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Credibility for a Tower 
of Excess Layers

by David R. Clark

ABSTRACT

In pricing excess of loss reinsurance, the traditional method for 

applying credibility is as a weighted average of two estimates 

of expected loss: one from experience rating and a second from 

exposure rating. This paper will show how this method can be 

improved by incorporating loss estimates from lower layers; 

producing a multifactor credibility-weighted estimate of ex-

pected loss.

The method described is based on minimum variance crite-

ria, whereby the resulting credibility-weighted estimator has 

a lower variance than any other combination of the individual 

estimators. It is shown that the multifactor credibility model 

can be presented as a simple recursive procedure for practical 

application.
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We see, therefore, that the analyst has a collec-
tion of estimators available. These estimators are not 
independent from one another but instead are related 
in many ways. Our goal is to select among these esti-
mators, or combine them, in an optimal way.

Credibility theory can help us accomplish this 
goal.

1.1. Research context

This paper builds upon existing credibility theory. 
However, much of the past literature has been con-
cerned with primary ratemaking, comparing loss 
experience in one class of business with others. For 
the reinsurance context, our concern will be “verti-
cal” rather than “horizontal,” as we look at a tower 
of contiguous excess layers.

The excess reinsurance problem was taken up by 
Mashitz and Patrik (1990), who limited their discus-
sion to the problem of layer counts. More recently, 
papers by Cockroft (2004); Goulet, Forgues, and 
Lu (2006); Parodi and Bonche (2008); and Marcus 
(2010) have included analyses that address severity 
as well as frequency. In general, these papers do not 
include methods that capture all the ways that expo-
sure and experience ratings are interrelated.1

The present paper will examine expected losses 
to excess layers, including some of the interrelation-
ships between how exposure and experience rating 
are applied in practice. The focus will be on showing 
how the credibility procedure actually reduces the 
variance in the estimate of expected loss.

1.2. Objective

The goal is to outline a procedure that will pro-
duce an optimal, or best estimate, of expected loss 
for the excess layer being priced. “Best” will mean a 
minimum variance unbiased estimator.

Informally stated, the minimum variance criterion 
says that an estimate that incorporates all available 
information is more reliable than one that ignores 

1. Introduction

This paper will address a particular problem in 
pricing excess reinsurance that can benefit from an 
application of credibility theory.

In reinsurance, an actuary or underwriter is re-
quired to estimate losses in a per-occurrence excess 
layer. For example, a treaty may cover loss occur-
rences that exceed a retention of $1,000,000 up to a 
limit of an additional $1,000,000; this would be re-
ferred to as a $1,000,000 xs $1,000,000 layer.

In order to estimate the expected losses in the 
excess layer, there may be several tools available. 
The first is a pure experience rating, sometimes 
called a “burn-cost” because of its use in rating fire 
policies. An experience rating looks at the actual 
historical losses for the ceding company that have 
penetrated the excess layer—including adjustments 
for trend and development—relative to the historical 
exposures.

In addition to the experience rating, there is usually 
an industry-based size-of-loss distribution available. 
This size-of-loss distribution gives the probability 
of a loss penetrating into the excess layer and the 
expected severity in the layer. It is the basis for an 
“exposure rating” estimate. More precisely, it is the 
basis for multiple exposure rating estimates because 
there are a variety of ways that the size-of-loss distri-
bution can be used.

The exposure rating curve can be used to divide 
an overall (primary or ground-up) expected loss 
into the losses expected in various layers. The over-
all expected loss can be a permissible loss ratio (for 
example, 100% minus expenses) applied to manual 
premium. More often, it is calculated from the ceding 
company’s experience, in which case, the exposure 
rating is clearly not independent from the experience 
rating.

Alternatively, the size-of-loss curve can be applied 
to an estimate of total claim counts for the ceding 
company. It could also be applied to a lower excess 
layer; for example, we use the size-of-loss distribu-
tion to estimate the $1,000,000 xs $1,000,000 layer 
relative to the $500,000 xs $500,000 layer.

1See, for example, the “Practical Considerations” (Section 6) in Cockroft 
(2004).
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The focus of this paper will be on the minimum 
variance criterion. The best combination of estima-
tors will be one that minimizes the overall variance. 
For this reason, this approach is also known as “least 
squares” or “greatest accuracy” credibility (Boor 
1992; Venter 2003; Marcus 2010).

If we have two or more estimates available that 
make use of different information, the best estimate 
may be some combination of those estimates. Cred-
ibility theory allows us to properly combine these 
different estimates so that we have a single, final es-
timate that makes the best use of all of the available 
information.

2.1. The two-factor model

We can begin with the familiar case in which 
credibility is applied as the weighted average of two 
estimators, 1

�  and 2
�, which are assumed to be un-

biased estimators of a true value m. 

   cw w w� � �= ⋅ + − ⋅1 21( ) .  (2.1)

The assumption that these estimates are unbiased 
is expressed as follows:

 E E( ) ( ) .  1 2
� �= =  (2.2)

The variance of the credibility-weighted (cw) av-
erage of the two estimators is a linear combination of 
the variances and covariances. 

Var w Var w wcw( ) ( ) ( ) � �= ⋅ + ⋅ −2
1 2 1

 ⋅ + − ⋅ Cov w Var( , ) ( ) ( ).  1 2
2

21� � �  (2.3)

The optimal value of the credibility weight can be 
found by least squares by setting ∂

∂
Var

w
cw( )�  = 0. This 

produces the following weight:
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.
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The calculated weights can be substituted back 
into the formula for the variance of the credibility-
weighted estimator (Formula 2.5). This form is in-
structive because it shows that the variance of the 
credibility-weighted estimator is less than either of 
the individual estimators’ variance. We can, there-
fore, see the value in a rigorous credibility formula 

some information (such as losses in lower excess 
layers).

1.3. Outline

The remainder of the paper proceeds as follows.
Section 2 will describe the basics of credibility 

theory supporting the proposed method.
Section 3 will show how this theory can be ap-

plied in practice as a recursive credibility method. 
In order to illustrate the technique, a simple example 
using a Pareto distribution will be traced throughout 
the paper.

The final result of this paper will be a very practi-
cal method for applying credibility that works recur-
sively. It starts with a simple weighting of experience 
and exposure rates for a low layer and then uses a 
layer relativity from the exposure curve to provide an 
estimate for the next layer up. This practical imple-
mentation can be used even without direct reference 
to the theoretical model that is demonstrated.

2. Background and Methods

Our goal in setting up a credibility procedure is 
to find the best possible estimate of future expected 
losses, making use of all available relevant informa-
tion. A best estimate will generally have two main 
properties:

•  The estimate will be unbiased; meaning that its 
expected value will be equal to the true expected 
value.

•  The estimate will have minimum variance; mean-
ing informally that it will tend to be closer to the 
true expected value than other possible estimates.

We will assume that all of the estimators used in 
our discussion are unbiased. If some are biased, then 
they need to be adjusted to an unbiased basis before 
they are included in a credibility-weighted average.2

2See Section 3 of Marcus (2010) for a good discussion on testing the 
validity of the unbiasedness assumption.

Variance_Clark.indd   34 9/22/11   8:07 AM



Credibility for a Tower of Excess Layers

VOLUME 5/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 35

The least-squares estimate for these weights can 
be found by solving the equation above. The result is 
that the weights are proportional to the row (or col-
umn) totals of the inverse of the covariance matrix.3

 W
���

= ⋅ ⋅ ⋅ ⋅− − −( ) .1 1 1n
T

n nSS SS1 1 1  (2.11)

For the special case in which all of the estimators 
are independent, this reduces to having the weights 
proportional to the inverse of each estimator’s 
variance.4

 w
Var

Var
i

k
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k

=
−

=
−

( )

( )
.

�

�

1
1

1
1

�

��
 (2.12)

One final observation before showing how this ap-
plies to excess pricing is that the multivariate case 
can alternatively be written in a recursive form. For 
example, a three-variable case can be viewed as a 
weighted average between one variable and the 
weighted average of the other two variables. 

   cw w w w� � � �= ⋅ + ⋅ + ⋅1 1 2 2 3 3

 = ⋅ + − ⋅ ⋅ + − ⋅z z z z1 1 1 2 2 2 31 1  � � �( ) { ( ) }.  (2.13)

3. Credibility applied to excess of 
loss reinsurance

The specific problem that we are examining is to 
find the best estimate of expected loss in an excess 
layer.

In order to make this discussion more practical, 
we will make an assumption that the true severity 
distribution is a single parameter Pareto, as defined 
in Section 3.1. In Section 3.2, we will then show 
how exposure and experience rating estimates are 
combined. Finally, in Section 3.3, we will show how 
lower excess layers can also be incorporated in the 
method using a recursive form of the multifactor 
credibility formula.

as improving our ability to estimate an expected loss 
more accurately.
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In this expression, the correlation coefficient is de-
fined as follows: 
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2.2. Multifactor model

The multifactor theory can be expanded to include 
multiple estimators. In this case, we need to define a 
covariance matrix, S, which includes the variances 
and covariances between each pair of estimators.

SS =
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(2.7)

The credibility-weighted average of the n unbi-
ased estimators is again a linear function of the indi-
vidual estimators. 

    cw n nw w w� � � � �= ⋅ + ⋅ + + ⋅1 1 2 2 .  (2.8)

The set of these weights is defined as a vector of 
parameters.

 W
���

…
T

nw w w= ( , , , ).1 2  (2.9)

The constraint that these weights must add up to 
1.00 (or 100%) can be written as 1 1= ⋅W

��� T
n , where 

1
n
 is a column vector of ones.
The variance of the credibility-weighted estimator 

is then a weighted average of the variance and cova-
riance terms in S.

 Var cw

T
( ) .��

��� ���
= ⋅ ⋅W W��  (2.10)

3This result is well known in other branches of finance and represents 
the solution to the minimum variance or efficient portfolio weights. For 
example, see Theorem 17.1 in Hardle and Hlavka (2007).
4This result is given as Theorem A.3 in Bühlmann and Gisler (2005), 
p. 280. It is also a standard feature of weighted regression theory.
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Similarly, the second moment of an excess layer is 
defined as follows:

E Layer( )2
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(3.3)

For our example, we will have the following infor-
mation available:

• All losses above a threshold u = $500,000

•  Experience rating for the $500,000 xs $500,000 
(or $500xs$500) layer (Layer

1
)

•  Experience rating for the $1,000,000 xs $1,000,000 
(or 1Mxs1M) layer (Layer

2
)

•  An insurance industry–based Pareto distribution, 
with parameter a

0

•  An estimate of the expected number of losses 
above u, denoted n

0
 (This estimate, n

0
, comes from 

manual rating, not from account experience.)

3.2. Combining exposure and 
experience rating estimates

We now proceed to define exposure and experi-
ence rating models and how they can be combined.

3.2.1. Exposure rating
An exposure rate is an estimate of expected losses 

in an excess layer based on external insurance data. 
It is sometimes called the “prior estimate” because it 
can be calculated prior to seeing the actual loss expe-
rience for the ceding company.

The exposure rate requires two pieces of informa-
tion: a severity (size-of-loss) curve from industry-
wide data, and an expected number of total losses. 

3.1. defining the reinsurance problem

In order to describe the expected loss in the re-
insurance application, we need to start with some 
definitions:

X  random variable representing a single 
loss event

F(x)  Cumulative Distribution Function; 
probability that a loss is x or less

R  Retention taken by the ceding company
L  Limit above the Retention covered by 

the reinsurer
Layer  Function representing loss taken by the 

reinsurer

 Defined as:  
 Layer = MIN{MAX(x – R, 0), L}

N  Random variable representing the num-
ber of losses in the historical period

In order to make this discussion more realistic, we 
will define a simple curve form to use in the calcula-
tion of the credibility factors. For our example, we 
will use the single parameter Pareto distribution,5 de-
fined as follows:

 F x
x

x( ) .= − 





≥1
�

�
� 

  for  (3.1)

The value theta, u, is known as the loss threshold, 
and represents the smallest loss amount that is part 
of the analysis. For example, in a reinsurance sub-
mission, we might ask for all losses of $500,000 and 
greater.

The expected loss in an excess layer is defined as
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(3.2)

5This distribution, along with the formulas for capped moments related 
to (3.2) and (3.3) can be found in Appendix A.4.1.4 of Klugman, Panjer, 
and Willmot (2004).
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The exposure rate and the variance7 around the ex-
posure rate are therefore estimated as follows.

 µ αexpos
� = ⋅ˆ ( | ).n E Layer0 0  (3.7)

Var

n CV E Layer n Cn

( )

ˆ ( | ) ˆ (

µ

α
expos
�

   = ⋅ ⋅ + ⋅0
2 2

0
2

0
2

0
VV

Var E Layer

n0

2

0

1+

⋅

)

( ( | )).      α  (3.8)

From these expressions for the exposure rate, we 
may observe that both the mean and standard de-
viation are proportional to the expected number of 
losses above the threshold u. This allows us to scale 
the exposure rate for any change in subject premium.

Having defined the components of exposure rat-
ing, it is useful to show representative values8 for 
these calculations.

Following our earlier introduction, we will as-
sume that the severity is a single parameter Pareto 
with a threshold u of $500,000. For the parameter a, 
we will select a value of 1.500. The variance around 
this Pareto parameter can be roughly estimated by 
first selecting a range of possible values. For our ex-
ample, we will assume that the variance is .05, with 
this amount selected by the user.

For expected counts n̂0  above the threshold for 
the future period, we will select an average value 
of five losses. The variance around this number is 
more difficult to estimate, as it may be dependent 
on how much variance there is for risks within a 
manual rating classification. If the frequency is more 
judgmentally selected, then there may be even more 
uncertainty. To illustrate the calculations, we will as-
sume a coefficient of variation (CV) of .300 or 30%.

From these selected values, we can estimate the 
severity for both excess layers, the exposure rate 
(frequency times severity), and the parameter vari-
ance around our estimated exposure rate, shown in 
Table 1.

Because we are assuming that the severity follows a 
Pareto distribution, we only need a single parameter, 
a

0
, to describe it. For the expected number of losses 

in the prospective period, we likewise have a prior 
estimate n̂0 .

In addition to our prior estimates, a
0
 and n̂0, we 

also need to have estimates of the variances around 
these estimates Var(a

0
) and Var( n̂0 ). The coefficient 

of variation (CV) related to the frequency is given 
below.

 CV
Var n

n
n

0

0

0

=
( ˆ )

ˆ
.  (3.4)

We can also approximate the variance of the se-
verity using the “delta method”6 relative to the vari-
ance of the parameter a

0
.
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The derivative with respect to the Pareto alpha is 
easily calculated.
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∂
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6A multivariate version of the delta method is described in Loss Models 
(Klugman, Panjer, and Willmot). For the single parameter Pareto, the 
variance approximation is much simpler.
The univariate delta method is based on approximating a function using 
the first two terms of the Taylor series expansion, g(x) ≈ g(a) + g9(a) ⋅ 
(x – a), which results in Var(g(x)) ≈ (g9(a))2 ⋅ Var(x). This method would 
provide an exact result if the Layer formula were a linear function of a; 
because is it not, our results are only approximate.

7This formula assumes that the estimates for frequency and severity are 
independent, and then makes use of the relationship: Var(X ⋅ Y) = E(X)2 ⋅ 
Var(Y) + Var(X) ⋅ E(Y)2 + Var(X) ⋅ Var(Y).
8For all of these numerical examples, the numbers are purely for illustra-
tion purposes and should not be taken as recommendations for pricing.
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If we assume that the frequency distribution is 
Poisson, then we can estimate an expected variance 
around the experience rate. 

Var
V

V
E Nbc

prospective

historical

( ) ( )µ� =






⋅ ⋅
 2

EE Layer( | ).2
2

0α
 
(3.11)

This variance is based on the expected process 
variance9 of the severity from the exposure rating 
model. The relationship between the prospective ex-
pected counts and the expected counts for the histori-
cal period is based on the assumption that the claim 
frequency relative to the on-level average premium 
is unchanged.

 
E n

V

E N

Vprospective historical

( ˆ ) ( )0 =  (3.12)

We can estimate the expected losses in the histori-
cal period, E(N), by making use of the prospected 
expected losses from exposure rating, E n( ˆ )0 , and 
Formula (3.12).

Table 2 shows the results of these calculations.

3.2.2. Experience rating
An experience rate is an estimate of expected 

losses in an excess layer based on the actual loss ex-
perience for the ceding company. For our notation, 
this will be denoted a “burn-cost” with the subscript 
“bc.”

In our estimate of the experience rate, we need to 
adjust the sum of historical losses in the layer to the 
prospective period based on the relative exposure 
volumes (V).

 µbc
prospective

historical
k

k

NV

V
Layer� = ⋅

=
∑ 2

1
, .  (3.9)

This expression is therefore simply the sum of the 
historical losses that penetrate into the second layer 
($1,000,000 xs $1,000,000) adjusted to the volume 
of premium in the prospective period. It is assumed 
that these losses are trended to the future level and 
that the historical premium is likewise adjusted (“on-
leveled”) to the future level.

The excess development can be built into this 
calculation by using as the historical exposure 
volume, the on-level premium divided by excess 
development:

 V
V

LDFhistorical
t

tYears t

=
=

∑  .  (3.10)

Table 1. Variance around exposure rate

Description Notation Value

Pareto Threshold u 500,000

Pareto Alpha a0 1.500

Variance around Alpha Var (a0) .05

Expected Severity 500xs500 E(Layer1|a0) 292,893

Expected Severity 1Mxs1M E(Layer2|a0) 207,107

Variance around Layer Severity Var (E(Layer2|a0)) 2.230E+09

Expected Counts at Threshold  n̂0  5.0

Coefficient of Variation of Counts CVn0  .300

Exposure Rate for 1Mxs1M µexpos
�  1,035,535

Variance around Exposure Rate Var ( )µexpos
�  1.573E+11

9We are making an approximation in this paper that the expected pro-
cess variance Ea[Var(Layer|a)] can be approximated as Var(Layer|E(a)). 
Without this approximation, we would need to specify a complete prior 
distribution for the a instead of just the variance. Alternatively, the pro-
cess variance could be estimated from the empirical experience rating.
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rience rating. To illustrate, in Table 3 we continue 
with the numerical example.

As expected, the variance around the credibility-
weighted rate is less than the variance of either of 
the individual estimates from exposure or experience 
rating. This is consistent with our goal of finding an 
estimator with minimum variance.

We can illustrate the concept of the credibility 
weighting of experience and exposure rates in Fig-
ure 1.

This illustrates the concept that the cred-
ibility weighting is based solely on the rates in the 
$1,000,000 xs $1,000,000 layer and makes no use of 
the information in the lower layer. We now proceed 
to show how the information in this lower layer can 
be used.

3.3. Including losses from a lower layer

As noted above, the experience and exposure rat-
ing models make use of different sources of infor-
mation. However, they do not make use of all the 
information that is available to the analyst. We are 

3.2.3. Credibility weighting these two 
estimates

The experience and exposure rating models pro-
duce estimates of the future expected loss to an excess 
layer. Because they are working with very different 
information, they can be considered independent.

 µ µ µcw bcw w� � �= ⋅ + − ⋅( ) .1 expos  (3.13)

The credibility weight for the experience rate is 
then written in a familiar form, based on the expected 
number of claims in the historical period (substitut-
ing in Formulas (3.8) and (3.11)).

 w
Var

Var Var

E N

E N k
bc

=
+

=
+

( )

( ) ( )

( )

( )

µ

µ µ
expos

expos

�
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2
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2 2
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α
α

                                 ⋅Var E Layer( ( | ))

.

α0

 
(3.15)

All of the elements of this credibility weight can 
be evaluated prior to actually estimating the expe-

Table 2. Variance around experience rate

Description Notation Value

Expected Severity 1Mxs1M E Layer( | )2 0α  207,107

Second Moment E Layer( | )2
2

0α  1.716E+11

Expected Prospective Counts E n(ˆ )0  5.0

Prospective Premium Vprospective 2,000,000

Historical On-level Premium Vhistorical 10,000,000

Expected Historical Counts E(N) 25.0

Experience Rate for 1Mxs1M E bc( )µ�  1,035,534

Variance around Experience Rate Var bc( )µ�  1.716E+11

Table 3. Variance around credibility rate

Description Notation Value

Variance around Experience Rate Var bc( )µ�  1.716E+11

Variance around Exposure Rate Var ( )µexpos
�  1.573E+11

Expected Historical Counts E(N) 25.0

Credibility “k” k 27.3

Credibility Weight to Experience w 47.8%

Variance around Credibility Rate Var ( )µcw
�  8.206E+10
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pure experience burn-cost µbc� . It shares dependence 
on the industry size-of-loss distribution with the ex-
posure rate.10 The experience rates for first and sec-
ond layers are also clearly related (for example, there 
can be no losses in the second layer without at least 
one loss in the first layer).

The remainder of this section will provide detailed 
formulas using the Pareto severity and Poisson fre-
quency model. These formulas allow us to create a 
tractable numerical example that can be reproduced 
by the ambitious reader and may be helpful for gain-
ing intuition about the sensitivity of the credibility 
weights to the variance assumptions.

However, the key result is not the Pareto/Poisson 
model itself but the recursive form of credibility that 
results. The more practical-minded reader can skip 
the detailed formulas and not miss this key result.

also able to price layers of insurance below the layer 
being quoted.

An additional estimate of expected loss is made by 
applying relativities from the exposure rating model 
to the expected loss in the first layer $500,000 xs 
$500,000. This is our “relativity” (rel) method.

µrel
prospective

historical
k

k

NV

V
Layer� = ⋅







=
∑ 1

1
, 

⋅
E Layer

E Layer

( | )

( | )
.2 0

1 0

α
α

 (3.16)

In this formula, we continue to use the shorthand 
notation:

 Layer
1,k

 = MIN{MAX(x
k
 – 500,000; 0); 500,000}

 for loss k
and Layer

2,k

 = MIN{MAX(x
k
 – 1,000,000; 0); 1,000,000}

 for loss k.
Figure 2 illustrates how the relativity method 

makes use of the experience in the lower layer.
This relativity-based estimate is not independent 

from either the pure exposure rate 
µexpos� or from the 

Figure 1. Example of standard credibility procedure

10Here we deviate from Marcus (2010), who assumes independence of 
the exposure rating and the severity curve underlying the ILF. While 
that assumption avoids the need to calculate this additional covariance 
term, it does not lead to the practical implementation in a recursive form.
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The bases to which these exposure rating factors 
apply are independent, so that the covariance be-
tween the exposure rate and the relativity-based esti-
mate is as follows:

Cov n E Layer

Var

rel( , ) ˆ ( | )

(

µ µ αexpos
�� = ⋅

⋅

0
2

1 0

      EE Layer Var
E Layer

E Layer
( | ))

( | )

( | )2 0
2 0

1 0

α α
α

⋅






.

(3.20)

From the formulas given above, it is interesting 
to note that we can calculate all of the needed co-
variances without introducing any additional corre-
lation assumptions into the model. Each correlation 
is implied directly by the structure of the layers 
themselves.

As a starting point, we may observe the covari-
ance between the experience rates in the two layers.11

Cov Layer Layer E N L E La
k

N

k

N

1 2
11

1, ( ) (  
==
∑∑




= ⋅ ⋅ yyer2 ).

  (3.17)

The covariance of the relativity-based estimate 
and the experience rate for the second layer is given 
as follows:

Cov
V

Vrel bc
prospective

historical

( , )µ µ� � =
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2 0

1 0

| )

( | )
.

α
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(3.18)

The severity used in the exposure rate and the 
layer relativity are closely dependent and may be 
treated as perfectly correlated.

Figure 2. Using exposure-rating relativities

11This formula is valid if the two layers are not overlapping—that is, the 
retention on the second layer is higher than the retention plus limit on 
the first layer.
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The variance around the layer relativity is calcu-
lated in Table 4.

The covariance matrix for the three estimators is

S =
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(3.25)

The inverse of this covariance matrix provides 
the credibility weights for the three estimates of ex-
pected loss. We calculate the inverse of the covari-
ance matrix and then assign the credibility weights 
proportional to the row (or column) totals.

The variance around the relativity-based estimate 
can also be estimated.
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As with the exposure rate, the variance of the 
relativity factor can be approximated via the “delta 
method.”
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For the Pareto distribution, the relativity ratio is 
calculated as follows:
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The derivative with respect to the Pareto alpha is 
calculated.

Table 4. Variance around relativity-based rate

Description Notation Value

Expected Severity 500xs500 E Layer( | )1 0α  292,893

Expected Severity 1Mxs1M E Layer( | )2 0α  207,107

Layer Relativity E Layer
E Layer

( | )
( | )

2 0

1 0

α
α

 .7071

Variance of Layer Relativity Var
E Layer
E Layer

( | )
( | )

2 0

1 0

α
α









  .0120

Variance of Relativity-based Rate Var rel( )µ�  8.788E+10
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If we had additional layers above the second layer, 
then this recursive procedure could be repeated.

As a practical matter, the variances needed for 
the rigorous multifactor model are not known with 
certainty. Further, the pricing analyst may want to 
modify the weights based on other considerations, 
such as data quality or potential changes in the un-
derlying exposures that require expert judgment. The 
recursive form can still be used with judgmentally 
selected weights as a systematic way to incorporate 
all of the information from the lower layers.

4. Results and discussion

We have seen that a minimum variance or “best” 
estimate of expected losses in an excess layer is 
one that makes use of all the available information 
from both experience and exposure rating models. 
The combination of estimates from simple meth-
ods is conveniently performed in a linear credibility 
framework. 

The final procedure derived from this credibil-
ity framework starts with a lower excess layer, and 
credibility weights it with a complement from indus-
try sources. The exposure distribution produces an 
expected layer relativity that can be applied to this 
lower layer to produce the complement for a second 
layer. Higher layers are likewise estimated by climb-
ing recursively up the tower of excess layers.

This recursive procedure is grounded in credibility 
theory, but it also allows for a high degree of judg-

As Table 5 shows, this final three-factor credibil-
ity estimator has a smaller variance than any of the 
three individual variances. The resulting variance is 
also less than the variance from the two-factor cred-
ibility calculation that was shown in Table 3.

The credibility-weighted estimate is a weighted 
average of the three separate estimates.
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This can be rearranged in the recursive form dis-
cussed earlier. In this form, we see that a credibility 
weighting is performed between the exposure and expe-
rience rates for the first ($500,000 xs $500,000) layer. 
This credibility-weighted estimate for the first layer is 
then adjusted to the level of the second ($1,000,000 xs 
$1,000,000) layer using relativities, and that amount is 
weighted with the experience rate for the second layer.
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Table 5. Final Covariance Matrix

 Expos bc Relativity

Covariance 1.573E+11 0 3.790E+10
Matrix: 0 1.716E+11 7.322E+10
 3.790E+10 7.322E+10 8.788E+10

Inverse: 7.580E-12 2.165E-12 –5.073E-12
 2.165E-12 9.663E-12 –8.986E-12
 –5.073E-12 –8.986E-12 2.105E-11

Row Total: 4.672E-12 2.843E-12 6.996E-12
Weights: 32.2% 19.6% 48.2%

 Total Variance: 6.891E+10
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Supplementary Material

An Excel example of the formulas in this paper is 
available from the author.
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ment as the analyst can adjust the credibility percent-
ages for each step.

Some outstanding questions left from this research 
are:

•  How can we improve on the estimate of the uncer-
tainty in the exposure rating distribution?

•  How can we include other sources of uncertainty, 
such as variability in trend, development, or on-
level factors?

•  Is there an optimal way of dividing the layers so 
that the best of all possible credibility-weighted 
averages is created?

5. Conclusions

The credibility procedure outlined in this paper 
should be useful for excess of loss reinsurance or 
other applications in which expected losses in excess 
layers need to be estimated. While this procedure 
was not invented by the author, the grounding in 
linear credibility theory provides a sound theory for 
systematically estimating expected losses.
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