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Using Survival Analysis to Predict 
Workers’ Compensation Termination

by Ian Duncan, Nhan Huynh, Janet Duncan, and Roberto Molinari

ABSTRACT

The standard method for calculating reserves for permanently injured 

worker benefits (indemnity and medical) is a combination of adjuster-

estimated case reserves and reserves for incurred but not reported claims 

(IBNR) using a triangle method. There has been some interest in other 

reserving methodologies based on a calculation of future payments for 

the expected lifetime of the injured worker using a table of mortality 

rates. This method (State of California 2011) is required by the State 

of California for estimating future medical reserves on permanently  

disabled workers under self-insured plans, using the most recent U.S. 

Life Tables as the basis. We examined the experience of an excess 

insurance pool using different methods to determine the appropriateness 

of the standard table as an estimator of claim termination. The estimated 

pool termination rates were significantly higher than the standard table 

for most ages. We also calculated termination hazard rates using both 

Kaplan-Meier and Cox proportional hazards models and found that the 

modeled termination hazard was significantly higher than the standard 

table mortality rates. Finally, because life expectancy is only one com-

ponent of the State of California reserve formula we cannot conclude 

that the formula results in over-reserving for future medical claims. If 

this approach is to continue to be used, a more appropriate method for 

calculating termination rates should be considered.
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In this model life expec-
tancy depends only on the 
age of claimant i and is inde-
pendent of time t. Historical 
medical payments may be 
adjusted to remove outliers  
and to include costs for 
known future procedures, 
where these are expected to 
be greater than the histori-
cal average. Permanent Dis
ability (PD) is defined as any 
lasting disability that results 
in a reduced earning capac-
ity after maximum medical 
improvement is reached.1 
Whether a disability is 
considered partial or total 
depends on the Permanent 

Disability Rating, a percentage that estimates how 
much a job injury permanently limits the kinds of 
work the claimant can do. A rating of 100% implies 
permanent total disability; a rating less than 100% 
implies permanent partial disability.

The OSIP reserving methodology requires that 
life expectancy be calculated using the most recent 
U.S. Life Tables (2011 for our analysis) separately 
for males and females, which is provided by the 
CDC/NCHS National Vital Statistics System (Arias 
2015). The U.S. Life Tables provide mortality rates 
at each age for the U.S. population, and allow the 
derivation of an estimate of future life expectancy in 

the usual actuarial way, namely: e p dtx t x∫=
∞

0

�  where 

e
.
x is the complete expectation of life for an individual 

of age x and tpx is the probability that the individual 
will survive for t years. (See, for example, Dickson, 
Hardy and Waters 2013.) Life expectancy is used in 
this model as a measure of duration to claim termina-
tion. A workers’ compensation claim may terminate  

1.  Background

Workers’ compensation 

insurance covers all work-

related injuries and illnesses 

with medical care, wage 

replacement, and death ben-

efits. In California private 

and public employers are 

required to have workers’ 

compensation insurance for 

their employees. Most pub-

lic entities self-insure their 

exposures below a Self-

Insured Retention (SIR) and 

insure their exposure above 

the SIR through an excess 

workers’ compensation insur-

ance policy. The SIR is the amount specified in the 

insurance policy that must be paid by the insured 

before the excess insurance policy will respond to a 

loss. Public employers may purchase excess insur-

ance through entities such as the California State 

Association of Counties-Excess Insurance Authority 

(CSAC-EIA).
To legally self-insure, employers must comply 

with the reserving policy of the California Office of 
Self-Insured Plans (OSIP). Reserves are established 
to cover the future medical costs that are expected 
for each claimant, including costs associated with 
expected surgeries, prescription drugs, rehabilita-
tion, physical therapy, etc. The statutorily established 
reserving methodology for Permanent Disability 
(PD) claims (State of California 2011) requires that 
Future Medical (FM) reserves for claimant i at time t 
be calculated as:
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1From State of California Dept. of Workers Compensation “Glossary of 
Workers Compensation Terms for Injured Workers.” http://www.dir.ca.gov/
dwc/WCGlossary.htm#p accessed July 2017. 

There has been some interest in 
alternative reserving methodologies 

for the calculation of future  
payments for the expected lifetime 
of the injured worker using a table 

of mortality rates. The State of 
California requires self-insured 

plans to estimate future medical 
reserves on permanently disabled 

workers as a product of the  
average of the last three years’ 

medical costs and life expectancy 
of the injured worker, based on the 

U.S. Population table.
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(2012), and Shane and Morelli (2013). This has led 
Jones et al. (2013) to find that “adverse reserve 
development in older accident years [is] a persistent 
problem . . . traditional actuarial methods typically 
used to project “bulk” incurred but not reported 
reserves often fall short.” The authors go on to note 
that a mortality-based method of reserve setting can 
help address the causes of reserve misestimation. 
Despite some interest in the use of a mortality-based 
method for estimating future reserves, there is  
relatively little literature on this topic. Gillam (1993) 
tested whether injured worker mortality differed 
from population mortality. The Gillam study found 
that injured worker mortality was higher than popu
lation mortality under age 60, but equal between  
60 and 74. The author calculates that the average 
pension of injured workers will be 1.6% lower than 
that calculated using the standard table, at a 6% dis-
count rate. Gillam concludes that “higher mortality  
in these cases doesn’t make current reserves signi
ficantly redundant.” However, the study focused on 
the indemnity cost (effectively a disabled life pen-
sion) rather than the medical cost. Jones et al. (2013) 
note that medical trend is one reason for persistent 

reserve understatement in 
recent years. Unfortunately, 
Jones et al. do not compare 
their reserve estimates based  
on discounted contingent 
cash flows with traditional 
triangle based estimates, 
although they list a number 
of advantages of a mortality-
based method.

3.  Hypothesis

If mortality of disabled 
lives is higher than that of the 
standard population, by using 
a population life table rather 
than a disabled life table  
the current methodology 

due to death, recovery or settlement, although the 
latter two statuses are not common in the case of 
permanently disabled claimants. Because the U.S. 
Life Tables measure life expectancy for the popula-
tion as a whole, including both healthy and disabled 
lives, they may not be representative of claims termi-
nation rates for PD claimants.

2.  Prior use of survival models to 
estimate survival of permanently 
disabled populations

There are two major strands of research in this area: 
the workers’ compensation actuarial literature and 
the health services literature. There are a number of 
health services studies estimating the future lifetimes 
of injured workers, for example, Ho, Hwang, and 
Wang (2006), Sears, Blanar, and Bowman (2014), 
Sears et al. (2013), Liss et al. (1999), Lin et al. 2012, 
and Wedegaertner et al. (2013). These studies cover 
permanently disabled workers in different countries, 
industries and injury types. Cox proportional hazard 
and Kaplan Meier models are used in some (but not 
all) of these studies to compare the mortality haz-
ard with that of a compari-
son population. Uniformly, 
the studies cited found that 
expected lifetimes of perma-
nently disabled workers are 
shorter than those of standard 
populations.

Workers compensation 
actuaries frequently estimate 
future liabilities by some 
form of chain ladder projec-
tion. The lack of long dura-
tion data makes estimation 
of costs in “the tail” difficult. 
Several studies have tackled 
the issue of estimation of tail 
liability, including Sherman 
and Diss (2006), Jones et al. 
(2013), CAS (2013), Schmid 

If mortality of disabled lives  
is higher than that of the  

US population, then by using a 
population life table rather than 
a disabled life table the current 

methodology potentially overstates 
claims reserves. We tested the 
null hypothesis that termination 
rates in the claimant population 

are equal to the termination rates 
according to the current U.S. Life 
Table and found that experience 
termination rates of the sample 
population significantly exceed 
those of the population table.
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eventually “closed.” The extract date was June 30, 
2016. Claims remaining open at the extract date were 
considered “censored.”

The original dataset included 126 variables. Some 
of these variables were duplicate columns, some had 
data quality issues, and many related to indemnity 
reserving. Table A.1 in the Appendix provides a 
summary of 18 variables from the original dataset 
that we considered for our analysis.

5.  Data processing

In order to perform our survival analysis we pro-
cessed the dataset to include only those variables 
that were necessary for our analysis, as well as creat-
ing several derived variables. The data cleaning and 
mapping steps are illustrated in Figure 1.

In order to use the data for our PD survival analy-
sis, it was first necessary to identify all PD claims 
(both permanent partial and permanent total) and 
their accompanying claim histories. Some claims 
were identified as temporary disability (TD) while 
they were undergoing initial evaluation and rating, 

potentially overstates claimant longevity as well as 
the FM Reserves on PD claims. We tested the null 
hypothesis stating that termination rates in the claim-
ant population are equal to the termination rates 
according to the current U.S. Life Table. Addition-
ally, we developed a specific disabled termination 
table based on PD claimant data. While another 
table would be better than the U.S. Life Table if the  
null hypothesis is rejected, we demonstrate that  
the empirical termination table is better suited for 
the FM PD reserving calculation. Because our data 
includes a number of different variables, we have 
developed termination rates that depend on covari-
ates, enabling the workers’ compensation claims 
adjuster to estimate duration to termination more 
accurately for a specific claimant.

4.  Dataset description

Our dataset was provided by CSAC-EIA (the 
excess insurance carrier) which accumulates its 
data from third-party administrators of workers’ com-
pensation claims as well as its own data. The data 
reflected detailed loss calculations for program years 
1967/68 through 2015/16, evaluated annually from 
June 30, 1999 to June 30, 2016; there was little data 
prior to 1995. Although the data was provided by an  
excess insurer, all claims were recorded by the excess 
insurer are on a first dollar basis, whether or not the 
claim was a primary claim or an excess claim. While 
smaller entities may be more likely to seek excess 
insurance, we have no reason to suspect that this 
selection results in bias in terms of claimant termina-
tions. The data included both indemnity and medical  
claim histories for all claim types (medical only, tem-
porary partial, temporary total, permanent partial, and 
permanent total).

Our initial data set consisted of 1,124,473 claim 
records for 121,110 unique claimants. Each data 
record corresponded to a different evaluation year of 
the claim, so that there were multiple records for each 
claimant depending on the date of the initial occur-
rence, how many years the annual claim evaluations 
were performed by an adjuster and when the claim 

Identify PD-only claims

PD-only Claims: 19,053

using a combination of fields

PD-only Records: 146,208

Original CSAC-EIA Dataset
Records: 1,124,473

Claims: 121,110
Data fields: 126

Create Derived Variables (Entity Group,
Body Part, Gender, Duration, Severity)

Analysis Dataset
13 Covariates

Eliminate unnecessary data fields

Aggregate data to 1 line per claim

Figure 1.  Data processing steps
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In addition, we created a new variable to indicate the 
severity of the injury or illness in terms of the likely 
cost of medical treatment. The new variable, labeled 
“Severity,” is the average annual claim amount paid 
during the duration of the claim. (Note that this defi
nition of Severity is specific to our analysis. Although 
similar, it is not the same as the traditional general 
insurance definition of severity.) We also created a 
new variable “Duration” which is the length of time 
from Date of Loss (DOL) to Date Closed.

Next, we removed all variables that would not be 
used in our analysis in order to create our analysis 
dataset. This was done for ease of use as well as to 
improve the organization of our data. The variables 
in the analysis dataset are shown in Table 1.

Finally, multiple years of claims were merged into 
a single line per claim.

5.1.  Data imputation for gender

The ‘Gender’ variable contained the values 
‘Male,’ ‘Female’ and ‘Unknown/Other.’ We treated 
the ‘Unknown/Other’ values as missing. We consid-
ered two options for handling missing data: delete the 
rows with missing gender values, or use imputation 
methods to predict the gender of the individual. We 
found that approximately 19% of the unique claims 
have the ‘Unknown/Other’ value for gender. Deleting 
the claims with missing gender values would signifi-
cantly reduce our sample size. We therefore imputed 
the missing gender values using a logistic regression-
based routine in R called MICE (Multivariate 
Imputation by Chained Equations) (For description 
of the routine and its application see, for example,  
Van Buuren and Groothuis-Oudshoorn (2011, 2017) 
and Analytics Vidhya (2016)). MICE uses observed 
values to fill in missing values on a variable-by- 
variable basis using logistic models for each variable  
and assuming that the gender values are MCAR 
(missing completely at random). It then takes our 
predictors and data with known gender values to 
find the most accurate model for imputing those 
with missing gender values through a parametric and 
stochastic search algorithm. The algorithm imputes 

and later changed to permanent disability after further 
examination. A claim classified initially as TD and 
later re-classified as PD was re-classified as PD from 
inception. There was no single (reliable) variable 
indicating that a claim was a permanent disability. 
Therefore, we combined several variables from the 
original dataset (Claim Type, PD Incurred Flag, and 
Future Medical Award) to identify PD claims. This 
reduced the number of records from over 1.1 mil-
lion in the original dataset to 146,208 records and 
19,053 unique claims in our analysis dataset.

The quality of the data in the analysis dataset was 
generally good, aside from three variables: Entity 
Group, Body Part and Gender.

•	 Entity Group: Because of the large number of dif-
ferent occupations we started with a higher level 
aggregation of occupations, labeled Entity Group, 
in order to reduce the dimensionality of the Occu-
pation variable. However, the Entity Group data 
field provided with the original data was found 
to have many errors in terms of its mapping from 
the variable Occupation; over 50% of the occu-
pations were coded as the ‘General Government’ 
occupation class. (For example the occupation 
‘Police Officer’ was frequently coded as the ‘Gen-
eral Government’ entity group, when it should 
correctly have been coded as ‘Police, Corrections, 
and Security’ entity group.) We created our own 
mapping using keywords found in various occu-
pation descriptions to re-code the occupations 
into 15 Entity Groups.

•	 Body Part: The original data file contained a 
numeric body part code to describe the body 
part(s) involved in the injury, but the field was 
poorly coded. The original data files had a Body 
Part description variable, a Nature of Injury vari-
able, and a Cause of Loss variable which allowed 
us to re-map the body part descriptions to the 
appropriate body part code.

•	 Gender: The Gender variable had a large percent-
age of missing values (19%). We tested the effect 
of missing values using a data imputation routine 
described in the next section.
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in which the event in question occurs at an unknown 
time after censoring. We also assume that censoring 
time is independent of survival time. Some important 
notation:

•	 Survival function: S(t) = P(T > t), which gives the 
probability of surviving beyond time t.

•	 Failure function: F(t) = 1 – P(T > t), which is  
the probability of failing before time t.

•	 Hazard function: h(t) = f (t)/S(t), which is the 
instantaneous rate of death at time t, given that 
the claimant is alive at time t.

•	 Cumulative hazard function: H(t) = ∫ t
0h(s)ds, which 

gives the cumulative rate of death up to time t, 
given that the claimant is alive at time t.

6.2.  Kaplan-Meier estimator

Kaplan-Meier is a well-known method to estimate 
the survival function from given lifetime data. The 

incomplete values by generating ‘plausible’ synthetic 
values given other columns in the data; each incom-
plete column has its own specific set of predictors.  
The result of running the MICE algorithm is a derived 
Gender variable.

6.  Methodology
6.1.  Survival analysis

In many areas (such as biomedical, engineering, 
and social science), we are often interested in know-
ing duration until an event occurs. Statistical analy-
sis dealing with lifetime data is known as survival 
analysis. What makes these lifetime data sets unique 
and challenging to analyze is the presence of cen-
sored information. Time until failure is not observed 
for all subjects during the study period, due to the 
fact that some subjects may be dropped out or lost to 
follow up. Our dataset contains right censored data, 

Table 1.  Analysis dataset summary

Variable Description

Master Claim Number • � Unique alpha-numeric description of each claim

•  19,053 values

Claim Status • � Closed (observed; 1) or open (censored; 0) at each evaluation date

Date of Loss (DOL) •  Date ranges from 1977 to 2016

Age at DOL •  Ages range from 16 to 89

Years Employed at DOL •  Years range from 1 to 62, or <1

Gender Indicator (Derived) • � Specifies whether Gender was imputed or provided in the dataset

• � Takes values 1 (Imputed) or 0 (Not Imputed)

Gender •  Male

•  Female

Entity Group (Derived) •  17 Values, e.g., Education, General Government, Fire and Emergency Services, etc.

Cause of Loss Description •  17 Values

• � Describes cause of injury, e.g., Burn, Fall, etc.

Body Part Description/Code (Derived) •  56 values

• � Describes where on the body the injury occurred, e.g., Ankle, Brain, etc.

Nature of Injury Description •  74 Values

• � Describes type of injury, e.g., Concussion, Fracture, Sprain, etc.

Duration (Derived) • � Length of time the claim was open, i.e., the time between DOL and Date Closed

• � Ranges from less than 1 year to 40 years

Severity (Derived) •  Average medical cost per year claim was open

•  Defined as Incurred Medical / Duration
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with coefficients  defined as r(X; ) = eβ′X. This 
exponential form is convenient and flexible for many 
purposes allowing, among others, for the hazard 
function to have positive values (which is always 
the case by definition). Notice that no intercept term  
is included in β′X. Instead, it is subsumed in ho(t). 
The covariates are fixed at inception of the study and 
do not vary with time. Hazards are always positive. 
The model has two separate components: the baseline 
hazard function and the coefficients for covariates. 
Values of  can be estimated using the partial likeli-
hood method (Kleinbaum and Klein 2012). However, 
the proportional hazards and functional form (linear 
combination of covariates) are strong assumptions 
which require careful examination (diagnostics). 
Extensions of Cox models, such as a time-dependent 
model or stratified Cox regression, can be applied in 
cases where the PH assumption is violated. The time-
dependent model is beyond the scope of this paper. 
However, we consider a stratified Cox regression as 
one of our final models.

Assume covariates X1, X2, . . . , Xp satisfy the PH 
assumption while a covariate Z does not. The strati-
fied Cox model is given by:

h t X h t eog
X( ) ( )= ′β

where g = 1, . . . , n are levels within covariate Z. 
Notice that the set of coefficients for each level is the 
same. The only difference is the shape of the base-
line function for each level. The stratified Cox model 
allows the underlying baseline function to be varied 
across the levels by incorporating the covariate that 
violates the PH assumption into the baseline.

6.4.  Model building and validation method

We created two different Cox models, one for 
imputed data and another for non-imputed data.  
In both cases, we randomly selected a training set 
consisting of 70% of observations with the remain-
ing observations forming the validation set. The  
metric for model validation is the concordance index 
(c-index/c-statistic), which is a generalized version 

overall survival time is divided into small intervals 
(ti) by ordering the distinct failure times. Within 
each interval, the survival probability is calculated 
as the number of lives surviving over the num-
ber of observed lives at risk. A simple estimate of  
Pr(T > tiT ≥ ti) is:

= −number of subjects surviving beyond t

number at risk at t

Y d

Y
i

i

i i

i

An estimate of S(t) is Π( ) = −




≤

S t
d

Yj t t

j

jj

ˆ 1  where 

Yj is the number of subjects alive at time tj and dj  
is the number terminating at time tj.

Subjects who have died, dropped out, or who have 
unobserved survival times are not at risk. Subjects 
that are considered as censored are counted in the 
denominator. Probability of surviving up to any 
point is estimated from the cumulative probability 
of surviving each of the preceding time intervals. A 
limitation of this method is that towards the end of 
the experiment, there are fewer observations, which 
makes the estimation less accurate than at the begin-
ning of the study.

6.3.  Cox proportional hazards model

Cox regression (proportional hazards or PH model) 
is an extension of regression techniques in survival 
analysis that allows us to examine the effect of 
multiple covariates on the hazard function. It is one 
of the most common models applied to survival data 
because of its flexible choice of covariates and ease of 
interpretation, as well as being fairly easy to fit using 
standard software. Let T be the continuous lifetime 
variable and X be a p × 1 vector of fixed covariates. 
The hazard function for T given X takes the form:

X X( ) ( )( )= h t h t r ;0

In the above equation, ho(t) is a baseline hazard 
function. The Cox regression function does not 
have any specific distribution assumption. Instead, 
r(X; ) is a function of known form which, if taking 
the natural logarithm ln(r), is assumed to be linear 
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first array, denoted lx, tracks the number of claims 
in the system at every age, with an initial count of 
19,053 (the total number of claimants). The other 
two arrays, cx and dx respectively, count the number 
open (censored) and closed (observed) claimants at 
each age. With these arrays, it is possible to calculate  
estimates of q̂x, given that wx = dx + cx, as defined 
above. q̂x is now an array of probabilities of claim  
closure for every age from 0 to 100. Finally we 
reduced the age range to 17 to 88 due to the lack 
of data outside of this range. The U.S. Life Table 
exists in both sex-specific and unisex forms. Below, 
we tested the consistency of our estimated q̂x with 
both the unisex table (Figure 2) and sex-distinct 
tables (Figure 3–4). It is clear that our estimated q̂x 

of area under the Receiver Operating Characteristic 
curve (ROC curve). The concordance index is equiv-
alent to rank correlation, where rank of predicted 
risk using the model for actual low risk observations 
(risk of experiencing the event) would be small 
while rank of predicted risk for high risk observa-
tions would be large. Therefore C > 0.5 implies good 
predictive power, C = 0.5 implies predictive power 
is equivalent to 0, and C < 0.5 implies model does a 
poor job at prediction.

6.5.  Actuarial methods

The 2011 Life Tables provide values of the  
one-year probability of death qx from age x to x + 1. 
Workers compensation claims terminate for reasons 
other than death. The OSIP methodology requires 
the use of the mortality probabilities to estimate the 
future claim duration, so the qx values represent all 
terminations, not just death. We estimate empirical 

values of qx from the data as 
( )

=
−

ˆ
0.5

q
d

l w
x

x

x x

 where:

	dx	=	�number of terminations between ages x and  
x + 1.

	 lx	=	number of claimants aged x
	Cn	=	number of censored claimants
	wx	=	�number of claimants terminating during the 

year for any reason, including claims that 
are censored (denoted Cn), or still open at the 
end of the observation period.

In our model wx = dx + cx

In order to compare directly the modeling data-
set to the 2011 U.S. Life Table we iterated through 
every claim and created vectors tracking the number 
of individuals in the system, the number that were 
censored (open) and the number observed (closed) 
at every age in the range 0 to 100, in order to match 
the 2011 Table’s range. To determine whether an 
individual was censored/observed and at which age, 
we used the indicator variable, the Age at DOL and 
the duration of each claim. By adding duration to 
the Age at DOL, it could be determined at what age 
every claim terminates, and by the indicator variable 
whether termination was censored or observed. The 
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Figure 2.  Estimates of qx and comparison  
with 2011 unisex life table (combined)
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Figure 3.  Estimates of qx and comparison  
with 2011 life table (female)
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we do not have an assumption for the distribution of 
the samples. We assumed two samples are from the 
common distribution versus the alternative hypoth-
esis that the CDF (cumulative density function) of 
the estimated q̂x is greater than the CDF of the 2011 
life table. Because the p-value was less than the 
level of significance, we rejected the null hypothesis, 
confirming our conclusion that termination rates for 
both males and females are greater than the 2011 life 
table rates.

6.6.  Fitted actuarial models

Given that the 2011 U.S. Life Table does not rep-
resent termination rates of the workers’ compensation 
permanently disabled population, the question arises 
whether we can derive a better model for qx?

Note that all of the following regression models 
were tested assuming normal distribution errors and 
with two different types of weights included to repre-
sent the number of observations in each age interval. 
The two methods to determine the weights were:

Method 1: The weight for each age interval is the 
proportion of the number of claims within the cor-
responding interval to the total number of claims in 
the data.

Method 2: The weight for each age interval is the 
inverse of the length of each 95% confidence interval 
of the q̂x estimates.

We incorporated the weights into the regression 
models due to the observed pattern of heteroscedas-
ticity (the constant variance in the errors is violated). 
Specifically, Method 2 allowed us to apply more 
weight to the observations with smaller standard 
errors as these observations carry more information 
in the data. In Figure 5 the two methods have differ-
ent scales. The younger and older age intervals have 
relatively small weights in Method 1. For Method 2, 
early ages have higher weights, reflecting the lower 
variance at these ages, while higher ages are under-
weighted, reflecting their higher variance.

We first fitted a quadratic function because this 
form appears to fit the observed q̂x values. The best 

values diverged from those of the 2011 Life Table, 
thus implying that termination rates are higher in our 
data. In order to determine whether this divergence 
is significant, the 95% confidence interval for each  
age range was calculated by using Greenwood’s 
Approximation which estimates the variance of 
Kaplan Meier models, survival models equivalent 
to our q̂x values. In Greenwood’s Approximation, 

( )( )
s =

−q q

d
x

x x

x

ˆ 1 ˆ 2
.2

2

2

This approximation allowed us to calculate the 
95% confidence interval for q̂x as q̂x ± 1.96 sx. In 
Figure 2, the lower bound of the confidence interval 
falls above the 2011 tabular rate at all ages except 
the highest (above age 85) at which there are very 
few observations.

In Figures 3 and 4 we examined the q̂x values for 
males and females separately. The results were similar 
to those of the unisex table, with the exception that 
some estimated q̂x values are less than the tabular 
values at very high ages at which there are very few 
observations. We concluded that in the age range 
35–75 termination rates for both males and females 
are well in excess of the 2011 tabular rates. We 
also performed a one-sided Kolmogorov-Smirnov 
goodness-of-fit test to test whether the distribution 
between the 2011 life table and the estimated q̂x is 
identical. Specifically, we compared the empirical 
distribution function between two samples given that 
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linear regression on the log transformation of the q̂x′s. 
The diagnostic plots of the log transformation for 
normality confirmed that we could proceed with the 
linear regression. To select the best Gompertz model, 
we first computed the lognormal log-likelihood for 
the log-transformed response, then calculated the 
AIC value. The resulting Gompertz model has the 
following form: q̂x = e–6.9188+0.0782x, using the set of 
weights in Method 1.

The chosen Gompertz and quadratic models are 
shown in Figure 6, compared with the observed values  

fit quadratic model which included the set of weights 
in Method 2 was q̂x = 0.0666 + 0.6289x + 0.2601x2, 
which was selected via the AIC (Akaike Information 
Criterion) model selection method. AIC is found 
by computing 2k – 2lnL̂, where L̂ is the Maximum 
Likelihood function and k is the number of free 
parameters to be estimated.

Next we considered fitting the Gompertz model, 
which is one of the most commonly used parametric 
survival distributions to model human mortality. 
The Gompertz model assumes that the hazard rates 
are exponentially distributed where the hazard rates 
are analogous to the life table values qx and are some 
parametric function of age (MacDonald, Richards, 
and Currie 2018). In the Gompertz model the hazard 
rate function, µx, generally has the following form: 
µx = eα+βx, where x denotes age of individual, and  
µx and qx are related as follows: qx = ∫ 1

0 spxµx+sds.
In this formula, the two parameters represent an 

age-dependent (β) and age-independent component 
(α). The log transformation of this hazard rate func-
tion is a linear function α + βx. We estimated the 
parameters of the Gompertz model by performing 
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Table 2.  AIC values of fitted models using different weights

AIC value Method 1 Method 2

Quadratic Model −403.0 −465.1

Gompertz Model −296.9 −209.1 time
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level costs a degree of freedom to estimate, whereas  
a majority of these levels are not significant. We 
therefore required a method to simplify the multi-level 
variables to a smaller number of groups. We applied 
the Kaplan Meier (KM) approach to re-group levels 
based on median survival time. We first applied KM 
to estimate the survival function to obtain median 
survival time. Second, we ranked median survival 
times in increasing order and re-grouped the original 
levels into four different groups. We then repeated 
this procedure for Entity, Cause of Loss, and Body 
Parts. Table 3 shows the new grouping of the Entity 
variable. (See Appendix A2 for groupings of the 
Cause of Loss and Body Parts variables).

The new grouping is based on the application  
of the KM method to the training set; we then applied 
the same groupings to the test set.

7.2.  Stratified Cox model

The final model contains two interaction terms: 
interaction between Sex and Age at DOL, and between 
Body Parts and Cause of Loss. The Entity Group 
covariate did not satisfy the PH assumption, and we 
therefore created stratified Cox models for the differ-
ent levels of Entity.

for qx. The age range on the x-axis is determined 
empirically based on available data (ages 16 to 88). 
The y-axis contains the q̂x estimates, or the prob-
ability of claim closure for a given age, x. Both the 
Gompertz and quadratic models fit the data reason-
ably well up to age 60, although, as shown in Table 2,  
the quadratic model fits better (lower AIC value). 
Thereafter, the Gompertz model significantly over-
estimates termination, as does the quadratic model 
above age 70. 

7.  The Cox model applied  
to imputed data
7.1.  New grouping of entity,  
cause of loss, and body parts

Several covariates such as Entity Groups, Cause  
of Loss, and Body Parts are categorical with many 
levels. For example, the Body Parts variable contains 
56 values that indicate the location of the injury. 
While the translation of the Body Part description 
into numeric values is convenient for coding pur-
poses, Body Part is a nominal variable where levels 
do not have any natural order. A drawback of fitting 
Cox regression is model complexity: each covariate 

Table 3.  Grouping of entity variable

Original levels
Median survival time 

using KM
Updated levels 

using KM

(1) Agriculture and farming 3.564 Group 1:  
(2), (13), (14), (15)

(2) Animal and vector control 3.351

(3) Community services 4.107

(4) Construction and building services 4.559

(5) Education 4.507 Group 2:  
(1), (10), (12)(6) Fire and emergency services 5.279

(7) General government 4.348

(8) Health and medical services 4.205

(9) Police, corrections, and security 4.425 Group 3: 
(3), (7), (8), (11)(10) Recreation and resource protection 3.800

(11) Sanitation and waste collection 4.332

(12) Transportation and transit 3.797

(13) Unknown/Other group 2.830 Group 4: 
(4), (5), (6), (9)(14) Utilities and power 3.479

(15) Water and water conservation 3.512
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Figure 7 shows the shapes of the baseline hazard 
functions for each entity group. The shapes of the 
cumulative baseline hazard functions for the entity 
levels are not always parallel; in particular the group 2 
function crosses group 1, violating the PH assump-
tion. Three different tests, the likelihood ratio test, 
Wald’s test, and log-rank test are conducted to test 

The functional form of the stratified Cox model is
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Figure 7.  Baseline cumulative hazard function 
for each level of entity

Table 4.  Stratified Cox model on imputed data

Covariates Coeff. Hazard ratio Std. error P-value 95% CI of HR

Age at DOL −0.007 0.993 0.01 0.000 0.990, 0.996

Body 2 (vs. 1) −0.125 0.882 0.190 0.510 0.608, 1.281

Body 3 (vs. 1) −0.572 0.565 0.191 0.003 0.389, 0.820

Body 4 (vs. 1) −0.605 0.546 0.245 0.014 0.338, 0.883

Cause loss 2 (vs. 1) 0.040 1.041 0.147 0.786 0.781, 1.388

Cause loss 3 (vs. 1) −0.420 0.657 0.362 0.247 0.323, 1.337

Cause loss 4 (vs. 1) −0.231 0.794 0.149 0.121 0.593, 1.063

Severity 0.000 1.000 0.000 0.000 1.000, 1.000

Sex −0.542 0.581 0.098 0.000 0.480, 0.704

Years employed −0.008 0.992 0.001 0.000 0.989, 0.995

Age at DOL: Sex 0.010 1.010 0.002 0.000 1.006, 1.015

Body 2: Cause loss 2 −0.308 0.735 0.199 0.123 0.498, 1.087

Body 3: Cause loss 2 −0.087 0.917 0.197 0.658 0.623, 1.348

Body 4: Cause loss 2 −0.325 0.723 0.251 0.195 0.442, 1.181

Body 2: Cause loss 3 0.352 1.422 0.423 0.405 0.621, 3.256

Body 3: Cause loss 3 0.528 1.695 0.402 0.189 0.771, 3.730

Body 4: Cause loss 3 0.234 1.264 0.435 0.590 0.539, 2.962

Body 2: Cause loss 4 −0.079 0.924 0.197 0.689 0.628, 1.360

Body 3: Cause loss 4 0.111 1.117 0.197 0.573 0.760, 1.642

Body 4: Cause loss 4 −0.061 0.940 0.251 0.807 0.575, 1.538
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(a)  Overall fit

Cox-Snell residuals, defined as ri = Ĥ0(Ti)e
β̂Xi, can be 

used to assess the overall fit of our Cox Proportional 
Hazards model. If the model is correct, a plot of the 
residuals of the estimated cumulative hazard rates 
Ĥ0(ri) versus ri should follow a straight line through 
the origin. In Figure 8, we see the estimated cumula-
tive hazard is close to the diagonal line for all but 
large values of Cox-Snell residuals.

Overall, the model fits the data well as the pro
portion of the observations in the early range [0,4] of 
Cox-Snell residuals is approximately 99.8% of the 
whole training set. The departure of the estimated 
cumulative hazard as Cox-Snell residuals get larger 
indicates the presence of the potential outliers in 
the data.

(b) � Appropriateness of the proportional hazard 
assumption

The departure from proportionality could lead to 
an incorrect model. We examined the PH assumption 
in two ways: by plotting the Schoenfeld residuals and 
performing a formal hypothesis test for correlation 
between Schoenfeld residuals and time.

If the PH assumption is true, we should expect that 
the trend of β(t) versus time to be a horizontal line 

the global hypothesis that  = 0 (overall goodness-
of-fit). As p-values for all three tests are close to 0,  
we reject the null hypothesis, indicating that the model 
is an appropriate fit for the data set.

7.3.  Model interpretation

Coefficients of the Cox model are related to the 
hazard rate. For example, the coefficient value of  
−0.008 for Years Employed at DOL indicates that 
the log hazard ratio increases by a unit of −0.008 
for each additional unit increase in years of employ-
ment while other variables are kept constant. In 
practice, it is more meaningful to interpret the result 
using hazard ratio (or relative risk) instead of log 
hazard ratio.

The hazard ratio is obtained by taking the expo-
nential of the coefficient. Specifically, the hazard 
ratio of years employed is e(−0.008) = 0.992, indicating 
that for each additional unit increase in duration of 
employment while holding other variables constant, 
the hazard ratio increases by a factor of 0.992. In 
other words, the risk of claim termination decreases 
by about 1% for each yearly increase in number of 
years employed.

The final model contained two significant inter
action terms: interaction between Sex and Age at DOL 
(categorical vs. continuous) and interaction between 
Body Parts and Cause of Loss (two categorical vari-
ables). When interaction terms are significant, the 
interpretation of the coefficients becomes much more 
complex. For example, interpretation of “Sex and 
Age at DOL” is not as simple as Years Employed. 
The significant interaction between Sex and Age  
at DOL implies that the effect of DOL on the sur-
vival rate varies for each sex (male and female). 
Specifically, for each unit increase in age at DOL for 
a male claim, the hazard ratio increases by a factor 
of 1.010.

7.4.  Model diagnostics

We tested the validity of the assumptions made in 
the model with model diagnostics. Cox-Snell residuals
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(c)  Linear form of covariates

We further examined whether the linear combination 
of covariates is the best functional form to describe 
the effect of the covariates on survival. To do this, we 
plotted the martingale residuals versus each covariate. 
The results in Figure 10 implied that we did not need 
any polynomials or transformation of the covariates.

(d)  Outliers and influential points

We examined the accuracy of the model for 
predicting the survival of a given subject. In other 
words, we tried to find claims whose survival time 
differed significantly in comparison to their model 
predictions. The deviance residuals plot versus risk 

for each covariate. As we see in Figures 9.1 and 9.2, 
the pattern of each plot looks horizontal around zero 
with little violation, implying that the PH assumption 
is valid.

To examine PH assumption more carefully, we 
performed a hypothesis test which Grambsch and 
Therneau (1994) proposed. Each parameter in the 
model is allowed to depend on time (i.e., βj(t) =  
βi + γjgj(t)). We tested the value of the correlation 
parameter γj; if γj = 0 we would reject the hypothesis 
that parameters are time-dependent. We conducted 
this test using function cox.zph in R and observed that 
all p-values are not significant (Table 5). In summary, 
we did not have sufficient evidence to reject the null 
hypothesis that the PH assumption is valid.
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Figure 9.1.  Schoenfeld residuals vs claim duration
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Figure 9.2.  Schoenfeld residuals vs. claim duration (cont’d)

Table 5.  PH Assumption hypothesis test results

Covariates
p-value for 

hypothesis test Covariates
p-value for 

hypothesis test

Age at DOL 0.662 Age at DOL:Sex 0.841

Body 2 0.824 Body 2: Cause of loss 2 0.751

Body 3 0.450 Body 3: Cause of loss 2 0.724

Body 4 0.185 Body 4: Cause of loss 2 0.250

Cause of loss 2 0.634 Body 2: Cause of loss 3 0.929

Cause of loss 3 0.921 Body 3: Cause of loss 3 0.527

Cause of loss 4 0.357 Body 4: Cause of loss 3 0.644

Severity 0.343 Body 2: Cause of loss 4 0.834

Sex 0.651 Body 3: Cause of loss 4 0.614

Years of employment (at DOL) 0.549 Body 4: Cause of loss 4 0.315
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and x is the matrix of value of covariates. We per-
formed further sensitivity analysis by removing 
these outliers and refitting the model. The new fitted 
model is not far off from the model presented in 
Table 3, and predictive power for both models using 
c-index is similar.

We also examined the influence of each claim 
on the model fit. The scaled score statistics versus 
covariate plot allows us to find influence points. 
Figure 12.1 and 12.2 show score residuals for each 
covariate. Using the plot between severity and the 
scaled score statistics, we observed several points 
that were further away from the majority of the 
observations, although this distance does not appear 
to be significant, suggesting that these points may be 
exercising influence on the fit.

7.5.  Model prediction

We applied the final Cox model to the test set 
and calculated the concordance index. A C-index 

scores is helpful to detect which claims are potential 
outliers, which perhaps should be excluded from the 
analysis. In Figure 11, we observe that the deviance 
residuals are randomly scattered in the panel and 
some observations (marked as triangles with indices)  
are the detected potential outliers. “Risk Score” is 
defined as Σβx, where β is the vector of coefficients 
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Figure 10.  Martingale residuals vs. covariate
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8.1.  Discussion

Workers’ compensation reserves for future medi-
cal liabilities are usually calculated in bulk using a 
triangle method. Although this standard method is 
widely used, there are examples of studies using 
reserving methods based on mortality projections, 
recognizing that explicit incorporation of injured 
worker mortality may reduce the potential inaccuracy 
in the bulk reserves. The State of California requires 
an explicit calculation for each permanently injured 
worker, assuming that termination of the claim fol-
lows the most recent U.S. Life Table. The literature 
shows that injured worker mortality is higher than 
that of the overall population, which could lead 
to over-reserving of future medical liabilities. We 
examined claims termination rates of injured workers 

of 0.58 indicates the model does a moderately 
good job at predicting the risk of the claim being 
terminated.

8.  Results of Cox model  
on non-imputed data

We will not repeat specific details for this section 
as all the procedures are similar to imputed data. 
Table 6 presents the final form of the Cox model on 
the non-imputed data. It contains three interaction 
terms: between Sex and Age at DOL, between Entity 
Group and Sex, and between Body Parts and Cause of 
Loss. When applied to the test dataset, the C-index  
of 0.57 indicates that model does a good job at pre-
dicting the risk of the claim being terminated.
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Figure 12.1.  Scaled residuals vs. covariate
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Figure 12.2.  Scaled residuals vs. covariate (cont’d)

Table 6.  Final Cox model on non-imputed data

Covariates Coeff. HR Std. errors P-value 95% CI of HR

Entity 2 −0.206 0.814 0.123 0.094 0.6400, 1.0358

Entity 3 −0.526 0.591 0.104 0.000 0.4817, 0.7253

Entity 4 −0.600 0.549 0.107 0.000 0.4451, 0.6772

Age at DOL 0.003 1.003 0.002 0.062 0.9998, 1.0069

Body 2 −0.581 0.560 0.140 0.000 0.4255, 0.7359

Body 3 −0.603 0.547 0.207 0.004 0.3649, 0.8204

Body 4 −0.874 0.417 0.165 0.000 0.3020, 0.5766

Cause loss 2 −0.610 0.543 0.165 0.000 0.3931, 0.7506

Cause loss 3 −0.461 0.630 0.119 0.000 0.4992, 0.7961

Cause loss 4 −0.282 0.754 0.102 0.006 0.6173, 0.9216

Severity 0.000 1.000 0.000 0.000 1.0002, 1.0002

Sex male 0.291 1.337 0.163 0.075 0.9711, 1.8421

Years employment −0.006 0.994 0.001 0.000 0.9913, 0.9971

Severity: Sex male −0.012 0.988 0.002 0.000 0.9833, 0.9921
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using the experience of the California Association of 
Counties-Excess Insurance Authority (CSAC-EIA). 
We applied a number of different methods, includ-
ing direct calculation of the termination rates (q̂x) 
(both raw and fitted to polynomials) to compare with 
the tabular rates, and found that for most ages, termi-
nation rates are in excess of 
those implied by the tabular 
rates. Finally, we applied Cox 
Proportional Hazards model-
ing to develop termination 
hazard rates based on our 
dataset. The Cox PH model 
is powerful in that it allows 
us to incorporate covariates 
and to assess the influence 
of individual covariates on 
the termination hazard. Tests 
of the proportional hazard 
assumptions show that the 
Cox model fits the data well, 
and that we can have confi-
dence in the derived model.

8.2.  Conclusion

Analysis of the CSAC-EIA 
data shows that the use of the 
standard population mortality  

table as the basis for permanent disability claim 
projections may be inappropriate because the table 
overestimates injured worker survival. However,  
it is important to remember that the life expectancy 
of the injured worker is only one component of the 
reserve calculation; the other component is the aver-

age 3-year cost of medical 
claims. Because the claims 
cost component excludes a 
provision for medical trend, it 
may underestimate the future 
medical cost component. The  
result of combining an over-
estimate of survival with an 
underestimate of future med-
ical costs may well result in 
reasonable reserves in total; 
however, if the intention is 
to produce accurate reserves 
for future medical claims, 
more accurate methods of 
estimating both life expec-
tancy and future medical 
claims would be appropriate.

8.3.  Limitations

This study was performed 
on the experience of one 

We applied Cox Proportional 
Hazards modeling to develop 

termination hazard rates based 
on our dataset. The Cox PH model 

is powerful because it allows us 
to incorporate covariates and to 
assess the influence of individual 

covariates on the termination 
hazard. Tests of the proportional 
hazard assumptions show that 

the Cox model fits the data well, 
and that we can have confidence 
in the derived model. The effect 
of covariates on the hazard rates 

provides more information to 
claims managers about the likely 
survival of specific claimants than 

the standard table.

Entity 2: Sex male 0.280 1.324 0.155 0.070 0.9777, 1.7918

Entity 3: Sex male 0.416 1.515 0.130 0.001 1.1750, 1.9537

Entity 4: Sex male 0.298 1.348 0.132 0.023 1.0412, 1.7444

Body 2: Cause loss 2 0.672 1.958 0.216 0.002 1.2825, 2.9902

Body 3: Cause loss 2 0.539 1.714 0.299 0.071 0.9543, 3.0787

Body 4: Cause loss 2 0.417 1.517 0.243 0.087 0.9413, 2.4440

Body 2: Cause loss 3 0.401 1.493 0.162 0.013 1.0875, 2.0489

Body 3: Cause loss 3 0.255 1.291 0.226 0.259 0.8284, 2.0120

Body 4: Cause loss 3 0.394 1.482 0.183 0.032 1.0354, 2.1223

Body 2: Cause loss 4 0.247 1.281 0.145 0.088 0.9637, 1.7020

Body 3: Cause loss 4 0.058 1.060 0.212 0.784 0.6997, 1.6054

Body 4: Cause loss 5 0.117 1.125 0.170 0.490 0.8062, 1.5685

Table 6.  Final Cox model on non-imputed data (cont'd)

Covariates Coeff. HR Std. errors P-value 95% CI of HR
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in Taiwan. Accident Analysis and Prevention 38, 2006,  
pp. 961–968.

Jones, B. A., C. J. Scukas, K. S. Frerman, M. S. Holt, and V. A. 
Fendley, “A Mortality-Based Approach to Reserving for 
Lifetime Workers’ Compensation Claims,” CAS E-Forum, 
Fall 2013, pp. 1–26.

Kleinbaum, D. G., and M. Klein, Survival Analysis, 3rd ed., 
New York: Springer Verlag, 2012.

Lin, S.-H., H.Y. Lee, Y.-Y. Chang, Y. Jang, and J.-D. Wang, 
“Estimation of Life Expectancies and Loss-of-Life for  
Workers with Permanent Occupational Disabilities,” Scandina-
vian Journal of Work Enviroment Health 38, 2012, pp. 70–77.

Liss, G. M., S. M. Tarlo, D. Banks, K.-S. Yeung, and  
M. Schweigert, “Preliminary Report of Mortality Among 
Workers Compensated for Work-Related Asthma,” American 
Journal of Industrial Medicine 35, 1999, pp. 465–71.

MacDonald, A. S., S. J. Richards, and I. D. Currie, Modeling 
Mortality and Longevity with Actuarial Applications, London: 
Cambridge University Press, 2018.

Schmid, F. A., “The Workers Compensation Tails,” Variance 6, 
2012, pp. 48–79.

Sears, J. M., L. Blanar, and M. Bowman, “Predicting Work-Related 
Disability and Medical Cost Outcomes: A Comparison of 
Injury Severity Scoring Methods,” Injury: International 
Journal of the Care of the Injured 45, 2014, pp. 16–22.

Sears, J. M., L. Blanar, S. M. Bowman, D. Adams, and B. A. 
Silverstein, “Predicting Work-Related Disability and Medi-
cal Cost Outcomes: Estimating Injury Severity Scores from 
Workers’ Compensation Data,” Journal of Occupational 
Rehabilitation 23, 2013, pp. 19–31.

Shane, M. and D. Morelli, “Using Life Expectancy to Inform 
the Estimate of Tail Factors for Workers Compensation  
Liabilities,” CAS E-Forum, 2013.

Sherman, R., and G. F. Diss, “Estimating the Workers’ Compen-
sation Tail,” Proceedings of the Casualty Actuarial Society, 
2006.

State of California, Estimating and Reporting Work Injury Claims., 
Dept. of Industrial Relations, 2011, Sacramento, CA.

van Buuren, S., and K. Groothuis-Oudshoorn, “mice: Multivariate 
Imputation by Chained Equations in R,” Journal of Statistical 
Software 45, 2011, p. 63.

van Buuren, S., and K. Groothuis-Oudshoorn, Package ‘mice’, 
2017, cran-R.org.

Wedegaertner, F., S. Arnhold-Kerri, N.-A. Sittaro, S. Bleich,  
S. Geyer and W. E. Lee, “Depression- and Anxiety-Related 
Sick Leave and the Risk of Permanent Disability and Mortal-
ity in the Working Population in Germany: A Cohort Study,” 
BMC Public Health 13(145), 2013, pp. 1–10

pool, incorporating a number of different third-party 
administrators. Changes in reporting requirements 
and administrators over time may affect the accu-
racy of the data. As noted in our conclusion, life 
expectancy is only one component of the reserving 
calculation, and reserves calculated according to the 
State of California methodology may be appropri-
ate because different components of the calculation 
offset each other.
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Appendix.  Data Summary

Table A.1.  Original variables

Variable Description

Original Excel # •  The row number in original dataset (1,124,473 rows total)

Gender •  Female

•  Male

•  Unknown/Blank

Master Claim Number •  Unique alpha-numeric description of each claim

•  121,110 values

Claim Type •  Dupe/Delete

•  First Aid

•  Future Medical

•  Indemnity

•  Info Only

•  Medical Only

•  Other

•  Temporary Disability

Date of Loss (DOL) •  Dates range from 1967 to 2016

•  3.5% of records relate to accident years 1994 & prior

Age at DOL •  Ages range from 1 to 97

•  Missing Values (fewer than 2%)

Claim Status at 6–30–2016 •  Open

•  Closed

•  ReOpened-Closed

•  Blank

Occupation •  2,624 occupational descriptions

•  e.g. Firefighter, Teacher, Accountant, Electrician

Entity Group •  17 Departments e.g. Education, General Government, Fire and Emergency Services, etc.

Date Closed •  Date ranges from 8/1/77 to 6/30/2016

Average Weekly Wages •  Ranges from $0.00 to $33,446.40

•  Missing Values (over 50% of data)

Nature of Injury Description/Code •  74 values, e.g. Sprain, Fracture, Hearing Loss, Concussion, etc.

Future Medical Award •  TRUE or FALSE

PD Incurred Flag •  TRUE or FALSE

Incurred Medical •  Incurred Medical = Total dollar amounts of medical payments paid plus reserves for future medical costs

Incurred PD •  Numeric values ranging from $0.30 to $1.8 million

•  Incurred PD = Paid PD + Reserved PD

• � Refers to indemnity benefits (paid to worker to compensate for lost wages) on PD claims, not medical 
benefits

Years Employed at DOL •  Years range from 1 to 62, or <1

•  Missing values (approx 4.5%)

Cause of Loss Description/Code •  143 values, e.g., Animal or Insect Bite, Broken Glass, Burn, Fall, etc.

Body Part Description/Code •  69 values, e.g., Abdomen, Ankle, Brain, Buttocks, Chest, etc.
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Table A.2.  New grouping of cause of loss in imputed data

Original level 
Median survival time  

using KM New grouping

(1) CL1: Absorption, ingestion, or inhalation 4.211 Group 1:  
(5), (12), (14), (15)(2) CL2: Animal or insect 4.893

(3) CL3: Burn 4.192

(4) CL4: Caught 3.493

(5) CL5: Cut 3.455 Group 2:  
(4), (8), (10), (11)(6) CL6: Explosion or flare back 5.178

(7) CL7: Fall 4.274

(8) CL8: Fellow worker, patient, or other person 3.597

(9) CL9: Machine or tool 4.181 Group 3:  
(1), (3), (9)(10) CL10: Miscellaneous 4.090

(11) CL11: Motor vehicle 3.978

(12) CL12: Natural disasters 1.268

(13) CL13: Person in act of a crime 4.274 Group 4:  
(2), (6), (7), (13), (16), (17)(14) CL14: Rubbed 2.745

(15) CL15: Slipped 3.332

(16) CL16: Strain 4.474

(17) CL17: Strike 4.356

Table A.3.  New grouping of body parts in imputed data

Original level  
(description with numeric code)

Median survival time  
using KM New grouping

(1) other −9 3.074 Group 1:  
(9), (12), (14), (16), (24), 
(36), (37), (52), (54), (58), 
(62), (64), (66), (99).

(2) multiple head injury −10 5.063

(3) skull −11 3.816

(4) brain −12 2.773

(5) ear(s) −13 5.132

(6) eye(s) −14 2.964

(7) nose −15 5.267

(8) teeth −16 1.996

(9) mouth −17 3.830

(10) other facial soft tissue -18 5.405

(11) facial bones −19 9.266

(12) multiple neck injury −20 4.668

(13) vertebrae −21 4.600

(14) disk (neck) −22 5.458
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(15) spinal cord −23 4.429 Group 2: 
(11), (17), (31), (32), (33), 
(35), (38), (39), (44), (46), 
(55), (56), (61), (65), (11), 
(17), (31), (32), (33), (35), 
(38), (39), (44), (46), (55), 
(56), (61), (65).

(16) larynx −24 1.956

(17) soft tissue neck −25 5.044

(18) multiple upper extremities −30 4.375

(19) upper arm incl. clavicle and scapula −31 3.644

(20) elbow −32 3.438

(21) lower arm −33 3.658

(22) wrist −34 4.274

(23) hand −35 4.060

(24) finger(s) −36 2.803

(25) thumb −37 3.096

(26) shoulder(s) −38 3.929

(27) wrist(s) and hand(s) −39 4.195

(28) multiple trunk −40 4.532

(29) upper back area −41 5.219 Group 3: 
(20), (21), (23), (30), (34), 
(40), (42), (45), (48), (50), 
(51), (53), (57), (91).

(30) lower back area −42 4.877

(31) disc trunk −43 5.266

(32) chest −44 3.534

(33) sacrum and coccyx −45 4.359

(34) pelvis −46 3.868

(35) spinal cord −47 6.888

(36) internal organs −48 4.753

(37) heart −49 8.932

(38) multiple lower extremities -50 4.348

(39) hip −51 4.932

(40) upper hip −52 3.066

(41) knee −53 4.249

(42) lower hip −54 2.921

(43) ankle −55 3.501 Group 4: 
(10), (13), (15), (18), (19), 
(22), (25), (41), (43), (47), 
(49), (60), (63), (90).

(44) foot −56 3.674

(45) toe(s) −57 4.258

(46) great toe −58 1.508

(47) lung −60 5.501

(48) abdomen incl. groin -61 3.321

(49) buttocks −62 2.992

(50) lumbar and/or sacral vertebrae −63 5.638

(51) artificial appliances (braces, etc.) −64 2.452

(52) insufficient info to identify/unclass −65 4.085

(53) no physical injury −66 2.721

(54) multiple body parts −90 5.227

(55) body system and mult. body systems −91 4.611

(56) whole body −99 2.978

Table A.3.  New Grouping of Body Parts in Imputed Data (cont'd)

Original level  
(description with numeric code)

Median survival time  
using KM New grouping




