
Yep, We’re Skewed
by Kirk G. Fleming

ABSTRACT

All of us, especially those of us working in insurance, are
constantly exposed to the results of small samples from
skewed distributions. The majority of our customers will
see small sample results below the population mean. Also,
the most likely sample average value for any small sample
from a skewed population will be below the mean of the
skewed population being sampled. Experienced actuaries
are aware of these issues. However, we have to be on guard
and not fall back on easy assumptions that are appropriate
for results from symmetrical distributions.
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All of us, especially those of us working in
insurance, are constantly exposed to the results
of small samples from skewed distributions. The
majority of our customers will see small sam-
ple results below the population mean. Also, the
most likely sample average value for any small
sample from a skewed population will be below
the mean of the skewed population being sam-
pled. Experienced actuaries are aware of these
issues. However, we have to be on guard and not
fall back on easy assumptions that are appropri-
ate for results from symmetrical distributions.
For a symmetrical distribution with one mode,

such as a bell curve, the mode is equal to the
mean. But for a typical distribution that we might
encounter in insurance that is skewed to the right
and that has only one mode, the mode is less than
the median, which is less than the mean. When
we do small samples from typical skewed dis-
tributions, the most likely value for the sample
average of a small sample will be somewhere
between the mode and the mean of the sampled
distribution. How close our small sample average
will be to the mode or to the mean of the sampled
distribution will depend on the sample size and
the skewness of the distribution from which we
are sampling. Moreover, for some skewed dis-
tributions, “small” samples can be surprisingly
big.
For some insurance examples, this relationship

should be in the back of our minds. Take, for ex-
ample, the annual sample from a highly skewed
distribution such as the annual hurricane losses
in the city of Miami. For any particular year, the
most likely loss we will observe is zero–the
mode of the distribution. Every so often there
will be a hurricane loss that will bring the long-
term average above the zero mark, but most of
the time we will see no losses.
On the other hand, an industry average loss

ratio is based on a sample size that we could
consider for all practical purposes to be infinite.
If we are dealing with large samples, even from

skewed distributions, we are confident that the
most likely value for the sample average will be
something close to the true average of the distri-
bution.
In between these two extreme cases–a sam-

ple size of one and a sample size that is virtually
infinite–the most likely value for the average of
the sample goes from the mode of the sampled
distribution up to the mean of the sampled distri-
bution. As an example, let us examine the results
from a positively skewed distribution used in in-
surance modeling–the lognormal distribution.
Figure 1 shows three lognormal curves, each

with a mean of 1,000 and with varying degrees of
skewness. As the skewness increases, the mode
or highest point on the distribution is associated
with points closer and closer to zero.1 For a log-
normal distribution with a coefficient of variation
(CV) of 2.0, the most likely value for a sample
size of one is relatively close to zero, no matter
how big the mean of the distribution. For small
samples from this skewed distribution, the most
likely value for the sample average will be close
to zero.
In order to give a feel for what makes up a

small sample size, I simulated random values
from a lognormal distribution with a mean 1,000
and varying degrees of skewness. The modes for
the sample averages of various sizes are shown in
Figure 2 for lognormal distributions with a mean
of 1,000 and CVs of 0.5, 1.0, 2.0, 5.0 and 10.0.
For individual claim size distributions that

have low skewness, the most likely value that
we will see from a sample average very quickly
approaches the mean of the distribution. Many
introductory statistical textbooks give a rule of
thumb that infinity begins at a sample size of
30, and for low skewness 30 does seem to be a

1For a lognormal distribution with parameters of ¹ and ¾, the co-

efficient of variation is
p
(e¾2 ¡ 1) and the formula for skewness

is
p
(e¾2 ¡ 1)(2+ e¾2 ). As the skewness increases, so does the co-

efficient of variation.
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Figure 1. Lognormals with mean 1,000

Figure 2. Mode of sample average

magic number when we are dealing with the log-
normal distribution. However, as the skewness
increases, it takes a very big sample size before
the most likely value of the sample average ap-
proaches the mean of the sampled claim distribu-
tion. For a lognormal distribution with a CV of
10, even at a sample size of 500, the most likely
value we would see from the sample average is
85% of the distribution mean. Formal credibility
formulas aside, I believe many actuaries would
consider 500 homogeneous claims to be a fairly
large database.

With a CV of 10 and a sample size of 10,000,
the most likely value we would see is still only
96% of the mean of the distribution. A simula-
tion size of 10,000 is not an uncommon size for
actuaries doing simulations. Even with this large
sample, there is still a downward bias of 4% from
the actual average of the distribution.
Another thing to observe about these sample

results is that the most likely values for the sam-
ple averages follow a pattern of rising quickly
from the mode of the distribution and then hit-
ting a fairly flat area that approaches the mean
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very slowly. In his book Fooled by Randomness
(2001), Nassim Taleb discusses how people are
misled by skewed distributions. He focuses on
the rare extreme values in the tail of the distri-
bution, which he calls the black swans that are
usually missing from the sample results out of
skewed distributions. People forget about these
black swans or are unaware of them.
However, for “small” samples out of skewed

distributions, it is not just missing black swans
that can cause problems. We may be getting ugly
ducklings in our small samples. The most likely
values of small samples from skewed distribu-
tions are actively misleading the observer be-
cause the mode of the sample average is so much
lower than the mean. It is almost as if the skewed
distribution is actively evil by feeding us mis-
leading information from its body as opposed to
passively withholding tail information from us.
If we say that risk is a function of the standard
deviation, then the presence or absence of black
swans would have a greater impact on our per-
ception of the risk of a loss process than on the
mean of the loss process.
When we are doing relatively small samples

from skewed distributions, we should recognize
that the most likely value of the sample average
will be less than the mean of the distribution that
we are trying to measure. We should also realize
that the sample of points we are working with is
composed of even smaller samples that our indi-
vidual customers see. The majority of our cus-
tomers will see results lower than the long-term
average and perceive the average we calculate as
too high. Actuaries can try to deal with issues as-
sociated with small sample sizes with techniques
such as maximum likelihood estimates to solve
for distribution parameters, analyzing the data by
splitting it into basic and excess limits, or using
catastrophe models. However, we are still faced
with the problem of customer perceptions as a
result of skewed distributions, and perception is
reality. Yep, we’re skewed.

Along these lines, Ted Kelly, CEO of Liberty
Mutual (Friedman 2006) warned about pricing
levels in the 2006 property market. Property in-
surance prices had increased dramatically be-
cause of the losses associated with Hurricane Ka-
trina in 2005 and presumably due to the early
predictions by the hurricane forecasters of se-
vere hurricanes for 2006 and beyond. He said,
“The lack of catastrophes this year will create its
own set of problems, including accusations that
we cried wolf when we raised rates and are now
price gouging.” He joked, “It’s like saying some-
one who survives Russian roulette faced no risk
just because the gun didn’t go off, when we all
know there is still a bullet in the chamber, and if
you play the cat game long enough, it’s going to
go off.”
In my opinion, using the best estimate of the

average loss over the period in which the pol-
icy is exposed would be the correct way to fund
for catastrophes. Currently, all the market forces
produce a collective behavior that seems to be in-
fluenced by the results of small sample averages.
In the absence of major industry losses, market
rates drop below the levels indicated by expected
average losses. After a major shock loss, the mar-
ket rates overcorrect to include expected average
losses and payback for the prior unfunded losses.
If nothing else, funding at the best estimate of
the average loss for the exposure period would
identify to all market participants the costs that
that market is facing. That being said, “What is
the loss distribution?” and “What is the best es-
timate of the average expected loss?” are among
the difficult questions that all the participants in
this market must answer.
The only cure for complacency is a conscious

effort to take measures to guard against extreme
events. Insurance companies exist to help cus-
tomers guard against the extreme unexpected fi-
nancial consequences of life. As actuaries and
managers of insurance companies, we have to
make sure we are forecasting the true long-term
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results and acting appropriately to account for
extreme events so that our companies will be
there to pay the losses of our customers. We have
to avoid complacency bred by constant exposure
to the mode of skewed distributions.
There is an old insurance joke that says an in-

surance company is a car being driven down the
road by the blindfolded president of the com-
pany. The head of marketing is stepping on the
gas, the underwriter is stepping on the brake,
and the actuary is looking in the rearview mir-
ror yelling which way to turn. In this case, the
warning label that appears on the passenger-side
rearview mirror should read, “Losses in mirror
are larger than they appear.”
In that joke, the actuary is the only person

in the car who is looking at any section of the

road. When working with small samples from
skewed distributions, we should keep in mind
that it might take many samples in order to get
an average that provides a good estimate of the
true average of the underlying distribution. We
have to understand the loss process we are trying
to model along with the limitations of our data
samples, and make forecasts and recommenda-
tions accordingly.
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