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q-Credibility
by Olivier Le Courtois

ABSTRACT

This paper extends uniform-exposure credibility theory by 

making quadratic adjustments that take into account the 

squared values of past observations. This approach amounts 

to introducing nonlinearities in the framework, or to consider-

ing higher-order cross-moments in the computations. We first 

describe the full parametric approach and, for illustration, we 

examine the Poisson-gamma and Poisson-Pareto cases. Then, 

we look at the nonparametric approach, whereby premiums can 

be estimated only from data and no type of distribution is 

postulated. Finally, we examine the semiparametric approach, 

in which the conditional distribution is Poisson but the uncondi-

tional distribution is unknown. For all of these approaches, the 

mean squared error is, by construction, smaller in the q-credibility 

framework than in the standard framework.
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of the mean squared error gained by going from 
the classic to the quadratic credibility approach. See 
Neuhaus (1985) for general results on errors in cred-
ibility theory. Note that Norberg (1982), extending 
De Vylder (1978), used high-order moments and 
cross-moments but in a different context: for the 
statistical estimation of classic structural parameters. 
See De Vylder (1985) for a reference on nonlinear 
(in particular exponential) regressions in credibility 
theory, and Hong and Martin (2017) for a flexible 
nonparametric Bayesian approach. See also Taylor 
(1977), who proposed a Hilbert approach to credibil-
ity theory, derived results on sufficient statistics, and 
constructed an example with nonlinear but unbiased 
statistics of the observations. In the present paper, 
unbiasedness is obtained by construction. For more 
details about the Hilbert space approach, see Shiu and 
Sing (2004).

The paper is organized as follows. The first  
section develops a parametric quadratic credibility, 
or q-credibility, approach and provides illustrations 
of this approach in the Poisson-gamma and Poisson-
Pareto settings. Building on the results of the first 
section, the second section derives a nonparametric 
approach and the third section concentrates on a 
semiparametric approach, in which the conditional 
distribution is assumed to be of the Poisson type.

1.  Main results

We consider n random variables {Xi}i=1:n that are 
identically distributed and independent conditionally 
on a random variable Q that represents the uncer-
tainty of the system or the parameters of each of the 
{Xi}i=1:n. Note that the random variables {Xi}i=1:n are 
not necessarily independent and identically distrib-
uted in full generality. Furthermore, for any strictly 
positive integer m, we define

E E Xm
m( )( )µ = Θ

and

v E Xm
m( )( )= ΘVar ,

Introduction

The origins of credibility theory can be traced back 
to the papers of Mowbray (1914), Whitney (1918), 
Bailey (1945, 1950), Longley-Cook (1962), and 
Mayerson (1964). The core of the theory, as it is 
known today, is developed in Bühlmann (1967) and in 
Bühlmann and Straub (1970). See also Hachemeister  
(1975) for the link with regressions, Zehnwirth (1977) 
for the link with Bayesian analysis, and Norberg 
(1979) for the application to ratemaking. General 
presentations of the theory can be found, for instance, 
in Bühlmann (1970); Herzog (1999); Klugman, 
Panjer, and Willmot (2012); Weishaus (2015); and 
Norberg (2015). See also the recent broad survey 
paper by Lai (2012).

In this paper, we construct a quadratic credibility 
framework whereby premiums are estimated based 
on the values of past observations and of past obser-
vations squared. In Chapter 7 of Bühlmann and Gisler 
(2005), it is already mentioned—however, without 
further development—that credibility estimators are  
not theoretically restricted to being linear in the 
observations and that the squares of observations 
could be used in credibility theory. This paper can be 
viewed as a first contribution to this research pro-
gram. See also Chapter 4 of Bühlmann and Gisler 
(2005), where a maximum likelihood estimator is 
computed using a logarithmic transformation of the 
observations, but note that the latter application 
provides more an appropriate trick for dealing with the 
Pareto distribution than a nonlinear framework per se.

We fully compute nonlinear, quadratic credibility 
estimators in situations that range from parametric 
to nonparametric settings. The framework that is 
developed can be useful for the modeler who explic-
itly wants to deviate from a linear framework and 
to take into account higher-order (cross-)moments. 
For instance, our framework uses the explicit  
values of the covariance between observations and  
squared observations, and also the covariance between 
squared observations. For each of the parametric, 
nonparametric, and semiparametric settings explored 
in this paper, we give illustrations of the reduction 
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quantity X by using the past realizations {Xi}i=1:n of 
this quantity but also the past realizations {X i

2}i=1:n of 
the square of this quantity, and by performing a least 
squares optimization. Therefore, our goal is to solve 
the following extended program:

∑ ∑α + α + β −









{ }{ }α α β =

+
== =

min .

(3)

, ,
0,

1

2
1

1

2

0, 1: 1:

E X X Xq i i
i

n

i i n
i

n

q i i n i i n

For this purpose, we first introduce four new 
structural parameters, b, g, c, and h, defined as 
follows:

( ) = ∀ ≠Cov , , , (4)2X X b i ki k

and

( ) = +Cov , , (5)2X X b gi i

and also

( ) = ∀ ≠Cov , , , (6)2 2X X c i ki k

and

( ) ( )= = +Cov , Var . (7)2 2 2X X X c hi i i

We can easily check that b = Cov(E(X 2|Q), 
E(X |Q)), g = E(Cov(X 2, X |Q)), c = Var(E(X 2|Q)), 
and h = E(Var(X2|Q)). We can now state the main 
result of this section.

Proposition 1.1 (q-credibility). The q-credibility 
premium P̂q

n+1 that solves the program in Equation (3) 
and that gives the best quadratic estimator of Xn+1 can 
be expressed as a function of the empirical mean X

–
 of 

the past values, of the empirical mean X2
––

 = 
n

1
 ∑n

i=1Xi
2 

of the past squared values, and of the high-order  
co-moments defined in Equations (4) to (7), as follows:

= α + ++
ˆ * , (8)1 0,

2P z X y Xn
q

q q q

where

( )( )α = µ − − µ + +* 1 , (9)0,
2z y a vq q q

and for simplicity we also denote µ = µ1 and v = v1. 
Then, we define

( )( )= µ Θa Var ,

where µ(Q) = E(X |Q), and we have

X X a i ki k( ) = ∀ ≠Cov , , ,

and

( ) ( )= = +X X X a vi i iCov , Var . (1)

Classic credibility is a method that solves the  
following program:

∑α + α −









{ }α α =

+
=

E X Xi i
i

n

n
i i n

min
,

0
1

1

2

0 1:

to estimate the future outcome Xn+1 of a quantity X  
by using past realizations {Xi}i=1:n of this quantity. 
The solution of this program produces the following 
estimator of Xn+1:

P z zXn ( )= µ − ++
ˆ 1 ,1

where

X
n

Xi
i

n

∑=
=

1

1

and

z
na

na v
=

+
.

Also note that the mean squared error in classic 
credibility theory is given by

( )[ ] ( )= − = + −+ +MSE ˆ 1 . (2)1 1

2
E P X v a zc n n

It is also possible to define MSE ′c as follows:

( )[ ]( ) ( )′ = − Θ = −+ +MSE ˆ 1 .1 1

2
E P E X a zc n n

In this paper, we introduce q-credibility as a 
method to estimate the future outcome Xn+1 of a 
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so that q-credibility amounts to correcting credibility 
premiums by a proportion of the difference between 
the empirical and the theoretical, noncentered second-
order moments.

Remark 1.4  When b = g = 0, and without imposing 

any constraint on c or h, then =
+

z
na

na v
q  = z, yq = 0, 

and α0,q = µ (1 − zq) = µ (1 − z), so we recover the 

classic credibility case.

Remark 1.5  It can be easily checked that the 

solution to Equation (3) also solves

∑

∑ ( )

α + α

+ β − Θ





































{ }{ }α α β

=

+
=

min .
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X E X
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To measure the gain reached by going from the 
credibility to the q-credibility framework, we derive 
the following proposition, in the spirit of Neuhaus 
(1985).

Proposition 1.6 (Mean squared error). In the 
q-credibility framework, the mean squared error—or 

quadratic loss—is equal to

( ) ( )= −  = + − −+ +
ˆ 1 .

(12)
1 1

2
MSE E P X v a z y bq n

q
n q q

We also define

( ) ( )( )′ = − Θ  = − −+ +
ˆ 1 .1 1

2
MSE E P E X a z y bq n

q
n q q

It is in fact possible to relate MSEc and MSEq as 
follows.

Remark 1.7  Because the space of the combina-
tions of the {Xi}i=1:n is a subspace of the combinations 
of the {Xi}i=1:n and of the {X i

2}i=1:n, which is itself  
a subpace of the space of the squared integrable 

and

[ ]( )
( )

( )
( )( )

= + − +
+ + − +

, (10)2z
n a nc h b nb g

na v nc h nb g
q

and

( )
( )( )( )

= −
+ + − +

, (11)2y
n bv ag

na v nc h nb g
q

where lim
n→+∞

zq(n) = 1 and lim
n→+∞

 yq(n) = 0, so where the 

best estimator in the presence of infinite experience 

is simply the empirical mean.

In this proposition, we assume that the denomina-
tors of Equations (10) and (11) are non-null. Nothing 
prevents the credibility factor zq from being negative 
when the experience is limited, so when n is small. 
The last two illustrations of the paper will show 
situations in which this is the case, even when all 
the structural parameters have positive estimated 
values. Indeed, q-credibility theory provides only 
the outcome of a least-squares optimization. As long 
as we do not expect more from the framework than 
what it can provide, it is not inconsistent that the  
best estimator of a future claim or claim number 
negatively depends on the empirical mean of past 
values, as long as a correction by the empirical mean 
of past squared values is applied. Let us now make 
four important remarks.

Remark 1.2  Similar to the classic estimator P̂n+1, 

the quadratic estimator P̂q
n+1 is by construction 

unbiased. Indeed, we have that E(P̂q
n+1) = E(Xn+1) 

from Equation (27) in the proof of Proposition 1.1 

(see Appendix).

Remark 1.3  We note that P̂q
n+1 can also be written as

( )( )= µ − + + − µ+
ˆ 1 ,1

2
2P z Xz y Xn

q
q q q

or as

( )( )= µ + − µ + − µ+
ˆ ,1

2
2P z X y Xn

q
q q
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Next, we obtain general expressions for the struc-
tural parameters.

Proposition 1.11 (Parameters in the general case). 
We recall that v = E[Var(X |Q)] and a = Var[E(X |Q)], 
where ∀i ≠ k Xk and Xi are identically distributed and 
can be replaced, in the absence of ambiguity, by a 
representative random variable X. Further, X i

2 and 
Xk are assumed independent conditionally on Q. The 
quantities b, g, c, and h, defined in Equations (4) to (7), 
can be expressed as functions of Q as follows:

[ ]

[ ] [ ]

( )

( ) ( ) [ ]

( )

( ) ( )

= Θ Θ

= Θ Θ − Θ Θ

b Cov E X E X

E E X E X E E X E E X

,

,

(13)

2

2 2

and

[ ]

[ ]

[ ]

( )

( ) ( ) ( )

= Θ

= Θ − Θ Θ

g E Cov X X

E E X E E X E X

,

, (14)

2

3 2

and also

[ ]( )= Θc Var E X , (15)2

and

[ ][ ]( ) ( ) ( )= Θ = Θ − Θh E Var X E E X E X .

(16)

2 4 2 2

2.  The parametric Poisson case

We now examine a few cases in which parametric 
expressions are postulated for Q and for X given Q.  
In this context, we first derive expressions for the 
structural parameters in the conditional Poisson 
setting.

Proposition 2.1 (Parameters in the conditional 
Poisson case). We assume that X conditional on Q 
is Poisson distributed. We recall that µ = v = E(Q) 
and a = Var(Q) in classic credibility theory. The 

random variables, we have the following Pythagorean 
result:

( )
( )

( )[ ]− = − 

+ − 

+ + + +

+ +

ˆ ˆ

ˆ ˆ ,

1 1

2

1 1
2 2

1 1
2 2

E X P E X P

E P P

n n n n

n n

which expresses that the projection on a subsubspace 
is the projection on a subspace plus the squared 
distance between the two projections. Therefore, 
we have

( )= + −+ +P Pc q n nMSE MSE Var ˆ ˆ .1 1
2

We can also define

( )∆ = − = − +MSE MSE MSE .a z z byc q q q

Note that relative gains will be measured by the 
quantity

( )
( )

κ = ∆ =
− +

+ −
MSE

MSE 1
,

a z z by

v a zc

q q

or by

( )
( )

′κ = ∆ ′
′

=
− +

−
MSE

MSE 1
.

a z z by

a zc

q q

We can make the following additional remarks:

Remark 1.8  The introduction of the βi variables 
in the optimization program allows us to reach a 
smaller quadratic distance between the estimator and 
Xn+1. Therefore, we always have MSEq ≤ MSEc;

and

Remark 1.9  When b = g = 0, and without impos-
ing any constraint on c or h, then MSEq = MSEc;

and also

Remark 1.10  Equations (2), (9), (10), (11),  
and (12) are all valid.
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Proposition 2.3 (Parameters in the Pareto case). 
Let Q be Pareto-distributed1 with parameters (h, c), 
under the restriction h > 4. In this context, it is already 

known that µ = = ηχ
η −

v
1

 and = ηχ
η −

− ηχ
η −







a
2 1

2 2

. 
The quantities b, g, c, and h can be written as follows:

3 2 1
, (19)

3 2

b a= + ηχ
η −

− ηχ
η −







ηχ
η −







and

1
2

2
, (20)

2

g = ηχ
η −

+ ηχ
η −

and also

2
4 2

, (21)
4 2 2

c b a= − + ηχ
η −

− ηχ
η −







and

1
6

2
4

3
. (22)

2 3

h = ηχ
η −

+ ηχ
η −

+ ηχ
η −

We now construct an example in which the param-
eters of the Pareto distribution are h = 5 and c = 4, 
and we assume that 5 claims have been observed in 
the past n = 2  years. In this example, the average 

number of observations is X
–
 = 

5

2
 = 2.5.

To compute the quantity X2––
, we need to know how 

the 5 claims were distributed between the 2  years. 
There are three possible scenarios: 3 claims in  
one year and 2 claims in the other year, 4 claims in 
one year and 1 claim in the other year, and 5 claims 
in one year and 0 claims in the other year. The order 
in which the numbers of claims are observed is not 

relevant. In the first case, 
3 2

2
2

2 2

X = +
 = 6.5. In the 

quantities b, g, c, and h can be written as functions 
of the moments of Q as follows:

( ) ( ) ( )= + Θ − Θ Θ ,3 2b a E E E

and

( )( )= Θ + Θ2 , (17)2g E E

and also

( )= − + Θ2 ,2c b a Var

and

( ) ( )( )= Θ + Θ + Θ6 4 . (18)2 3h E E E

When the distribution of Q is gamma, q-credibility 
reduces to standard credibility. Indeed, the classic 
credibility premium coincides with the Bayesian 
premium in the Poisson-gamma case. This means that 
it is not possible to further reduce the mean squared 
error, and therefore the q-credibility predictor can 
only be equal to the classic credibility predictor. 
We are in a situation of exact q-credibility that we 
summarize in the next proposition.

Proposition 2.2 (q-credibility in the Poisson-
gamma case). In the Poisson-gamma case, q-credibility 
reduces to classic credibility, with

= 0,yq

= ,z zq

and

( )α = α = µ −1 ,0, 0 zq

and the q-credibility predictor, similar to the credibility 
predictor, is equal to the Bayesian predictor.

When we assume that the distribution of Q is Pareto, 

so that when we use ( )Θ = ηχ
η −

E
k

k
k

 that is valid as 

long as h > k, we obtain:

1We use the following density for the Pareto distribution:

f x
x

x( ) =
ηχ

Θ

η

η+ >χ1 .1
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Table 2.1 shows P̂q = α*0,q + zqX
–
 + yq X

2––
 for each of 

the three possible scenarios for X2––
.

We observe from the table that the more irregular 
the number of claims is between years, the greater  
is X2––

 and the greater is the correction to classic cred-
ibility theory made by q-credibility. Also note that 
the repartition of claims along years, ceteris paribus, 
is a feature that cannot be taken into account by 
classic credibility theory, while quadratic credibility  
measures this effect in the premiums it produces. 
However, although q-credibility can capture irregu-
larities, it cannot capture trends.

The mean squared error in the quadratic setting is

MSE
115

131
0.8779.q′ = ≈

Therefore, the following relative reduction in the 
error is observed in this experiment:

16

131
12.21%.′κ = ≈

Let us now examine what q-credibility means in a 
semiparametric case.

3.  The semiparametric case

The semiparametric approach to credibility cor-
responds to a situation in which the distribution of 
a number of claims X conditionally on Q is known. 

second case, 
4 1

2
2

2 2

X = +
 = 8.5. Finally, in the third 

case, 
5 0

2
2

2 2

X = +
 = 12.5.

According to classic credibility theory,

5,vµ = =

and

5

3
.a =

Therefore,

3,k
v

a
= =

and

2

2 3

2

5
.z

n

n k
=

+
=

+
=

The expected number of claims for the coming 
period is given by

ˆ 1
2

5

5

2

3

5
5 4.P zX z( )= + − µ = + =

Not surprisingly, this value lies between the 
empirical mean, X

–
 = 2.5, and the theoretical mean,  

µ = 5. The mean squared error in the classic setting is

MSE 1.c′ =

To compute the q-credibility estimator, we start by 
computing Equations (19) to (22). We obtain

175

3
58.33,

85

3
28.33,

5615

9
623.88, 805.

g b

c h

= ≈ = ≈

= ≈ =

Then, we have

11

131
0.083969,zq = ≈

Table 2.1.  q-credibility estimates

Number of claims 
distribution (3,2) (4,1) (5,0)

X2––
6.5 8.5 12.5

P̂q 4.2137 4.2595   4.3511

and

3

131
0.022901,yq = ≈

so that

* 505

131
3.85496.0,qα = ≈
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and

∑∑=
−

−





−
=

+∞

=

+∞
ˆ

1

1

1 ˆ.2 2

0

2

0

c
M

i
M

j X X hj
j

i
i

Let us now come to an illustration of these results. 
Assume we observed the data given in Table 3.1. This 
table expresses that 560 insureds incurred no claim 
in the past period, 134 insureds incurred one claim in 
the past period, and so on. We want to compute the 
expected future number of claims for an insured who 
incurred i claims in the past period.

In this example, no insured incurred more that 
three claims. We have

∑= =
=

M Xi
i

710,
0

3

and we can compute

µ = = =v aˆ ˆ 0.2366, ˆ 0.0006834.

Using the classic credibility formulas (for n = 
1 year of observations), we have

= = =
+

=k
v

a
z

k

ˆ

ˆ
346.26,

1

1
0.0029.

According to classic credibility theory, we can 
compute the expected future number of claims for 
an insured who incurred i claims as follows:

( )( ) = + − µ ≤ ≤ˆ 1 ˆ 0 3,P i zi z i

which yields

[ ]=ˆ 0.2359 0.2388 0.2417 0.2446 ,P

where the observation and prediction periods are of 
the same length.

However, neither the distribution of Q nor the 
unconditional distribution of X are known.

Assume we observed M insured during a particular 
year. During that year, Xi is the number of insureds 
for which i claims occurred. We can estimate the 
average number of claims as follows:

ˆ 1
,

0

0 0

i
X

X M
iXi

j
j

i
i

i∑
∑ ∑µ = =

=

+∞
=

+∞

=

+∞

where we note that M = ∑+∞
j=0Xj.

Because we are in a conditional Poisson setting, 
we readily have

v = µ

by taking the expectation of

Var .E X X( ) ( )Θ = Θ = Θ

Using the unbiased estimator of the variance of X,  
which is equal to â + v̂, we can write the classic  
formula for the estimator of a:

∑

∑
∑

( )
( )=

− µ

−
− =

−
− µ −=

+∞

=

+∞
=

+∞
ˆ

ˆ

1
ˆ

1

1
ˆ ˆ.

2

0

0

2

0

a
i X

X
v

M
i X v

i
i

i
i

i
i

The next proposition gives the q-credibility semi-
parametric estimators.

Proposition 3.1 (Semiparametric estimators). 
Under the conditional Poisson assumption, we have

∑( )= −
=

+∞
ˆ

1
2 ,2

0

g
M

i i Xi
i

and

∑ ∑∑=
−

−





−





−
=

+∞

=

+∞

=

+∞

b
M

i
M

j X i
M

jX X gj
j

j
ji

i
ˆ 1

1

1 1
ˆ,2 2

0 00

and also

∑( )= − +
=

+∞

h
M

i i i Xi
i

ˆ 1
4 6 3 ,3 2

0

Table 3.1.  Dataset

i 0 1 2 3

Xi 560 134 14 2
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4.  The nonparametric case

We first give the main results obtained in a non-
parametric setting for the structural parameters, and 
then we provide an illustration of these results.

In classic credibility theory, the estimator of 
expected hypothetical means is

∑∑µ =
==

ˆ 1
,

11rn
Xij

j

n

i

r

in which the claims, Xij, are doubly indexed to 
reflect the fact that we now consider r policyholders 
over n periods. The estimator of expected process 
variance is

∑∑ ( )
( )

=
−

−
==

ˆ
1

1
,

2

11

v
r n

X Xij i
j

n

i

r

where X
–

i = 
n

1∑n
j=1Xij is the empirical mean of past 

observations for insured i. Then, the estimator of the 
variance of hypothetical means is

∑( )=
−

− −
=

ˆ
1

1

ˆ
,

2

1

a
r

X X
v

n
i

i

r

where X
–
 is the empirical mean of past observations 

for all insureds, which is equal to µ̂. We obtain similar 
estimators for q-credibility parameters in the follow-
ing proposition.

Proposition 4.1 (Nonparametric estimators). The 
nonparametric estimators for the quantities h, c, g, 
and b are given as follows:

∑∑ ( )
( )

=
−

−
==

ˆ 1

1
, (23)2 2

2

11

h
r n

X Xij i
j

n

i

r

where X i
2

––
 = 

n

1∑n
j=1X

2
ij is the empirical mean of past 

squared observations for a given insured i. Then,

∑( )=
−

− −
=

ˆ
1

1

ˆ
, (24)2 2

2

1

c
r

X X
h

n
i

i

r

We now compute the q-credibility estimators given 
in Proposition 3.1. We obtain

= =

= =

b g

c h

ˆ 0.0044, ˆ 0.3493,

ˆ 0.0052, ˆ 0.6423.

Then we have, using Equations (9) to (11),

= − = α =0.0393, 0.0283, * 0.2376.0,z yq q q

Based on Equation (8), we compute

( ) = α + + ≤ ≤ˆ * 0 3,0,
2P i z i y i iq q q q

because i and i2 represent the first- and second-order 
empirical, noncentered moments over one period for 
each line of the dataset considered. We obtain the 
q-credibility estimates

[ ]=ˆ 0.2376 0.2266 0.2722 0.3743 .Pq

Using the formulas of Proposition 1.6, we find that 
the mean squared error in the classic setting is

′ =MSE 0.000681,c

while in the quadratic setting it is

′ =MSE 0.000585.q

Therefore, the following relative reduction in the 
error is observed in this experiment:

′κ = 14.1%.

Note that the illustration of the semiparametric 
case that we conduct here, where we compare the 
quadratic situation with the classic situation, the latter  
well known to Society of Actuaries and Casualty 
Actuarial Society actuaries (see, for instance, the 
2012 book by Klugman et al.), is not devoid of draw-
backs. For instance, the grouping of policies per 
number of claims measured per year may lead to 
the construction of inconsistent classes. We leave to 
another publication the development of other illus-
trations of the semiparametric framework.
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Next, we turn to the q-credibility approach. For 
simplicity, we denote X 2 = X ° X, the elementwise 
product of X with itself. We have

X =

















1 4 36

1 100 169

1 1 1

.2

Therefore, = = =





X X X
41

3
, 90, 911

2
2
2

3
2  and 

X = 314

9
2 . The q-credibility parameters are esti-

mated using Equations (23) to (26). We obtain

= =

= =

ˆ 22,522

9
, ˆ

13,355

9
,

ˆ 190, ˆ 325

3
.

h c

g b

Then, we have, using Equations (9) to (11),

= − = α =z yq q q

18,862

40,401
,

365

4,489
, * 12,023

4,489
.0,

The expected number of claims in the next period 
for the first insured is, according to q-credibility 
theory,

= α + + = ≈ˆ * 10,724

4,489
2.3890.,1 0, 1 1

2P z X y Xq q q q

Similarly, we have for the second insured

= α + + = ≈ˆ * 252,961

40,401
6.2613,,2 0, 2 2

2P z X y Xq q q q

and for the third insured

= α + + = ≈ˆ * 92,630

40,401
2.2928.,3 0, 3 3

2P z X y Xq q q q

The relative changes, 
−



 =

P P

P
q i i

i i

ˆ ˆ

ˆ
,

1:3

, induced by 

the quadratic correction are, respectively, –29.6%, 
–2.58%, and 5.2%. They are not negligible and can 
be of any sign.

where

∑∑=
==

12 2

11

X
rn

X ij
j

n

i

r

is the empirical mean of past squared observations 
for all insureds. Next,

∑∑ ( )( )
( )

=
−

− −
==

g
r n

X X X Xij i ij i
j

n

i

r

ˆ
1

1
, (25)2 2
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and

∑( )( )=
−

− − −
=

ˆ 1

1

ˆ
. (26)2 2

1

b
r

X X X X
g

n
i i

i

r

Let us now study the use of these estimators via a 
simple example. Assume r = n = 3, and we have the 
following data:

X =

















1 2 6

1 10 13

1 1 1

,

where each line is for one insured and gives three 
consecutive numbers of observations.

We compute (X
–

1 = 3, X
–

2 = 8, X
–

3 = 1), and µ̂ =  
X
–
 = 4. Then, according to classic credibility theory,

=ˆ
46

3
v  and =ˆ

71

9
a . We deduce that = 138

71
k  and 

=
+

=3

3

213

351
z

k
.

The expected number of claims in the next period 
for the first insured is, according to classic credibility 
theory,

( )= + − µ = ≈ˆ 1
1,191

351
3.3932.1 1P zX z

Similarly, we have for the second insured

( )= + − µ = ≈P zX zˆ 1
2,256

351
6.4274,2 2

and for the third insured

( )= + − µ = ≈ˆ 1
765

351
2.1795.3 3P zX z
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for their insightful comments. The proof of the first 
proposition of this paper (see Appendix) is lengthy 
on purpose, to show to a broad readership how the 
q-credibility estimator is constructed. It is of course 
possible to derive an existence and uniqueness result 
in a shorter way, using a Hilbert space Pythagorean 
lemma, as in Remark 1.7, dealing with the mean 
squared error.
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Subtracting E(Xk) times Equation (28) from  
Equation (29), we have
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Finally, we set the derivative of f with respect to 
each βk equal to 0:
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Appendix

Proof of Proposition 1.1

The goal is to minimize the mean squared error 
function:

∑∑= α + α + β −
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We first set the derivative of f with respect to α0,q 
equal to 0:
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and we obtain
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2
1

11

Then, we set the derivative of f with respect to 
each αk equal to 0:
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Introducing

= α*,z nq

and

= β*,y nq

we obtain

( )( )α = µ − − µ + +* 1 .0,
2z y a vq q q

These are Equations (9) to (11). Then, we want to 
estimate Xn+1 using the past realizations {X̂i}i=1:n of 
the {Xi}i=1:n. Using

∑∑α + α + β
==

* * ˆ * ˆ
0,
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11

X Xq i i i i
i

n
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which we rewrite as
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we obtain Equation (8).

Proof of Proposition 1.6

We need to compute
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1 1
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We already know that

( ) = ++Var 1X v an
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Subtracting E(X k
2) times Equation (28) from  

Equation (31), we have
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Recall that the Xi’s are assumed identically dis-
tributed. Therefore, the index i does not play any 
role, and we have ∀i = 1 : n, a i

* = a* and ∀i = 1 : n, 
bi
* = b*. Then, Equations (30) and (32) become

( )( )α + + β + =* * , (33)na v nb g a

and

( ) ( )α + + β + =* * . (34)nb g nc h b

Solving Equations (33) and (34), we obtain

( )
( )

( )
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+ + − +

a nc h b nb g
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* ,2
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Next, Equation (28) can be rewritten as follows:

( )α + α µ + β µ + + = µ* * * .0,
2n n a vq

because

( ) ( ) ( )= + = µ + +Var2 2 2E X E X X a vi i i

thanks to Equation (1).
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Then, by conditional independence of X 2 and Y,
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The derivation of the expressions of c and h is 
similar to that of a and v, replacing X with X 2.

Proof of Proposition 2.1

We use the fact that E(X |Q) = Q, E(X 2|Q) = Q + Q2, 
E(X 3|Q) = Q + 3Q2 + Q3, and E(X4 |Q) = Q + 7Q2 + 
6Q3 + Q4. Note that
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Elementary computations yield
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Because Equations (33) and (34) can be rewritten, 
respectively, as
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Recombining the above results, we obtain the result 
of the proposition.

Proof of Proposition 1.11

For X ≠ Y,
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Using similar arguments, we obtain

E E X E X E X( ) ( ) ( ) ( )Θ = − +3 2 . (36)3 3 2

Replacing Equations (35) and (36) in Equations (17) 
and (18) and then taking the unbiased estimates of 
the noncentered moments gives the expressions of  
ĝ and ĥ. For the computation of b̂, we recall that

b g X X( )+ = Cov , ,2

and we take the unbiased estimator of this covariance 
term. Similarly, for the computation of ĉ, we have

c h X( )+ = Var ,2

and we take the unbiased estimate of this variance term.

Proof of Proposition 4.1

The estimators ĥ and ĉ can be derived in the same 
way as v̂ and â, replacing observations with squared 
observations. From Proposition 1.11, we have

g E X X[ ]( )= ΘCov , ,2

The inner sum in Equation (25) is obtained by  
taking the unbiased estimator of the covariance  
in the above formula for g. Then, the outer sum in 
(25) is derived using the unbiased estimator of the 
mean in the expression of g. Next, to compute b̂, 
we start by computing
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where we have used the conditional independence of 
X2

i,k and Xi,j, knowing Qi.
Then, we recognize in the above formula
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and the expression of b̂ follows by computing the 
unbiased estimator of Cov(Xi

2––
, Xi

––
).

Next, we have

c E X[ ]( ) ( )

( ) ( )( )

= Θ = Θ + Θ

= Θ + Θ + Θ Θ

Var Var

Var Var 2Cov , ,

2 2

2 2

and

c E E E

b E E E

[ ]( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

= Θ + Θ + Θ − Θ Θ

= + Θ + Θ − Θ Θ

Var Var 2

Var ,

2 3 2

2 3 2

and finally,

[ ]
( )

( ) ( )

( )

= Θ − Θ

= Θ + Θ + Θ + Θ − Θ + Θ

h E E X E X

E 7 6 .

4 2 2

2 3 4 2 2

Proof of Proposition 2.2

Because

bv ag gv ag g v a g ( )( )− = χ − = χ − = χ η − χ η = 02 2

we have from Equation (11) that yq = 0. A few lines 

of computation give z
n

n
zq = χ

χ +
=

1
. The expression 

of α0,q follows.

Proof of Proposition 3.1

We have

E X E E X E( )( ) ( )( ) = Θ = Θ

Then,

( )

( ) ( )( ) ( )

( ) ( )

( ) ( )= −

= Θ + Θ

= Θ + Θ

X E X E X

E X E X

E

Var

Var Var

Var

2 2

yields

E X E X E E E( ) ( )( ) ( )( )− = Θ + Θ − Θ2 2 2 2

so that

E E X E X( ) ( ) ( )Θ = − . (35)2 2




