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ABSTRACT

In this paper we define a specific measure of error in the
estimation of loss ratios; specifically, we focus on the dis-
crepancy between the original estimate of the loss ratio
and the ultimate value of the loss ratio. We also investigate
what publicly available data can tell us about this mea-
sure. Using Other Liability Occurrence data as reported in
Schedule P, we find that in a given accident year the val-
ues of this “estimation error ratio” for different companies
are lognormally distributed. Furthermore, we find that the
average accident year estimation error ratio is amenable to
time series analysis. Using the time series analysis and the
lognormal accident year model, we can estimate the distri-
bution of possible estimation error ratios for the industry
in a future year.
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1. Introduction

Many factors contribute to uncertainty in ac-
tuarial loss ratio estimates, including

² data issues (flawed data; finite sample size)
² projection issues (selection of trend, develop-
ment, and on-level factors)

² judgmental adjustments for factors which can-
not be directly quantified

² unforeseen external influences (law changes;
coverage changes)

Most research on the topic of estimation uncer-
tainty has focused on quantifying the effects of
finite sample size [see, e.g., Kreps (1997); Van
Kampen (2003); Wacek (2005)]. But this is far
from the only hurdle that practicing actuaries
must face–and often not the most important one.
A review of insurance industry experience over

the past several years indicates that while for the
most part companies do a fairly good job of es-
timating loss ratios, there are times when the in-
dustry as a whole gets it very wrong. This sup-
ports the argument that finite sample size is not
the key driver of estimation error. Furthermore,
for long-tail casualty lines of business, the error
in initial loss ratio estimate is strongly correlated
to the insurance market cycle and persists over
a number of years. This is not surprising, since
in these lines it takes a number of years for the
effects of changing influences to become fully
evident.
In this paper we will not attempt to identify,

much less quantify, all the various “known un-
knowns” and “unknown unknowns” that can con-
tribute to uncertainty in the estimation of loss ra-
tios. Instead, we will take a top-down approach,
looking at the loss ratio data itself.

2. Definitions and notation

Let’s start by establishing some notation for
the different quantities to be examined; using
this notation, we will define a measure of es-

timation error that can be studied using available
data. Given a set C of companies and a set T of
accident years, denote

OLR(c, t) = original loss ratio for company c

and accident year t at age 12 months,

ULR(c, t) = ultimate loss ratio for company c

and accident year t:

One measure of the discrepancy between initial
loss ratio estimates and the ultimate loss ratio is
the quotient

R(c, t) = ULR(c, t)=OLR(c, t):

Others [see Wacek (2007)] have sought to under-
stand the trajectory from OLR to ULR; the main
goal of this paper is to quantify and explore the
behavior of R(c, t).

2.1. Available data

Values for OLR can readily be found as the
Schedule P estimate booked 12 months after the
start of the accident year. While the final value of
ULR may take many years to be precisely deter-
mined, we may look to the most recent Schedule
P estimate of the ultimate loss ratio. Schedule
P provides only 10 development years, but ISO
data indicate that at this age unlimited General
Liability losses are more than 93% reported (i.e.,
the 120-to-Ultimate development factor is less
than 1.07); it seems reasonable to assume that
companies’ estimates of ultimate have largely
stabilized by 120 months. We consider this to
be a reasonable proxy for the true ultimate loss
ratio.
Of course, the latest available Schedule P loss

ratio for more recent accident years reflects fewer
than 10 years of development. We began this
study using data available as at 12/31/2005. On
this basis, our Schedule P proxy for the Accident
Year 2005 ULR is the same as our proxy for
the OLR–in other words, no information use-
ful for our study can be obtained for Accident
Year 2005. Similarly, the data for Accident Year
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2004 would be of very little value. For purposes
of this study, we selected Accident Year 2003 as
the most recent accident year to include; even so,
as our estimate of ULR is only 36 months old,
one might question whether this cutoff is suffi-
cient. ISO data indicate that approximately 90%
of General Liability claims and 63% of the as-
sociated loss dollars are reported at 36 months,
which should provide some measure of stability
to companies’ ULR estimates–but certainly less
than that achieved at 120 months. Because we
wished to use the results of this study to project
behavior for future accident years, it was desir-
able to include the most recent data to the ex-
tent it would be meaningful; and therefore we
decided to include 2003.
The loss ratio data used in this study is “as

was” reserving-type data, not “as-if” trended and
on-leveled prospective data. This is crucial, be-
cause we specifically want to understand how the
estimation error behaves over a span of succes-
sive accident years, given changing market con-
ditions. This is not to say that the effects of trend
and onlevel are being ignored: they are, in fact,
incorporated in the loss ratio estimates which are
the subject of our analysis, and their estimation
contributes to the estimation error. As mentioned
in the Introduction, most published research on
estimation error focuses on the portion of esti-
mation error which is due to finite sample size.
Implicit in our current analysis of estimation er-
ror are all the factors that go into an actuary’s
original estimated loss ratio: uncertainty about
the form of the distribution, the trend factors,
the development factors, application of profes-
sional judgment, and other known and unknown
sources of uncertainty, as well as uncertainty due
to finite sample size.

2.2. Remarks

For a fixed company c0, consider the average
of R(c0, t) over a large set T of years:

Average[R(c0, t) j t 2 T] := R(c0)

where R(c0) is the long-term company-specific
estimation error. If the company’s loss ratio es-
timates are unbiased, R(c0) should be close to
1; but it could be the case that a given com-
pany has a particular estimation bias, either up-
ward or downward [see Kahneman and Lovello
(1993)].
For a fixed accident year t0, consider the aver-

age of R(c, t0) over a large set C of companies:

Average[R(c, t0) j c 2 C] := R(t0)
where R(t0) is the accident-year specific aver-
age estimation error across all companies. In this
case, we would not necessarily expect R(t0) to
equal 1. We can think of R(t0) as the “indus-
try delusion factor”–the ratio of the actual loss
potential faced by the insurance industry in acci-
dent year t0 to the industry’s initial view of their
loss potential. Ratios greater than 1 correspond
to an initial under-estimation of loss and sub-
sequent adverse development; ratios less than 1
correspond to an initial over-estimation of loss
and subsequent favorable development.
The interested reader may consult Meyers

(1999) for an investigation of the effects of com-
pany-specific and industry-wide uncertainty ef-
fects.

3. Data and analysis

We turned to publicly available data to see
what we could learn about the behavior of the
estimation error ratio R.

3.1. Description of data set and
overview of analysis

For 63 of the largest casualty writers, we used
Schedule P data to compile Other Liability Oc-
currence booked loss ratios at 12 months, and the
most recent booked loss ratios as of 12/31/05,
for accident years 1980—2003. No specific ad-
justments were made for mergers and acquisi-
tions, though a few companies for which this
was considered to be a potentially problematic
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Table 1. Observed vs. fitted mean and standard deviation

Mean of Stdev of
Accident Mean of Stdev of ¹ := Mean of ¾ := Stdev of Lognormal Lognormal

Year ULR/OLR ULR/OLR ln(ULR=OLR) ln(ULR=OLR) Distribution Distribution

1980 1.067 0.244 0.039 0.237 1.069 0.256
1981 1.206 0.335 0.152 0.263 1.206 0.322
1982 1.447 0.624 0.299 0.361 1.440 0.538
1983 1.539 0.887 0.331 0.416 1.519 0.661
1984 1.714 0.881 0.427 0.469 1.712 0.849
1985 1.325 0.518 0.224 0.323 1.319 0.437
1986 0.900 0.327 (0.156) 0.314 0.898 0.289
1987 0.768 0.263 (0.336) 0.424 0.782 0.347
1988 0.870 0.273 (0.187) 0.324 0.874 0.291
1989 0.947 0.356 (0.117) 0.359 0.949 0.352
1990 0.935 0.300 (0.109) 0.286 0.934 0.273
1991 0.919 0.349 (0.140) 0.323 0.916 0.304
1992 0.919 0.313 (0.133) 0.309 0.918 0.291
1993 0.868 0.224 (0.175) 0.266 0.869 0.235
1994 0.841 0.249 (0.215) 0.292 0.842 0.251
1995 0.929 0.265 (0.114) 0.297 0.932 0.283
1996 0.962 0.235 (0.073) 0.278 0.966 0.274
1997 1.049 0.206 0.028 0.206 1.050 0.219
1998 1.152 0.283 0.110 0.261 1.155 0.307
1999 1.301 0.394 0.220 0.296 1.302 0.394
2000 1.281 0.416 0.201 0.303 1.280 0.397
2001 1.130 0.337 0.086 0.260 1.128 0.298
2002 1.042 0.223 0.018 0.222 1.044 0.235
2003 0.949 0.152 (0.067) 0.180 0.950 0.173

issue were excluded from the sample. Not ev-
ery company had data available for each year;
the number of companies for a given year varied
from 38 for accident year 1980 to 47 for acci-
dent years 1993—2002. It must also be noted that
the definitions of data to be included in specific
exhibits of the statutory blank do change over
time.
For each company and accident year where

OLR and ULR data were available we construct-
ed the ratio R =ULR=OLR. As described in the
remainder of Section 3, our analysis of the data
indicates that

² For each accident year ti the values R(c, ti) are
lognormally distributed across companies c

² The ¹ and ¾ parameters of these lognormal
distributions are strongly linked

² The ¾ parameter can be approximated by a
linear function of j¹j

² The ¹ parameter can be analyzed using time
series methods

3.2. Distribution of company estimation
error ratios in a fixed accident year
Observation of the data points in each accident

year suggested that the company estimation er-
rors might be lognormally distributed. Therefore,
for each accident year ti, we fitted a normal distri-
bution to the values ln(R(c, ti)) using the method
of moments, which is also the maximum likeli-
hood fit. This is shown in Table 1.
We then applied the Kolmogorov-Smirnov test

(K-S) test to compare the observed values of
R(c, ti) to those indicated by the lognormal ap-
proximation. For no accident year did the K-S
test imply rejection of the lognormal model. A
sample fit is shown in Figure 1.
Further examination of the accident year dis-

tributions showed a strong linkage between each
accident year’s mean and its standard deviation;
one might also formulate this relationship as a
linkage between the ¹ and ¾ parameters of the
fitted lognormal distribution.
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Figure 1. Sample lognormal fit to R(c, ti) by method of
moments (AY 1999)

In Figure 2, each data point represents a single
accident year. In the left-hand chart, year ti is rep-
resented by the point (Average[R(c, ti) j c 2 C],
Stdev[R(c, ti) j c 2 C]) and in the right-hand chart
year ti is represented by the point (¹(ti), ¾(ti)). We
examined various ways to express this relation-
ship. The linear-absolute model offered a better
fit than the linear model, with the simplicity of

Figure 2. Mean vs. Stdev and j¹j vs. ¾ for fitted lognormals

fewer parameters and greater symmetry than the
polynomial fit. Therefore, we selected this linear-
absolute model.
In essence this model says that the more pro-

nounced the industry average error in a given
year (whether this error is favorable or adverse),
the greater the spread of the distribution across
companies. The business interpretation of this
could be as follows: for years when the indus-
try as a whole does a good job of estimation,
most companies will fall fairly close to the av-
erage in the accuracy of their estimates. On the
other hand, for years in which the industry as a
whole does a poor job of estimation, the spread
of company errors is larger.
While certainly some of the spread of indi-

vidual company ratios is attributable to random
variation (which we assume has been largely
“smoothed out” when looking at the industry av-
erage), the strength of the relationship between
the ¹ and ¾ parameters of the fitted lognormal
distribution suggests that the degree of spread in
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Figure 3. Stability of fitted linear-absolute parameters
relating ¾ and ¹

company values for a given accident year may be
driven largely by estimation error contagion–in
other words, by the level of industry delusion.
It seems reasonable to ask whether the rela-

tionship between ¹ and ¾ has remained stable
over time. We tested this by fitting the slope and
intercept for the linear-absolute relationship to
restricted data sets, starting with accident years
1980—1989 and then successively including the
next accident year to consider 1980—1990, 1980—
1991, and so on. This is shown in Figure 3. We
found that the linear-absolute fit remained good,
with least-squares slope and intercept parameters
changing only slightly over time. This consis-
tency supports the idea that the degree of spread
in company delusion around the average indus-
try delusion in a given year may be driven more
by estimation error contagion than by purely ran-
dom variation.

3.3. Time series analysis of the ¹
parameter

Previous sections have largely focused on the
dispersion of company estimation error around
the industry average estimation error for a single
given accident year. Now we turn our attention to
a different question: what can we say about how
the value of the industry average estimation error

Figure 4. Behavior of fitted ¹ values over time

Figure 5. ¹(t) vs. AR(2) model

in one accident year relates to the value of the
industry average estimation error in a different
accident year? In particular, we investigate the
behavior of the underlying parameter, ¹, across
time. As can be observed from Figure 4, the be-
havior of the ¹ values indicates autocorrelation.
We examined the time series ¹(t) using

ARIMA methodology and identified the AR(2)
model as the best fit for the data set. Using the
maximum likelihood method to fit the AR(2) pa-
rameters, we obtained the following model:

¹(t) = 1:33 ¤¹(t¡ 1)¡ 0:66 ¤¹(t¡ 2)+ e(t):
This can be interpreted as saying that ¹ tends to
“overshoot” its immediate prior value, with an
offsetting effect determined by the second prior
value. This is depicted in Figure 5.
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Figure 6. Approximation of e(t) by normal distribution

Analysis indicates that the residuals e(t) are
stationary and lack autocorrelation. Furthermore,
the K-S test indicates that e(t) may be approxi-
mated with a normal distribution having mean
0 and standard deviation 0.09, as shown in Fig-
ure 6.

3.4. Applicability in practice

The AR(2) model enables the practitioner to
develop a view on future years’ behavior. How-
ever, there is one significant obstacle to appli-
cability. Our data set consists of information
through 12/31/2005; consider the perspective of
the actuary who, during the course of 2006,
wishes to forecast the likely level of “industry
delusion” for Accident Year 2007. As discussed
in Section 2.1, at this point in time, the data
for Accident Year 2005 is useless for this pur-
pose, and Accident Year 2004 remains extremely
green. In other words, the values of ¹(t¡ 1) and
¹(t¡ 2) are not yet “ripe” enough for use in pro-
jecting ¹(t). If our practitioner makes the same
assumption that we used for purposes of this
study, namely that 2003 is the most recent ac-
cident year for which the ULR/OLR value has
predictive value, in order to forecast 2007 the
AR(2) formula must be applied recursively.
Alternatively, since in effect the actuary is

forced to estimate accident year t using data from
accident years t¡ 4 and t¡ 5, we could seek to
directly fit a model that estimates ¹(t) as a linear

combination of ¹(t¡ 4) and ¹(t¡ 5). Using our
1980—2003 data set and applying the method of
least squares yields

Alternate model:

¹(t) = 0:07 ¤¹(t¡ 4)¡ 0:33 ¤¹(t¡ 5)+ ealt(t):
For comparison, recursive application of the
AR(2) model yields

Recursive AR(2) model:

¹(t) = 0:06 ¤¹(t¡ 4)¡ 0:39 ¤¹(t¡ 5)+ ecumult):
We can see that the coefficients are similar, as
are the resulting projections, shown in Table 2.
Clearly, neither recursive application of the

AR(2) model to project four steps ahead nor the
alternative four-step-ahead model is as accurate
as the AR(2) model applied to ripe data illus-
trated in Figure 5; and clearly the residuals as
seen in Table 2 no longer lack autocorrelation.
However, a four-step-ahead projection may still
provide some insight as to the potential range
of ¹ values in a future year. In the next section
we will investigate such a projection. Given the
similarity of the two models described above, we
will continue with the recursive application of
the AR(2) model; this offers greater theoretical
simplicity and enables the development of a tra-
jectory for ¹ that may provide additional insight.

3.5. Simulation results

In order to gain additional perspective on the
“probability cone” for the future trajectory of ¹,
we randomly generated residual values e(t) for
recursive application of the AR(2) formula. The
results of 10,000 Monte Carlo simulations form
the probability cone depicted in Figure 7.
In Figure 8 we graph the simulated proba-

bility density function and cumulative distribu-
tion function of the forecast industry mean error
R(2007).
The median of the forecast values for R(2007)

is approximately 1.0, while the mean is approxi-
mately 1.05. So, while as of 2003 the industry
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Figure 7. Percentiles of projection of ¹ for 2004–2007

Table 2. Comparison of alternative model with recursive AR(2)

Alt Model Recursive AR(2)
Accident Year ¹(t) Forecast ealt(t) Forecast ecumul(t)

1985 0.224 (0.001) 0.226 (0.006) 0.230
1986 (0.156) (0.027) (0.129) (0.042) (0.115)
1987 (0.336) (0.073) (0.263) (0.097) (0.238)
1988 (0.187) (0.076) (0.111) (0.104) (0.083)
1989 (0.117) (0.122) 0.005 (0.154) 0.037
1990 (0.109) (0.085) (0.024) (0.098) (0.012)
1991 (0.140) 0.026 (0.165) 0.041 (0.180)
1992 (0.133) 0.095 (0.228) 0.120 (0.253)
1993 (0.175) 0.052 (0.227) 0.066 (0.241)
1994 (0.215) 0.030 (0.245) 0.039 (0.254)
1995 (0.114) 0.025 (0.139) 0.034 (0.148)
1996 (0.073) 0.035 (0.108) 0.047 (0.120)
1997 0.028 0.030 (0.002) 0.042 (0.014)
1998 0.110 0.041 0.069 0.056 0.054
1999 0.220 0.061 0.158 0.077 0.142
2000 0.201 0.032 0.169 0.040 0.161
2001 0.086 0.026 0.060 0.030 0.056
2002 0.018 (0.001) 0.019 (0.004) 0.0222
2003 (0.067) (0.019) (0.048) (0.030) (0.038)

seems to have moved into the over-estimation
part of the cycle, where R = ULR=OLR is less
than 1, the model suggests than by 2007 the in-
dustry could well have shifted into under-estima-
tion behavior. This can also be seen in terms
of the trajectory of the projection illustrated in
Figure 7; given the lognormal model, ¹ values
greater than 0 correspond to ULR/OLR ratios
greater than 1.
The 80th percentile of the simulated distribu-

tion for R(2007) is approximately 1.22, i.e., there
is approximately a 20% chance that the average
company’s ultimate 2007 loss ratio will be 22%

higher than the initial estimate. The 95th per-
centile of the simulated distribution is approx-
imately 1.47, i.e., there is approximately a 5%
chance that the industry average ultimate loss ra-
tio will be approximately 47% higher than the
initial estimate. The 99th percentile is approxi-
mately 1.74 and the 99.9th percentile is approx-
imately 2.10.

3.6. Back-testing

To investigate the reasonableness of this “four
years forward” projection using recursive appli-
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Figure 8. Simulated PDF and CDF for R(2007)

Table 3. Actual ¹ as percentile of forecast distribution

Mean of Back-
Testing Actual as %ile

Accident Forecast Distr. of Forecast Quintile of
Year For ¹ Actual ¹ Distr. Forecast Distr.

1989 (0.153) (0.117) 58% 3
1990 (0.096) (0.109) 47% 3
1991 0.039 (0.140) 18% 1
1992 0.116 (0.133) 9% 1
1993 0.065 (0.175) 11% 1
1994 0.038 (0.215) 10% 1
1995 0.033 (0.114) 22% 2
1996 0.051 (0.073) 26% 2
1997 0.042 0.028 47% 3
1998 0.057 0.110 61% 4
1999 0.077 0.220 77% 4
2000 0.042 0.201 80% 4
2001 0.030 0.086 62% 4
2002 (0.003) 0.018 54% 3
2003 (0.029) (0.067) 42% 3

cation of the AR(2) model, we back-tested it
against our data set. Using the AR(2) parame-
ters derived from the full 1980—2003 data set,
we created simulated forecast distributions for ¹
in years for which we could actually calculate
the value of ¹ from the data. We felt that the
back-testing time frame of 1989—2003 could be
viewed as fairly representative of a full market
cycle (see Figure 4).
While we would not expect each year’s ob-

served ¹ value to fall right at the center of the

Table 4. Observed vs. theoretical quintiles

Observed Observed Percentage Theoretical
Quintile Count Incremental Cumulative Cumul. %

1 4 27% 27% 20%
2 2 13% 40% 40%
3 5 33% 73% 60%
4 4 27% 100% 80%
5 0 0% 100% 100%

Total 15 100% 100% 100%

forecast distribution, we can compare where the
observed ¹ values fell within the percentiles of
the forecast distributions and see if the observa-
tions were distributed evenly across the distribu-
tion percentiles, or clustered inappropriately, as
shown in Table 3.
We checked the percentage of ¹ values falling

into the quintile groupings of their respective
forecast distributions and found reasonably good
agreement with theoretical quintiles, shown in
Table 4.
As noted above, we would not expect the ob-

served ¹ values to consistently fall near the center
of the forecast distributions. The method cannot
provide a precise point estimate of ¹ in future
years–it’s not a crystal ball to tell us when a
major shift in the industry delusion factor is on
the horizon. Such shifts are generally driven by
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coverage changes, law changes, and so on: exter-
nal variables that affect market behavior. How-
ever, as shown in the quintile analysis, we do
find that the method is useful in projecting the
likely range of possible ¹ values. In other words,
the method does appear to provide a reasonable
answer to the question “how likely are we as an
industry to get it wrong–and if we do get it
wrong, how wrong might we be?” As observed
above, the method indicates that for the 2007 ac-
cident year, there is approximately a 20% chance
that the industry average ultimate loss ratio will
be at least 22% higher than the initial estimate.
We believe this type of estimate is the best appli-
cation of the analysis, and can be used in help-
ing companies to understand the potential for and
potential magnitude of estimation error. This in
turn can help companies in stress testing, mak-
ing reinsurance decisions, conducting dynamic
financial analysis, and applying enterprise risk
management techniques.

4. Caveats
Throughout the preceding sections we have

noted various limitations to this methodology. To
recapitulate:

² Imperfect data. As noted earlier, definitions
of data to be included in specific exhibits of
the statutory blank do change over time. And,
of course, companies enter and leave the busi-
ness over time and/or go through mergers and
acquisitions.

² ULR approximation. To the extent that report-
ed loss ratios after several years may still be
subject to additional development (either ad-
verse or favorable) before reaching the true ul-
timate loss ratio, the calculated estimation er-
ror ratio may tend to be too close to 1 (i.e.,
¹ too close to 0) and the forecast distribution
may show insufficient variability.

² External “shock” influences. There have been
in the past (and there surely will be in the fu-
ture) external factors which influence the loss

ratio estimation error. Examples include un-
foreseen losses such as asbestos and regulatory
changes such as Sarbanes-Oxley.

² Intrinsic “component” influences. As de-
scribed in the Introduction, this study was pur-
posely created from a top-down perspective.
We did not attempt to quantify or even iden-
tify all of the component influences that can
contribute to uncertainty in the estimation of
loss ratios. While the resulting model is not
perfect, we believe that there is value in de-
veloping a model based solely on loss ratio
behavior over time–one that does not explic-
itly rely on parameters such as loss trend, rate
change, etc., which are often unreliable and/or
unavailable.

The results of the back-testing shown in Table
3 suggest that overall the tail of our forecast
may be somewhat conservative, in that we had
no observation that fell into the highest quintile
of the corresponding forecast distribution. How-
ever, with only 15 data points it is difficult to
draw a firm conclusion in that regard.

5. Conclusions
The top-down approach to loss ratio estima-

tion error we have taken in this paper–looking
at the loss ratio data itself, rather than trying to
quantify the individual factors that might con-
tribute to estimation error–has two important
advantages. By its nature, the method incorpo-
rates all sources of estimation error. Furthermore,
unlike a bottom-up approach, this method does
not require contemplation of the complicated and
difficult-to-quantify relationships and codepen-
dencies among all these various contributors. Us-
ing the time series analysis and the lognormal
accident year model described in this paper pro-
vides a way to help quantify the likelihood and
magnitude of estimation error for current and fu-
ture accident years at the industry level. This
information can help companies in stress test-
ing, making reinsurance decisions, conducting
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dynamic financial analysis, and applying enter-
prise risk management techniques.
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