5%
5 984,889          235,115          23.9% 150,379         279,093          28.3%
6 1,419,459       318,427          22.4% 226,186         390,584          27.5%
7 2,177,641       361,089          16.6% 323,435         484,763          22.3%
8 3,920,301       629,681          16.1% 441,515         769,047          19.6%
9 4,278,972       588,662          13.8% 541,749         800,010          18.7%
10 4,625,811       1,029,925       22.3% 600,426         1,192,165       25.8%

CVA 1,025,050      1,025,050      
Total 18,680,856    1,778,968      9.5% 1,778,968      9.5%

Ex CVA 1,453,959      7.8%

𝑅𝑅�1(𝑤𝑤) 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�1 𝑤𝑤 ]
� CoV 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�1 𝑤𝑤 ′]

� CoVCVA
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𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�1(𝑤𝑤)′� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+1−𝑤𝑤2

𝐹𝐹�(N+1-w)2
× �

1
𝑐̂𝑐(𝑤𝑤,N+1-w) +

1
∑ 𝑐𝑐(𝑗𝑗,N+1-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

× �𝛼𝛼𝑑𝑑1 ×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 

+2𝑐̂𝑐(𝑤𝑤,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+1

�

× �
𝜎𝜎�𝑁𝑁+1−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 1 −𝑤𝑤)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 1 −𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑1 ×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+2−𝑤𝑤

� 

(4.4) 

This alternative view of the Merz-Wüthrich estimates is also included in Table 4.1, starting with the 
column that shows the portion of the covariance adjustment “allocated” to each accident year. Note 
that for the alternative view the CoVs exhibit a smoother transition from the oldest year to the most 
current year like the Mack alternative view. 

4.3 Uncertainty by Accident Year: X-Year Time Horizon 
The formulas developed by Merz & Wüthrich [7] above were subsequently extended in Merz & 

Wüthrich [8] to runoff the unpaid claim estimates for later time windows.37 Starting with 𝑇𝑇′ = 2, 
formula (4.1) is extended as shown in formula (4.5). In the Merz & Wüthrich [8] paper, the authors 
describe extensions of the “time horizon” for 𝑇𝑇 > 1, but since the first diagonal in formula (4.5) does 
not include all of the process and parameter variances, in this paper we will refer to the extensions as 
“time windows” (and use the 𝑇𝑇′ notation) to improve clarity between models.38 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�2(𝑤𝑤)� = 

𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+2−𝑤𝑤2

𝐹𝐹�(N+2-w)2
× �

1
𝑐̂𝑐(𝑤𝑤,N+2-w) + (1 − 𝛼𝛼𝑁𝑁+2−𝑤𝑤1 ) ×

1
∑ 𝑐𝑐(𝑗𝑗,N+2-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+3−𝑤𝑤

× �𝛼𝛼𝑑𝑑2 × (1 − 𝛼𝛼𝑑𝑑1) ×
1

∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 

(4.5) 

Note that in the extension for 𝑇𝑇′ = 2, one minus the weights for 𝑇𝑇 = 1 are used and the formula 
for the weights for 𝑇𝑇′ = 2 are as in formula (4.6). Note also that the calculation of the weights includes 
estimated cumulative values when 𝑇𝑇 > 1. 

 
37 In the Excel file (tab “M&W”), the steps / calculations are repeated for each time horizon / window, T / T’, all at time 

t=0. 
38 In some of the Tables that follow, the headers only refer to 𝑇𝑇′ for simplicity but for 𝑇𝑇 = 1 the conversion to 𝑇𝑇 is 

implied. 



Cash Flow and Unpaid Claim Runoff Estimates Using Mack and Merz-Wüthrich Models 

Casualty Actuarial Society E-Forum, Summer 2020 19 

𝛼𝛼𝑑𝑑2 =
𝑐̂𝑐(𝑁𝑁 + 2 − 𝑑𝑑,𝑑𝑑)
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁+2−𝑑𝑑
𝑗𝑗=1

; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 = 2,3, … ,𝑁𝑁 − 1 (4.6) 

A further extension and generalization for 𝑇𝑇′ > 2 is shown in formula (4.7)39. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑇𝑇′(𝑤𝑤)� = 

𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+𝑇𝑇−𝑤𝑤2

𝐹𝐹�(N+T-w)2
× �

1
𝑐̂𝑐(𝑤𝑤,N+T-w) + �(1 − 𝛼𝛼𝑁𝑁+𝑇𝑇−𝑤𝑤𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗,N+T-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑇𝑇+1−𝑤𝑤

× �𝛼𝛼𝑑𝑑𝑇𝑇 × �(1 − 𝛼𝛼𝑑𝑑𝑚𝑚)
𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 

(4.7) 

And the extension for the weight function is shown in formula (4.8). 

𝛼𝛼𝑑𝑑𝑇𝑇 =
𝑐̂𝑐(𝑁𝑁 + 𝑇𝑇 − 𝑑𝑑,𝑑𝑑)
∑ 𝑐𝑐(𝑗𝑗, 𝑑𝑑)𝑁𝑁+𝑇𝑇−𝑑𝑑
𝑗𝑗=1

; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 = 𝑇𝑇,𝑇𝑇 + 1, … ,𝑁𝑁 − 𝑇𝑇 + 1 (4.8) 

4.4 Total Uncertainty: X-Year Time Horizon 
In Merz & Wüthrich [8] the extension of the total uncertainty for 𝑇𝑇′ = 2 is shown in formula (4.9). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�2(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎨

⎪
⎧

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�2(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=3

+ 2𝑐̂𝑐(𝑤𝑤, 𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+2

�

×

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎�𝑁𝑁+2−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 2 − 𝑤𝑤)2
× (1 − 𝛼𝛼𝑁𝑁+2−𝑤𝑤1 ) ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 2 − 𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑2 × (1 − 𝛼𝛼𝑑𝑑1) ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+3−𝑤𝑤 ⎦
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 

(4.9) 

The further extension and generalization for 𝑇𝑇′ > 2 is shown in formula (4.10).40 

 
39 See steps 8, 8a, 8b and 8c in tab “M&W” in the Excel file. 
40 See step 9a in tab “M&W” in the Excel file (or step 9b if exposure-adjusted data). 
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𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑇𝑇′(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎨

⎪
⎧

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑇𝑇′(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=𝑇𝑇+1

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛)� � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+𝑇𝑇

�

×

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎�𝑁𝑁+𝑇𝑇−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 𝑇𝑇 − 𝑤𝑤)2
× �(1 − 𝛼𝛼𝑁𝑁+𝑇𝑇−𝑤𝑤𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 𝑇𝑇 − 𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑𝑇𝑇 × �(1 − 𝛼𝛼𝑑𝑑𝑚𝑚)

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑇𝑇+1−𝑤𝑤 ⎦
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 

(4.10) 

Applying formulas (4.1) to (4.10) to the sample data results in the standard deviations by year as 
shown in Table 4.2, with the results from Table 4.1 repeated in the first column of Table 4.2. 

Table 4.2 – Runoff of Merz-Wüthrich Estimated Standard Deviations of the Unpaid Claims 

  

 

 

 

 

 

 

As expected, the standard deviations decrease in a similar fashion to the estimated unpaid claims 
and when 𝑇𝑇′ = 9 there is no covariance adjustment term since there is only one “cell” remaining. An 
additional part of the results in Table 4.2 is the Total column, which is the square root of the sum of 
the squares of the other columns. The Total column is an important result as the complete runoff 
from Merz-Wüthrich are intended to reconcile with the results from Mack. Comparing the Total 
column in Table 4.2 with the results in Table 3.2 we see that the estimates are identical. 

The expected runoff of the unpaid claims for Merz-Wüthrich is identical to the runoff for Mack, 
as previously shown in Table 3.3. Dividing the standard deviations in Table 4.2 by the means in Table 
3.3 results in the runoff of the coefficients of variation shown in Table 4.3. 

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 105,309          60,996            -                   -                   -                   -                   -                   -                   -                   121,699          
4 79,846            91,093            56,232            -                   -                   -                   -                   -                   -                   133,549          
5 235,115          60,577            82,068            51,474            -                   -                   -                   -                   -                   261,406          
6 318,427          233,859          57,825            82,433            51,999            -                   -                   -                   -                   411,010          
7 361,089          328,989          243,412          59,162            85,998            54,343            -                   -                   -                   558,317          
8 629,681          391,249          359,352          266,320          64,443            94,166            59,533            -                   -                   875,328          
9 588,662          554,574          344,763          318,493          236,576          56,543            83,645            52,965            -                   971,258          
10 1,029,925       538,726          511,118          317,142          293,978          218,914          51,661            77,317            49,055            1,363,155       

CVA 1,025,050      676,444         449,236         288,887         164,691         92,828            57,595            24,085            -                  1,353,961      
Total 1,778,968      1,177,727      885,178         607,736         428,681         267,503         128,557         96,764            49,055            2,447,095      

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑇𝑇′(𝑤𝑤)]
�
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Table 4.3 – Runoff of Merz-Wüthrich Coefficients of Variation of the Unpaid Claims 

  

 

 

 

 

 

Adjusting formulas (4.5) and (4.7) to include the covariance adjustment related to each accident 
year are left to the reader. Applying formula (4.4), and the extensions for formulas (4.5) and (4.7), the 
runoff of the standard deviations in Table 4.2 are restated in Table 4.4. The first column in Table 4.4 
is from Table 4.1 but, more importantly, the Total column in Table 4.4 reconciles with the alternative 
view for Mack in Table 3.2. 

Table 4.4 – Runoff of Merz-Wüthrich Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

Table 4.5 – Runoff of Merz-Wüthrich Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

The coefficients of variation comparing the standard deviations in Table 4.4 to the expected values 
in Table 3.3 are shown in Table 4.5. As noted above for Table 4.1, there is a smoother transition of 

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 22.4% 65.1% -                   -                   -                   -                   -                   -                   -                   25.9%
4 11.3% 19.7% 60.9% -                   -                   -                   -                   -                   -                   18.8%
5 23.9% 9.3% 19.4% 60.8% -                   -                   -                   -                   -                   26.5%
6 22.4% 22.6% 8.4% 18.5% 58.4% -                   -                   -                   -                   29.0%
7 16.6% 20.9% 21.2% 7.8% 17.4% 55.1% -                   -                   -                   25.6%
8 16.1% 15.0% 19.1% 19.4% 7.1% 15.9% 50.4% -                   -                   22.3%
9 13.8% 17.0% 15.9% 20.3% 20.7% 7.5% 17.0% 53.9% -                   22.7%
10 22.3% 14.3% 17.8% 16.6% 21.3% 21.7% 7.8% 17.8% 56.7% 29.5%

Total 9.5% 8.8% 9.5% 9.9% 10.7% 10.9% 10.1% 18.2% 56.7% 13.1%

𝐶𝐶𝑝𝑝𝑉𝑉

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 132,910          60,996            -                   -                   -                   -                   -                   -                   -                   146,238          
4 152,332          104,771          56,232            -                   -                   -                   -                   -                   -                   193,246          
5 279,093          103,950          90,942            51,474            -                   -                   -                   -                   -                   315,624          
6 390,584          255,290          89,682            88,793            51,999            -                   -                   -                   -                   486,168          
7 484,763          377,458          258,077          86,475            91,743            54,343            -                   -                   -                   680,384          
8 769,047          491,773          402,375          278,897          91,580            99,957            59,533            -                   -                   1,046,368       
9 800,010          658,702          429,906          356,254          247,299          81,487            89,102            52,965            -                   1,210,034       

10 1,192,165       691,492          592,230          382,924          321,096          227,976          71,017            80,981            49,055            1,601,833       
Total 1,778,968      1,177,727      885,178         607,736         428,681         267,503         128,557         96,764            49,055            2,447,095      

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑇𝑇′(𝑤𝑤)′]
�

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 28.3% 65.1% -                   -                   -                   -                   -                   -                   -                   31.1%
4 21.5% 22.7% 60.9% -                   -                   -                   -                   -                   -                   27.2%
5 28.3% 16.0% 21.4% 60.8% -                   -                   -                   -                   -                   32.0%
6 27.5% 24.6% 13.1% 19.9% 58.4% -                   -                   -                   -                   34.3%
7 22.3% 24.0% 22.5% 11.4% 18.6% 55.1% -                   -                   -                   31.2%
8 19.6% 18.8% 21.4% 20.3% 10.1% 16.9% 50.4% -                   -                   26.7%
9 18.7% 20.2% 19.8% 22.7% 21.6% 10.8% 18.1% 53.9% -                   28.3%

10 25.8% 18.3% 20.6% 20.0% 23.3% 22.6% 10.7% 18.7% 56.7% 34.6%
Total 9.5% 8.8% 9.5% 9.9% 10.7% 10.9% 10.1% 18.2% 56.7% 13.1%

𝐶𝐶𝑝𝑝𝑉𝑉
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all CoVs from the oldest year to the most current year. 

4.5 Cash Flow Uncertainty 
The calculation of the cash flow uncertainty under the time horizon view is more complicated than 

for the ultimate view using Mack. The extension of the Mack formulas to calculate the cash flow 
uncertainty only requires one set of formulas as shown in (3.23) and (3.25). The extension of the Merz-
Wüthrich formulas to calculate the cash flow uncertainty depends on the length of the time window, 
resulting in a different set of formulas for each of 𝑇𝑇 = 1,2, … ,𝑁𝑁 − 1. 41 

Starting with the formulas for 𝑇𝑇 = 1, it is more convenient to separate formula (3.23) into separate 
formulas for the first diagonal and remaining diagonals as shown in formula (4.11)42. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1(𝑘𝑘)�

= �

⎩
⎪
⎨

⎪
⎧𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×

𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ; 𝑘𝑘 = 𝑁𝑁 + 1

𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑁𝑁−𝑗𝑗+12

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗1 ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ; 𝑘𝑘 > 𝑁𝑁 + 1
⎭
⎪
⎬

⎪
⎫

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 
(4.11) 

For the total uncertainty, it is also more convenient to separate formula (3.26) into separate 
formulas for the first diagonal and remaining diagonals as shown in formula (4.12). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1(𝑡𝑡𝑡𝑡𝑡𝑡)�

= �

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1(𝑘𝑘)�+ 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)

𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� × �
𝜎𝜎�𝑘𝑘−𝑁𝑁+12

𝐹𝐹�(𝑘𝑘 − 𝑁𝑁 + 1)2
×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘 − 𝑁𝑁 + 1)𝑤𝑤−1
𝑗𝑗=1

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

; 𝑘𝑘 = 𝑁𝑁 + 1

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1(𝑘𝑘)�+ 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� × � � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑1 ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑘𝑘−𝑁𝑁+2

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗1 +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

; 𝑘𝑘 > 𝑁𝑁 + 1

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

𝑁𝑁+𝑛𝑛

𝑘𝑘

 (4.12) 

Using formulas (4.11) and (4.12), the results for the sample data triangle are shown in Table 4.6. 

  

 
41 Similar to the Mack extensions, the extensions for Merz-Wüthrich follow the assumptions and formulations of the 

original papers so they are included without proofs. 
42 See step 11 in tab “M&W” in the Excel file. The covariance adjustment in step 11 will be discussed below. 
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Table 4.6 – Estimated Merz-Wüthrich Cash Flow and Standard Deviations for T=1 

 

 

 

 

 

 

 

 

 

Comparing the first three columns in Table 4.6 with Table 3.8, it makes sense that for 𝑘𝑘 = 11, i.e., 
the first diagonal, the results are identical and, comparing Table 4.6 with Table 4.1, the total results 
are also identical as expected.  

Like the alternative view of the covariance adjustment by calendar year for the Mack model, a 
portion of the covariance adjustment in formula (4.12) can be included with formula (4.11) as shown 
in formula (4.13).43 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1(𝑘𝑘)′�

= �

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×

𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

+2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� �
𝜎𝜎�𝑘𝑘−𝑁𝑁+12

𝐹𝐹�(𝑘𝑘 − 𝑁𝑁 + 1)2
×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘 − 𝑁𝑁 + 1)𝑤𝑤−1
𝑗𝑗=1

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

;𝑘𝑘 = 𝑁𝑁 + 1

𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗1 ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

+2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

� �+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑1 ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑘𝑘−𝑁𝑁+2

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗1 +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

;𝑘𝑘 > 𝑁𝑁 + 1

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 (4.13) 

This alternative view of the Merz-Wüthrich cash flow estimates is also included in Table 4.6, 
starting with the column that shows the portion of the covariance adjustment “allocated” to each 

 
43 See last columns in step 11 in tab “M&W” in the Excel file. 

k 11 5,226,536       665,562          12.7% 1,531,370      1,669,750       31.9%
12 4,179,394       111,733          2.7% 348,793         366,252          8.8%
13 3,131,668       108,154          3.5% 284,901         304,739          9.7%
14 2,127,272       95,702            4.5% 226,334         245,735          11.6%
15 1,561,879       83,976            5.4% 177,520         196,381          12.6%
16 1,177,744       76,031            6.5% 141,832         160,926          13.7%
17 744,287          67,017            9.0% 109,047         127,994          17.2%
18 445,521          55,652            12.5% 60,893            82,493            18.5%
19 86,555            40,213            46.5% -                  40,213            46.5%

CVA 1,632,904      1,632,904      
Total 18,680,856    1,778,968      9.5% 1,778,968      9.5%

CoV𝐶𝐶𝐹𝐹�1(𝑘𝑘) 𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�1(𝑘𝑘)]
�

CVA CoV𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�1 𝑘𝑘 ′]
�
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calendar year. Note that for the alternative view the CoVs exhibit a smoother transition from the first 
diagonal to the last diagonal like the Mack alternative view. 

Continuing with the formulas for 𝑇𝑇′ = 2, the formulas for the first diagonal and remaining 
diagonals are shown in formula (4.14). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)�

= �

⎩
⎪
⎨

⎪
⎧𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×

𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) + (1 − 𝛼𝛼𝑘𝑘−𝑗𝑗1 ) ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ;𝑘𝑘 = 𝑁𝑁 + 2

𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗2 × (1 − 𝛼𝛼𝑘𝑘−𝑗𝑗1 ) ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ;𝑘𝑘 > 𝑁𝑁 + 2
⎭
⎪
⎬

⎪
⎫

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 
(4.14) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are shown in 
formula (4.15). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)

𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�

× �
𝜎𝜎�𝑘𝑘−𝑁𝑁+12

𝐹𝐹�(𝑘𝑘 − 𝑁𝑁 + 1)2
× (1− 𝛼𝛼𝑘𝑘−𝑁𝑁+11 ) ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑘𝑘 − 𝑁𝑁 + 1)𝑤𝑤−1
𝑗𝑗=1

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) + (1− 𝛼𝛼𝑘𝑘−𝑗𝑗1 ) ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

;𝑘𝑘 = 𝑁𝑁 + 2

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�

× � � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑2 × (1− 𝛼𝛼𝑑𝑑1) ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑘𝑘−𝑁𝑁+2

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗2 × (1 − 𝛼𝛼𝑘𝑘−𝑗𝑗1 ) ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

;𝑘𝑘 > 𝑁𝑁 + 2

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

𝑁𝑁+𝑛𝑛

𝑘𝑘

 (4.15) 

Using formulas (4.14) and (4.15), the results for the sample data triangle are shown in Table 4.7.  

Table 4.7 – Estimated Merz-Wüthrich Cash Flow and Standard Deviations for T’=2 

  

 

 

 

 

 

 

 

k 11
12 4,179,394       599,391          14.3% 953,245         1,126,031       26.9%
13 3,131,668       86,156            2.8% 213,751         230,461          7.4%
14 2,127,272       76,066            3.6% 161,420         178,445          8.4%
15 1,561,879       62,836            4.0% 114,746         130,825          8.4%
16 1,177,744       51,412            4.4% 82,900            97,548            8.3%
17 744,287          38,525            5.2% 60,077            71,368            9.6%
18 445,521          31,819            7.1% 31,311            44,641            10.0%
19 86,555            20,602            23.8% -                  20,602            23.8%

CVA 1,002,522      1,002,522      
Total 13,454,320    1,177,727      8.8% 1,177,727      8.8%

CoV𝐶𝐶𝐹𝐹�2(𝑘𝑘) 𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�2(𝑘𝑘)]
�

CVA CoV𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�2(𝑘𝑘)′]
�
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Comparing Table 4.7 with Table 3.8, note that the standard deviation for 𝑘𝑘 = 12, i.e., the first 
diagonal at time 𝑡𝑡 = 1, in Table 4.7 is less than in Table 3.8, which makes sense since formula (4.17) 
for the first diagonal only includes a portion of the parameter uncertainty. Comparing Table 4.7 with 
the columns for 𝑇𝑇′ = 2 in Tables 4.2 and 4.3, the totals are identical as expected. Table 4.7 also 
includes the alternative view of the covariance adjustment, but the derivation of the formula is left to 
the reader. 

Continuing with the formulas for 𝑇𝑇′ > 2, the formulas for the first diagonal and remaining 
diagonals are shown in formula (4.16).44 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�𝑇𝑇(𝑘𝑘)� = �

⎩
⎪
⎨

⎪
⎧𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×

𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) + �(1 − 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ; 𝑘𝑘 = 𝑁𝑁 + 𝑇𝑇

𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗𝑇𝑇 × �(1 − 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ;𝑘𝑘 > 𝑁𝑁 + 𝑇𝑇
⎭
⎪
⎬

⎪
⎫

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 (4.16) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are shown in 
formula (4.17). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 𝑇𝑇(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑉𝑉𝑎𝑎𝑎𝑎�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)

𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�

× �
𝜎𝜎�𝑘𝑘−𝑁𝑁+12

𝐹𝐹�(𝑘𝑘 − 𝑁𝑁 + 1)2
× �(1 − 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘 − 𝑁𝑁 + 1)𝑤𝑤−1
𝑗𝑗=1

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) + �(1− 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

; 𝑘𝑘 = 𝑁𝑁 + 𝑇𝑇

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�

× � � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑘𝑘−𝑗𝑗𝑇𝑇 × �(1− 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑘𝑘−𝑁𝑁+2

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗𝑇𝑇 × �(1− 𝛼𝛼𝑘𝑘−𝑗𝑗𝑚𝑚 )

𝑇𝑇−1

𝑚𝑚=1

×
1

∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

; 𝑘𝑘 > 𝑁𝑁 + 𝑇𝑇

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

𝑁𝑁+𝑛𝑛

𝑘𝑘

 (4.17) 

Using formulas (4.16) and (4.17), the results for the sample data triangle will be similar to the results 
shown in Table 4.7, meaning the first diagonal will be less than the same diagonal in Table 3.6 and the 
totals will match the same time window in Tables 4.2 and 4.3. 

4.6 A Comparison of Mack vs. Merz-Wüthrich 
Now that we have reviewed the various formulas related to the Mack and Merz-Wüthrich models, 

it is instructive to compare the runoff for the two models using the totals from Tables 3.3, 3.4, 3.5, 

 
44 See last columns in step 11 in tab “M&W” in the Excel file. 
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4.2, and 4.3. As shown in Table 4.8, at time 𝑡𝑡 = 0 (and 𝑇𝑇 = 1) the standard deviation for the 1-year 
time horizon is 72.7% of the standard deviation for the ultimate time horizon. As previously discussed, 
this makes sense since the 1-year time horizon only includes the parameter variance beyond the first 
diagonal. 

Table 4.8 – Comparison of Estimated Runoff for Mack and Merz-Wüthrich Models 

  

 

 

 

 

 

 

 

In the England, Verrall and Wüthrich [3] paper, the authors discuss using the runoff of the time 
window standard deviations for the runoff of the capital requirement in the cost of capital method of 
calculating the risk margin under Solvency II.45 While the runoff of the time window standard 
deviations clearly reconcile46 with the Mack standard deviations, it does not appear as though the 
runoff of the time window standard deviations adhere to the time horizon concept used for Solvency 
II. Thus, Merz-Wüthrich would be more accurately described as a reasonable approximation for the 
runoff of the capital requirement. 

To illustrate this issue, we start with 𝑇𝑇 = 1 as shown in Table 4.6 and note that the first diagonal 
(i.e., for 𝑘𝑘 = 11) is identical to the first diagonal in Table 3.8 since it includes both process and 
parameter uncertainty. The differences in the total uncertainty between Tables 4.6 and 3.8 is 
completely due to the remaining diagonals in Table 4.6 that only contain parameter uncertainty. This 
is the essence of the 1-year time horizon since the first diagonal should be an estimate of the total 
uncertainty and then we are concerned with estimating the change in reserves given the possible 
outcomes during the first year. 

For the runoff of the time window, as we move to 𝑇𝑇′ = 2 the same logic should continue to hold 
 

45 More specifically, the capital requirement is based on the 99.5th percentile of the 1-year time horizon unpaid claim 
distribution and the runoff of the capital requirement would be based on subsequent 99.5th percentiles as 𝑇𝑇′ = 1,2, … ,𝑁𝑁. 

46 As shown in Table 4.2, the square root of the sum of the squares of the Merz-Wüthrich standard deviations by time 
window for each accident year and the total of all accident years are the same as the Mack standard deviations. 

t = 0 18,680,856     2,447,095       13.1% 1,778,968       9.5% 72.7%
1 13,454,320     1,788,912       13.3% 1,177,727       8.8% 65.8%
2 9,274,925       1,340,940       14.5% 885,178          9.5% 66.0%
3 6,143,258       954,131          15.5% 607,736          9.9% 63.7%
4 4,015,986       663,602          16.5% 428,681          10.7% 64.6%
5 2,454,107       431,762          17.6% 267,503          10.9% 62.0%
6 1,276,363       263,362          20.6% 128,557          10.1% 48.8%
7 532,076          159,952          30.1% 96,764            18.2% 60.5%
8 86,555            70,421            81.4% 49,055            56.7% 69.7%

𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝)]
�

𝐶𝐶𝑝𝑝𝑉𝑉 𝐶𝐶𝑝𝑝𝑉𝑉𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑇𝑇′(𝑝𝑝𝑝𝑝𝑝𝑝)]
�

𝑅𝑅𝑣𝑣𝑝𝑝𝑣𝑣𝑝𝑝
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true, meaning after the first year is complete we would then want to estimate the total uncertainty for 
the next diagonal and the change in reserves given the possible outcomes during that second year. 
Following this logic, the first diagonal (i.e., for 𝑘𝑘 = 12) in Table 4.7 should be identical to the second 
diagonal in Table 3.8. However, as seen in Table 4.7 the first diagonal is less than the second diagonal 
in Table 3.8 since it does not include all of the parameter uncertainty. 

This issue can also be observed by comparing the oldest accident years for the runoff of the 
standard deviations in Tables 3.4 and 4.2. For example, in Table 3.4 the standard deviation for the 
oldest accident year when 𝑡𝑡 = 1 is 74,931 and in Table 4.2 the standard deviation for the oldest 
accident year when 𝑇𝑇′ = 2 is 60,996. Since both of these cells include only the first diagonal, the values 
should be the same. From the perspective of reconciling the runoff of Merz-Wüthrich with Mack this 
makes sense, but from the perspective of running off the required capital it does not make sense. 

Another way to think about the runoff of the Merz-Wüthrich standard deviations is that they are 
always looking at the runoff from the perspective of the current time, or 𝑡𝑡 = 0. From this perspective, 
in the second year (i.e., 𝑇𝑇′ = 2) the first remaining diagonal (i.e., for 𝑘𝑘 = 12 in Table 4.7) can be 
thought of as only containing enough uncertainty to reconcile with Mack at time 𝑡𝑡 = 0. This 
perspective is also consistent with the total reserve notation in this section that does not contain a 
subscript implying that 𝑡𝑡 = 0. 

We can illustrate this issue with 2 other cases: 

 If in the formula of 𝛼𝛼𝑑𝑑𝑇𝑇, 𝑐̂𝑐(𝑁𝑁 + 𝑇𝑇 − 𝑑𝑑,𝑑𝑑) is much greater than 𝑐̂𝑐(𝑖𝑖,𝑑𝑑) with i< 𝑁𝑁 + 𝑇𝑇 − 𝑑𝑑, 
then 𝛼𝛼𝑑𝑑𝑇𝑇 tends to one and (1 − 𝛼𝛼𝑑𝑑𝑇𝑇) tends to 0. This would imply there is no more remaining 
parameter risk for 𝑇𝑇′ ≥ 2 linked to the diagonals 𝑇𝑇′ + 1 which does not make sense in a run 
off of the required capital. 

 We can also compare the case here with the re-reserving method or actuary in the box method 
(see Diers [2]). When simulating the T+1, …, T+N diagonals with the Bootstrap incrementals, 
a full Chain Ladder is applied, i.e., the full estimation risk is calculated even if it was already 
partially captured in the previous diagonal run-off. 

5. TIME-HORIZON UNCERTAINY: AN ALTERNATIVE APPROACH 

In order to calculate the runoff of the required capital under Solvency II, we need to revise formulas 
(4.5), (4.7), (4,9), and (4.10) to include all of the parameter uncertainty for the first diagonals as the 
reserves runoff for 𝑡𝑡 > 0. 
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5.1 Uncertainty by Accident Year: X-Year Time Horizon 
Starting with 𝑇𝑇′ = 2, formula (4.5) must be revised as shown in formula (5.1),47 except that to 

clearly note that we are concerned with a 1-year time horizon one year in the future the notation has 
also been revised to show that 𝑡𝑡 = 1 and 𝑇𝑇 = 1. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�11(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+2−𝑤𝑤2

𝐹𝐹�(N+2-w)2
× �

1
𝑐̂𝑐(𝑤𝑤,N+2-w) +

1
∑ 𝑐𝑐(𝑗𝑗,N+2-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+3−𝑤𝑤

× �𝛼𝛼𝑑𝑑2 ×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 
(5.1) 

Comparing formula (5.1) with formula (4.5), the one minus the weights for the first diagonal 
portions have been removed, but the weights for the remaining diagonals, as in formula (4.6), are still 
included. This formula for the second year is consistent with formula (4.1) for the first year. The 
generalization for 𝑡𝑡 > 1 is shown in formula (5.2).48 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡1(𝑤𝑤)� = 𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 ×
𝜎𝜎�𝑁𝑁+𝑡𝑡+1−𝑤𝑤2

𝐹𝐹�(N+t+1-w)2
× �

1
𝑐̂𝑐(𝑤𝑤,N+t+1-w) +

1
∑ 𝑐𝑐(𝑗𝑗,N+t+1-w)𝑤𝑤−1
𝑗𝑗=1

� 

+𝑐̂𝑐(𝑤𝑤,𝑛𝑛)2 × �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2

𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+2−𝑤𝑤

× �𝛼𝛼𝑑𝑑𝑡𝑡+1 ×
1

∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

� 
(5.2) 

The generalization for 𝑡𝑡 > 1 uses the weights as shown in formula (4.8), except that 𝑇𝑇 = 𝑡𝑡 + 1 
using the new notation with both subscripts and superscripts. 

5.2 Total Uncertainty: X-Year Time Horizon 
The revised formula for the total uncertainty when 𝑡𝑡 = 1 is shown in formula (5.3).49 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�11(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎨

⎪
⎧

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�11(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=3

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛)� � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+2

� ×

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎�𝑁𝑁+2−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 2 − 𝑤𝑤)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 2 − 𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑2 ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+3−𝑤𝑤 ⎦
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 

(5.3) 

 
47 See last columns in step 8 in tab “Alternative” in the Excel file. 
48 In the Excel file (tab “Alternative”), the steps / calculations are repeated for a time horizon of 𝑇𝑇 = 1 at each time 𝑡𝑡 =

1,2,3, … 
49 See last columns in step 8 and step 9a in tab “M&W” in the Excel file (or step 9b if exposure-adjusted data). 
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The generalization for 𝑡𝑡 > 1 is shown in formula (5.4). Comparing formulas (5.3) and (5.4) with 
formulas (4.9) and (4.10), respectively, the one minus the weights terms have been removed similar to 
formulas (5.1) and (5.2). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡1(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎨

⎪
⎧

𝑉𝑉𝑉𝑉𝑉𝑉�𝑅𝑅�𝑡𝑡1(𝑤𝑤)�
𝑁𝑁

𝑤𝑤=𝑡𝑡+2

+ 2𝑐̂𝑐(𝑤𝑤,𝑛𝑛)� � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑤𝑤+𝑡𝑡+1

� ×

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎�𝑁𝑁+𝑡𝑡+1−𝑤𝑤2

𝐹𝐹�(𝑁𝑁 + 𝑡𝑡 + 1 − 𝑤𝑤)2
×

1
∑ 𝑐𝑐(𝑗𝑗,𝑁𝑁 + 𝑡𝑡 + 1 − 𝑤𝑤)𝑤𝑤−1
𝑗𝑗=1

+ � �
𝜎𝜎�𝑑𝑑2

𝐹𝐹�(𝑑𝑑)2
× 𝛼𝛼𝑑𝑑𝑡𝑡+1 ×

1
∑ 𝑐𝑐(𝑗𝑗,𝑑𝑑)𝑁𝑁−𝑑𝑑
𝑗𝑗=1

�
𝑛𝑛−1

𝑑𝑑=𝑛𝑛+𝑡𝑡+2−𝑤𝑤 ⎦
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 

(5.4) 

Applying formulas (5.1) to (5.4) to the sample data results in the standard deviations by year as 
shown in Table 5.1, with the results from Table 4.1 repeated in the first column of Table 5.1. 

Table 5.1 – Runoff of Alternative Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

As expected, the standard deviations runoff in a similar fashion to the estimated unpaid claims and 
when 𝑡𝑡 = 8 there is no covariance adjustment term since there is only one “cell” remaining. An 
additional part of the results in Table 5.1 is the Total column, which is the square root of the sum of 
the squares of the other columns. The Total column shows that this time horizon runoff does not 
reconcile with the results from Mack, but that is not the intent. 

The expected runoff of the unpaid claims is identical to the runoff for Mack, as previously shown 
in Table 3.3. Dividing the standard deviations in Table 5.1 by the means in Table 3.3 results in the 
runoff of the coefficients of variation shown in Table 5.2. 

  

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 105,309          74,931            -                   -                   -                   -                   -                   -                   -                   129,247          
4 79,846            100,806          74,041            -                   -                   -                   -                   -                   -                   148,389          
5 235,115          68,535            93,353            69,186            -                   -                   -                   -                   -                   271,067          
6 318,427          240,563          67,590            95,673            71,982            -                   -                   -                   -                   422,102          
7 361,089          336,607          255,033          70,558            102,361          78,029            -                   -                   -                   574,697          
8 629,681          400,731          374,947          284,965          79,593            116,320          90,307            -                   -                   898,273          
9 588,662          562,933          356,774          334,233          253,564          69,171            101,939          77,826            -                   993,953          
10 1,029,925       544,418          521,865          329,305          308,794          234,466          62,194            92,663            70,421            1,380,457       

CVA 1,025,050      787,105         592,464         434,573         299,857         212,772         154,021         79,424            -                  1,541,216      
Total 1,778,968      1,258,989      987,439         713,534         521,112         353,057         214,796         144,746         70,421            2,588,861      

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡1(𝑤𝑤)]
�
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Table 5.2 – Runoff of Alternative Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

Adjusting formulas (5.1) and (5.2) to include the covariance adjustment related to each accident 
year are left to the reader. Applying formula (4.4), and the extensions for formulas (5.1) and (5.2), the 
runoff of the standard deviations in Table 5.1 are restated in Table 5.3. 

Table 5.3 – Runoff of Alternative Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

The coefficients of variation comparing the standard deviations in Table 5.3 to the expected values 
in Table 3.3 are shown in Table 5.4. As noted above for Table 4.1, there is a smoother transition of 
all CoVs from the oldest year to the most current year. 

  

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 22.4% 80.0% -                   -                   -                   -                   -                   -                   -                   27.5%
4 11.3% 21.8% 80.2% -                   -                   -                   -                   -                   -                   20.9%
5 23.9% 10.5% 22.0% 81.8% -                   -                   -                   -                   -                   27.5%
6 22.4% 23.2% 9.9% 21.4% 80.9% -                   -                   -                   -                   29.7%
7 16.6% 21.4% 22.2% 9.3% 20.7% 79.1% -                   -                   -                   26.4%
8 16.1% 15.4% 19.9% 20.7% 8.8% 19.6% 76.4% -                   -                   22.9%
9 13.8% 17.3% 16.4% 21.3% 22.2% 9.2% 20.7% 79.2% -                   23.2%
10 22.3% 14.4% 18.2% 17.2% 22.4% 23.3% 9.3% 21.4% 81.4% 29.8%

Total 9.5% 9.4% 10.6% 11.6% 13.0% 14.4% 16.8% 27.2% 81.4% 13.9%

𝐶𝐶𝑝𝑝𝑉𝑉

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 132,910          74,931            -                   -                   -                   -                   -                   -                   -                   152,577          
4 152,332          128,734          74,041            -                   -                   -                   -                   -                   -                   212,742          
5 279,093          136,650          120,436          69,186            -                   -                   -                   -                   -                   340,379          
6 390,584          278,768          133,825          121,406          71,982            -                   -                   -                   -                   517,781          
7 484,763          406,147          290,998          138,420          130,333          78,029            -                   -                   -                   725,855          
8 769,047          531,387          449,405          322,236          156,635          148,897          90,307            -                   -                   1,111,066       
9 800,010          695,112          485,883          409,150          291,078          149,109          137,853          77,826            -                   1,287,906       
10 1,192,165       732,101          643,749          446,323          374,337          272,318          137,763          122,044          70,421            1,680,466       

Total 1,778,968      1,258,989      987,439         713,534         521,112         353,057         214,796         144,746         70,421            2,588,861      

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡1(𝑤𝑤)′]�
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Table 5.4 – Runoff of Alternative Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

5.3 Cash Flow Uncertainty 
Similar to the accident year formulas, cash flow formulas (4.11), (4.12), and (4.13) do not need to 

be revised. Moving to the formulas for 𝑡𝑡 = 1, the formulas for the first diagonal and remaining 
diagonals are shown in formula (5.5).50 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1
1(𝑘𝑘)�

= �

⎩
⎪
⎨

⎪
⎧𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×

𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ; 𝑘𝑘 = 𝑁𝑁 + 2

𝑐̂𝑐(𝑗𝑗,k+1-j)2 ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �𝛼𝛼𝑘𝑘−𝑗𝑗2 ×

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

� ; 𝑘𝑘 > 𝑁𝑁 + 2
⎭
⎪
⎬

⎪
⎫

𝑁𝑁

𝑗𝑗=𝑘𝑘−𝑁𝑁

 
(5.5) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are shown in 
formula (5.6). 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶�1
1(𝑡𝑡𝑡𝑡𝑡𝑡)� = �

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)

𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�

× �
𝜎𝜎�𝑘𝑘−𝑁𝑁+12

𝐹𝐹�(𝑘𝑘 − 𝑁𝑁 + 1)2
×

1
∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘 − 𝑁𝑁 + 1)𝑤𝑤−1
𝑗𝑗=1

�

+[𝑐̂𝑐(𝑗𝑗,n)2 − 𝑐̂𝑐(𝑗𝑗,k+1-j)2] ×
𝜎𝜎�𝑘𝑘−𝑗𝑗2

𝐹𝐹�(k-j)2
× �

1
𝑐̂𝑐(𝑗𝑗,k-j) +

1
∑ 𝑐𝑐(𝑖𝑖,k-j)𝑁𝑁−𝑗𝑗−1
𝑖𝑖=1

�

;𝑘𝑘 = 𝑁𝑁 + 2

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝐶𝐶� 2(𝑘𝑘)� + 2𝑐̂𝑐(𝑘𝑘 − 𝑁𝑁 + 1,𝑛𝑛) × � � 𝑐𝑐(𝑖𝑖,𝑛𝑛)
𝑁𝑁

𝑖𝑖=𝑘𝑘−𝑁𝑁+2

�
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𝜎𝜎�𝑘𝑘−𝑗𝑗2
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𝑘𝑘

 (5.6) 

Using formulas (5.5) and (5.6), the results for the sample data triangle are shown in Table 5.5. 

 
50 See step 11 in tab “Alternative” in the Excel file. 

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 28.3% 80.0% -                   -                   -                   -                   -                   -                   -                   32.5%
4 21.5% 27.8% 80.2% -                   -                   -                   -                   -                   -                   30.0%
5 28.3% 21.0% 28.4% 81.8% -                   -                   -                   -                   -                   34.6%
6 27.5% 26.9% 19.5% 27.2% 80.9% -                   -                   -                   -                   36.5%
7 22.3% 25.8% 25.4% 18.3% 26.4% 79.1% -                   -                   -                   33.3%
8 19.6% 20.4% 23.9% 23.4% 17.2% 25.1% 76.4% -                   -                   28.3%
9 18.7% 21.3% 22.4% 26.1% 25.4% 19.7% 28.0% 79.2% -                   30.1%
10 25.8% 19.4% 22.4% 23.3% 27.1% 27.0% 20.7% 28.1% 81.4% 36.3%

Total 9.5% 9.4% 10.6% 11.6% 13.0% 14.4% 16.8% 27.2% 81.4% 13.9%

𝐶𝐶𝑝𝑝𝑉𝑉
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Table 5.5 – Estimated Alternative Cash Flow and Standard Deviations for t=1 

  

 

 

 

 

 

 

 

 

Comparing Table 5.5 with Table 3.8, note that the standard deviation for 𝑘𝑘 = 12 in Table 5.5 is 
the same as in Table 3.6, which makes sense since formula (5.5) for the first diagonal includes all of 
the process and parameter uncertainty. Comparing Table 5.5 with the columns for 𝑡𝑡 = 1 in Tables 5.1 
and 5.2, the totals are identical as expected. 

Like the alternative view of the covariance adjustment by calendar year for the Mack model, a 
portion of the covariance adjustment in formula (5.6) can be included with formula (5.5) as shown in 
formula (5.7).51 
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(5.7) 

This alternative view of the alternative cash flow estimates is also included in Table 5.5, starting 
with the column that shows the portion of the covariance adjustment “allocated” to each calendar 

 
51 See last columns in step 11 in tab “Alternative” in the Excel file. 

k 11
12 4,179,394       609,716          14.6% 1,015,053      1,184,097       28.3%
13 3,131,668       98,559            3.1% 254,367         272,794          8.7%
14 2,127,272       87,848            4.1% 197,935         216,554          10.2%
15 1,561,879       74,810            4.8% 149,542         167,210          10.7%
16 1,177,744       64,972            5.5% 115,815         132,795          11.3%
17 744,287          54,453            7.3% 87,781            103,298          13.9%
18 445,521          45,194            10.1% 48,293            66,142            14.8%
19 86,555            31,868            36.8% -                  31,868            36.8%

CVA 1,086,291      1,086,291      
Total 13,454,320    1,258,989      9.4% 1,258,989      9.4%

CoV𝐶𝐶𝐹𝐹�1
1(𝑘𝑘) 𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�1

1(𝑘𝑘)]
�

CVA CoV𝑉𝑉𝑣𝑣𝑝𝑝[𝐶𝐶𝐹𝐹�1
1(𝑘𝑘)′]�
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year. Note that for the alternative view the CoVs exhibit a smoother transition from the first diagonal 
to the last diagonal similar to the Mack alternative view. 

Continuing with the formulas for 𝑡𝑡 > 1, the formulas for the first diagonal and remaining diagonals 
are shown in formula (5.8). 
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(5.8) 

The formulas for the total uncertainty are shown in (5.9). 
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 (5.9) 

Using formulas (5.8) and (5.9), the results for the sample data triangle will be similar to the results 
shown in Table 5.5, meaning the first diagonal will be equal to the same diagonal in Table 3.6 and the 
totals will match the same time horizon in Tables 5.1 and 5.2. 

5.4 Comparison with Mack 
Now that we have revised the formulas related to the Merz-Wüthrich models, it is instructive to 

compare the runoff for the two models using the totals from Tables 3.3, 3.4, 3.5, 5.1, and 5.2. As 
shown in Table 5.6, at time 𝑡𝑡 = 0 (and 𝑇𝑇 = 1) the standard deviation for the 1-year time horizon is 
72.7% of the standard deviation for the ultimate time horizon. As previously discussed, this makes 
sense since the 1-year time horizon only includes the parameter variance beyond the first diagonal. In 
addition, the standard deviations for the last runoff period at time 𝑡𝑡 = 8 are identical since there is no 
future diagonals at that point in time. 
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Table 5.6 – Comparison of Alternative Estimated Runoff with Mack Model 

 

 

 

 

 

 

 

 

In contrast to the runoff comparison with Merz-Wüthrich in Table 4.8, it does appear as though 
the runoff of the time horizon standard deviations adhere to the concepts used for Solvency II and, 
thus, is a better estimate for the runoff of the capital requirement. 

5.5 Comparison of Risk Margins 
As a final comparison, we can test how the different runoffs of the capital requirement affect the 

risk margins using the cost of capital method under Solvency II. Starting with the runoff from the 
Merz-Wüthrich method from Table 4.8, in Table 5.7 the lognormal distribution assumption is used to 
calculate the 99.5% Value at Risk (VaR). Using the VaR for each future year in the runoff, the costs 
of capital are calculated assuming an expected return of 6.0% and then the runoff of the cost of capital 
is discounted at 2.0%. Summing the discounted cost of capital over the runoff period results in a total 
discounted cost of capital of 891,587, which is 4.8% of the unpaid claims (i.e., 18,680,856) at 𝑡𝑡 = 0. 
  

t = 0 18,680,856     2,447,095       13.1% 1,778,968       9.5% 72.7%
1 13,454,320     1,788,912       13.3% 1,258,989       9.4% 70.4%
2 9,274,925       1,340,940       14.5% 987,439          10.6% 73.6%
3 6,143,258       954,131          15.5% 713,534          11.6% 74.8%
4 4,015,986       663,602          16.5% 521,112          13.0% 78.5%
5 2,454,107       431,762          17.6% 353,057          14.4% 81.8%
6 1,276,363       263,362          20.6% 214,796          16.8% 81.6%
7 532,076          159,952          30.1% 144,746          27.2% 90.5%
8 86,555            70,421            81.4% 70,421            81.4% 100.0%

𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝) 𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝)]
�

𝐶𝐶𝑝𝑝𝑉𝑉 𝐶𝐶𝑝𝑝𝑉𝑉 𝑅𝑅𝑣𝑣𝑝𝑝𝑣𝑣𝑝𝑝𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡1(𝑝𝑝𝑝𝑝𝑝𝑝)]
�
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Table 5.7 – Calculation of Risk Margin using Merz-Wüthrich Model 

  

 

 

 

 

 

 

 

 

In Table 5.8, the runoff using the alternative model from Table 5.6 is used to calculate the 
discounted cost of capital. Using all of the same assumptions noted above for Table 5.7, except for 
the standard deviation of the unpaid claims, the alternative model estimates the total discounted cost 
of capital at 1,007,157 or 5.4% of the unpaid claims at 𝑡𝑡 = 0. 

Table 5.8 – Calculation of Risk Margin using Alternative Model 

 

 

 

 

 

 

 

 

 

Comparing Table 5.7 and 5.8, it makes sense that the risk margin is larger for the alternative method 
since the runoff is a bit slower.52 While there could be situations where the alternative method results 

 
52 In this example, the risk margin is 13.0% larger but other examples could result in larger or smaller differences between 

the models. 

99.5th 99.5% 6.0% Discounted
Percentile VaR CoC CoC

t = 0 18,680,856     1,778,968       23,753,426     5,072,570       304,354          301,328          
1 13,454,320     1,258,989       17,038,055     3,583,735       215,024          208,674          
2 9,274,925       987,439          12,123,409     2,848,484       170,909          162,580          
3 6,143,258       713,534          8,222,165       2,078,907       124,734          116,308          
4 4,015,986       521,112          5,555,442       1,539,456       92,367            84,424            
5 2,454,107       353,057          3,512,025       1,057,918       63,475            56,868            
6 1,276,363       214,796          1,935,777       659,413          39,565            34,745            
7 532,076          144,746          1,021,830       489,754          29,385            25,295            
8 86,555            70,421            421,013          334,458          20,067            16,933            

Total 1,007,157      
Percent of Unpaid Claims: 5.4%

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑡𝑡1(𝑝𝑝𝑝𝑝𝑝𝑝)]
�

𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝)

99.5th 99.5% 6.0% Discounted
Percentile VaR CoC CoC

t = 0 18,680,856     1,778,968       23,753,426     5,072,570       304,354          301,328          
1 13,454,320     1,177,727       16,785,734     3,331,414       199,885          193,982          
2 9,274,925       885,178          11,799,479     2,524,553       151,473          144,092          
3 6,143,258       607,736          7,882,818       1,739,561       104,374          97,323            
4 4,015,986       428,681          5,252,966       1,236,980       74,219            67,836            
5 2,454,107       267,503          3,227,797       773,690          46,421            41,590            
6 1,276,363       128,557          1,645,023       368,659          22,120            19,425            
7 532,076          96,764            833,102          301,026          18,062            15,548            
8 86,555            49,055            293,233          206,679          12,401            10,464            

Total 891,587         
Percent of Unpaid Claims: 4.8%

𝑉𝑉𝑣𝑣𝑝𝑝[𝑅𝑅�𝑇𝑇′(𝑝𝑝𝑝𝑝𝑝𝑝)]
�

𝑅𝑅�𝑡𝑡(𝑝𝑝𝑝𝑝𝑝𝑝)
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in a faster runoff and a smaller risk margin, it seems like the most common result would be for the 
alternative method to result in a larger risk margin. In other words, in most situations the risk margin 
would be underestimated using the Merz-Wüthrich approximation for the runoff. 

6. CONCLUSIONS 

After reviewing the Mack and Merz-Wüthrich model formulas, the paper expands their usefulness 
by adding runoff and cash flow formulas. By comparing the runoff of the Merz-Wüthrich results to 
the Mack runoff it was demonstrated the Merz-Wüthrich does reconcile with the Mack in the sense 
that the variances of the time windows total to the Mack variances for the ultimate time horizon and 
is consistent in the context of a 𝑡𝑡 = 0 view. However, to estimate the runoff of the required capital 
for the cost of capital method of calculating the risk margin under Solvency II, this formula would 
underestimate the risk when we consider the view at 𝑡𝑡 > 0. In order to estimate the risk for 𝑡𝑡 > 0, 
the first future year for each runoff period must include both the full process and parameter variance.  
Thus, an alternative set of formulas were derived and demonstrated to be consistent with concepts 
used for Solvency II. Finally, alternate views of the covariance adjustment were developed for all of 
the formulas that result in a smoother transition of the coefficients of variation and aide in 
comparisons to other models. 
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Supplementary Material 

There are companion files designed to give the reader a deeper understanding of the formulas discussed in the paper 
and that were used to calculate all of the tables in this paper. The files are all in the “Mack & Merz-Wüthrich.zip” file. The 
files are: 

 
Mack & Merz-Wüthrich Runoff.xlsm – this file contains the detailed calculations described in this paper for a single 

segment or line of business for a 10 x 10 triangle only. Data can be entered for a new triangle, exposures, a tail factor, and 
tail standard deviation. 

 
Mack & Merz-Wüthrich Calc.xlsm – this file contains VBA functions that replicate all the calculations in the “Runoff” 

file for a segment or line of business for any size triangle. Data can be entered for a new triangle, exposures, a tail factor, 
and tail standard deviation. 

 
Milliman Claim Variability Benchmarks (CVB) Functions – the algorithms in the paper have been developed into 

functions in the free version of the Milliman CVB Excel Add-In. If you are interested, you can request the free version by 
sending an email to actuarialsoftware@milliman.com. 

 
Milliman Mind Application – the algorithms in the paper have been developed in a Milliman Mind app. If you are 

interested, you can request a free trial by sending an email to europeansoftware@milliman.com. 
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Abbreviations and notations 
The abbreviations and notations used in the paper are listed here in alphabetical order. 

CL, chain ladder MSE, mean squared error of prediction 
CoV, coefficient of variation VaR, Value at Risk 
CVA, covariance adjustment (in the Excel file this is labeled 
as “CV Adj”) 
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Updating Increased Limits Factors for Trend Using Interpolation 
Along a Curve 

Joseph A. Boor, FCAS, CERA, Ph.D. 

 ____________________________________________________________________________________________  

Abstract: The process of updating increased limits factors is very complex, data-intensive, analysis intensive, 
and labor intensive.  So, may entities do not update their increased tables very often.  While this article does 
not simplify that process, it does posit a simplified process for simply updating an increased limits table for 
trend.  All it requires is the increased limits table (not the data behind it) and the trend rate, and consequently 
it may be executed in much less time and much more simply than the existing method.   The core of this 
method is the use of interpolation along the curve to identify the relativities of limited loss costs at detrended 
policy limits.  Those relativities then provide the basis for trend-adjusted increased limits factors. 

Keywords: increased limits factors, interpolation along a curve, trend 

 ____________________________________________________________________________________________  

1. INTRODUCTION 

The current process for updating increased limits factors (ILFs) typically requires significant activity 
and effort.  Losses must be trended and developed individually.  Preferably the losses should not just 
be developed but rather developed using appropriate random development factors (per Boor 2017 
and Couret 1997). Then, the losses must be capped at the various layers and summarized.  Because 
of this, many increased limits tables are not reviewed very frequently.  For example, at least one 
rating bureau does not typically review increased limits tables annually, even though many insurers 
use the tables.  So, the amount of effort required results in the ILFs being less current. 

 While this paper does not simplify the process of performing a full review, it does provide a less 
labor-intensive method for updating ILFs for trend.  The key is to replace the complex process of 
applying actuarial adjustments to individual claims, then collating and layering the results, with a 
more basic process where one simply uses the relative values of points on a curve. 

  Sometimes actuaries will simply fit a specific curve from some curve family by minimizing the error 
against the current ILFs, or choose a curve matching a characteristic or two of the current ILFs, 
then estimate the ILFs using values from that curve.  No matter how the curve is selected, the 
resulting curves rarely match the ILFs exactly.  Therefore, while a fitted curve is still prescribed, in 
this article the adjustments in the “interpolation along the curve” process from Boor 2014, are used 
to create an exact match to the current ILFs, while still providing the benefits of a fitted curve. 

For the last step, a cumulative trend of T (trend factor of 1+T), between the effective date of the 
existing table and the prospective effective date of the revised table is used to detrend each limit.  
For example, if T=25%, and one is detrending the $500,000 limit, one would use a limit of 
$500,000/1.25 = $400,000 in prior uninflated dollars to match the $500,000 limit in costs in the 
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prospective period of the updated table.  Then the relativities of the costs in those detrended limits 
to the losses capped at the detrended basic limit will form the new ILFs. 

While that provides an overview of the process, there are important concerns and details for each 
step that must be discussed.  That is done in the sections that follow.  

 

2 THE INTERPOLATION ALGORITHM FOR UPDATING ILFS 

If one can determine that the same loss trend applies across all loss sizes, then a shortcut process 
may be used to update increased limits factors for trend.  Essentially, this approach involves using 
interpolation along a Pareto-based1 curve in order to estimate the ILFs at detrended limits.  Then, 
the results are rebalanced so that the detrended basic limit stands in for the basic limit.  For example, 
if the loss trend is 10%, and the basic limit is $100,000, then losses of size $100,000÷1.10=$90,909 
and above will be over $100,000 after trending.  Since $90,909 is not in the limits table, either 
interpolation along the curve or a recalculation of increased limits factors beginning with raw data 
must be performed to update the increased limits factors.  Similarly, the losses that will trend up to 
$250,000, were capped at $250,000÷1.10=$227,272 in the data.  This merely uses interpolated values, 
albeit values from a generally very effective interpolation process, to estimate what the impacts (and 
revised ILFs) would be if the old data were adjusted using the trend between the effective date of 
the current table and the effective date of the updated table being developed.   

This approach does not involve claim-by-claim detail.  As noted earlier, it is presented because it 
involves significantly less labor than the recalculation from scratch.  The table following shows the 
process. 

  

 
1 The Pareto is used here because it is common in the actuarial literature and known to have significant skew.  If some 
other curve family fits the table, especially the upper ILFs, better, then it could conceivably be used instead.  
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Table 1: Trending of ILFs Using Interpolation Along the Curve 

Part 1-Curve Fit to Current ILFs   
  First Step: Solver Setup/Curve 

 
    

α 0.84 Lt Gray Values Solved 
𝑥𝑥𝑀𝑀=Truncation Pt.              200,000       to Minimize Dark Gray 
    $200K is upper restriction] 
      

(1) (2) (3) (4) 
Table 1 c.1 Table 1 c.1 per new curve ((3)-(2))^2 

  (Offset) ****   
Top of Current Fitted  Squared 
 Layer  ILF Pareto Error  

       
0  0.000 0   

$250,000 1.000 1.000 0.00000 
500,000 1.600 1.618 0.00033 

1,000,000 2.500 2.308 0.03688 
2,000,000 3.500 3.077 0.17867 

$5,000,000 4.000 4.232 0.05401 
       
      0.26989 
      
Part 2- Detrended Limits/Trended ILFs   

(5) (6) (7) (8) 
(100)/1.100 per curve ***** (7)/[250K(7)] 

      
Top of  Detrended ILFs Rebased to 250K 
Layer  Interpolated Final 

Detrended at Fitted  Along Trended 
10.0% Pareto the Curve ILFs 

                          -    0 0.000 0.000 
              227,273  0.920 0.920 1.000 
              454,545  1.529 1.514 1.645 
              909,091  2.209 2.370 2.576 
           1,818,182  2.966 3.356 3.647 
           4,545,455  4.104 3.945 4.287 
      
Notes: **** Fitted Pareto values are   
        {α - [(𝑥𝑥𝑀𝑀/[Column (1)]) ^(α-1.0)]} /{α - [(𝑥𝑥𝑀𝑀 /250,000) ^(α-1.0)]} 
       
  "***** Values per Interpolation 

    
=   

       previous (2) + [(2)-previous (2)]*[(6) - previous (6)] /[(3)- previous(3)] 
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This interpolation process is identical to the process in Boor 2014.  One begins with the ILFs in 
column 2).  Then, one fits a limited expected loss curve corresponding to a Pareto distribution to 
those values. Given an α parameter for the general shape or decay of the distribution and a 
truncation point 𝒙𝒙𝑴𝑴, the limited expected mean would be α - [(𝒙𝒙𝑴𝑴/Limit) ^(α -1.0)]. Then the 
formula for the basic limit is identical, excepting that the basic limit is used in the formula rather 
than the limit in question. In this case, initial but provisional values for α and 𝒙𝒙𝑴𝑴 were selected 
arbitrarily, but the software2 was directed to find the values of those that minimized the squared 
differences between the fitted curve and the ILFs. To insulate the basic limit from the truncation 
point, a maximum truncation point of $200,000 was selected judgmentally. 

Once the curve is fit, it is easy to interpolate along it. Linear interpolation is the simplest. When one 
does linear (along a line) interpolation, one looks at how much “𝒚𝒚” increases (from 𝒚𝒚𝟏𝟏 to 𝒚𝒚𝟐𝟐) as “𝒙𝒙” 
goes from 𝒙𝒙𝟏𝟏 to 𝒙𝒙𝟐𝟐. Then, for 𝒙𝒙 between 𝒙𝒙𝟏𝟏 to 𝒙𝒙𝟐𝟐, the estimate of the corresponding value 𝒚𝒚 of 
begins with 𝒚𝒚𝟏𝟏. Next, one must consider how far the line increases between 𝒚𝒚𝟏𝟏 and 𝒚𝒚𝟐𝟐 (specifically, 
𝒚𝒚𝟐𝟐 - 𝒚𝒚𝟏𝟏), how far the input 𝒙𝒙 changes over the interval (𝒙𝒙𝟐𝟐 - 𝒙𝒙𝟏𝟏) and how far in the input range one 
has moved. Combining those, the linear estimate is 

 𝒆𝒆𝒆𝒆𝒆𝒆(𝒚𝒚 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒕𝒕𝒕𝒕  𝒙𝒙) =  𝒚𝒚𝟏𝟏 + (𝒚𝒚𝟐𝟐 − 𝒚𝒚𝟏𝟏) × (𝒙𝒙−𝒙𝒙𝟏𝟏)
(𝒙𝒙𝟐𝟐−𝒙𝒙𝟏𝟏)

, 

which means that the estimate changes proportionally to changes in x. In interpolation along a 
curve, the changes are proportional to changes in the fitted reference curve “f”, or  

 𝒆𝒆𝒆𝒆𝒆𝒆(𝒚𝒚 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒕𝒕𝒕𝒕  𝒙𝒙) =  𝒚𝒚𝟏𝟏 + (𝒚𝒚𝟐𝟐 − 𝒚𝒚𝟏𝟏) × (𝒇𝒇(𝒙𝒙)−𝒇𝒇(𝒙𝒙𝟏𝟏))
(𝒇𝒇(𝒙𝒙𝟐𝟐)−𝒇𝒇(𝒙𝒙𝟏𝟏))

. 

This procedure is designed to capture much of the shape in the curve inherent in the underlying 
increased limits/limited expected value function.  Thus, as long as the curve family is an acceptable 
match to that function, it should generally provide reasonably accurate estimates of the ILF values3.   

In any event, that explains the interpolation process to column 7) of Table 1, where interpolation 
along the curve is applied to estimate the ILF values at the detrended limits in column 5).  The last 
step is to simply rebalance the ILFs so that the ILF for the basic limit is unity (1.0).  Those 
calculations provide the updated ILF table. 

3. ADAPTING THE PROCESS FOR UNEVEN TREND 

The procedure of the previous section assumes that the trend rate is the same for all loss sizes.  
However, that may not always be the case.  In certain cases, there may be a rolling thunder of 
changes in the way courts interpret policies combined with attempts to offset that with law changes.  
Sometimes, those will, by their nature, affect average or “run-of-the-mill” claims more than large 
claims.  Sometimes there may be some emerging issue (environmental impairment, for example) that 

 
2 The author’s understanding is that many common spreadsheet programs will do this. 
3 The 2014 article by Boor provides some testing of this against various alternate approaches to interpolation, and 
generally suggests that it tends to provide more accurate estimates than the alternatives tested.   
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only generates large claims.  So, some discussion of how to adapt the previous process may be 
helpful. 

One way to resolve either scenario involves an additive load that would be added or subtracted from 
the various ILFs.  Consider the situation where an external change adds additional costs, but only to 
the lowest (in this case conveniently the basic) layer.  Then, if the change increases (or is expected to 
increase) the losses in the basic layer by 20%, one may simply add .2 to all the computed ILFs, then 
rebalance.  For example, in the case of the basic and $5,000,000 final ILFs in Table 1, the basic limit 
would go to 1.2 and the $5,000,000 ILF would go to 4.487.  Rebalancing the basic layer ILF to 1.000 
would result in an ILF of 3.739=4.487/1.2 for the $5,000,000 limit.  If the lowest limit is less than 
the basic limit, one would simply multiply the percentage by which losses in that lower layer change 
by the ILF for that layer to produce the additive load.  

The process may be slightly more complicated when the large losses are disproportionately affected 
by new large claims. Say, for example that there is a new class of large claim that increases the 
number of large claims, uniformly insofar as the actuary can determine, by 50%. Then the results of 
Table 1 should be modified to reflect that. In this case the lowest limit nonetheless contains a 
portion of the costs for the large losses (the first $L of each loss, when the lowest limit is $L).  So, it 
is necessary to determine the percentage of the losses at the $L limit that are actually just the lower 
portion of large losses.  Say it is 10%. Note also that ILFs are unaffected by frequency.  So, this may 
be regarded not as how much the large losses increased, but rather as how much the lower losses did 
not.  This means that the additive correction for each ILF will now be a subtraction of the 
ILF(L)×(1.0-10%)× 𝟓𝟓𝟓𝟓%

𝟏𝟏𝟏𝟏𝟏𝟏%
, or the ILF for L times 30% from each ILF, followed by a rebalancing. 

Those two examples illustrate a couple of key processes.  All sorts of different situations might 
occur in practice, but these two illustrate key concepts that should form a starting point for an 
analysis. 

4. SUMMARY 

Interpolation along the curve offers a convenient way to update increased limits factors for trend.  
Hopefully this will allow actuaries to maintain more current increased limits tables. 
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Over-Dispersion and Loss Reserving 

Marco De Virgilis 
  

Abstract: The intent of this paper is to underline the importance of testing the validity of the assumptions behind 
the common over-dispersed models. 
Very often, these frameworks are applied blindly –without a proper assessment of the hypothesis behind the 
models. This could lead to inaccurate results or models being applied to data for which they are not suited. 
Over-Dispersed stochastic frameworks are presented from a theoretical point of view, explaining all the 
assumptions and the hypothesis upon which they are built. 
Practical examples are also presented and analyzed, showing the empirical consequences and implications of the 
different modeling choices. 
 
Keywords. Generalized Linear Models; Over-Dispersion; Reserving; Tweedie; Stochastic Modeling; Bootstrap 

  

1. INTRODUCTION 

Stochastic reserving frameworks are, nowadays, very common and implemented in a fairly simple 
way. Several software solutions (either open source or proprietary) allow the user to perform such 
calculations without having the inconvenience of manually writing or designing the whole statistical 
procedure. 

In the current market and regulation environment there is also considerable interest (COPLFR, 
2018) in stochastic reserving and unpaid claim distributions. It follows that it is of paramount 
importance that claim liability estimates are produced by sound actuarial and statistical procedures. 
Failing in doing this could lead to inaccurate results that could affect company risk management or 
even the entire ability of being able to meet liability payments towards policyholders. 

There is also a very wide and well-made selection of papers (Shapland, 2016) that describe the 
Over-Dispersed process. These, however, are either from a practical implementation perspective or 
focused on a narrow aspect of the process. In contrast, this paper, has the objective of providing a 
sound theoretical and statistical foundation to allow the reader to appreciate how an Over-Dispersed 
modeling framework works, and how to modify it and adapt it to each specific situation. The latter 
objective will be particularly stressed and a reproducible case study will be shown; in fact, given the 
ease of implementation provided by several statistical packages available, such modeling frameworks 
are often applied blindly, or without a thorough and proper review of the main underlying 
assumptions.  

1.1 Research Context 
In the actuarial context, there have been several studies and contributions towards stochastic claim 
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reserving and reserve uncertainty estimation (Renshaw et al., 1998). This paper falls into such category, 
but it has the objective to present results with a deeper focus on the theoretical foundations of the 
methodologies. 

Statistical concepts will be presented and formally addressed, so the reader can also have an 
understanding of why so-called Over-Dispersed models work, and not only a practical guide on how 
to implement them.  

1.2 Objective  
The main objective of this paper is to present and prove statistical concepts behind the so-called 

Over-Dispersed Models. The reader will be introduced to formal definitions of the models and to 
tests that the hypothesis behind the model are met. 

Moreover, having a deeper knowledge of the statistical structure of such models, the reader will be 
able to modify the main assumptions to adapt the framework to their specific needs. 

1.3 Outline 
The structure of this paper is as follows: 

Section 2 presents the terminology and notations used throughout the paper. 

Section 3 presents the theoretical background for Over-Dispersed models. 

Section 4 is dedicated to the process of model definition. 

Section 5 presents the process of model fitting. 

Section 6 analyzes the issue of model validation. 

Section 7 explores the implication of assumptions with regards to curve fitting. 

Section 8 states some conclusions. 

2. TERMINOLOGY AND NOTATION 

This paper will make extensive use of specific terminology and notation. In this section we will 
present the main ideas from a theoretical point of view in order to fix the concepts, and then all the 
necessary mathematical notations will be introduced. 

As already described, the paper is focused on producing distributions for unpaid claim reserves. 
Claim reserves are defined as the amount of money that the company set aside to pay policyholder 
claims. It follows that this definition is strictly linked to the concept of ultimate claim amounts. 
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Ultimate claim amounts are defined as the total amounts that the company is expecting to pay for 
all the claims relative to a specific cohort. Claims are, in fact, usually aggregated by accident years. 
Once ultimate claims have been produced, claim reserves can be calculated as the difference between 
ultimate claims and claims already paid. 

To visualize these ideas, we can construct a run-off triangle: 

  d 

  0 1 2 3 4 

w 

0 C0,0 C0,1 C0,2 C0,3 C0,4 

1 C1,0 C1,1 C1,2 C1,3  

2 C2,0 C2,1 C2,2   

3 C3,0 C3,1    

4 C4,0     

Table 1: Cumulative Run-off Triangle 

This representation allows us to group the claims by origin periods, w, and summarize them by 
development periods, d. Each cell Cw,d contains the total amount of claims from origin period w, 
evaluated as of development period d. 

If we consider the incremental amounts qw,d, what we need to estimate is the sum of the incremental 
transaction in the lower part of the triangle {qw,d  : w + d > n + 1}, where n represents the total numbers 
of accident years.1 

  d 

  0 1 2 3 4 

w 

0      

1     q1,4 

2    q2,3 q2,4 

3   q3,2 q3,3 q3,4 

4  q4,1 q4,2 q4,3 q1,4 

Table 2: Incremental Lower Run-off Triangle 

 
1 We are assuming that we are dealing with a square triangle: w = d = n. 
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3. BACKGROUND AND METHODS 

We will consider the amounts {qw,d  : w + d > n + 1} as independent and identically distributed 
random variables and we will estimate them using the framework of Generalized Linear Models.  

3.1 Generalized Linear Models 
Generalized Linear Models (GLMs) are specific formulations of regression models and therefore 

consist of two main components: a stochastic component and a deterministic component. 

The stochastic component addresses the randomness in the data, i.e. the probability distribution 
of the response variable, or the relation between the mean and the variance. 

The deterministic component of the model indicates the connection between the predictors and 
the mean of the response variable. 

3.1.1 The Stochastic Component: Exponential Dispersion Models 

The GLM formulation assumes that the response variable belongs to a set of probability 
distributions called Exponential Dispersion Model (EDM) class. This class represents a generalization 
of the Natural Exponential Family. 

The probability distribution function belonging to the EDM family takes the following form: 

𝜋𝜋(𝑦𝑦;𝜃𝜃,𝜙𝜙) =  𝑎𝑎(𝑦𝑦, 𝜃𝜃)exp�
𝑦𝑦𝑦𝑦 − 𝑏𝑏(𝜃𝜃)
𝑐𝑐(𝜙𝜙)

�, (3.1) 

Where: 

𝑦𝑦 is the value of the response variable, 

𝜃𝜃 is the canonical parameter, 

𝜙𝜙 > 0 is the dispersion parameter, 

𝑎𝑎( . ) is a normalizing function. This ensures that ∫𝜋𝜋(𝑦𝑦;𝜃𝜃,𝜙𝜙) = 1, 

𝑏𝑏( . ) is the cumulant function, 

𝑐𝑐( . ) is an arbitrary function. 

The mean and the variance of a random variable belonging to an EDM can be found as: 

𝐸𝐸[𝑌𝑌] =  𝜇𝜇 =  
𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

 , (3.2) 
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𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] =  𝑐𝑐(𝜙𝜙)
𝜕𝜕𝑏𝑏2(𝜃𝜃)
𝜕𝜕𝜃𝜃2

=  𝑐𝑐(𝜙𝜙)
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

� = 𝑐𝑐(𝜙𝜙)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (3.3) 

It is then possible to define the variance function: 

𝑉𝑉(𝜇𝜇) =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , (3.4) 

From which follows: 2 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝑐𝑐(𝜙𝜙)𝑉𝑉(𝜇𝜇) (3.5) 

3.1.2 The Deterministic Component: the Link Function 

The GLM definition assumes that the mean and the linear predictors are linked together through 
a link function 𝑔𝑔( . ) such that 𝜇𝜇 = 𝑔𝑔−1(𝜂𝜂). 

The linear combination of the predictors 𝜂𝜂, is defined as: 

𝜂𝜂 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖  

 (3.6) 

The link function 𝑔𝑔( . ) is a monotonic, differentiable function that relates the fitted values 𝜇𝜇 to 
the combination of the linear predictors 𝜂𝜂. 

The requirements of monotonicity ensures that the function between the values of 𝜂𝜂 and 𝜇𝜇 is an 
injective function and therefore invertible, i.e. 𝜂𝜂 and 𝜇𝜇 are in a one-to-one correspondence. 

The requirements of differentiability ensures that the coefficients 𝛽𝛽𝑖𝑖 can be estimated. 

3.1.3 Parameter Estimation: Maximum Likelihood 

The intuition of maximum likelihood arises from the concept of selecting the unknown parameters 
such that the probability density of the observed data is maximized. 

Let’s assume that we have a series of data points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 that are independent and identically 
distributed according to a specific distribution 𝑃𝑃(𝑥𝑥;𝜃𝜃) and we need to estimate the parameter 𝜃𝜃. 

It is possible to compute the joint probability distribution as: 

𝑃𝑃(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛;𝜃𝜃 ) =  �𝑃𝑃(𝑥𝑥𝑖𝑖;𝜃𝜃)
𝑖𝑖

 (3.7) 

The parameter 𝜃𝜃 can be found by maximizing the previous function, either by differentiation or 
by any other numeric algorithm (e.g. Newton-Raphson or Fisher Scoring algorithm).3 

If we now take into account that 𝑦𝑦𝑖𝑖 ~ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇𝜇𝑖𝑖,𝜙𝜙/𝜔𝜔𝑖𝑖),4 𝜇𝜇 = 𝑔𝑔−1(𝜂𝜂) and the equation (3.6) for 𝜂𝜂, 
 

2 For the remainder of the paper we will assume that 𝑐𝑐( . ) is the identity function, i.e. 𝑐𝑐(𝜙𝜙) =  𝜙𝜙. 
3 Typically, the function that is maximized is the log-likelihood not the standard likelihood. 
4 Equation (3.1) has 2 parameters, 𝜃𝜃 and 𝜙𝜙, however, here, we have 𝜇𝜇 and 𝜙𝜙, because 𝜇𝜇 can be expressed as a function of 
the canonical parameter 𝜃𝜃 through equation (3.2). 
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we can obtain all the derivatives 𝜕𝜕 log𝑃𝑃(𝑦𝑦; 𝜇𝜇,𝜙𝜙/𝜔𝜔)
𝜕𝜕 𝛽𝛽𝑗𝑗

 and find the estimates of the model coefficients 𝛽𝛽𝑗𝑗 . 

Here 𝜔𝜔𝑖𝑖 represent the known weight assigned to observation 𝑖𝑖. 

3.2 Quasi-distributions 
The previous dissertation is based on the assumption that the data 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 is distributed 

according to an EDM. Sometimes, however, it is not possible to make this assumption, and we do not 
have a specific shape for the data distribution. 

In order to overcome this lack of information we can still make some assumptions regarding the 
data that will allow us to specify a model. For our purposes, we will specify a relation between the 
mean of the data and the variance.  

In particular we will assume that: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝜙𝜙𝜙𝜙(𝜇𝜇) =  𝜙𝜙𝜇𝜇𝜉𝜉  , (3.8) 

Where: 

𝜙𝜙 > 0 is the dispersion parameter, 

𝜉𝜉 is a power parameter that specify the relation between the mean and the variance. 

3.2.1 Quasi-likelihood 

In this context we cannot estimate the parameter 𝛽𝛽𝑗𝑗 following the method of maximizing the 
likelihood function. This is because we do not have a complete probability distribution but just a 
relation between the mean and the variance of the data. 

In order to overcome this problem we then define the quasi likelihood function as: 

𝑄𝑄(𝑦𝑦, 𝜇𝜇) = �
𝑦𝑦 − 𝑡𝑡
𝑉𝑉(𝑡𝑡)

𝜇𝜇

𝑥𝑥
𝑑𝑑𝑑𝑑 , (3.9) 

Where: 

𝑦𝑦 represents the actual observation, 

𝜇𝜇 represents the expectation of the observation 𝑦𝑦, 

𝑉𝑉(𝑡𝑡) is the variance function, equation (3.4). 

Defining the quasi-likelihood in this way leads to properties similar to those of the standard log-
likelihood functions. It can therefore be used to estimate the parameters of a linear model 𝛽𝛽𝑗𝑗 . 

This can be achieved by re-writing the term 𝜇𝜇 considering the link function 𝑔𝑔( . ) such that 𝜇𝜇 =
𝑔𝑔−1(𝜂𝜂) and the set of parameters 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛 that define 𝜂𝜂 as shown in equation (3.6). 
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3.2.1 Distribution Examples 

Setting the power parameter 𝜉𝜉 equal to 0, 1, 2 or, 3 and solving equation (3.8) will lead to quasi-
likelihood functions that are equal to standard log-likelihood functions.  

In particular, we have the following results: 

𝜉𝜉 = 0 leads to the Normal Distribution, 

𝜉𝜉 = 1 leads to the Poisson Distribution, 

𝜉𝜉 = 2 leads to the Gamma Distribution, 

𝜉𝜉 = 3 leads to the Inverse Gaussian Distribution. 

Here we will prove such relationship for the Poisson distribution: 

Let’s start by setting 𝜉𝜉 = 1 and therefore 𝑉𝑉(𝜇𝜇) =  𝜇𝜇.  

If we now solve the equation (3.8) we will find that: 

𝑄𝑄(𝑦𝑦, 𝜇𝜇) = �
𝑦𝑦 − 𝑡𝑡
𝑉𝑉(𝑡𝑡)

𝜇𝜇

𝑦𝑦
𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝜇𝜇 (3.10) 

We recognize that the expression y𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜇𝜇 is the log-likelihhod function of a standard Poisson 
distribution. 

The main difference is that for a standard Poisson distribution we have that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝐸𝐸[𝑌𝑌], 
whereas here we have that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] =  𝜙𝜙𝜙𝜙[𝑌𝑌], which gives us the possibility to allow for more 
variability. 

The parameter 𝜙𝜙, in this context, is often called the over-dispersion parameter, hence Over-
Dispersed Poisson distribution.5 

  

 
5 In a standard context we would have 𝜙𝜙 = 1, which leads to 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝐸𝐸[𝑌𝑌]. 
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Here a summary table: 

𝑽𝑽(𝝁𝝁) 𝑸𝑸(𝒙𝒙,𝝁𝝁) Distribution Name 

1 −
(𝑦𝑦 − 𝜇𝜇)2

2
 Normal 

𝜇𝜇 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝜇𝜇 Poisson 

𝜇𝜇2 −
𝑦𝑦
𝜇𝜇
− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Gamma 

𝜇𝜇3 −
𝑦𝑦

2𝜇𝜇2
+

1
𝜇𝜇

 Inverse Gaussian 

𝜇𝜇𝜉𝜉 𝜇𝜇−𝜉𝜉 �
𝜇𝜇𝜇𝜇

1 − 𝜉𝜉
−

𝜇𝜇2

2 − 𝜉𝜉
� — 

Table 3 Quasi-likelihoods 

3.2.1 Limitations of quasi-likelihood 

We have seen that by introducing the concept of quasi-likelihood, we can relax the assumption of 
EDM and fit GLMs to data that do not necessarily follow a formally defined probability distribution. 

This practice, however, has some limitations. In fact, it won’t be possible to compute any metrics 
that are directly linked to the log-likelihood value or carry out any analysis based on the probability 
distribution of the data. 

An example from the first context would be the Akaike's Information Criterion (AIC). This metric 
is an estimator of the prediction error and the quality of a statistical model. It can be calculated 
as: 2𝑘𝑘 − 2𝑙𝑙, where 𝑘𝑘 represents the number of parameters in the model and 𝑙𝑙 is the log-likelihood. 

A drawback of not having the probability distribution of the response variable formally defined 
will not allow us to simulate responses from the model. This process if often useful to investigate and 
further analyze the distribution of each individual points in the dataset. 

3.3 Tweedie distributions 
The Tweedie distributions, called after M. Tweedie, are a family of distributions, belonging to the 

class of the EDM, with a defined and interesting relationship between the mean and the variance. 

A random variable 𝑌𝑌 follows a Tweedie distribution if  𝑦𝑦𝑖𝑖  ~ 𝐸𝐸𝐸𝐸𝐸𝐸(𝜇𝜇𝑖𝑖,𝜙𝜙/𝜔𝜔𝑖𝑖) with 𝐸𝐸[𝑌𝑌] = 𝜇𝜇 
and 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] =  𝜙𝜙𝜇𝜇𝜉𝜉 . From this relation it also follows that 𝑉𝑉(𝜇𝜇) =  𝜇𝜇𝜉𝜉 . 
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The Tweedie distributions are defined for 𝜉𝜉 ∈ ℝ, with exclusion of 0 <  𝜉𝜉 < 1.6 

We recognize that the Tweedie distributions are defined in a very similar way in which we specified 
the mean-variance relationships for quasi-distributions at equation (3.8), having, however, a formally 
stated probability distribution and likelihood function. 

For the stated reasons, Tweedie densities are often a very good alternative in situations where we 
might have otherwise used quasi-distributions. 

Another interesting aspect of the Tweedie distributions is that by changing the parameter 𝜉𝜉, 
sometimes called Tweedie index parameter, we can find the shape of familiar distributions.  

Here a summary table: 

𝝃𝝃 Tweedie Distribution 

𝜉𝜉 = 0 Normal 

𝜉𝜉 = 1 Poisson 

1 < 𝜉𝜉 < 2 
Compound 

Poisson - Gamma 

𝜉𝜉 = 2 Gamma 

𝜉𝜉 = 3 Inverse Gaussian 

Table 4 Tweedie distributions 

3.3.1 Tweedie GLM 

The Tweedie distributions can be written in the terms of an EDM as specified by equation (3.1), 
and following the procedure of maximum likelihood estimation, section 3.1.3, it is possible to derive 
the coefficients of a GLM defined in terms of a Tweedie distribution (Dunn et al., 2001). 

A big advantage is that we could overcome the issues explained at section 3.2.1. It is of particular 
interest, especially in the actuarial practice, the second point, i.e. it is possible to simulate target 
response variables. 

It is also important to note that in order to define a Tweedie GLM model we need the EDM 
structure to be fully defined, i.e. the parameter 𝜉𝜉 has to be known a priori. This, however, is not always 

 
6 For the remainder of the paper we will not cover the case in which 𝜉𝜉 < 0. 
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the case as the parameter 𝜉𝜉 has to be estimated from the data. 

The process could be done through a grid search by checking the value of the likelihood for each 
value of 𝜉𝜉. Various index parameters are chosen, the GLM is fitted and the likelihood is computed: 
the value of 𝜉𝜉 that leads to the highest value of the likelihood is the final estimate and it is the value 
that should be chosen to fit the final GLM. 

A similar procedure cannot be followed when we define a model in terms of a quasi-distribution, 
in this case the parameter 𝜉𝜉 has to be chosen prior to fitting the model. 

4. MODEL DEFINITION 

We will describe in this section how to set up the two modeling frameworks described, one based 
on quasi-distributions and one based on Tweedie GLM. The target, as explained in section 2, is to 
predict and estimate the future incremental claims. 

We can therefore set up a model that takes the following form: 

𝐸𝐸[𝑞𝑞𝑖𝑖𝑗𝑗] = 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝜂𝜂𝑖𝑖𝑖𝑖� ,  (4.1) 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑞𝑞𝑖𝑖𝑖𝑖] =  𝜙𝜙𝜇𝜇𝑖𝑖𝑖𝑖
𝜉𝜉 =  𝜙𝜙𝜙𝜙(𝜇𝜇𝑖𝑖𝑖𝑖), (4.2) 

𝜂𝜂𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 , (4.3) 

Where: 

𝑖𝑖 = 1, … ,𝑛𝑛 represents the Accident Year (indicated with w in section 2), 

𝑗𝑗 = 2, … ,𝑛𝑛 represents the Development Period (indicated with d in section 2),7 

𝜙𝜙 > 0 is the dispersion parameter, 

𝜉𝜉 is the index parameter that specify the relation between the mean and the variance, 

𝛼𝛼𝑖𝑖 are the GLM coefficients for each individual Accident Year 𝑖𝑖, 

𝛽𝛽𝑗𝑗 are the GLM coefficients for each individual Development Period 𝑗𝑗, 

𝑒𝑒𝑒𝑒𝑒𝑒 is the exponential function i.e. the link function 𝑔𝑔(. ) is the natural logarithmic function. 

In order to fully define the GLM model we also need to specify a probability distribution for the 
random variable 𝑞𝑞𝑖𝑖𝑖𝑖 , i.e. the stochastic component of the model. 

According to the framework presented in section 3.2 we will define 𝑞𝑞𝑖𝑖𝑖𝑖 as belonging to a quasi- 
distribution with parameters 𝜇𝜇𝑖𝑖𝑖𝑖, 𝜙𝜙 and 𝜉𝜉, whereas according to the framework presented in section 

 
7 The indices 𝑗𝑗 for the Development Periods start at 𝑗𝑗 = 2 to avoid the problem of multicollinearity. 
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3.3 we will define 𝑞𝑞𝑖𝑖𝑖𝑖 ~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜇𝜇𝑖𝑖𝑖𝑖, 𝜙𝜙, 𝜉𝜉). 

It is important to note that in both of the frameworks, the parameters that define the stochastic 
component of the model are exactly the same. The only difference is the definition of the probability 
distribution and hence the technique to estimate such parameters. 

4.1 Model Output 
The output expected from the model is the series of the GLM coefficients 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 , such 

that 𝐸𝐸[𝑞𝑞𝑖𝑖𝑖𝑖] = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗�, alongside the dispersion parameter 𝜙𝜙. The power index 𝜉𝜉 is an input to 
the model. 

Once we have such coefficients, we could estimate the lower triangle and then, by summing the 
individual estimates, we could obtain the amount of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.8 We are, in fact, dealing with incremental 
amounts. 

A more interesting application, rather than the point estimates themselves, is that we could build a 
probability distribution of the model output and, therefore, a distribution of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 

This process can be carried out in two different ways according to the definition of the model at 
the beginning of this section –either based on quasi-distributions or based on the Tweedie 
distributions. 

4.1.1 Bootstrap 

If we have defined the model based on quasi-distribution, we will follow a bootstrap procedure in 
order to compute the probability distribution of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Several texts have been written on this 
subject (Shapland, 2016), so we will not further investigate or describe this procedure. 

We will only point out that, since the whole procedure is based on the model residuals, various 
practical issues could arise and adjustments are often needed, e.g. heteroscedasticity or non-zero sum 
of residuals.  

The main reason why this is the case is because we do not have a formally defined probability 
distribution from which we could sample with a standard Monte Carlo methodology. 

4.1.2 Tweedie sampling 

If, instead, we have defined the model based on the Tweedie distribution, we have a formally 
defined probability distribution from which we could sample. 

Recall that each individual observation 𝑞𝑞𝑖𝑖𝑖𝑖  ~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜇𝜇𝑖𝑖𝑖𝑖, 𝜙𝜙, 𝜉𝜉) and that we have the estimates 
 

8 For the remainder of the paper we will be using the term 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 or Reserve interchangeably. 
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𝜇𝜇𝑖𝑖𝑖𝑖 obtained through the GLM process. At this point, in order to compute the samples 𝑞𝑞�𝑖𝑖𝑖𝑖 it will be 
sufficient to sample from the Tweedie distribution with the estimated parameters. For each value 𝑞𝑞𝑖𝑖𝑖𝑖 
we will have the full sampled probability distribution that will allow us to compute the probability 
distribution of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 

This procedure has the advantages of not having to deal with the model residuals and therefore 
overcome several of the issues of the standard bootstrap procedure. 

4.2 Estimating 𝝃𝝃 
In all our previous discussion, for either the model based on the quasi-distributions or the model 

based on the Tweedie distributions, we assumed that the parameter 𝜉𝜉 is known and used as an input 
for the model.  

This in not necessarily true all the time. However, setting a priori the value of the parameter 𝜉𝜉 can 
lead to interesting results. A very important result in the actuarial field is observed when we set the 
parameter equal to 1. 

In this case we will have that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑞𝑞𝑖𝑖𝑖𝑖] =  𝜙𝜙𝜇𝜇𝑖𝑖𝑖𝑖, i.e. the variance of the estimate is linearly 
proportional to the mean through the coefficient 𝜙𝜙. 

The advantage of having this relation is that the estimates 𝜇𝜇𝑖𝑖𝑖𝑖 will be the same as the estimates 
obtained with a standard Chain-Ladder technique (Renshaw, 1998). 

These results can simplify the calculations of the GLM and can extend the bootstrap procedure, as 
described in section 4.1.1, to the standard Chain-Ladder calculations (Shapland, 2018). 

A more rigorous approach, however, will be to estimate the parameter 𝜉𝜉 from the data and modify 
the model accordingly. This could be achieved as explained in section 3.3.1. 

Such procedure will allow us to define a Tweedie distribution that is more representative of the 
data under investigation and, therefore, having a more accurate simulation process, section 4.1.2. 

5. MODEL FITTING 

In this section, we focus our attention on the actual process of choosing an appropriate value for 
the parameter 𝜉𝜉 and fitting the model. 

We will build two models: one assuming that the value for the parameter 𝜉𝜉 is equal to 1 and one 
choosing the best 𝜉𝜉 maximizing the likelihood as described in section 4.2. 

We want to underline one more time that setting the parameter 𝜉𝜉 = 1, has the advantages of 
producing estimates 𝜇𝜇𝑖𝑖𝑖𝑖 that resemble those of the standard Chain-Ladder model. We can identify, 
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therefore, a stochastic model that underlies a common and well-known actuarial technique. 

In our analysis, however, we are more interested in finding the best model according to the data 
we have; we do not want to introduce any not verified pre-assumptions or create any kind of data 
leakage.9 

5.1 Analysis Objective 
The ultimate objective of the analysis is to build a probability distribution for the INBR. This will 

allow to construct confidence intervals, calculate moments, or risk measures such as Value at Risk. 

The estimated IBNR will be defined as the sum of the estimated incremental values for the lower 
part of the triangle: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = � 𝜇̂𝜇𝑖𝑖𝑖𝑖
𝑖𝑖 𝑗𝑗

 (5.1) 

In this expression, we used the notation 𝜇̂𝜇𝑖𝑖𝑖𝑖 to indicate that we are referring to the mean estimates 
of the lower part of the triangle, i.e. 𝑖𝑖 + 𝑗𝑗 > 𝑛𝑛 + 1. 

Moreover, since the values 𝜇𝜇𝑖𝑖𝑖𝑖 will be the mean estimates for the observed values 𝑞𝑞𝑖𝑖𝑖𝑖 obtained 
from the GLM, we can build a probability distribution for each of them, and, under the assumptions 
of independence, the probability distributions of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 will be the sum of the probability 
distributions of each 𝜇𝜇𝑖𝑖𝑖𝑖. 

  

 
9 Data leakage is defined as the creation of unexpected additional information in the training data. In this case it will be 
forcing the parameter 𝜉𝜉 = 1 without supporting evidence. 
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5.2 Building the Models 
In this section we will build the two aforementioned models for a sample loss triangle. We will use 

the following loss data, shown in incremental form:10 

           1 2 3 4 5 6 7 8 9 10 11 

1977 153,638 188,412 134,534 87,456 60,348 42,404 31,238 21,252 16,622 14,440 12,200 

1978 178,536 226,412 158,894 104,686 71,448 47,990 35,576 24,818 22,662 18,000  

1979 210,172 259,168 188,388 123,074 83,380 56,086 38,496 33,768 27,400   

1980 211,448 253,482 183,370 131,040 78,994 60,232 45,568 38,000    

1981 219,810 266,304 194,650 120,098 87,582 62,750 51,000     

1982 205,654 252,746 177,506 129,522 96,786 82,400      

1983 197,716 255,408 194,648 142,328 105,600       

1984 239,784 329,242 264,802 190,400        

1985 326,304 471,744 375,400         

1986 420,778 590,400          

1987 496,200           

Table 5 Incremental Loss Triangle 

The procedure to build the models will be very similar for the two procedures. There is only one 
caveat: when following the first procedure we will fix 𝜉𝜉 = 1. Whereas when following the second 
approach, alongside the model coefficients, we will also estimate 𝜉𝜉 by maximizing the likelihood 
function. 

We will look now at the individual steps that will allow us to construct the full distribution of 
the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 

Given the incremental loss data from Table 9, we can fit the initial GLMs. These models will take 
the form specified at the equations (4.1), (4.2) and (4.3). As already specified, we will construct two 
different models: one that replicates the Chain-Ladder estimates and one estimating the best parameter 
𝜉𝜉 according to the data. 

Once the model coefficients have been found, we will use them to predict the lower part of the 
triangle. The sum of this individual values, as specified in equation (5.1), will be the mean of the 
expected 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.11 

The solution of GLM models, however, will also give us the estimate of the Tweedie parameter 𝜙𝜙, 
and for the second model 𝜉𝜉.12 

 
10 B. Zehnwirth and G. Barnett. Best Estimates for Reserves. Proceedings of the CAS. Volume LXXXVII. Number 167. 
November 2000. 
 
11 We are predicting incremental values, so the value of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 can be calculated by summing them up. 
12 In the first model we made the assumption 𝜉𝜉 = 1. 
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Under the assumption that each observed value 𝑞𝑞𝑖𝑖𝑖𝑖  ~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜇𝜇𝑖𝑖𝑖𝑖, 𝜙𝜙, 𝜉𝜉) we could sample 
random variates from each respective distribution to create simulated loss values 𝑞𝑞𝑖𝑖𝑖𝑖∗ . 

At this point we have obtained a set of simulated loss values that we can use to fit a GLM and 
predict the lower part of this simulated triangle, which will be a simulated value of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. We can 
repeat this process a sufficient number of times in order to create a distribution of the expected 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 

In case we are following the second approach, the methodology will be exactly the same with one 
difference: before fitting the GLM on the simulated data, we will always estimate the Tweedie 
parameter 𝜉𝜉. This procedure can be achieved with many available statistical packages. However, it will 
be very slow and computationally heavy. 

5.3 Model Results 
In this section we will look at the distribution of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 obtained with both of the procedures 

described. 

The first model, the one with 𝜉𝜉 = 1, led to the following results for the total 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 value: 

 
1st Quartile Median Mean 3rd Quartile Standard Deviation CV = SD/Mean 

5,170,246 5,277,257 5,279,430 5,386,454 160,713 0.03 
Table 6 First Model Results 

And the following distribution: 

 
Figure 1 IBNR Distribution, Model 𝜉𝜉 = 1 
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We can also look at a 95% confidence interval: 
 

2.5% 97.5% 
4,970,226 5,600,093 

Table 7 IBNR Confidence Interval 

 
The second model, the one with the parameter 𝜉𝜉 = 𝜉𝜉 ̅ obtained by maximizing the likelihood 

function, led to the following results for the total 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 value: 

 

1st Quartile Median Mean 3rd Quartile Standard Deviation CV = SD/Mean 
5,052,754 5,225,989 5,223,112 5,409,020 264,261 0.05 

Table 8 Second Model Result 

 
 
And the following distribution: 

 
Figure 2 IBNR Distribution, Model 𝜉𝜉 = 𝜉𝜉̅ 

With the relative 95% confidence interval: 
 

2.5% 97.5% 
4,741,983 5,778,540 

Table 9 IBNR Confidence Interval 
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Here a comparison of the two distributions side by side: 

 
Figure 3 IBNR Distribution Comparison 

5.4 Results Analysis 
As we can observe from the previous descriptive statistics, the two models produce very close 

results for the mean value of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 estimates. However the standard deviation, and therefore the 
overall shape, of the two distributions is very different. 

This behavior depends, as expected, on the parameter 𝜉𝜉, in one case fixed to one, in the other 
estimated to be equal to 2.143.13 

Since the variance function is proportional to the mean, as specified by equation (4.2), we are not 
surprised that the second model leads to a higher level of variability around the mean: the CV of the 
first distribution is 0.03 versus a value of 0.05 for the second. 

If we are only interested in a mean estimate, this phenomena will not impact our estimates as much. 
However if we are trying to build confidence intervals around the mean, as it usually happens, the 
difference in the two models could be substantial. 

This aspect is even more evident when dealing with losses that are very high from an absolute 
amount perspective. 

 
13 More detail on this process in the next section. 
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6. MODEL VALIDATION 

We will look at the topic of model validation having emphasis on the numerical example previously 
presented. Again, all the details and the code used for the analysis can be found in the appendix. 

Model validation is a very important part of any analytical analysis, the outputs of a model and the 
model assumptions have to be validated against the real-data in order to ensure that the model is 
performing as expected and the analysis objectives can be achieved. 

We will validate that the GLM distribution assumptions are met, i.e. that the data is actually 
following a Tweedie distribution with a specified parameter 𝜉𝜉 and we will also check the quality of fit 
of the two models. 

6.1 Validating the parameter 𝝃𝝃 
In order to check the robustness of the value of the parameter 𝜉𝜉, it is useful to look at the profile 

likelihood of the model. This process consists in fitting several GLMs to the data with different input 
values of 𝜉𝜉 and then computing the log-likelihood. The value that will lead to the maximum log-
likelihood should be the value to use when fitting the final GLM. 

These are the results for the triangle presented in Table 5:14 

 
Figure 4 Log-likelihood profile 

 
14 The Tweedie distribution is not defined for values of 𝜉𝜉 between 0 and 1. In the plot the values of such points have been 
interpolated. 
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We can also look at the individual values for the log-likelihood:  
 

𝜉𝜉 = 1 𝜉𝜉 = 2.143 
-686.161 -677.909 
Table 10 Log-likelihood values 

6.2 Validating the Model 
There several techniques to validate the output of a GLM, such as looking at the Person or deviance 

residuals. These two techniques in some contexts, however, could be flawed (Dunn et al., 1996) 
because they will not lead to residual values that are exactly normally distributed. 

In order to overcome this issue, we will look at the values of the quantile residuals (Dunn et al., 
1996), which are always normally distributed. 

We can then look at the QQ-plot for the two models to check which one leads to better results. 

 

 
Figure 5 QQ-Plot Comparison for the Models 

Again, we can see that the second Model led to a better fit. 

For completeness we can also look at the value of the residual deviance achieved by the two models: 

𝜉𝜉 = 1 𝜉𝜉 = 2.143 
36,594 0.0267 

Table 11 Residual deviance values 
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7. DEVELOPMENT CURVE FITTING 

The concept of fitting a development curve to triangle data is justified by several advantages that 
will either make the whole reserving process easier and faster or stabilize results and make them less 
susceptible to outliers (Clark, 2003). 

As described by (Clark, 2003), the procedure of fitting a parametrized curve to loss data is based 
on the concept of maximum likelihood and hence share a lot of assumptions with the topics treated 
in this paper. 

7.2 Theoretical Definition 
The target of fitting a development curve to loss data is to find a curve, or more specifically, the 

parameters that define the curve shape that describe the process of loss emergence. Such curve will 
be a monotonically increasing function that goes from 0 to 1 as time goes from 0 to infinity. At each 
point in time such function, 𝑓𝑓(𝑡𝑡|𝜃𝜃), will describe the percentage of paid (or incurred) claims for each 
specific origin period. 

The expected value 𝜇𝜇𝑖𝑖𝑖𝑖 of each incremental claim amount 𝑞𝑞𝑖𝑖𝑖𝑖 can therefore be defined as: 

𝜇𝜇𝑖𝑖𝑖𝑖 =  𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖[𝑓𝑓(𝑗𝑗|𝜃𝜃) − 𝑓𝑓(𝑗𝑗 − 1|𝜃𝜃)], (7.1) 
Where: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 is the Ultimate Claim amount for origin period 𝑖𝑖, 

𝑓𝑓(𝑗𝑗|𝜃𝜃) is the selected emergence function evaluated at time 𝑗𝑗 subject to parameters 𝜃𝜃. 

According to the formulation above, it is clear that the numbers of parameters that need to be 
estimated are the sum of how many origin periods we have plus the number of how many parameters 
the emergence function has. If we look at the triangle in Table 5, we will have 11, the number of 
accident years, plus how many parameters the chosen emergence function has. 

From a calculation standpoint this could be very difficult to treat and optimize. To overcome this 
issue we could rewrite equation (7.1) in order to reduce the number of parameters to find. If we 
consider that 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 =  

∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑗𝑗
0

𝑓𝑓(𝑗𝑗|𝜃𝜃)
, we can then set: 

𝜇𝜇𝑖𝑖𝑖𝑖 =  
∑ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑗𝑗
0

𝑓𝑓�𝑗𝑗�𝜃𝜃� [𝑓𝑓(𝑗𝑗|𝜃𝜃) − 𝑓𝑓(𝑗𝑗 − 1|𝜃𝜃)] =  𝑐𝑐𝑖𝑖𝑖𝑖
𝑓𝑓(𝑗𝑗|𝜃𝜃)

[𝑓𝑓(𝑗𝑗|𝜃𝜃) − 𝑓𝑓(𝑘𝑘|𝜃𝜃)], (7.2) 

Thus reducing the number of parameters that need to be estimated equal to the number of the 
parameters in the function 𝑓𝑓(𝑡𝑡|𝜃𝜃). 

If we now consider the quantities 𝑞𝑞𝑖𝑖𝑖𝑖 distributed according to a specific probability distribution, 
we can rewrite the likelihood function considering the equation (7.2), and then maximizing it to obtain 
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the vector of parameters 𝜃𝜃. It follows that the choice of the probability distribution we select for 𝑞𝑞𝑖𝑖𝑖𝑖 
will have great impact on the solution 𝜃𝜃, their respective standard errors, and ultimately on the shape 
of the emergence function, and hence, on the estimated ultimate claim amounts and its variability. 

7.2 Fitting the curves 
In this section we will take a look at an actual curve fitting process on the data presented in Table 

5. We will fit two types of curves commonly used for these purposes: the Loglogistic cumulative 
distribution function (cdf) and the Weibull cdf. Each of these curves we will be fitted by the process 
of maximizing the likelihood as described in the previous section; the first time assuming that the data 
comes from a Tweedie distribution with parameter 𝜉𝜉 = 1 and the second time with the estimated 
parameter 𝜉𝜉 = 2.143. All the details and technical steps, alongside the code used, are made available 
in the appendix. 

Both of the curves are described by two parameters, 𝛼𝛼 a shape parameter, and 𝛽𝛽, a scale parameter. 
Here the values found for the data analyzed: 

 𝝃𝝃 = 𝟏𝟏 𝝃𝝃 = 𝟐𝟐.𝟏𝟏𝟏𝟏𝟏𝟏 

Curve 𝜶𝜶 𝜷𝜷 𝜶𝜶 𝜷𝜷 

Loglogistic 1.639 2.634 1.603 2.622 

Weibull 1.252 3.280 1.096 3.445 
Table 12 Development curve paramters 
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and the graphical representation: 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Claim Development Pattern 

As we can see, the curves are very close to each other. However, we observe a very different 
situation regarding the Fisher Information Matrix, which is used to calculate the covariance matrix, 
and hence, the standard errors of the parameters. 

 𝝃𝝃 = 𝟏𝟏 𝝃𝝃 = 𝟐𝟐.𝟏𝟏𝟏𝟏𝟏𝟏 

Curve 𝒔𝒔𝒔𝒔(𝜶𝜶) 𝒔𝒔𝒔𝒔(𝜷𝜷) 𝒔𝒔𝒔𝒔(𝜶𝜶) 𝒔𝒔𝒔𝒔(𝜷𝜷) 

Loglogistic 0.0010 0.0017 0.7598 0.7649 

Weibull 0.0005 0.0016 0.3685 0.8822 
Table 13 Parameter standard Errors 

Again, it is not surprising that due to the higher variance assumed when fitting the curves 
considering the parameter 𝜉𝜉 = 2.143, we have higher standard errors. This will ultimately lead to 
higher uncertainty in the estimate of the ultimate claim amounts. 

8. CONCLUSIONS 

This paper has analyzed the concept of Over-Dispersion and assumptions testing in the context of 
loss reserving. We focused on the main theoretical details behind the so-called quasi-distributions and 
how they relate to the Tweedie distribution. A formal definition of the mathematical structure has 
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been provided, alongside the practical implications that arise from the process of parameter selection. 

The paper also presented how a linear model can be defined and built in order to predict expected 
claim amounts. We analyzed how the resulting predictions differ, both in terms of expected mean and 
overall distribution, when we change the underlying assumptions. This concept has been particularly 
stressed to underlining the importance of hypothesis testing in order to build the most accurate model 
for the data. 

Another application that has been investigated is fitting a development curve to loss data. As 
shown, this shares several assumptions with the concepts previously discussed, and we analyzed how 
predictions and prediction errors vary with varying assumptions. Even in this case we underline the 
importance of hypothesis validation and assumption verification. 

Overall, we carried out several tests in order to demonstrate how important assumptions testing is 
when applying common and widespread models. The main outcome is that predictions obtained with 
models that have been fully calibrated on the data always perform better, leading to the most accurate 
and stable predictions. 

Supplementary Material 
The full code used to produce the numeric results presented in the paper is available. Moreover 

the simulated IBNR vectors are also available. Producing these results could be very heavy from a 
computational point of view and therefore we decided to make them available as well. 
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Abstract

One of the more interesting problems that actuaries have to deal with at some point
in their careers is that of assigning a price to risk. Like many others, I have been
chasing this problem, off and on, throughout my entire actuarial career. My most recent
attempt at a solution is published in my monograph, Meyers (2019), on stochastic loss
reserving. I am writing this paper as a historical memoir, summarizing the path I took
to arrive at this particular solution. Over the years I have worked on projects related
to the two distinct parts to this problem. The first part is to obtain a prediction of
the distribution of the outcomes. The second part is to assign a financial value to
that distribution in such a way that it can compared to other risky investments. In
retirement I was able to direct my experiences toward a solution to the problem for loss
reserve liabilities. I hope the reader will find this paper both interesting and informative.

1 Introduction

With the release of my recent major publication, Meyers (2019) on stochastic loss reserving,
I can see that my actuarial career is winding down.

The monograph deals with the quantification and valuation of risky liabilities — a prob-
lem that I have been chasing, off and on, over my entire actuarial career. Looking back, I
thought that the twists and turns of this Chase had the elements of an interesting actuarial
story. The goal of this paper is to tell that story.

To provide some context, it will help to know about my employers and the kind of work
I was doing. Let me start with a quick overview of my career.

• After receiving my Ph.D. in pure mathematics from SUNY Albany in 1972, my intent
was to become a college math professor. Unfortunately the academic market was
flooded with brand new Ph.D.s and the best position I could get was a temporary
position at the University of Rhode Island. While there, I decided to drop the subject
of my graduate work and develop skills that were more marketable. I chose computing
and numerical methods. I also passed the first two actuarial exams. When my contract
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with URI was renewed for a second year, I taught numerical methods to engineering
students.

• I took my first job as an actuary at the Hartford Insurance Group in 1974. My main
responsibility was to prepare rate filings for private passenger auto insurance.

• In 1976 I took a very different job at CNA Insurance. For most of the eight years I
was there, I worked on a series of special projects. For four of those years, my boss
was Yakov Avichai1, a statistician and not an actuary. Many of my projects had to
do with what we now call predictive modeling using SAS. Others, which I will discuss
below in some detail, involved large account pricing. In my final two years at CNA, I
was the actuarial manager for large account pricing.

Another part of my responsibilities was to represent CNA on several ISO and NCCI
research committees. These committees worked on topics in credibility, individual risk
rating and increased limits ratemaking.

• In 1984, armed with both a Ph.D. and an FCAS, I gave academia another try at
the Department of Statistics and Actuarial Science at the University of Iowa. In my
four years there, I got an overview of the statistical landscape and established some
good academic contacts. But in the end, I concluded that my professional future lay
elsewhere in the insurance industry.

• In 1988 I joined ISO where I remained until I retired in 2011. As I interviewed for
the job, it was clear that they wanted to use their comprehensive insurance data to
develop new insurance products. This was at the time when ISO was transitioning from
a rating bureau that was wholly owned and controlled by the insurance companies to
an independent, for profit, corporation. My job there was to do research projects that
would lead to new products. I will defer discussing those projects that relate to the
Chase until later. The other projects that I worked on included:

– Classification ratemaking in response to California Proposition 103

– Special studies published in the ISO Insurance Issues Series

– Implementing catastrophe models in the ISO loss costs

– Securitization of catastrophe risk

– Producing claim severity distributions for reinsurers

– Develop procedures for identifying fraudulent claims with ISO’s ClaimSearch
database.

– Highly refined risk classification for the ISO Risk Analyzer Suite

Some of my projects led to successful ISO products, and others didn’t. In exploring the
Verisk website I see that many of the products that I worked on have been significantly
expanded. I feel proud of my participation on the teams that worked these products.

1Scroll down a bit to see his obituary
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• In retirement, I continued writing, attending CAS and ASTIN meetings and serving
on a few of their committees. Also, I continued the Chase.

The objective of the Chase was to find a solution to two related problems.

1. Obtaining the distribution of financially relevant outcomes.

2. Assigning a financial value to that distribution.

The remainder of this paper will describe the path I took to get to my current solution of
the problem.

2 First Exposure

I took my first actuarial job in 1974 preparing private passenger auto rate filings. At that
time, the standard template for ratemaking in that line of insurance was based on the PCAS
paper by Philipp K. Stern [1956]. Summarized at a high level, the Stern approach was to
estimate the costs and expenses for the future policy period and add a 5% (???) profit
margin.

The market conditions at the time allowed for significant price increases, subject to
approval from state regulators. This led to an adversarial relationship between the company
actuaries and the regulators where various estimates were often challenged. One of the
more significant challenges to the Stern methodology was the omission of investment income
generated by policyholder premiums. Many, but not all, states required insurers to include
consideration of investment income in their ratemaking.

My first few rate filings used the Stern methodology. As I gained experience, I would
work on states that required us to consider investment income. Then I started getting special
projects, two of which were relevant to the Chase.

For auto physical damage, application of the Stern methodology would often indicate
that the rates for a $50 deductible coverage would be less than the rate for a $100 deductible
coverage. The explanation given for this was that those who purchased the lower deductible
were better drivers.

Since we did not want to charge a lower rate for the lower deductible (otherwise nobody
would purchase the higher deductible) we had an algorithm to artificially raise the $50
deductible rate and lower the $100 deductible rate. When I examined the algorithm, I
noticed that the total premium generated after application of the algorithm was less than
the total premium generated before application of the algorithm. I then went to my boss
and offered to rewrite the algorithm so that it would balance the overall premium.

The next day he came back to me with a paper, Cahill (1936), that described how to
use claim severity distributions for pricing coverages with deductibles. My project was to
construct an empirical claim severity distribution. Then I developed the code to adjust the
distribution for inflation and calculate loss elimination ratios by deductible.
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Another project I got was to critique an investment income methodology required by
the Massachusetts Division of Insurance. A high-level description of the methodology was
to calculate the present value of the loss after consideration of the loss payout pattern. The
profit margin was determined assuming that the insurer investment was determined by the
so-called Kenney Ratio. The profit margin was then determined by set so that an insurer
received a 15% return on its investment.

I saw nothing structurally wrong with the approach. My analysis consisted of sensitivity
testing the final rates to the various input parameters. Afterwards, I asked my boss how he
would critique the method, he said simply — We think the return on investment should be
18% (???).

Looking back, these two projects were my introduction to the Chase.

1. I was introduced to loss distributions.

2. I was exposed to the problem of determining an appropriate return for an insurer’s
investment. At the same time, I was exposed to Bayesian analysis and utility theory
by studying operations research, specifically Raiffa (1970), and Willett (1901) on what
was then Part 4 on the actuarial exams.

3 Retrospective Rating

My early projects at CNA involved data processing. One of these projects was to build a
database of individual claims from which we could construct claim severity distributions.
Working with the raw claim audit files, I built a database that allowed one to track the
development of individual claims for both paid and incurred losses over time.

When that project was completed, my next project involved retrospective rating. I
talked to an underwriter who lectured me saying (as I recall): “Retrospective rating is not
for everyone. The accounts we want are high frequency/low severity risks with relatively
stable loss ratios. The ones we don’t want are the high severity/low frequency risks. We
will collect the minimum premium for several years running. Then the big claim will blow
through the maximum and we end up losing money.”

The question to be addressed was one of pricing. How do we vary the insurance charge
by estimated claim severity? To address this I needed claim severity distributions from the
database that I had been working on earlier, and the collective risk model.2 This model can
be thought of as a computer simulation where we:

1. Select a random number of claims, N , from a claim count distribution.

2. for n = 1, . . . , N , select a claim size, Zn, from a claim severity distribution.

3. Then the loss for the simulated account loss X =
∑N

n=1 Zn.

2My introduction to the collective risk model came from Beard, Pentikäinen and Pesonen,1977.
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Given a large set of simulated account losses, {XK}10,000K=1 , I calculated the insurance charge
that would yield an adequate average retrospective premium, using numerical methods. Mey-
ers (1980) describes the method in detail. It is worth noting that the simulations originally
ran overnight on a mainframe computer taking about 45 minutes of CPU time.

I presented this paper at my first CAS meeting, where I received my ACAS, as part of
a call paper program in May of 1980. Another paper in the call, written by Shaw Mong
(1980), attracted my attention. What it did was calculate the cumulative probabilities of
a collective risk model by numerical methods — not by simulation. A critical assumption
in Mong’s model is that the claim severity distribution was a gamma distribution3. At that
time, I was using empirically tabulated claim severity distributions. But I thought Mong’s
approach was important enough to investigate in detail.

Back at the office I worked with a summer intern, Nathaniel Schenker who was then
a graduate student in statistics at the University of Chicago, to duplicate Mong’s model.
When completed we compared it with our simulation model by approximating our empirical
severity distributions with a gamma distribution. Unfortunately it did not work well when
we approximated our severity distributions with a gamma distribution.

A high-level summary of Mong’s algorithm is that it expresses the Fourier transform
(FT) of the aggregate loss distribution in terms of the FT of the gamma distribution and
the probability generating function of the claim count distribution. The aggregate loss
distribution was then obtained by a numerical inversion of the FT.

Upon reflection, the key property of the gamma distribution that made Mong’s algorithm
work was that there was a closed form expression of its FT. Another distribution with
a closed form FT was the uniform distribution, and the piecewise uniform distribution –
otherwise known as a histogram. And histograms can approximate any distribution (with
finite support) to any desired degree of accuracy. It was a fairly simple task to replace
the gamma distribution in our code with a histogram. Thus we were able to calculate
aggregate loss distributions without resorting to simulation. The bad news was that the
numerical integration formulas in Mong’s algorithm were not efficient for this problem, and
the simulations actually ran faster.

At this point I teamed up with Phil Heckman and together we came up with an efficient
numerical integration formula for the Fourier inversion and we derived a formula for the
excess pure premium, useful for retrospective rating. The final algorithm ran in a matter of
seconds on a mainframe. We described the algorithm in Heckman and Meyers (1983).

A feature of the collective risk model is that care must be taken to counteract the “law
of large numbers.” For example, if we choose the λ parameter (the mean of the claim
count distribution) in a Poisson distribution, the coefficient of variance of the aggregate loss
distribution will approach zero as the size of the account, as measured by λ, increases. We
did not accept this conclusion. After all, variances of loss ratios for entire lines of insurance
were noticeably larger than zero.

3Several years later I found out that Mong’s model was a generalization of the Tweedie distribution. See
Meyers (2009).
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Also, I was serving on an NCCI task force to update their Table M.4 The data underlying
this table consisted of tens of thousands of account losses and their associated premiums.
Here, we also saw that the “law of large numbers” was violated.

We attributed this phenomenon to parameter uncertainty. To account for this in our
collective risk model we chose our claim count distribution to correspond to the following
simulation algorithm:5

1. Select a random variable, χ, from a gamma distribution with mean 1, and variance, c.

2. Given an overall mean claim count, λ, select a random claim count from a Poisson
distribution with mean χ · λ.

It can be shown (Heckman and Meyers (1983) Eq 3.4) that a consequence of including
parameter uncertainty in the claim count of a random loss, X, is that:6

V ar[X] = a · E[X] + c · E[X]2 (1)

A consequence of Equation 1 is that the coefficient of variation of X is equal to√
a

E[X]
+ c

which approaches
√
c as the expected loss, E[X], increases.

As Phil and I were completing our paper, Nat Schenker came back for another summer
and together we made a first attempt at estimating the parameter, c, in our model from
empirical data. Our results were written up in our paper, Meyers and Schenker (1983).

The early 1980’s were a period of high inflation, high interest rates and a competitive
insurance market. One way insurers were competing in the large account market was to
offer paid loss retros, where the retrospective premium was determined by the paid, rather
than the incurred losses. A question our underwriters wanted us to address was “How much
higher should the insurance charge be when we offered a paid loss retro?”

Given that we had the data to construct claim severity distributions by claim maturity
(see the first paragraph of this section) we evaluated the expected retrospective premium
for paid losses for each adjustment period using Heckman Meyers algorithm. Then using
numerical methods we were able to calculate the insurance charge that yielded the desired
present value of the expected retrospective premium. I described these calculations in Meyers
(1986).

When I became the actuarial manager for large account pricing, I implemented this
retrospective rating tool as part of our large account pricing workup. I know for a fact that
the tool continued to be used for (at least) several years after I left CNA.

4Table M was a table of excess pure premium ratios, tabulated by account size, used for retrospective
rating in the US. My understanding at the time was that it was the standard used for all lines of insurance.

5Heckman and Meyers (1983) allowed for parameter uncertainty in both claim count and claim severity.
The salient points can be made here with the simpler model.

6In the terminology of Heckman and Meyers, Eq 3.4, a = E[z2]/E[z]. Typically, this is a large number.
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In closing this section, I would like to describe an interesting failed project. The risk
manager for one of our large workers’ compensation accounts had a problem. For several
years running, their incurred loss retrospective rating plan had a fairly large maximum.
Typically, the retrospective premium was well below the maximum premium. While the
account was prepared to pay this maximum premium for a given year, they were worried
that the retrospective premium would increase simultaneously for several prior years. I was
asked to develop a methodology to price a contract adjustment that lowered the maximum
premium after the first retrospective adjustment.

If this project were to be done today, we would apply our favorite stochastic loss reserve
model to the account’s current losses and estimate the expected cost of lowering the maximum
premium. But in the early 1980’s, before Mack (1994), Barnett and Zehnwirth (1998) or
England and Verrall (2002), we did not have such a model. The only research on this topic
that I knew of at the time was a paper by Hachemeister (1976) that treated loss development
as a Markov chain. I tried to apply the Hachemeister methodology to this account and came
up with a negligible charge for lowering the maximum premium. Neither I nor my colleagues
believed this result and we did not offer the adjustment.

As it turned out, the worse case scenario actually happened. We got a new claims man-
ager in the branch office that dealt with this account. In examining the branch’s claims on
file, the manager reassigned several claims to the workers’ compensation “tabular” program.
This had an adverse affect of the account’s retrospective premium going back several years.
When I became a manager in the large account pricing unit, I had to write a letter to the
risk manager explaining these loss adjustments.

This project was my first brush with stochastic loss reserving and the problem of de-
pendencies. It was at the forefront of my thinking when I wrote Meyers (2007) titled “The
Common Shock Model for Correlated Insurance Losses.”

4 Increased Limits Ratemaking

I joined ISO in 1988 as a researcher in what was then called the Actuarial Development
Department. My first project was to work on a revision to their increased limits ratemaking
methodology. Before describing the new methodology, I should say something about my
background that indicated I could help on this project.

First, having represented CNA on the ISO Increased Limits Subcommittee, I was familiar
with their original methodology. Prior to my joining this subcommittee, they had developed
a methodology that used a five-parameter Pareto distribution described by Patrik (1980)
and a risk load methodology described by Miccolis (1977). One of Miccolis’ sources for risk
loads was Bühlmann (1970), which I was also familiar with.

In 1984, I left CNA to join the faculty in the Department of Statistics and Actuarial
Science at the University of Iowa. While there I got to know Stuart Klugman and and Bob
Hogg, the authors of Loss Distributions , a textbook that had been recently added to the
CAS Syllabus of Examinations. I taught courses in compound interest, numerical analysis,
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life contingencies, survival models and risk theory. Also, I developed and taught their first
course in casualty insurance covering credibility theory and loss distributions.

During the summers I worked for ISO doing research on fitting loss distributions. As I
approached my third summer, ISO suggested that I apply for a full time position there, and
the next year I did.

There are two aspects of increased limits ratemaking that should be treated separately:
(1) Fitting the claim severity distribution; and (2) Determining a risk load. Let’s treat these
two aspects of the problem in separate subsections.

4.1 Claim Severity Distributions

The Hogg and Klugman text first describes a few basic distributions such as the normal and
gamma distributions, and then generates other distributions by transforming the random
variables with either a logarithmic or a power transform. The text also describes mixtures of
distributions. As examples they gave a mixture of a gamma and a loggamma distributions,
and then moved on to compound distributions where the parameters of the distributions are
also random variables. The examples in the text were mainly using a gamma distribution
for mixing the parameters.

My reading of the Hogg and Klugman text suggested that something in this very rich
family of transformed and mixed distributions would fit the ISO data. This is the problem
that I worked on for ISO during the summers while at the University of Iowa. After this
work, I was favoring a discrete mixture of Pareto distributions when I started at ISO in 1988.

When I joined ISO, the increased limits ratemaking formula was unstable, producing
unacceptable swings from year to year. The main problem ISO was having was not in their
choice of claim severity model, but in the way they “developed” the claims to their ultimate
value. To sidestep this, I advocated fitting the model to settled claims arranged by how long
it took the claims to settle. The counterargument was that we were discarding information.
My counter to that was that with tens of thousands of claims, we had enough information.
In the end, we used only settled claims.

After thorough exploration, we ended up with a model consisting of a mixture of several
Pareto distributions. I originally named it the “Pareto Soup” model.7

As the project gathered momentum, we decided to add another mathematical actuary
to our staff. We chose Clive Keatinge, FCAS. When Clive came on, we were beginning
to grapple with fitting the Pareto Soup model. Clive took the initiative to fit the model
by multivariate Newton-Raphson iteration. His first several weeks on the job were spent
calculating the many partial derivatives in the Jacobian matrix needed for the iterations.
When finished, the fitting procedure ran in a matter of seconds.

When we finished the model, Clive was instrumental in transferring the entire increased
limit ratemaking methodology to our Increased Limits Division.

7When we came to file the model with insurance regulators, our management changed its name to the
more formal “Mixed Pareto” model.

The Chase -- An Actuarial Memoir

Casualty Actuarial Society E-Forum, Summer 2020 7

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316634


This was not the end of the claim severity distribution story. The next year, ISO issued
a call for individual claim data from excess and umbrella policies. Our job was to see if we
could use it to enhance our increased limits model. Spoiler alert — We ended up changing
our mixed Pareto to a mixed exponential model.8 The path that led to the mixed exponential
distribution makes for an interesting story.

Our fits on the data that included the excess and umbrella data into our Pareto Soup
model were not particularly good. A more flexible model seemed to be called for. Clive sug-
gested that we needed a model with alternating signs in its successive derivatives. Consider
the density function, f(x), for the exponential distribution.

f(x) = e−x

f ′(x) = −e−x negative

f ′′(x) = e−x positive

f ′′′(x) = −e−x negative

· · ·

Now let’s back up a bit. While I was an academic, I joined the Risk Theory Society, a small
but active subgroup of the American Risk and Insurance Association. The group consisted
mainly of business and economics professors with an interest in insurance. I maintained my
membership in that group until I retired at the end of 2011, as it provided me with a view of
insurance that was quite different from what one normally gets at actuarial society meetings.

Many members of this society were interested in utility theory. This theory proposes
that a utility function, u(x), can be used to describe how a person makes decisions under
uncertainty. Conditions imposed on u(x) typically include u′(x) > 0, i.e. more is better
and u′′(x) < 0, i.e. risk aversion. Further conditions proposed at society seminars included
u′′′(x) > 0 and u′′′′(x) < 0.

A society member, Pat Brockett, see Brockett and Golden (1987), demonstrated that
any utility function with alternating signs in successive derivatives could be expressed as a
mixture of exponential functions. When Clive suggested the alternating signs condition, I
pointed out Brockett’s result and thought it could be applied to exponential distributions
as well. Clive implemented it into our increased limits ratemaking methodology. Keatinge
(1999) describes his methodology for fitting mixed exponential distributions.

It is worth pointing out that several years later, Lee and Lin (2010) gave a more general
result that drops the alternating signs condition and demonstrates that any positive loss
distribution can be expressed as a mixture of Erlang distributions.

8Note that the Pareto distribution is special case of the mixed exponential distribution. See p. 54 of the
Hogg and Klugman text
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4.2 Risk Load

I had gained familiarity with the original ISO risk load formula when I represented CNA on
the ISO Increased Limits Subcommittee. A common complaint at that time was that the
risk load was too high at the higher limits. In fact, another actuary at CNA asked me to
show her how to remove the risk load from the increased limits factors.

While in academia, I fell out of the loop with regards to the continuing risk load saga.
When I joined ISO I found out that they had changed the formula from where the risk load
had been proportional to the pure premium variance, to a formula where the risk load was
proportional to the pure premium standard deviation. When applied across different lines
of insurance, this risk load produced some counterintuitive reversals. My job was to fix this.

But first, let’s step back a little bit. While in academia, I had begun to do research
on the price of risk. It started when I joined the CAS Committee on the Theory of Risk
(COTOR).

The US Internal Revenue Service had decided to require insurers to deduct their dis-
counted, rather than their statutory (undiscounted) reserves when computing their income
tax. Insurers argued that casualty insurance reserves were highly uncertain and that the
undiscounted reserves provided a risk margin so that funds would be available in case of an
underestimate.

COTOR was investigating more explicit ways of providing a risk margin for loss reserves.
We produced a white paper COTOR (1987) titled “Risk Theoretic Issues in the Discounting
of Loss Reserves.” I thought the report did a nice job of scoping out the problem. It
called for the development of a stochastic loss reserve model (nonexistent at the time for
casualty insurance) and for a way to evaluate risk with either utility theory or ruin theory.
It specifically rejected the Capital Asset Pricing Model (CAPM) which held that public
companies should not be concerned with company-specific risk. See for example Butsic
(1979).

What was lacking was an example showing how all this would fit together. I was teaching
a course in life contingencies at the time. The Society of Actuaries textbook Actuarial
Mathematics by Bowers et. al. provided a good part of what we were missing, only it was
for life insurance, not casualty insurance. It provided (1) a long-tailed line of insurance; (2)
a stochastic model; and (3) discounting. Missing was a way to treat parameter uncertainty.

In addition to my work at CNA on parameter uncertainty, I drew on what I consider
to be one of the best readings I encountered on the actuarial exams — the book Decision
Analysis (1970) by Howard Raiffa.9 It was an excellent combination of Bayesian analysis
and utility theory.

My intent in writing the paper, Meyers (1989) titled “Risk Theoretic Issues in Loss
Reserving: The Case of Workers’ Compensation Pension Reserves” was to provide a template
for calculating the risk margin along the lines of the COTOR white paper. I fully expected
the template to evolve over time.

9Operations Research was one of the topics on Part 4 when I was taking the exams.
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Features of this paper include:

• Using a simple 3-parameter mortality model.

• Using standard life contingency formulas for process risk.

• Using Bayesian analysis to quantify parameter uncertainty and to get the predictive
distributions of pension reserves.

• Using utility theory to calculate the risk margin.

• Using a market-based profit margin to determine parameters of the utility function.

For this particular example, the amount of the discount and the risk margins were very
different.

Just as I was beginning my work at ISO I presented this paper at Second International
Conference on Insurer Solvency. At the conference, Neal Doherty, who I knew from the Risk
Theory Society, challenged my use of utility theory for an insurance company and suggested
that the CAPM was more a appropriate measure of risk for an insurance company. The
debate was short, and we did not agree. I “knew” full well that insurers care about company-
specific risk. They buy reinsurance. As one who had just used market prices to determine
the parameters of a utility function, I was open to alternatives to using utility theory to
describe a company’s risk aversion, but did not have a viable alternative at the time.

It was at this time that I decided to do some “opposition research” and dig deeply into
the mathematics of the CAPM.

Back at ISO, I got to know a new colleague, John Cozzolino.10 As one can see from a
search of his papers on the CAS website, we shared a common interest in utility theory and
risk loads. In my quest to better understand the mathematics underlying the CAPM, John
steered me to an alternative derivation of the CAPM that is in the Appendix of Chapter 7
of Copeland and Weston (1980). Here is a high-level summary of that derivation.

First, here are the CAPM behavioral assumptions:

• Investor chooses a portfolio of securities that will:

1. Maximize total expected return.

2. Be subject to a total variance constraint.

• For a given set of securities, and their associated returns, an investor calculates how
many shares to buy in each security using the method of Lagrange multipliers.

• The total number of shares bought may not match the total number of shares in the
market.

10John and I worked together in the Actuarial Development division at ISO for a few years. He later went
on to be a professor of risk management at Pace University.

The Chase -- An Actuarial Memoir

Casualty Actuarial Society E-Forum, Summer 2020 10

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B9B5EED8FCAD1D1A843B00E7D318AB6A/S0515036100008321a.pdf/second-international-conference-on-insurance-solvency.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B9B5EED8FCAD1D1A843B00E7D318AB6A/S0515036100008321a.pdf/second-international-conference-on-insurance-solvency.pdf
https://bepp.wharton.upenn.edu/profile/doherty/


• The CAPM calculates the return of the security that forces a match of the total number
of shares bought with the total number of shares in the market.

Once I understood the mathematical underpinnings of the CAPM, I began to think about
how I might adapt these ideas in an insurance setting. Let’s now consider the difference
between securities and lines of insurance making the following analogies.

• An insurance line of business is analogous to a company issuing a security.

• An individual insurance contract is analogous to an individual security, e.g. a share of
the company’s stock.

The analogy breaks down when we compare the losses on an individual insurance con-
tract, with the return on a company’s security. The losses can be different for two different
insurance policies, but the return on an individual security is the same for all securities issued
by the company. The consequences of this are:

• Let R represent the random return of a single security. If an investor buys n securities,
the variance of their total return is

V ar[R · n] = V ar[R] · n2 (2)

That is to say, the variance of the total return on that security is proportional to the
square of the volume, n, bought of that security.

• Let XE represent the random loss paid on an insurance contract written with exposure,
E. Let E[XE] represents the volume of the insurance contract. Then according to
Equation 1 above

V ar[XE] = a · E[XE] + c · E[XE]
2 (3)

That is to say, the variance of the loss paid on an insurance contract is a linear com-
bination its volume, E[XE], and its volume squared, E[XE]

2.

As I dug into the underlying math of the CAPM it became clear that one could use
Equation 3 in the model in place of Equation 2. That model was used in our revised risk
load formula. Here is an outline of the model.

• Insurer chooses an insurance portfolio that will:

1. Maximize total expected return.

2. Be subject to a total variance constraint.

• For each line of business, the insurer calculates how much exposure to write in each
line of insurance using the method of Lagrange multipliers.

• The total insured exposure may not match the total amount of exposure desired by
the market.
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• The formula calculates the risk load of the contract that forces a match of the amount
of exposure sold with the total exposure desired by the market.

The original paper describing this methodology is in Meyers (1991) titled “The Compet-
itive Market Equilibrium (CME) Formula for Increased Limits Ratemaking.” That paper
described the theoretical underpinnings of the ISO formula for risk loads. Before elaborating
on how we implemented the risk load, I want to describe a second derivation of the same
risk load formula that we came up with a few years later, described in Meyers (1996). I
believe this second derivation is more intuitive and it better lines up with the way actuaries
currently think about risk management.11

As one looks through CAS publications of the early 1990’s they will find several papers
that address the subject of risk loading. A paper that attracted my attention was Kreps
(1990) titled “Reinsurance Company Risk Loads from Marginal Surplus Requirements.”

It also attracted the attention of Phil Heckman, who wrote Heckman (1992) titled “Some
Unifying Remarks on Risk Loads” where he showed that the Marginal Capital and the CME
approaches are equivalent. I followed up and derived the CME risk load by the marginal
capital approach, in Meyers (1996) titled “The Competitive Market Equilibrium Risk Load
Formula for Catastrophe Ratemaking.”

Let’s look at the behavioral assumptions underlying the marginal capital approach. Let
C[X] denote the amount of capital needed by an insurer with loss portfolio, X.

• The insurer will prefer to add Y1 with expected return R[Y1] instead of adding Y2 with
expected return R[Y2] if

R[Y1]

C[X + Y1]− C[X]
>

R[Y2]

C[X + Y2]− C[X]

• Over time, the search for better risks, Y , will reach a point of diminishing returns.
Thus this behavior leads to a constant K where

R[Y ]

C[X]− C[X − Y ]
= K (4)

for all Y in the insurer’s portfolio.

If we make C[X] an increasing function of the variance, i.e. C[X] = f(V ar[X]), the
above behavior leads to a solution of the optimization problem — Maximize total return
subject to a variance constraint. To see this, suppose we have contracts i and j with the
same marginal capital. If R[Yi] > R[Yj], then a portfolio with contract i will have a greater
total return than a portfolio with contract j.

11In the 30 years since I wrote Meyers (1991), I have yet to hear of an insurance company setting their
line of business acquisition targets using Lagrange multipliers.
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Now let’s derive some expressions for the risk load.

R[Y ]

C[X + Y ]− C[X]
=

R[Y ]

f(V ar[X + Y ])− f(V ar[X])

≈ R[Y ]

V ar[X + Y ]− V ar[X]
· 1

f ′(V ar[X])

≈ K the insurer’s cost of raising capital.
This implies that

R[Y ] ≈ K · f ′(V ar[X]) · (V ar[X + Y ]− V ar[X])

≡ λ · (V ar[X + Y ]− V ar[X])

We call
λ = K · f ′(V ar[X]) (5)

the risk load multiplier.

Note that the approximation that we used in deriving Equation (5),

f(V ar[X + Y ])− f(V ar[X] ≈ f ′(V ar[X]) · (V ar[X + Y ]− V ar[X])

is best when Y is a small addition to the insurer’s existing portfolio, X.

Let’s break up the insurer’s existing portfolio into its individual insurance contracts. Let

X =
∑
i

Xi

Then V ar[X] is equal to the sum of the elements in the covariance matrix

{Cov[Xi, Xj]}

If we were to add Y to the insurer’s portfolio we would add a row and column consisting
of {Cov[Xi, Y } to the covariance matrix, with Cov[Y, Y ] = V ar[Y ] in the lower right corner.
To get the marginal variance we sum the covariances {Cov[Xi, Y ]} in the new row and
column. With this we can write

R[Y ] = λ · (V ar[Y ] + 2 ·
∑
i

Cov[Xi, Y ]) (6)

The parameter uncertainty underlying the loss model in Equation 3 creeps into the risk
load formula by:

Cov[Xi, Y ] = Eχ[Cov[Xi, Y |χ] + Covχ[E[Xi], E[Y ]|χ]
= 0 + E[Xi] · E[Y ] · Cov[χ, χ]
= c · E[Xi] · E[Y ]

when Xi and Y are in the same line of insurance. It is also worth noting that if c = 0,
Equation 6 reduces to the risk load in Miccolis (1977) — Equation 26.

The Chase -- An Actuarial Memoir

Casualty Actuarial Society E-Forum, Summer 2020 13

https://www.casact.org/pubs/proceed/proceed77/77027.pdf


In the original ISO risk load formula, the risk load multiplier was set so that the total risk
load was a judgmentally selected percentage of the total premium. We decided to continue
that practice. Then the question arose, what should the selected percentage be? With an
explicit C[X] and a given cost of raising capital, K, Equations 5 and 6 allow for a ballpark
calculation of the total risk load. Let’s suppose that the required capital is a multiple, T , of
its portfolio standard deviation. This is f(V ar[X]) = T ·

√
V ar[X]. Then:

λ = K · T

2 ·
√
V ar[X]

=
T 2 ·K
2 · C[X]

For an insurer with random loss portfolio, {Xi}, we have:

Total Risk Load = λ ·

(∑
j

V ar[Xj] + 2 ·
∑
j 6=i

Cov[Xi, Xj]

)

= λ ·

(
2 · V ar[X]−

∑
j

V ar[Xj]

)
< λ · 2 · V ar[X]

=
T 2 ·K
2 · C[X]

· 2 · C[X]2

T 2

= K · C[X]

This equation puts the upper bound on the total risk load equal to the amount of its
capital times its cost of capital. If the off-diagonal entries of the {Cov[Xi, Xj]} matrix
sums are large compared to the sum of the on-diagonal entries, as should be case with many
insureds within each line of business12, the total risk load should be close to its upper bound.

For a numerical example, suppose K = 12% and we assume a 2:1 Premium to Capital
ratio.13 Then the total risk load is equal to K · Premium/2=6% of the total premium.

12If there are n diagonal entries in a line of insurance, there will be n2 − n positive off-diagonal entries in
that line.

13A 2:1 Premium to Capital ratio was common at the time. See Feldblum (1993). Lately, premium to
capital ratios have inched below 1:1. Feldblum also reports that the return on capital was a bit below 12%.
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Now let’s look at an insurance market where there is perfect competition and there are
m insurers, indexed by the subscript j, each with their own books of business {Xij}. When
competing for the contract, Y , we have according to Equation 6:

R[Y ]

λj
= V ar[Y ] + 2 ·

∑
i

Cov[Xij, Y ]

Then summing both sides of this equation over the m insurers and dividing by m yields:

R[Y ] = λ ·

(
V ar[Y ] + 2 ·

n∑
i=1

Cov[X i, Y ]

)
(7)

where λ =
1

1
m

∑m
j=1

1
λj

and X i =
1

m

m∑
j=1

Xij

Equation 7 is the competitive market equilibrium risk load formula. This is the method-
ology that we filed with state regulators for the commercial lines. The risk load multiplier
was set so that the total risk load was 6% of the total premium.

Now let’s turn to the implementation of our new increased limits methodology. The
first thing to note is that this methodology was developed as ISO was transitioning from a
company that was wholly owned and controlled by the insurance industry to an independent
for profit corporation. Before the transition, ISO filed advisory rates. After the transition,
ISO filed loss costs, i.e. the expected losses without the expenses and profit.

The filed increased limits factors did contain the risk load, but our circulars were designed
to make it easy to modify the risk load multiplier, or remove the risk load entirely. We also
produced software that allowed for easy modification of the increased limits factors.

Before the transition, all rates and rating methodologies were dictated by insurer com-
mittees. After the transition, all these decisions were made by ISO staff. What governed
our decisions was the fact that insurers were not required to license, i.e. pay for the use of,
our products. Our products had to be useful to insurers.

My boss, John Kollar and his boss, Phil Miller guided the development and the imple-
mentation of this product through the minefield of ISO management, insurer committees,
the ISO legal department and the regulators. They hired Clive Keatinge, an actuary with
very strong math skills, to work with me on the project. As we neared completion of the
project, they had the product reviewed by two external actuaries with Ph.D.s.

This increased limits methodology was one of our first products to roll out under this
new environment. As it was a high profile event, it was important that the new methodology
be plausible, logically consistent and defensible.
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5 Dynamic Financial Analysis

Hurricane Andrew (1992) and the Northridge Earthquake (1994) triggered a major rethinking
about how the insurance industry should deal with natural catastrophes. Before these events,
insurers typically tried to extrapolate the expected loss historical experience spanning many
years. Typically 30 years as I recall.

These events brought to prominence some catastrophe modeling firms such as Applied
Insurance Research (AIR) and Risk Management Solutions (RMS). These firms examined
long-term weather patterns and geological information on the frequency and intensity of
events by location. This combined with engineering information provided insurers with
long-term estimates of damages based on the locations of their current insurance portfolio.

ISO decided to replace its existing hurricane ratemaking methodology with one based
on a commercially available hurricane model. As catastrophes are risky, I used the output
from this model to calculate risk loads. The methodology for these calculations is described
in Meyers (1996).

The risk loads I calculated for the hurricane coverage were shockingly high. It was clear
that we could not include such a high risk load in our loss costs as we had done for com-
mercial liability. However, the cost of capital needed to support the hurricane exposure was
prohibitive, so other ways of managing the hurricane risks needed to be developed. In Meyers
(1996) I explored alternatives such as reinsurance and geographic diversification. Each alter-
native holds promise, but in the mid-1990’s the private markets were unable to provide the
needed coverage. So government stepped in with facilities such as Florida Hurricane Catas-
trophe Fund. My sense is that the private markets are gradually getting more involved, but
exploring that is beyond the scope of this paper.

The magnitude of catastrophe risk loads initially caused me to doubt the idea that the
risk load multiplier should be the same for all risks in an insurer’s portfolio. At some point
I recognized that a crucial difference between commercial liability and property catastrophe
coverages was that an insurer ties up its capital for a longer period of time for the liability
lines of insurance, and that this tying up of capital has a cost. In Meyers (1996, p. 574)
I attempted to use this fact to justify varying the risk load multiplier. But as the idea of
insurers selecting their portfolio according to getting the greatest return on marginal capital
was central to the justification of this risk load methodology, I did not like this idea!

Eventually it dawned on me that as losses got paid, the amount of capital needed to
support the portfolio could be returned to the company owners as the need for capital
diminishes. One can calculate the actuarial present value of the returned capital in a way
similar to that used in Meyers (1986) to calculate the present value of the retrospective
premium.14

14Usually, the returned capital will be reinvested in the insurance company enabling it to write new
business.
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Here is a model that describes the cash flow for the return of capital.

• Let:

– i be the risk-free rate of return in investments.

– r be the risky rate of return that investors demand from the insurer.

– Ct be the amount of capital required to write the risk at the end of t years.

• At time t = 0 the investors provide C0.

• At time t = 1 the insurer calculates C1. Then C0 · (1 + i) − C1 is returned to the
investors.

• · · ·

• At time t the insurer calculates Ct. Then Ct−1 · (1+ i)−Ct is returned to the investors.

• · · ·

• The present value of this cash flow to investors is:

C0 −
∞∑
t=1

Ct−1 · (1 + i)− Ct
(1 + r)t

= (r − i) ·
∞∑
t=0

Ct
(1 + r)t+1

(8)

Similar to reasoning for Equation 4, over time insurers will settle on a risky rate of
return, r, that will satisfy investors and attract business. Equation 8 is the risk load that
results from considering how long an insurer holds capital.

Now let’s turn to a development in the measurement of risk that occurred in the late
1990’s. Actuaries have often criticized the standard deviation of the losses as a measure of
risk. The objection was that it penalized favorable and unfavorable outcomes equally. While
recognizing the problems, my own view was that the standard deviation was the best of
the various alternatives, perhaps influenced by the fact that the math, as illustrated above,
works out nicely.

So when I heard about the paper, Artzner, et. al.(1999) titled “Coherent Measures of
Risk,” I decided to investigate. As the paper was highly technical, I thought it would be
helpful to summarize it for actuaries in Meyers (2000).

After reading this paper, I started using the “Tail Value-At-Risk” (TVaR) as my preferred
measure of risk.

TV aRα[X] = E[X|X > F−1(α)] (9)

where F (x) is the cumulative distribution function for X.

I usually select the threshold, α, to be somewhere in the high 90’s as a percent. The
choice is tuned to be consistent with existing rules of thumb for adequate capitalization.
Over the years, I have developed a healthy respect for the various rules of thumb that have
withstood the test of time.
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Another development in the late 1990’s was that of “Dynamic Financial Analysis” (DFA).
Generally stated, DFA aspires to manage the entirety of an insurer’s risk and returns. See
Szkoda (1997) for an introduction to the topic.

The CAS sponsored DFA call paper programs starting in 1997 and ending in 2003. I
submitted papers to most of them. I suggest Meyers (2001) as one to read. Let APV [·]
denote the actuarial present value operator. The goal of this paper was to calculate a target
combined ratio with the premium defined by:

Target Premium = APV [Loss]
+ APV [Expenses]
+ Risk Load (as defined by Equation 8)
+ Reinsurance Premium− APV [Reinsurance Recovery]

Then the target combined ratio is defined by

Nominal Expected Loss + Nominal Expected Expenses
Target Premium

The paper envisioned using the collective risk model as implemented by the Heckman
and Meyers (1983) algorithm to calculate the various CLOB

t s using the TV aR risk measure.
It would then allocate the total capital to each CLOB

t in proportion to its marginal capital.

I envisioned insurers using the ideas in this paper to help decide which lines of business
to grow in. For example:

• They might ask if the premium they could charge yielded a better than target combined
ratio.

• They could also use the ideas in the paper to decide on an appropriate reinsurance
strategy. One could compare the net cost of reinsurance with the cost of capital needed
to support that line of business.15

ISO developed a product based on these ideas. We called it the “Underwriting Risk
Model” (URM). The user would supply estimates of the expected loss by line of business
and settlement lag. ISO would provide the claim severity and count distributions and the
software to produce the output. The product failed to catch on.

While there are probably many reasons for its failure, my personal view was the combi-
nation of unfamiliar (and not universally agreed to) concepts and the fact that the product
demanded a lot of care (inputs and updates) by the user made the URM a hard sell. Also,
it didn’t help that some reinsurance brokers were providing similar services on a “pro-bono”
basis. I viewed this pursuit as one being done best by staff within an insurance company. I
thought it was necessary to understand the nuances of an insurer’s decision making process.
This was not going to be done by someone from an external organization like ISO.

15Based on the exercises I did, I recall finding that for all but the very small insurers, raising capital was
generally less expensive than reinsurance for the liability coverages. And reinsurance was almost always less
expensive than raising capital for the catastrophe coverages.
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Being in my late 50’s, liking my work environment, and having a steady stream of other
interesting projects, I did not want to jump to another employer. I was ready to give up the
Chase.

Or so I thought. What kept me involved was my participation in various CAS/IAA
activities.

6 Back to Risk Margins for Loss Reserves

Somewhat surprisingly, to me anyway, the risk margins for loss reserves had reemerged as a
hot topic. This section describes the path I took to arrive at a solution to the risk margin
problem. This section consists of four subsections, the first three subsections describe the
developments that encouraged me to press on to a solution, with the fourth subsection
describing this solution.

6.1 A Clear and Public Description of the Problem

As I was busily writing DFA papers and trying to market the URM, I was invited to join
the Insurer Solvency Assessment Working Party, sponsored by the International Actuarial
Association (IAA). The European Union (EU) was revising their solvency standards16and
asked the IAA for input. The working party produced the book, IAA (2004), titled A Global
Framework for Insurer Solvency Assessment which came to be known as the IAA Blue Book.

Upon completion of that book many members of the working party, including myself,
went on to represent their actuarial organization on the newly created IAA Solvency Sub-
committee, which reported to the IAA Insurance Regulation Committee.17

The participating actuarial organizations of the IAA usually sent representatives to the
committee meetings who were well-established in their organization’s leadership, e.g. presi-
dents (present, past and future). The main body of the IAA was not a research organization.
IAA publications were attempts to develop an international consensus on a variety of actuar-
ial issues, and failing that they would non-judgmentally recognize the major points of view.
As a researcher, I thought it was good to hear what the actuarial leadership was thinking.

The committee meetings I attended got reports from various groups that had a stake in
insurer solvency standards, such as the International Association of Insurance Supervisors
(IAIS), the European Insurance and Occupational Pensions Authority (EIOPA), the Inter-
national Accounting Standards Board (IASB) and the Chief Risk Officers (CRO) Forum.

One of the topics I followed closely was the development of the insurer’s liability for
unpaid losses, otherwise referred to as the “technical provisions” in the European Solvency

16The revised standards, Solvency II, went into effect on January 1, 2016
17Individual actuaries do not “belong” to the IAA. Actuarial organizations belong and send representatives

to the various IAA committees.
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II directive.18 This directive was first published in 2009, and after a number of amendments,
was finally put into effect on January 1, 2016. These provisions are defined as:

1. “The value of the technical provisions shall be equal to the sum of a best estimate and
a risk margin.”

2. “The best estimate shall correspond to the probability-weighted average of future cash
flows, taking account of the time value of money using the relevant risk-free interest
rate term structure.”

3. “The risk margin shall be calculated by determining the cost of providing an amount
of eligible own funds equal to the Solvency Capital Requirement necessary to support
the insurance obligations over the lifetime thereof.”

4. “Insurance undertakings shall segment their insurance obligations into homogeneous
risk groups, and as a minimum by lines of business, when calculating the technical
provisions.”

The IAA has published two books, IAA (2009) and IAA (2018) to aid actuaries in the
implementation of the technical provisions and IFRS 17, with the second book written after
IFRS 17 was “finalized.”19

The IAA, the IAIS, and the IASB have indicated that there are five key desirable char-
acteristics of risk margins:20

1. The less that is known about the current estimate and its trend, the higher the risk
margins should be.

2. Risks with low frequency and high severity will have higher risk margins than risks
with high frequency and low severity.

3. For similar risks, contracts that persist over a longer timeframe will have higher risk
margins than those of shorter duration.

4. Risks with a wide probability distribution will have higher risk margins than those
risks with a narrower distribution.

5. To the extent that emerging experience reduces uncertainty, risk margins will decrease,
and vice versa.

18The provisions quoted here are stated in Section 2, Article 77 and Article 80, of Chapter VI of the act,
p 222.

19Currently, IFRS 17 is scheduled to be implemented on January 1, 2023.
20IAA (2009) Executive Summary
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Approaches for determining risk margins have been grouped into the following four
families of approaches that meet the IASB’s current view to have an explicit risk margin:21

1. Quantile methods · · ·

2. Cost of capital methods based on the amount of return, in addition to the amount
earned by the insurer from its investment of capital, that is required for the total
return on the insurance enterprise to be adequate.

3. Discount related methods · · ·

4. Explicit assumptions · · ·

In their conclusion — “The cost of capital method (without simplification) is the most risk
sensitive and is the method most closely related to pricing risk in other industries. However,
in part as a result, it is also more challenging to implement than the other methods.”

Digging deeper, Appendix C of IAA (2009) describes two similar formulas for the cost
of capital risk margin.

• The Swiss Solvency Test risk margin — also used in Solvency II

MSST = (r − i) ·
∞∑
t=0

Ct
(1 + i)t+1

(10)

• The Capital Cash Flow risk margin

MCCF = (r − i) ·
∞∑
t=0

Ct
(1 + r)t+1

(11)

where

i = risk-free rate of return on investments.
r = total rate of return demanded by investors for taking on insurance risk.
Ct = amount of capital required to support an insurance portfolio at time t = 0, 1, · · · .

Noting that Equation 11 is the same as Equation 8, my preference is for MCFF .22 Not
wanting to dwell on this difference, I thought it was more important to focus on the bigger
issue — the Cts. It turned out that how to calculate the Cts was not settled. The key phrase
in the IAA’s conclusion is “without simplification.” In talking with attendees at various
IAA/ASTIN meetings, I sensed that most, if not all, EU insurers were using a simplified
calculation of the Cts.23

21IAA (2009) Executive Summary
22For r sufficiently large, MSST will be larger than C0.
23There is always the possibility that insurers were calculating the Ct internally and not revealing their

results in public.
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Here is an indication of what they were doing. In preparation for the implementation
of Solvency II, EIOPA issued a series of “Quantitative Impact Surveys” (QIS) where EU
insurers would complete test versions of the Solvency II requirements. The instructions for
QIS 5 (2010, p. 59) provides a hierarchy of simplifications for calculating the Cts.

1. Make a full calculation of all future Cts without using simplifications.

2. Approximate the individual risks or sub-risks within some or all modules and sub-
modules to be used for the calculation of future Cts.

3. Approximate the whole Cts for each future year, e.g. by using a proportional approach.

4. Estimate all future Cts “at once”, e.g. by using an approximation based on the duration
approach.

5. Approximate the risk margin by calculating it as a percentage of the best estimate.

Sensing that most EU insurers were using some form of the above simplifications, I was
attracted to #1. Here we had an actuarial research problem publicly stated with unusual
clarity — Given a loss triangle, calculate a cost of capital risk margin. And I had a good
idea of what was expected in a solution.

6.2 Stochastic Loss Reserving

Accepting either of the risk margin formulas in Equations 10 or 11, the problem boiled down
to calculating the Cts. When examining the stochastic loss reserve models that I considered
to be the publicly available state of the art at that time (early 2000’s), e.g. Mack (1994)
along with England and Verrall (2002), I didn’t find anything that dealt with calculating Ct
for t > 0. So I decided that at the very least, I would have to dig deeply into stochastic loss
reserving.

While I may have been short on experience with stochastic loss reserve models, I had a lot
of experience in other areas of actuarial modeling. Drawing on this experience, I approached
the project with the following considerations.

• I think of myself to be a Bayesian. Actuaries who specialize in loss reserving stress the
importance of judgment. This was a good fit and so I focused on Bayesian models.

• Actuaries have long recognized that loss development patterns often change over time.
It has been a standard practice, e.g. Berquist and Sherman (1977), to adjust the
data. What is really being done here is changing the model with some hand-selected
fixed parameters. Instead, whenever possible, I will choose to change the model to
account for systematic changes in the loss environment and allow all parameters to be
uncertain.
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• One should always test their model on holdout data. A number of papers I had read
on stochastic loss reserving followed the pattern where they: (1) proposed a model; (2)
did some math to predict a statistic such as a standard deviation or a percentile; and
(3) illustrated the calculation on at most a handful of loss triangles. Nowhere did I see
any large-scale organized attempt to test predictions of these statistics.

My first attempt at a stochastic loss reserve model was Meyers (2007b) Features of the
model include:

• A set of loss development scenarios obtained by maximum likelihood on a compound
negative binomial model for 40 large insurers.

• The model then used Bayes’ theorem on Schedule P data to get posterior probability
weights for each scenario.

• The final model was a posterior probability weighted mixture of the scenarios.

• To validate the model on holdout data, this paper used the model’s predictive distri-
butions to calculate the percentile of a sum of losses taken from holdout data. The
calculation was repeated for several Schedule P loss triangles. It then performed tests
to see if the percentiles were uniformly distributed.24

Now let’s back up a bit. Starting in 2004, the CAS Committee on the Theory of Risk,
issued a series of competitions to fit claim severity distributions. The “data” for the com-
putation was simulated from an unknown model created by Stuart Klugman. I fared well
in these competitions with a model consisting of a mixture of preselected grid of vector-
valued parameters with the weights determined by Bayes’ theorem. Then the estimate for
a “statistic of interest,” e.g. the expected cost for an excess layer of insurance, would be a
posterior probability weighted average of of the conditional expected cost of the layer given
the parameters.

At the 2006 CAS Ratemaking Seminar, Klugman showed how he would have solved
these problems if he were permitted to enter the competition using Bayesian Markov Chain
Monte Carlo (MCMC).

Up to this point I had implemented Bayesian models using either numeric multiple
integration, e.g. Meyers (1989), or by posterior probability weighting a parameter grid as
in my submissions to the COTOR Challenges. This approach worked well for models with
no more than three or four parameters. But stochastic loss reserve models could easily have
well over a dozen dimensional parameters and such high dimensional multiple integration or
grid searches were (and still are) unworkable in any reasonable amount of time. My way of
getting around the multi-dimensional problem in Meyers (2007b) was to fit a model to 40
large insurers by maximum likelihood, then posterior probability weighting the parameters
of those fitted models.

24Similar tests are also in the two editions of my monograph, Meyers (2015) and Meyers (2019).
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Bayesian MCMC is a completely different approach to the multi-dimensional problem. It
defines a Markov chain in terms of a prior distribution of parameters, p(θ) and a conditional
distribution f(x|θ). If one runs the Markov chain for a sufficiently large number of steps,
the Markov chain converges to the posterior distribution {f(θ|x)}. This means that after a
sufficient number of steps, say N1, the values

{f(θi|x)}N2
i=N1

consist of a sample of size N2 − N1 + 1 from the posterior distribution of θ. Given that
sample from the posterior distribution of θ one can calculate the posterior distribution of
any statistic of interest that depends upon θ. Note that θ can be a vector of any dimension.

I was starting to examine the possibility of using Bayesian MCMC for loss reserving
when I looked at25 Verrall (2007) which showed how to fit the chain ladder loss reserve
model using Bayesian MCMC. It was clear to me that Bayesian MCMC was destined to be
a prominent modeling tool for stochastic loss reserving. I then applied Bayesian MCMC to
the compound negative binomial model in Meyers (2009).

6.3 Dependency Modeling and The CAS Loss Reserve Database

It was about this time that I was invited to join a joint CAS/Australian Institute of Actuaries
task force to study correlations between lines of business for stochastic loss reserve models.
Another member of the task force was Edward W. (Jed) Frees, who helped introduce the
concept of copulas to actuaries, Frees and Valdez (1998).26

As the task force was discussing data sources, Jed volunteered the use of the NAIC
dabase that the NAIC had been providing to the University of Wisconsin for several years,
free of charge. This database contained Schedule P loss triangles for hundreds of American
insurers, spanning a period of several years. Recalling my work in Meyers (2007b), I proposed
linking together several years of successive Schedule P data to complete the loss triangle, i.e.
fill out the lower triangle with holdout data.

This involved a lot of tedious work. Because Schedule P data was compiled net of
reinsurance and the companies composing an insurance group had various within group
reinsurance arrangements, we thought it was best to compile the data at the insurance
group level. When doing this, it was necessary to check the overlapping Schedule P accident
years to see if the companies that made up an insurance group changed. With the financial
help of the CAS, we hired Peng Shi, then one of Jed’s doctoral students, to do the job.

When the job was completed, the CAS was able to persuade the NAIC to allow us to
post the data, called the CAS Loss Reserve Database, on the CAS website.

25Verrall presented this paper and I presented my Meyers (2007b) paper at the same concurrent session
at the 2007 CAS Annual Meeting.

26Jed also served as a part-time consultant to ISO as we were developing our Risk Analyzer suite of
products.
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The task force did not produce a report, but some papers eventually emerged from the
task force’s work.

• Meyers and Shi (2011) served to notify the actuarial profession that the CAS Loss
Reserve Database was available. It illustrated how we thought the database should
be used to test proposed stochastic loss reserve models. The two models we tested
performed well on the upper triangle (training) data, and performed poorly on the
lower triangle (testing) data. As I saw it, the actuarial profession had a challenge on
its hands.

• Zhang and Dukic (2013) showed how to fit a bivariate stochastic loss reserve model
with the dependency modeled by a copula. They used a Bayesian MCMC model.

• Avanzi, Taylor and Wong (2015) point out that artificial or “illusory” correlations can
be generated by poor modeling. To quote their abstract: “1. In any attempt to
measure cross-LoB correlations, careful modeling of the data needs to be the order
of the day. The exercise will not be well served by rough modeling, such as the use
of simple chain ladders, and may indeed result in the prescription of excessive risk
margins and/or capital margins. 2. Such empirical evidence as examined in the paper
reveals cross-LoB correlations that vary only in the range zero to very modest.”

• Meyers (2017) and Meyers (2019) show that given a Bayesian MCMC stochastic loss
reserve model for two separate lines of insurance, one can fit a bivariate stochastic
model that captures the dependencies between the two lines of insurance. Statistical
tests comparing the performance of a bivariate model assuming independence with one
that allows for dependence strongly favor the independence assumption, confirming
the conclusions of Avanzi, Taylor and Wong (2015).

6.4 A Cost of Capital Risk Margin Formula for Loss Reserves

After writing my Meyers (2009) Bayesian MCMC paper, most of my paper publishing activ-
ities were derived from my predictive modeling day job at ISO. My early efforts in Bayesian
MCMC were done by programming the MCMC algorithms directly into R. While this helped
me to better understand the algorithm, I was advised that the specialized MCMC software
was orders of magnitude faster, and so on the side I started using the JAGS software package.
And yes, it was a lot faster.

I retired from ISO at the end of 2011. I had no need or desire to go into consulting,
teaching or any other employment. Having a well-defined problem, the CAS Loss Reserve
Database and familiarity with a new technology applicable to stochastic loss reserving, I
continued the Chase, weaving it in with other more traditional retirement activities.

While my ultimate goal was to develop a cost of capital risk margin formula, I sensed
an interest in the actuarial community for stochastic loss reserving that was independent of
the risk margin problem. And my desire to get the best model that I could before attacking
that problem led me to the first edition of my monograph, Meyers (2015).
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This monograph examined 200 relatively well behaved loss triangles taken from the CAS
Loss Reserve Database. It considered a number of Bayesian MCMC models as well as the
Mack chain ladder model and the bootstrap over-dispersed Poisson model as implemented by
the R ChainLadder package. For each model and loss triangle, the model predicted the per-
centile of the sum of losses in the lower triangle test data. A model was deemed “successful”
if the 200 percentiles could pass a test for being drawn from a uniform distribution.

The most successful models in that monograph were the MCMC models that allowed
for:

• Correlation between accident years for incurred data

• Changing claim settlement rates for paid data

I had planned to address the risk margin problem after finishing the monograph. But
fairly quickly, the following considerations intervened.

1. Reading Zhang and Dukic (2013) piqued my interest in addressing the dependency
problem with Bayesian MCMC. This led to Meyers (2017).

2. The Bayesian MCMC software of choice among actuaries was shifting to a package
called Stan. As I considered it important to distribute easy to run software with my
publications, I decided to start using Stan.

3. While the monograph evaluated models by their performance on the 200 loss triangles
on the lower triangle test data, I was frequently asked how to compare the fit of
Bayesian MCMC models for single loss triangles — without waiting for the lower
triangle test data to come in. It turned out that Stan also included a cross-validation
package that could compare Bayesian MCMC models with only the training data.

These considerations led me to write a second edition of the monograph — to be com-
pleted after I addressed the risk margin problem.

As mentioned in Section 6.1 above, calculating the risk margin boils down to calculating
the Cts in Equations 10 or 11. The problem is that the value of a given Ct depends on the
losses that were reported at time t− 1.

Whatever the model, the output of one of my Bayesian MCMC analyses is a set of 10,000
equally likely lognormal distribution parameters {µiwd, σid} for w = 1, . . . , 10, d = 1, . . . , 10
and i = 1 . . . , 10, 000. After 10 years, let’s define the “ultimate” loss, Ui for each i as the sum
of the lognormal means

Ui =
10∑
w=1

eµ
i
w,10+(σi

10)
2/2

At the end of the current year, t = 0, all the Uis are equally likely. Then the capital at the
end of the current year is given by

C0 = TV aRα[{Ui}]− E[{Ui}]
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To get Ct for t > 0 you have somebody pick a random I from in the range of 1 to 10,000.
Then they reveal a set of randomly selected losses, {xwd}, from the lognormal distributions
with parameters µIwd and σId for the next t calendar year diagonals. But they do not reveal
the I.

As a thought experiment, you could append the simulated calendar year losses to your
existing loss triangle and refit your model using MCMC. You could then calculate the Ct
in the same manner as you calculated C0 above. As this would have to be repeated many
times, it would not be practical to actually do this, as fitting MCMC models took several
seconds. There is a much faster way. Recall that in Meyers (2007b) I used 40 equally likely
sets of parameters taken from other insurers as my prior distribution. Similarly, we can use
the 10,000 equally likely parameter sets from the original MCMC sample. Here are more
details.

While you may not know the I, you can calculate the posterior probability, Pit, of each
parameter set, i, given the first t diagonals {xwd}. You then calculate

Ct = TV aRα[{Ui}]− E[{Ui}]

for t = 1, . . . , 9, where the TV aRα and the expected value E are calculated with the proba-
bilities {Pit}. You then calculate the risk margin, M , using either Equation 10 or 11.

Since I is selected at random, you should repeat this sequence of steps many (say 10,000)
times to obtain a set of risk margins, {M}. Then the final risk margin is the arithmetic
average, E[{M}].

In addition to the three considerations mentioned above, the second edition of the mono-
graph, Meyers (2019), shows how to calculate the cost of capital risk margins. In addition,
it shows a way to aggregate the risk margins for the various lines of insurance.

And so for me, the Chase ends up with a solution to the problem posed by white paper,
COTOR (1987). This solution:

• As called for in the white paper, it makes use of a stochastic loss reserve model.

• Replaces the call for the use of utility/ruin theory with a cost of capital risk margin.
Unlike utility theory (at least as I understood it back then), the cost of capital risk
margin considers how long it takes the claims to settle.

The white paper rejected the use of CAPM, mainly because of its failure to recognize
firm specific risk. But as does the CAPM, this cost of capital risk margin recognizes the role
of the market in pricing risk. We see this in the choice of the return on risky investments,
r. The MCMC output can be used to provide a set of stochastic cash flows that enable a
comparison with other investments. After such a comparison, one may want to change r.

No solution to problems such as this is perfect. The Chase should continue. While this
current solution may be temporary, I do hope is that this solution will add to our general
understanding of the problem.
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7 My Work Environment

When writing the previous sections, I tried to describe my progress in terms of what I knew
and was thinking at the time. I think I did a good job of recognizing the sources of the ideas
that came together for the Chase. But I don’t think that tells the entire story. I consider
my work environment to be a major contributor to my success in actuarial research. In this
final section, I would like to say something about this environment.

First of all, I got off to a good start in my actuarial career. My stint doing private
passenger rate filings, along with the actuarial exams, gave me a good understanding of what
actuaries do. My next job, much of which was spent under the supervision of a statistician
who was not an actuary, forced me to look at actuarial problems from a different perspective.
Success in my early projects led to more interesting projects, assignments and ultimately,
jobs.

A second point is that most, if not all, of my research was about problems originating
from the industrial (as opposed to academic) insurance community. That being said, I found
it to be a good practice to scan what was happening in the academic world and seize upon
it when I found something useful. This paper provides some examples.

Working on a variety of projects has a cumulative effect. As I was working on a current
project, I often found myself drawing from my experience from earlier, and sometimes related,
projects.

For example, the Chase was about assigning a financial value to uncertain insurance
losses. Over time that evolved into finding the cost of capital to support an uncertain loss.
As I was engaged in the Chase, I was also working on projects involving capital substitutes.

• In the late 1990’s ISO hired Nolan Asch, who came to us as the former chief actuary
for a reinsurance company. Nolan and I teamed up to produce a suite of reinsurance
projects including: (1) A reinsurance exposure rating tool based on the ISO increased
limits factors; (2) Fitted property claim severity distributions for property excess of
loss reinsurance.

• ISO investigated ways to use our data to provide indices for catastrophe securitization.
Our most successful product for this was the PCS Catastrophe Index.

My role on the team was to quantify basis risk, which involved passing scenarios from a
catastrophe model through sample insurer portfolios and/or through a proposed index
and then evaluate the effect on the need for capital. There are two publicly available
excerpts from the work I did on this: (1) A paper Meyers (1998); and (2) a report put
out by the American Academy of Actuaries, Index Securitization Task Force (1999).

For most of the last decade of my employment at ISO, predictive modeling projects on
(what was then called) big data were dominating my workdays. These projects introduced
me to a number of different statistical tools such as neural nets, boosted trees, principal com-
ponents, cross validation, generalized additive models, the Gini index, the R programming
language, unsupervised learning and . . .. In this environment I learned to quickly evaluate
and use new modeling tools. This included Bayesian MCMC.
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Another aspect of my work environment was traveling to conferences and committee
meetings. While at ISO, each year I typically attended one or both of the CAS Spring/Annual
meetings, one or two CAS specialty seminars, the ARIA Risk Theory Society meeting,
IAA/ASTIN meetings and usually two-plus professional committee meetings. I often had
speaking roles at the conferences I attended. ISO was very tolerant and supportive of my
travel schedule. I like to think that they benefitted from the increased visibility of ISO and
the new insights I brought back to my various projects.

While writing papers and speaking at conferences gave me professional visibility, an
equally important benefit of these activities is that they forced me to think more thoroughly
and clearly about what I was doing. Before writing a paper, or giving a presentation, I talk a
lot to people who are interested in the topic. I usually began writing a paper by first starting
to write a slide deck for a presentation. Usually about two thirds of the way through the
slide deck, a pattern emerged and I began writing the paper itself. I would really have liked
to give some presentations on a topic before writing a paper, but the speaking invitations
usually came after I wrote the paper.

The person I talked to most about my projects was John Kollar — my boss for 17 of
the 23 years I worked at ISO. We would usually meet, one on one, in the mornings two or
three times a week. Our conversations would often run for a half hour or more. Rarely did
we get technical — at least in my view. Our talks focused on identifying the key underlying
drivers of the project, who else had to get involved, and the next steps. I found John to be
an excellent sounding board and collaborator.27

The benefits of a good work environment do not come immediately. As I hope this
paper illustrates, some of the key elements of the Chase grew out of my work environment
dating back over several years. On the flip side, I have found that the benefits of a good
work environment continue into retirement. When I officially retired at the end of 2011,
my “work” environment changed radically. Fortunately, I had a tankful of benefits from
my former environment that lasted through the two editions of my monograph and a few
papers. The benefits become stale over time, but they are replaced by the other benefits of
retirement.

Finally, I want to give my heartfelt thanks to the many members of the actuarial pro-
fession who I have worked with over the years. It has been a great ride.

27As President of the CAS, John was the driving force behind the creation of the Certified Enterprise Risk
Analyst (CERA) designation.
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Estimating Working Life Expectancy from Cohort Change 
Ratios: An Example using Major League Pitchers 

David A. Swanson, Jack Baker, Jeff Tayman and Lucky M. Tedrow 
 ____________________________________________________________________________________  

Abstract. Census survival methods are the oldest and most widely applicable methods of estimating 
adult mortality and for populations with negligible migration they can provide excellent results.  In the 
form of cohort change ratios, this approach can be used to estimate working life expectancy without 
constructing a life table. We describe this approach and illustrate it with an application to the career 
length of major league baseball pitchers, a group for which little information on working life 
expectancy is available.  This lack of information is surprising given the detailed historical data on 
baseball players and the large number of working life tables for various occupations. This deficit may 
be due at least in part to an assumption that the process needed to construct MLB working life tables 
is such a demanding task that it discourages many from the attempt, a situation that applies to other 
career groups, especially in sports. If so, we believe this paper shows that such an assumption needs to 
be re-examined by showing how easy it is to use the cohort change ratio method to estimate working 
life. 

 
Keywords. Career length, professional sports, cohort change ratios 

 ____________________________________________________________________________________  

1. INTRODUCTION 

As noted in Methods for Estimating Adult Mortality from Census Data (United Nations (2002: 5), 
“Census survival methods are the oldest and most widely applicable methods of estimating 
adult mortality…(and can)  provide excellent results (for) populations that experience negligible 
migration…” The reason for the ubiquity of this approach  is threefold: (1) data requirements 
are minimal in that only two successive age distributions are needed; (2) the two successive age 
distributions are usually easily obtained from census counts; and (3) the method is 
straightforward in that it requires neither a great deal of judgment nor “data-fitting” techniques 
to implement. This ubiquity is in contrast to other methods, such as “Model Life Tables”, 
which require more data, as well as judgment and, often, data fitting (United Nations, 1982: 16-
27). Our purpose in this paper, however, is not to debate the relative merits of these and other 
approaches. Our purpose here is to simply demonstrate how to calculate life expectancy from 
census survival rates, or in the more general form, which we prefer, “cohort change ratio” 
(CCR) 

In the paper that follows, we first describe A CCR in general, describe how it can be used 
to generate population projections and then describe how CCRs can be used to construct life 
tables. Following these methodological discussions, we construct and discuss a working life 
table for MLB pitchers and conclude the paper with remarks on the results and suggestions for 
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future research and applications. 

2. Cohort Change Ratios 
As shown by Baker et al. (2017) CCRs have a wide range of applications. When migration is 

negligible, they can be used to construct life tables and calculate life expectancy (Baker et al., 
2017: 165-171). These same CCRs also can be used to generate forecasts (Baker et al., 2017: 
45-58).   

A cohort change ratio (CCR) is typically computed from age-related data in the two most 
recent censuses (Baker et al. 2017: 2):  

nCCRx, t = nPx,t / nPx-k, t-k.                    [1] 

where,  

nPx, t is the population aged x at the most recent census (t), 

nPx-k, t-k is the population aged x-k at the 2nd most recent census (t-k), and  

k is the number of years between the most recent census at time t and the one preceding it 
at time t-k. 

As implied by Eq. [1], a cohort change ratio is not typically computed for a single cohort, 
but for all of the cohorts found in two successive census counts.  

Given the nature of the CCR, 10-14 is the youngest five-year age group for which CCRs as 
defined in Eq. [1] can be made if there are 10 years between censuses. To analyze age groups 
younger than ten in a given application, a Child-Adult Ratio (CAR) can be used. This ratio, 
computed separately for ages 0-4 and ages 5-9, relates young children to adults in the age 
groups most likely to be their parents (Baker et al. 2017: 3, Smith et al. 2013: 178).                                                                                                                                                          

The open-ended age group uses the same approach found in life table construction (Baker 
et al. 2017: 3), and its CCR differs slightly from those for the age groups beyond age 10 up to 
the oldest open-ended age group. If for example the final closed age group is aged 70-74, with 
persons aged 75+ as the terminal open-ended age group, then calculation for the CCRx+,t 
requires the summation of the three oldest age groups to get the population age 65+ at time t-
k: 

∞CCR75,t = ∞P75,t / ∞P65,t-k.       [2] 

3. Using CCRs to Estimate Life Expectancy 
Baker et al. (2017: 165) show that when migration is negligible a CCR can be interpreted as a 

census survival ratio, which means the expectation of life at age x can be computed as: 
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ex = (Tx / l(n/2)) / (lx / l(n/2)) = Tx / lx                   [3] 
where, 
x is age, 

n is the width of the age groups (up to, but not including the terminal, open-ended age group), 
ex is the life expectancy (average years remaining) at age x, 
Tx is the total person years remaining to persons age x, 
lx is the number of persons reaching age x, 

l(n/2) = persons aged x to x+n are assumed to be concentrated at the mid-point of the age 
group, and 

l(x+n/2) / l(x-n/2) = P2(x,n) / P1(x-n,n)                    [4] 
where, 
P2(x,n) is the number of persons counted in the second census in age group x to x+n, and  
P1(x-n,n) is the number of persons counted in the first census in age group x-n to x. 
In general, the life-table probability of surviving from the mid-point of one age group to 

the next (l(x+n/2) / l(x-n/2)) is approximated by the census survival ratio (P2(x,n) / P1(x-n,n)). 
Continuing, the cumulative multiplication of the probabilities shown in [4] gives the 
conditional survival schedule (lx / l(n/2)). From the conditional lx values given by [4] the 
conditional estimates of the number of person years lived in each age group (nLx) can be 
calculated as: 

nLx / l(n/2) = (n / 2) × [(lx / l(n/2) + l(x+n) / l(n/2)]                  [5] 
where, 

nLx is the  number of person years lived in each age group. 
Given a value of Tx / l(n/2) for some initial age x, total remaining years expected at age x 

(Tx) values can be calculated as: 
T(x-n) / l(n/2) = Tx / l(n/2) + nL(x-n) / l(n/2).                  [6]                         

This leads us back to equation [3], so that the expectation of life at age x is: 
ex = (Tx / l(n/2)) / (lx / l(n/2)) = Tx / lx. 

Extending this approach, we note that when the radix of a life table is equal to 1  (l0 = 
1.00), then life expectancy at birth can be computed directly from the expression:  

e0 = S0 + (S0 × S1) + (S0 × S1 × S2) +,..., + (S0 × S1 × S2,..., × Sx)                         [7]  
where,  
e0 is  life expectancy at birth, 
S0 is the survivorship from t = 0 (e.g., birth) to t = 1(e.g., age 1), 

S1 is the survivorship from t = 1 (e.g., age 1) to t = 2(e.g., age 2), and so on through  Sx , and  
Sx is 1Lx / 1L(x-n). 
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Equation [7] is set up for single year age groups. However, we can generalize it to other age 
groups: nSx = nLx / nL(x-n), so that: 

e0 = nS0 + (nS0 × nS1) + (nS0 × nS1 × nS2) +,...,+ (nS0 × nS1 × nS2,..., × nSx)            [7.a] 
As equations [7] and [7.a] both imply, the fundamental life table function is inherent in 

our method; that is, via the nSx values, we have nqx values. In summary, our approach is the 
result of combining either equation [7] or [7.a] for computing life expectancy with equation [1] 
to estimate ex. Broadly speaking, the method can be applied to any population subject to 
renewal through a single increment (entry into the major leagues) and extinction through a 
single decrement (exit from the major leagues), where there are at least two successive counts 
that provide the population by some measure of time (consecutive years in the major leagues). 

4.   A CCR-Based Working Life Table: Career Length of MLB Pitchers 
Although baseball is the “national sport,” only a handful of studies have examined 

its career prospects in terms of working life. Using data from 1902 to 1993, Witnauer et 
al. (2007) found that non-pitching rookie position players can expect to play 5.6 years. 
Abel and Kruger (2005) examined the overall life expectancy of MLB players by 
position  for the period 1909-1919 and found that pitchers could expected to live to age 
67.7, which exceeded the life expectancy of males (63.4) for this same period. While 
they did not construct a life table, Hardy et al. (2017) used a regression-based approach 
to assess the determinants of career length among major league pitchers playing 
between 1989 and 1992 and found that mean career length was 10.97 years. Truncated 
careers can be attributed to several factors, including injury, poor performance, and 
scandals (Gutman 1992, Hardy et al. 2017). 

Using the method described in the preceding section and 1980 and 1981 data found 
in the eighth edition of Total Baseball (Thorn 2004), Table 1 shows the working life 
expectancy of major league pitchers who entered the major leagues in 1980.2 This table 
shows the number of pitchers who “survive” (lx) by season (year x, where x = 0 to 10+) 
starting with the 296 pitchers who first entered MLB in 1980 (l0). Of these 296 pitchers, 
247 completed the first year of play and only 109 (44%) completed five consecutive 
years. The (Sx) column shows the proportion surviving through each year, which can be 
interpreted as the probability of making it through the entire season. The probability of 
making it through the first year is (S0) = 0.83333 (247 / 296).      

Corresponding to S0, the number of “exits” (d0) in the first year among the 296 
initial pitchers is 49, which corresponds the probability of “exiting” in the first year is 
(q0) = 0.166667 (49 /296). At the start of each year, the expected remaining consecutive 
years of pitching is provided.  For the initial 296 pitchers, their expected working life is 
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3.990 years. At the completion of the first year, those still pitching can expect to do so 
for 3.157 more years. Those who complete five consecutive years can expect to pitch 
for 1.172 more years.  

 
Table 1. Major league pitcher working years life table, 1980-1981 

Consecutive 
years in the 

majors 

Probability 
of pitching 
next year 

Sx 

Probability 
of not 

pitching 
next year 

qx 

Number 
of 

pitchers 
lx 

Pitchers 
leaving 

the 
majors 

dx 

Pitching 
years 

expectancy 
ex 

0 0.83333 0.16667 296 49 3.990 
1 0.70723 0.29277 247 72 3.157 
2 0.76923 0.23077 175 40 2.568 
3 0.93939 0.06061 135 8 2.114 
4 0.85714 0.14286 127 18 1.688 
5 0.85714 0.14286 109 16 1.172 
6 0.90000 0.10000 93 9 0.859 
7 0.83333 0.16667 84 14 0.578 
8 0.81818 0.18182 70 13 0.343 
9 0.78571 0.21429 57 12 0.151 

10+ 0.00000 1.00000 45 45 0 
 

Source: Thorn (2004) 
 
Note, the number of teams (26) was constant between 1980 and 1982 

5. DISCUSSION 

The life table (Table 1) shows that the expected working life of MLB pitchers is short and 
becomes shorter at the completion of each year. Witnauer et al. (2007) found that, in general, a 
(non-pitching) player who enters MLB can expect to play 5.6 years. Moreover, they found that 
those who made it through three years could expect to play an additional six years. MLB 
pitchers, however, who complete three years can expect to play for only 2.114 years more.  

The data shown in Table 1 also indicate that there is a high level of volatility in the major 
league careers of pitchers, especially in the initial years. The factors causing this likely include: 
(1) injuries that lead to one or more missed seasons; (2) being sent down to the minors for one 
or more seasons to gain more experience, (one common example is that the initial listing 
represents a pitcher who is “called up” for a couple of games at the end of the season to “have 
a cup of coffee,” followed by a return to the minors); and (3) either outright release or a 
decision to quit professional baseball made by the player. Given this volatility, this example 
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can be viewed as a rather strenuous test of how well the CCR method can perform in subject 
areas where there is less stability year to year than found in large populations. These areas 
would include any highly competitive activity such as professional sports. In this regard, while 
there is substantial variation in the careers of major league such variation can be smoothed by 
fitting a model to the data. Given that the life table of major league pitchers used survival 
rates, the Weibull model may be a good candidate (Namboodiri and Suchindran 1987). 

    Even without smoothing, the CCR method may work reasonably well as a method to 
estimate the working life expectancy of players in other professional sports by position, such 
as football (e.g., quarterbacks),  basketball (e.g., point guards), hockey (e.g., goalies), and soccer 
(e.g., strikers). Continuing along this line of reasoning, it may be worthwhile to examine the 
CCR method in terms of occupational specialties in organizations (e.g., corporations, 
governments, the armed forces).  

Forgetting positions or occupational specialties, the method also may be worthwhile 
examining in terms of participants classified by years played in a number of activities, including 
tennis, golf, and NASCAR racing.  Keep in mind that at the professional level, some of these 
sports are affected by luxury taxes, salary caps and other financial restrictions, while others are 
not (Dietl et al. 2010). As such, the history of the implementation of these measures may be 
important in terms of constructing a working life table or otherwise estimating expected career 
length. 

In conclusion, we observe that the aim of this paper was to demonstrate that reasonable 
estimates of MLB working life expectancies can be easily constructed by using the CCR 
method. If it does change assumptions about these being demanding tasks, perhaps the 
knowledge gaps  concerning working MLB life expectancies can be filled in, an outcome that 
may serve to help address similar knowledge gaps that exist in other occupations, and in 
particular, sports, both at the professional and amateur levels.                

6. ENDNOTES 

1. Although Green and Armstrong (2015) discuss simple vs. complex methods in terms 
of forecasting, their discussion applied here in that the CCR approach falls into the simple 
methodological category rather than the complex category. Adapting their discussion to 
methods in general, the work of Green and Armstrong (2015) suggests that while there is no 
evidence that shows complexity improves accuracy, complexity remains popular among: (1) 
researchers, because they are rewarded for publishing in highly ranked journals, which favor 
complexity; (2) methodologists, because complex methods can be used to provide information 
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that support decision makers’ plans; and (3) clients, who may be reassured by 
incomprehensibility.  
 
2.   The addition of two teams (Colorado Rockies and Florida Marlins) to the National 
League in 1993 may have extended slightly the career of some of the pitchers who had played 
consecutively since 1981. Because we used ten as the terminal, open-ended consecutive years 
played, there is, however, no effect on the working life table by this expansion. Similarly, there 
is no effect on the working life table by subsequent expansions.  
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