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ABSTRACT

A timeline formulation of simulation is where events hap-
pen one at a time at definite times, and therefore in a defi-
nite time order. Simulation in a timeline formulation is pre-
sented in theory and practice. It is shown that all the usual
simulation results can be obtained and many new forms
can be expressed simply. It is argued that this procedure is
more intuitive, physically more real, and technically more
correct than the collective risk model.
An available companion spreadsheet is a complete sim-

ulation model which can be indefinitely extended. In it,
many working examples are given and are referenced in
this paper.
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1. The essence

In the usual collective risk model, actuaries ask
how many events there are in a time period. This
is followed by asking how big each event is. In a
timeline formulation, we ask how long it is until
the next event, followed by how big the event
will be. This change of focus is the subject of
this paper.1

With a timeline formulation the emphasis is
on the instantaneous frequency–the propensity
to generate a claim of some type at any point
in time. The number of claims in a time pe-
riod emerges as a counting exercise. This is a
mathematically equivalent formulation for all the
commonly used distributions. Furthermore, the
notion of frequency, rather than count, is what
claims people and actuaries are really thinking
about. A statement like “the frequency of fender-
benders goes up in the winter” is intuitively clear
and goes to the heart of the matter, whereas “the
number of fender-benders in a specified time pe-
riod smaller than a season goes up in the winter”
just sounds awkward.
Why have actuaries used collective risk mod-

els? Some contributing factors are that the data
we see is arranged by period, such as accident
year or quarter; that we can calculate interesting
properties such as the moments of the aggregate
distribution; that the implicit assumption of the
independence of frequency and severity is em-
pirically often acceptable; and that the available
computing power limits the calculation.
The next section will discuss the general prop-

erties of a timeline formulation; Section 3 is ded-
icated to theory and may be skipped on first read-
ing; Section 4 describes the operational practice
of doing simulations; and Section 5 has examples
taken from the companion spreadsheet.

1It has been pointed out to me separately by Don Mango and
John Major that this is similar to discrete event simulation, for
which there are many references available–for example, at www.
ibrightsolutions.co.uk/support/simulation/simulation.htm.

2. Consequences of and
motivation for a timeline
formulation

Most obviously, a timeline formulation is more
real than collective risk because events in the real
world actually do happen at points in time and
in a definite order. Typical events under con-
sideration might be the occurrence of a claim,
payments on a claim, reinsurance recoveries and
premiums, and so on. In any type of simulation
model, there are a number of random variables.
By a realization we mean that each of the rele-
vant variables has taken on a value, yielding a
numerical result. A large number of realizations
together, often referred to as a simulation set,
gives information about the probabilities of var-
ious results. In a collective risk model, a realiza-
tion typically proceeds by first generating some
number of events and then generating severities.
Contrary to a timeline model, there is no notion
of when or in what order the events occur. In
reinsurance work a contract can cover several
lines of business and have an aggregate limit. If
all the claims from line A are applied first and
exhaust the limit, then the model will suggest that
line A really gets all the ceded losses. In order
to avoid this, models will randomize the order
of application of losses to the contract to get a
better feel for which lines really get what share
of the losses. If line B is seasonal and line A
is not, then the randomization needs to take this
into account. In fact, what is needed is to assign
a time-appropriate order of occurrence. At least
one model does this internally, but does not re-
port it out. In a timeline formulation, seasonality,
trend, and calendar year influences have a natural
implementation.
A related property is that the results on a time-

line are perfectly transparent. You can look at
any individual realization and see exactly which
claims hit which contracts in what order and see
how the contracts responded, depending on what
happened before. For example, you can see what
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caused an aggregate limit to be filled and a back-
up contract to be invoked. Any individual real-
ization is easy to understand because all the in-
formation is explicitly available in an intuitive
form.
Further, since events are often influenced by

prior events, truly causal relationships can be
modeled explicitly. Exposure as a random vari-
able can simultaneously drive the frequency of
large losses in a line, the severity of bulk2 losses,
and the written premium. A change in inflation
can affect auto parts prices; a change in the un-
employment rate can affect workers compensa-
tion claims, and so on. Discounting, even with
time varying discount rates, can be done on an
individual payment basis. Since we are working
one event at a time, we can ask for all of the in-
fluences on the event’s instantaneous frequency
and severity. The whole prior history is available
for each event. The challenge becomes deciding
what to model and then actually modeling the
effects.
Since we are working with instantaneous fre-

quency, we do not need to assume that frequency
and severity are independent, provided we have
some sensible model that connects them, such as
a quantification of “successful large claims en-
gender more of the same.” The success of a new
theory of liability (think toxic mold) can produce
this, as can a changing court climate.

Also, the generation of simulated events is sep-

arated from the reporting on events. In a collec-

tive risk model, a change in the reporting inter-

val requires a change in the frequency param-

eterizations. In a timeline formulation there are

no parameter changes, and going from annual to

quarterly reporting looks at the same events on a

2In principle, we could individually simulate all losses. In practice,
losses are segregated into small losses, large losses, and catastrophe
losses. The latter two are individually simulated and the aggregate
distribution for the former is calculated. The losses calculated in
bulk are sometimes known as “attritional” losses. The collective
risk model (supplemented by considerable parameter risk to match
real data) allows us to parameterize the aggregate distribution.

timeline and only changes the relevant time inter-
vals. Accident year, report year, and policy year
reports are just summaries of different subsets of
the same events on a timeline, so consistency is
automatic.
Management decision rules based on periodic

or even instantaneous reports can be implement-
ed. If we can state the decision rules, then we
can model their effects. For example, “cut writ-
ings in line A by 20% if the midyear claim count
is 75% of last year’s total” gives a complete-
enough algorithm to implement in a timeline for-
mulation. Or, “We just had four hurricanes this
year in Florida. Let’s get out of there.”
Whereas a timeline formulation allows any col-

lective risk model to be implemented, it also al-
lows many kinds of calculations to be done ex-
actly rather than by hopeful approximation. For
example, collective risk model formulations will
often assume that everything happens in midyear,
and inflation and discounting are taken at those
values. Not everything actually does happen at
midyear. On the other hand, the European index
clause in its various forms actually requires in-
dexation by a possibly random index at the ran-
dom times of occurrence and payment(s). This
can easily be done in a timeline formulation. Ap-
proximations must also be made if there are a
variable number of multiple payments, or their
number or amount is not determined at the time
of occurrence, or there is an exotic pattern such
as a number of small ALAE payments whether
followed by a big loss or not.
Perhaps most importantly, a timeline formula-

tion encourages a different way of thinking that
leads to new kinds of simple models. For ex-
ample, it is often said that larger claims usu-
ally close later than smaller claims. The intuition
is that large claims are more worth defending
in court than small claims. In a collective risk
model, you would have to have separate payout
patterns by claim size, with a great many parame-
ters. In a timeline formulation, one possible sim-
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ple model would generate a loss size, and then a
time to payment with the mean time proportional
to the size of loss.3 This example illustrates the
ease of creating a simple model which gener-
ates count and dollar triangles that can be com-
pared to data. In fact, claims departments have
the actual dates–occurrence and payment–that
could be used to create and validate (or invali-
date) models. We actuaries have just never looked
at the data that way, because we always have
worked with aggregated data.
Conversely, there are many claims that sit at

small values for a long time and then become
very large just before closing. Perhaps a sim-
ple model would have the mean severity depend
nonlinearly on the time to closure. A reinsurance
cancellation on treaties with seasonal effects can
and probably should be done pro rata on expo-
sure (via the frequency changes) rather than on
time.4 Finally, a new graduation technique for
payment patterns from accident period data has
emerged,5 creating a continuous payment distri-
bution of time from occurrence.

3. Theory

The reader who wants to know immediately
how all this works in practice and to work with
the spreadsheet is encouraged to skip this section,
perhaps for later perusal. The two most salient
facts are that a Poisson process is a constant in-
stantaneous frequency, and that a negative bino-
mial is a gamma-mixed instantaneous frequency.
The formulation is done in terms of continu-

ous time, and the derivations in this section have

3Since we have not done a study on real data, we have no idea how
good or bad this idea may be.
4In a reinsurance context, “pro rata on time” means that if half the
time of validity of the treaty has expired, half the premium is re-
funded. Where exposures are uniform in the year, this is equitable.
However, if the treaty incepts January 1 and covers Atlantic hur-
ricanes, there is really no exposure in the first six months. Fall is
hurricane season.
5Basically, there is a time to occurrence and a delay to payment
which creates the accident period results. See the discussion in the
epilogue. It also works with partial periods of data.

no doubt appeared in various works of probabil-
ity and statistics.6 The author has tried to keep
everything self-contained here so that no outside
references are needed. The calculus is minimal,
but the fundamental relation for probabilities is a
first-order differential equation. Those for whom
calculus is a long time ago, in a galaxy far far
away, may wish to just trust the derivations and
use the results. Section 4 gives the algorithms ac-
tually used, and the theoretical framework is only
intended to justify the algorithms and give some
sense for the notion of instantaneous frequency.
Although the framework and algorithms are sim-
ple, because of the housekeeping involved, the
implementation in code is tedious but straight-
forward.
We begin with a definition of instantaneous

frequency and a derivation of the general time-
dependent probability equation, followed by
Poisson and negative binomial examples. In the
second part of this section we address the ques-
tion of mixing distributions, revisiting the nega-
tive binomial and introducing a new distribution.
If for no reason other than parameter uncertainty,
we must be able to handle mixing distributions.
They arise naturally when one draws from the
parameter distributions to get frequencies. De-
tails of much of the proofs are left to appen-
dices.

3.1. Instantaneous frequency

The underlying assumption is that in an ar-
bitrarily short time interval ¢t, there can be at
most one7 event and the probability of it hap-
pening is proportional to the size of the time in-
terval. The proportionality “constant” is the in-

6An Introduction to Probability Theory and Its Applications (Feller
1968) has much relevant information, including a derivation of
Equation (3.9) for the distribution of waiting time.
7In the insurance world, there is no business difference between
simultaneous events and those at least a few milliseconds apart.
One could probably argue that there are no actual simultaneous
events.
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stantaneous frequency. This is the definition of
the instantaneous frequency, as probability per
time8 over a very short time interval:

Pr = ¸(t,n, : : :)¢t: (3.1)

The quantity ¸ is the instantaneous frequency,
which may depend on the time t, the number n
of events already present, exogenous influences
such as economic indices or legal climates, or
anything else in the past history. Intuitively, the
instantaneous frequency is the propensity for an
event to happen. In what follows, we generally
will only show the first two arguments of ¸. The
essential requirement that probabilities be non-
negative means that the instantaneous frequency
is never negative. Generally speaking, we will
work with simple forms for the instantaneous fre-
quency, but some results do not depend on the
explicit form and we will not restrict it until we
consider the Poisson case in Section 3.4.
We will now state the basic relationship for

probabilities at a small ¢t and then get a first
order differential equation by going to the limit
¢t! 0. In order to have n events at t+¢t you
either have n at t and do not get another, or you
have n¡ 1 and a new one occurs. Thus, the prob-
ability of having exactly n events at time t+¢t
is the sum of the probability of n events at time t
times the probability of no events between t and
t+¢t plus the probability of n¡ 1 events at time
t times the probability of one event between t and
t+¢t.
With Pn(t) being the probability of exactly n

events at time t, the probability statement be-
comes

Pn(t+¢t) = Pn(t)[1¡¸(t,n)¢t]
+Pn¡1(t)[¸(t,n¡ 1)¢t]: (3.2)

8There is a direct parallel with speed being the distance per time,
and the distance gone in a small time interval is the speed times
the time interval. We use a small time interval since speeds can be
different at different times, and we want the speed to be essentially
constant during our interval.

The boundary condition at time t= 0 is that there
are no events:9 P0(0) = 1, Pn(0) = 0 for all n > 0.
Rearranging Equation (3.2) we have

Pn(t+¢t)¡Pn(t)
¢t

=¡¸(t,n)Pn(t)
+¸(t,n¡ 1)Pn¡1(t),

(3.3)

and taking the limit as ¢t! 0 we get the fun-
damental relationship in the form of a first-order
differential equation

P 0n (t)´
d

dt
Pn(t) =¡¸(t,n)Pn(t)+¸(t,n¡ 1)Pn¡1(t):

(3.4)

We have introduced the convenient “prime” no-
tation P0n (t)´ (d=dt)Pn(t) for a derivative with re-
spect to time, since it will occur so often.
In the particular case n= 0 there is no second

term on the right of Equation (3.4), and we have

P 00 (t) =¡¸(t,0)P0(t): (3.5)

The solution10 satisfying the boundary condition
at time zero P0(0) = 1 is

P0(t) = exp
½
¡
Z t

0
¸(¿ ,0)d¿

¾
, (3.6)

since
d

dt
P0(t) = P0(t)

d

dt

½
¡
Z t

0
¸(¿ ,0)d¿

¾
=¡¸(t,0)P0(t), (3.7)

and

P0(0) = exp

(
¡
Z 0

0
¸(¿ ,0)d¿

)
= expf0g= 1:

(3.8)

3.2. Waiting time

Now that we have the time probability of zero
events, we may talk about waiting times–the

9We could start with some number of events, but it amounts to a
trivial redefinition in the instantaneous frequency and thinking of
our distributions as being of “new” events.
10Elsewhere in the paper, the solutions to first-order differential
equations will generally be simply stated. They are, as here, easily
checked by seeing if the derivative does satisfy the equation and if
the boundary condition (the value at t = 0) is satisfied.
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times between events. The cumulative distribu-
tion of waiting time for the first event is the prob-
ability that we no longer have zero events:

F(T) = 1¡P0(T) = 1¡ exp
(
¡
Z T

0
¸(¿ ,0)d¿

)
:

(3.9)

The probability density for the distribution of
waiting time is its derivative

f(T) = F 0(T) = ¸(T,0)exp
(
¡
Z T

0
¸(¿ ,0)d¿

)
:

(3.10)

The extensions to the case of waiting time to the
next event where there are already n events at
time t are

F(T) = 1¡ exp
(
¡
Z T

t
¸(¿ ,n)d¿

)
,

(3.11)
and

f(T) = ¸(T,n)exp

(
¡
Z T

t
¸(¿ ,n)d¿

)
:

(3.12)

In practice, one would look at the data and
fit a parameterized form to ¸ by a method such
as maximum likelihood. We are already accus-
tomed to doing this for severities, so it is not a
new process. In the discussion of parameter esti-
mation in Appendix B, Equation (B.9) provides a
generalization of Equation (3.12) in the presence
of mixing distributions.
The mean waiting time for the first event is

E(T) =
Z 1

0
Tf(T)dT

=
Z 1

0
T¸(T,0)exp

(
¡
Z T

0
¸(¿ ,0)d¿

)
dT:

(3.13)

In the important special case of constant in-
stantaneous frequency (i.e., Poisson), the mean
waiting time for the first event is

E(T) =
Z 1

0
T¸e¡¸TdT = 1=¸: (3.14)

3.3. Time dependence of the mean

Returning to the fundamental relation Equa-
tion (3.14), an immediate consequence is the
evaluation of the time rate of change of the mean
number of events. The mean number of events at
any time is

mean(t) =
1X
n=0

nPn(t): (3.15)

Its time rate of change is, using Equation (3.4),

d

dt
mean(t) =

1X
n=0

nP 0n (t)

=
1X
n=0

n[¡¸(t,n)Pn(t) +¸(t,n¡ 1)Pn¡1(t)]

=
1X
n=0

[¡n¸(t,n)Pn(t)+ (n+1)¸(t,n)Pn(t)]

=
1X
n=0

¸(t,n)Pn(t): (3.16)

This has the natural interpretation that the rate
of change of the mean at any time is the prob-
ability weighted average over the instantaneous
frequency at different counts. In a case where the
instantaneous frequency does not depend on the
number of events, the probabilities sum to 1 and
Equation (3.16) becomes

¸(t) =
d

dt
mean(t): (3.17)

Here, the instantaneous frequency is the rate of
change of the mean, which perhaps gives another
intuitive handle for thinking about the instanta-
neous frequency.

3.4. Poisson process

What defines a Poisson process is that the in-
stantaneous frequency ¸ is constant. This means
that there is no memory of past history, and the
probabilities of events in any time interval are
the same as in any other time interval of equal
size. Equation (3.17) implies that the mean num-
ber of events in a time interval is the interval size
multiplied by ¸.
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Let us solve Equation (3.4) for this case.11 We
will take up another case later, where the ¸ de-
pends linearly on the number of claims. For the
Poisson, Equation (3.4) becomes

P0n (t) =¡¸[Pn(t)¡Pn¡1(t)]: (3.18)

The solution is derived in Appendix A, and is
the familiar

Pn(t) =
(¸t)n

¡ (n+1)
e¡¸t: (3.19)

In timeline formulation, a Poisson is the simplest
possible random generator of events.
The Poisson provides a very important special

case of Equation (3.9), which then says that the
cumulative distribution of waiting time from time
t is

F(T) = 1¡ e¡¸(T¡t): (3.20)

That is to say, the waiting times are exponentially
distributed. We can simulate the interval to the
next event by

T¡ t =¡1
¸
ln(uniform random): (3.21)

In the algorithms for the next section, it is this
result that is used to find the time for the next
event.
In fitting to sample data, the solution for ¸

is one divided by the sample average waiting
time and the uncertainty in ¸ is ¸ divided by the
square root of the number of observations for a
flat Bayesian prior. We will return to this in Ap-
pendix B, but for now note that the number of
observations is the number of claims minus one
and not the number of years, yielding a poten-
tially much better determination of the parameter.

3.5. Count-dependent frequency

Another case of interest because of its relation
to other well-known counting distributions has
the instantaneous frequency linear in the count:

¸(t,n) = ¸+ bn: (3.22)

11See Appendix A, Equation (A.1) and following.

Since the instantaneous frequency must be pos-
itive, we will consider for the moment the case
b > 0. It is obvious that in the limit b! 0 we
must recover the Poisson case. Putting this form
into the Equation (3.16) for the derivative of the
mean, we get

d

dt
mean =

1X
n=0

¸(t,n)Pn(t)

=
1X
n=0

(¸+ bn)Pn(t) = ¸+ b mean:

(3.23)

The solution for this which is zero at time zero
is

mean =
¸

b
(ebt¡ 1): (3.24)

We note that as b! 0 the mean goes to ¸t, as it
should. The salient feature is that the mean is ex-
ponentially growing with time–not particularly
a surprise given that we have made the rate of
increase of the mean proportional to the number
of claims. This is the standard population growth
with unlimited resources.
What is perhaps more surprising is that the dis-

tribution at any fixed time is negative binomial.
The solution12 of the fundamental Equation (3.4)
with the frequency given by Equation (3.22) is

Pn(t) =
(1¡ e¡bt)ne¡¸t¡ (®+ n)

¡ (n+1)¡ (®)
, (3.25)

where we have defined ®´ ¸=b. A negative bi-
nomial distribution with parameters13 ½ and ®
has count probabilities given by

Pn =
½n(1¡ ½)®¡ (®+ n)
¡ (n+1)¡ (®)

: (3.26)

We can see that Equation (3.25) is Equation
(3.26) when we identify ½= 1¡ e¡bt and hence
(1¡ ½)® = e¡®bt = e¡¸t.
As an aside, if we allow b < 0 and set ¸(t,n) =

max(¸+ bn,0), then when ®´ ¸=b =¡N is a

12See Appendix A, Equation (A.9) and following.
13This is one possible parameterization. See Appendix A, Equation
(A.22) and following for a rationalization for this choice and results
expressed in it.
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negative integer, at any fixed time we have a bi-
nomial distribution whose mean is N(1¡ e¡¸t=N).

3.6. Mixing distributions

We are forced to consider mixtures of Pois-
son distributions when we think about even the
most limited form of parameter uncertainty, the
uncertainty resulting from limited data. See Ap-
pendix B, Equation (B.5) for an example in the
simple case. We may also be led there by our
intuitions about the actual underlying process.
We may think of it either as a probabilistic mix
of Poisson processes, say a random choice be-
tween two values, or we may think of it as re-
flecting our uncertainty about the true state of
the world. The algorithms in the next section
presume that any individual realization is basi-
cally Poisson with one or more sources, but with
parameters that vary from realization to realiza-
tion (or even within one realization) so that the
resulting count distributions may be extremely
complex. In simulation, we will begin each re-
alization by choosing a state of the world based
on a random draw from the parameter distribu-
tions. For Poisson sources, this amounts to using
a mixed Poisson.
In the general case, we assume a given prob-

ability density on ¸. Let f(¸) be the density for
the mixing distribution. Then the probability of
seeing n events at time t is the probability of
seeing n events given ¸ [Equation (3.19)] times
the probability of that value of ¸, summed over
all ¸:

Pn(t) =
Z 1

0

(¸t)ne¡¸t

¡ (n+1)
f(¸)d¸: (3.27)

We may express the moments of the count dis-
tribution in terms of the moments of the mixing
distribution using Equation (A.7):

E(n(n¡ 1)(n¡ 2) : : : (n¡K +1))

´
1X
n=0

n(n¡ 1)(n¡ 2) : : :(n¡K +1)Pn

= tK
Z 1

0
¸Kf(¸)d¸: (3.28)

Specifically, the mean is given by the mean of
the mixing distribution multiplied by the time:

E(n) = t
Z 1

0
¸f(¸)d¸´ ¹t: (3.29)

The variance to mean ratio is that of the mixing
distribution multiplied by the time plus one, as
shown by

var(n)´
1X
0

n2Pn¡ (¹t)2 =
1X
0

n(n¡ 1)Pn+¹t¡¹2t2

= t2
·Z 1

0
¸2f(¸)d¸¡¹2

¸
+¹t= t2var(¸) +¹t

(3.30)
so that

[var=mean]count = 1+ t[var=mean]mixing:

(3.31)

The simple Poisson thus has the smallest possible
variance to mean ratio. The skewness (and all
higher moments) of the count distribution can
be similarly derived from those of the mixing
distribution, but generally do not have an orderly
form.

3.7. The simplest mix—Two Poissons

For the mixture, we take the instantaneous fre-
quency to be ¸1 with probability p and ¸2 with
probability 1¡p. Formally, the density function
in ¸ is14

f(¸) = p±(¸¡¸1) + (1¡p)±(¸¡¸2):
(3.32)

The count distribution from the definition Equa-
tion (3.27) is then

Pn(t) =
tn

¡ (n+1)
[p¸n1e

¡¸1t+(1¡p)¸n2e¡¸2t]:

(3.33)

The mean of this mixing distribution (and by
Equation (3.29) the mean of the count distribu-

14±(x) is the Dirac delta function, which integrates to one but is
zero everywhere except at x= 0. It can be thought of as the density
of a normal distribution with standard deviation extremely small
compared to anything else in the problem.
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tion at time t= 1) is the intuitive result

E(¸) =
Z 1

0
¸f(¸)d¸

=
Z 1

0
¸[p±(¸¡¸1)+ (1¡p)±(¸¡¸2)]d¸

= p¸1 + (1¡p)¸2: (3.34)

The second moment similarly is

E(¸2) =
Z 1

0
¸2f(¸)d¸

=
Z 1

0
¸2[p±(¸¡¸1)+ (1¡p)±(¸¡¸2)]d¸

= p¸21 + (1¡p)¸22, (3.35)

so the variance is

var(¸) = E(¸2)¡E(¸)2 = p(1¡p)(¸1¡¸2)2:
(3.36)

And the variance to mean of the count distribu-
tion is, by Equation (3.31)

[var=mean]count = 1+ t
p(1¡p)(¸1¡¸2)2
p¸1 + (1¡p)¸2

:

(3.37)

3.8. Negative binomial as gamma mix

This is an important special case, because of
the frequent use in actuarial work of the nega-
tive binomial distribution. The intuition is that
the frequencies are spread in a unimodal smooth
curve from zero to infinity. One simple form uses
a gamma mixing distribution:

f(¸) =
¸®¡1e¡¸=μ

μ®¡ (®)
: (3.38)

In terms of these parameters, the mean is ®μ and
the variance to mean is μ. Using Equation (3.27)
the count distribution is

Pn(t) =
Z 1

0

(¸t)ne¡¸t

¡ (n+1)
¸®¡1e¡¸=μ

μ®¡ (®)
d¸

=

μ
μt

1+ μt

¶nμ 1
1+ μt

¶®
¡ (n+®)

¡ (n+1)¡ (®)
:

(3.39)

Comparing to Equation (3.26) we can see that
this is negative binomial with parameter ½= μt=

(1+ μt). Then from Equations (3.29) and (3.31)
or directly from the moments of the negative bi-
nomial, the mean of the count distribution is ¯μt
and the variance to mean ratio is 1+ μt. Most of
note, in contrast to the contagion case of count
dependence (Section 3.5) here the negative bino-
mial has a mean linear rather than exponential in
the time.

3.9. Uniform mix

The intuition here is when the analyst says,
“I think the instantaneous frequency is in this
range, but not outside.” This is similar in spirit
to a diffuse Bayesian prior which is limited. Like
the gamma mix, it has two parameters but they
are perhaps more easily interpreted, being values
rather than the moments. Specifically, for a uni-
form mix between a and b > a the distribution
is

f(¸) =
1

b¡ a for a· ¸· b
and zero otherwise:

(3.40)

The mean of this distribution is (a+ b)=2, and
the variance to mean ratio is (b¡ a)2=6(a+ b).
The count distribution is

Pn(t) =
Z b

a

(¸t)ne¡¸t

(b¡ a)¡ (n+1)d¸

=
G(bt,n+1)¡G(at,n+1)

(b¡ a)t ,

(3.41)

where G(¸,n) is the incomplete gamma distribu-
tion with integer parameter

G(¸,n)´
Z ¸

0

xn¡1e¡x

¡ (n)
dx

= 1¡ e¡¸
(
1+¸+

¸2

2
+ ¢ ¢ ¢+ ¸

n¡1

¡ (n)

)
:

(3.42)
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We can recognize 1¡G(¸,n+1) as the cumu-
lative distribution function for a Poisson with pa-
rameter ¸. Intuitively this makes sense, as we are
representing the count probability density as a fi-
nite difference approximation on the cumulative
distribution function.

3.10. Arbitrary probabilities

We need to be able to work with any given
set of count probabilities. Ideally, we would like
to invert Equation (3.27) and be able to deter-
mine a mixing function for any set of probabili-
ties. This is in fact possible, and unique, but the
mixing function may not be a probability density
because it is not guaranteed that f(¸)¸ 0. Take
as an obvious example a distribution with exactly
one count: P1 = 1, all other probabilities are zero.
Since 0 = P0(t) =

R1
0 e

¡¸tf(¸)d¸, clearly f(¸)
< 0 somewhere. Nevertheless, there always is
such a mixing function.
That does not mean we cannot simulate with

an arbitrary set of annual count probabilities. Ac-
tually, it is rather easy. We generate a count for
each year of our horizon and assign random times
within the year to the events. If we have a frac-
tional year in our horizon, we generate the an-
nual count but only take the events inside the
horizon. What we lose is any causal connection
between events, but in a count distribution that
is not present anyway.
It is shown in Appendix C, freely ignoring

considerations of rigor, how to get a unique mix-
ing function. The solution is framed in terms of
the Laguerre polynomials of parameter zero, de-
fined as

Ln(x)´
ex

¡ (n+1)
dn

dxn
(e¡xxn): (3.43)

They are used because they are orthogonal with
weight e¡x. Create the auxiliary quantities

Qn ´
nX
k=0

¡ (k+1)dnkPk (3.44)

with dnk being the coefficient of xk in the
Laguerre polynomial of order n and Pk being the
desired probabilities. The mixing function can be
expressed as

f(¸) =
1X
n=0

QnLn(¸): (3.45)

Using this mixing function in Equation (3.27)
will give back the probabilities Pn.

4. Practice

In this section we will discuss the implemen-
tation of timeline simulation. In the next, we will
refer to various examples and their implementa-
tion in the companion spreadsheet. The examples
will illustrate the principles given here, as well
as leading the reader through one particular im-
plementation of the timeline formulation. Read-
ers are encouraged to build their own simulation
platform, because reading about it and trying to
understand someone else’s complex workbook
will not give the same depth of understanding.
Therefore, experimentation with the spreadsheet
is strongly encouraged.

4.1. Basics of timeline simulation

The fundamental paradigm is that events occur
on a time line, changing the state of the world.
Events can be randomly generated, scheduled,
or arise in response to other events. This final
property leads to event cascades. Time runs to a
prespecified horizon, and then reports (possibly
including known future events) are made on the
events on the timeline. Reports can also be made
on a periodic or even instantaneous basis. They
can also be generated in response to a particular
event or series of events.
An event is essentially anything of interest at

a particular time. For most dynamic risk model
analyses, prototypical events would be cash flow
amounts at particular times with tags indicating
the type of accounting entry, the line of business,
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perhaps the location, and anything else of rel-
evance. Exogenous variables such as consumer
price index values can also be events of
interest.
Fundamentally, what defines “of interest” is

the kinds of reports that are desired, and these are
determined by the kinds of questions the analy-
sis is designed to answer. Most frequently, these
questions are couched in financial terms, and of-
ten in terms of impact on an insurance com-
pany financial statement. Income statements are
sums of dollars and counts of events during spec-
ified time intervals, identified by accounting en-
try type and line of business. Sometimes in order
to generate an event of interest, say a reinsur-
ance cession, other informative events will be re-
quired, such as exterior index values, which then
become of interest.
Some examples of possible event generators

are losses (catastrophe, non-cat, and bulk), con-
tracts such as reinsurance treaties and cat bonds,
reserve changes, dividends paid or received, as-
set value changes, surplus evaluations, results of
management decisions, etc. Events that come
from an event generator carry appropriate tags,
defined in terms of the reports of interest and the
requirements of other generators. Even the re-
ports themselves can trigger events, if other event
generators need their data.
At the time an event is generated, the entire

prior history is available to it. So, for example, a
direct premium event generator in a line of busi-
ness may respond to the latest exposure measure
event, as may a loss event generator for that line
in setting its frequency of large losses and the
severity of aggregated losses. If an event gen-
erator needs some kind of information to oper-
ate, then that kind of information must be avail-
able on the timeline. Almost all information is in
events on the timeline, including internal states
of event generators themselves if the states are
of interest to other event generators. Although
this requirement can lead to many events on a

timeline, it means that each realization has per-
fect transparency. One can walk the timeline and
see exactly the state of the world that led up to
any event.
The other information is the state of the world

at time zero. It may include such things as ini-
tial asset and liability values, especially loss re-
serves and other items on the balance sheet, ini-
tial frequencies and exposures, etc. In order to
include parameter uncertainty, it will also include
the randomly chosen parameter values for the
current timeline realization.
Event generators will at any one time generally

operate in one of three modes: random, sched-
uled, or responsive. However, a generator may
use several modes. For example, a reinsurance
contract has (at least) a scheduled mode for de-
posit ceded premium paid and a responsive mode
for the ceded loss generated by a direct loss.
In random mode, at any point in time the gen-

erator has an instantaneous frequency. As dis-
cussed below, we take it to be constant until the
next event of any sort (which may be a time sig-
nal). The time for an event then arises from a
random draw on waiting time. Another way of
saying this is that the realization is “piecewise
Poisson.” More complex modeling is possible,
but not needed yet.
In scheduled mode, a generator will generate

an event at a known time. One typical example
would be a premium payment. Other scheduled
examples could be reserve changes done at peri-
odic intervals or index values produced periodi-
cally.
In responsive mode, a generator simply re-

sponds to another event. It may generate an im-
mediate response event, or schedule it for a later
time. It may generate more than one event in re-
sponse to a single event. For example, a reinsur-
ance contract, in response to a direct loss, may
generate a ceded loss and a reinstatement pre-
mium. Those events in turn may be responded
to by other generators.
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Again, the characteristics of any event can de-
pend on anything that has happened up until that
time. For example, the size of loss may depend
on inflation, especially in a loss event with sev-
eral payments. The generator may set the time
for each payment on either a fixed or random
basis, and the loss payment amount may be es-
timated before the event time or may need to be
calculated at the time of payment.

4.2. Operation of timeline simulation

We start with the state of the world at time
zero, some parts of which will be randomly cho-
sen because of parameter uncertainty and possi-
bly frequency mixing.15 Let us assume we have n
independent Poisson sources; i.e., with constant
frequencies ¸1 : : :¸n. We have them all acting and
generating events along the timeline.
Now consider the sum of the n sources, which

is also a Poisson process with frequency ¸´Pn
i=1¸i. This is clear because the probability of

an event in an arbitrarily small interval is the sum
of the probabilities for the individual processes.
If we use the sum frequency to get the next event
and then choose which event it is by a random
draw where the probability that the event is of
type i is ¸i=¸, then we get exactly the same dis-
tribution of events, because the probability for an
event of type i in an arbitrarily short time interval
¢t is (¸¢t)(¸i=¸) = ¸i¢t, as it should be.
For many people, there is something counter-

intuitive here. Could we not just generate the
next event from every process? Let us say we
have line A with frequency 4 and line B with
frequency 5, and we are at time zero. We do a
random draw on each and get a line A event at
0.25 and a line B event at 0.2 (these happen to
be their mean delay times, as seen from Equation
(3.14)). So we take the line B event at 0.2. On
the other hand, if I look at their total frequency
4+5 = 9 and do a draw, the mean time will be

15In case you skipped the theory, we can get a negative binomial
distribution as a gamma mixture of frequencies.

0.111 and the probability that it is from line A
is 4/9, almost as great as the probability that it is
from line B. How can both of these descriptions
give the same distributions?
The short version is that they do, when we

extend the realizations over the full time interval
from 0 to 1. At time zero we ask for the time
of the next event, and then from that time ask
for the time of the next, and so on until the next
event is past the horizon at 1. If we do many
realizations and ask what are the probabilities of
0,1,2,3, : : : events of line A and similarly for line
B, we will get the same answers.16 Of course, no
two realizations will be identical, either within
one simulation description or between them. Two
realizations may have the same counts in the time
period 0 to 1, but they will not have the same
times.
Drawing from the total first we draw more of-

ten, but the events are shared among all the lines.
In the example above, we have 9 events on aver-
age, and on average these are split 4 to line A and
five to line B. Drawing individually, you have on
average 4 events on line A and 5 events on line
B for a total of 9 events. The distributions are the
same because either way the chance in any small
time interval ¢t of seeing an event on line A is
4¢t.
Another question is, if the frequencies do not

depend on prior events couldn’t we just do all the
realizations of each line separately? We could.17

There are two virtues in looking at the total fre-
quency and then choosing what event it is. First,
when frequencies depend on prior events, they
must be recalculated. Second, it only requires two
random draws no matter how many sources you
have. Another way of framing the problem is
that with multiple interdependent risks, we can-

16Technically, up to simulation uncertainty, which decreases as the
square root of the number of realizations.
17An efficient method is to have each generator provide its own
next time rather than its current frequency. This requires that the
time be recalculated if an event occurs which influences its fre-
quency.
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not first generate their events at different points
in time. We must look at each event at its own
time, so that all its interdependencies as they ex-
ist at that time can be evaluated. We are always
looking at a single event at a definite time, even
though through the time horizon the risks may
have generated multiple interdependent events at
various times, with arbitrarily complex relation-
ships. The only restriction is the physical require-
ment that no dependency can require knowledge
of the future.
The realization procedure is as follows: we

start at time zero, and poll all the sources for
their current instantaneous frequencies. We add
all the frequencies and ask if there is a random
event before the next scheduled event. We do this
by comparing the time18 for the next proposed
random event to the time for the next sched-
uled event. If there is a random event, we ran-
domly draw to see what kind of event it is. The
event, random or scheduled, may generate subse-
quent scheduled events. For example, an incurred
loss may put payments on the schedule, whose
delay times from occurrence may be fixed or
may themselves be random. The event may cre-
ate other immediate events. For example, a loss
payment may create a ceded loss19 under one or
more reinsurance treaties, and these in turn may
generate other events such as reinstatement pre-
mium.
When the sequence of immediate events is fin-

ished, we poll all the sources for their (possibly
new) instantaneous frequencies, and repeat. We
do this until the next random event is beyond
the chosen time horizon. As mentioned above,
the realization can be characterized as “piecewise
Poisson.” If a frequency has an explicit depen-
dence on time, then it is necessary to schedule

18The time is found by an exponential random draw, using Equation
(3.21). This is the essential representation that the procedure is
“piecewise Poisson,” because we do not consider time changes in
instantaneous frequencies between events.
19In the case where the ceded loss is not immediate, one would
need to model the delay.

time signal events so that the change in frequency
can be noted. When these need to occur depends
on how fast the frequency is changing. In the
case of hurricane seasonality, monthly time sig-
nals are satisfactory for current data.
For connection to the current usage in fre-

quency distributions, a Poisson is simply a con-
stant instantaneous frequency and a negative bi-
nomial is an initial draw from a gamma distribu-
tion to get an instantaneous frequency for each
timeline. An arbitrary annual frequency distri-
bution can be used by initially drawing a num-
ber of events for each year and then assigning
random times within years, ignoring values past
the time horizon. Another interesting possibil-
ity, so far not used, is to generate an event with,
say, a Poisson, and then have that event gener-
ate other events with another Poisson, negative
binomial, or some other distribution. The exam-
ple would be a complex physical event which
generates many simultaneous insurance claims,
possibly across lines of business.
For the severities, the current practice is to ran-

domly generate the incurred value and then cre-
ate one or more payments that sum to the in-
curred. Generally, a payout pattern is matched
either by breaking up the incurred value into a
fixed number of payments at exact periodic (an-
nual, quarterly, etc.) intervals, or by having a sin-
gle payment at a random exact number of peri-
ods later. While both are commonly used, neither
of these options is particularly realistic but they
can be done on the timeline. A better model for
a single payment is to have it be random at any
subsequent time, not just at the anniversary dates
of the claim.
It is also possible to have more exotic possibil-

ities, some of which will be discussed in the next
section on examples. For instance, we can model
a random time to the first payment, a random
amount dependent on random inflation, and then
a decision as to whether there is a subsequent
payment or not, resulting in a change in the in-
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curred value; and then repeat the whole process
at the next payment time.
It turns out to be helpful to not only allow

events to carry arbitrary codes, such as Part A
Loss and Part B Loss for a contract, but also to
allow them to publish details about the event that
may be of interest to other generators. For exam-
ple, if there is a surplus share contract, the gen-
erated loss also publishes the policy limit from
which it came. The essential principle for trans-
parency is that everything necessary to under-
stand a result should be on the timeline. It should
be possible to pick any event at a given time, say
a reinstatement premium, and unambiguously
walk the timeline backward to see the ceded loss,
why the ceded loss was the amount that it was,
and so on back to the original event of the cas-
cade.
Something close to timeline simulation can be

done in the context of a collective risk model
by making the periods very short. For exam-
ple, if a loss has a payment in each of the first
three weeks, another at one year, and another at
five years, we can create a weekly collective risk
model to simulate it. However, we will have a
vector of some 250 entries of which only five
are nonzero, and there will be a lot of software
housekeeping done on sparse vectors and matri-
ces. In a timeline formulation, there are just five
events and their times–and it does not matter
when they occur.

5. Examples and workbook use

In this section we will discuss various exam-
ples and their implementation in the companion
workbook. The reader is encouraged to have it
available and open, both to follow and to experi-
ment. The workbook is a complete timeline sim-
ulation tool, with all code available to the reader.
Once understood, the big problem is that it is
slow rather than that it is hard to construct a
model. This workbook is only one way of imple-

menting a timeline simulation methodology and
the reader is encouraged to create his own.
The intent here is simply to show how various

kinds of events appear on a timeline; the par-
ticular numbers are meant to be quasi-realistic
rather than an actual model. There is Visual Ba-
sic code doing the housekeeping of initializing
and creating a timeline, but it is not necessary to
understand it in detail. It follows the procedures
in Section 4 and assumes nothing about what the
events are or event generators actually do, but the
VB code is not particularly transparent. The key
point of the workbook is that you may have as
many or as few event generators as you wish, in-
teracting in whatever manner you wish. Each one
is a separate sheet in the workbook. In this work-
book, sheets are turned on or off to suit the user.
A brief description of all the generators is on the
sheet “generator descriptions” immediately fol-
lowing the “read me” sheet. While it is recom-
mended actually to read the “read me” sheet, the
following examples give the basic workings in
some detail and can be followed without doing
so.

5.1. The timeline simulation workbook
The workbook has a brief tutorial on the “read

me” sheet, and some of that material will be re-
peated here. For actual use, the reader is referred
to the tutorial. The fundamental sheet is the Event
History, which shows one realization of a time-
line. On the Event History, you can always see
a time, an amount, a source, a descriptive code
for reporting, and any published details about
the state of the world. It is possible to look at
the timeline and see exactly what happened and
why. We will shortly show one timeline from a
formulation which has a random source and a
reinsurance contract on that source.
In order to see this timeline (or at least some-

thing like it, depending on the random number
generators) you must first go to the sheet “Event
History” and click the “Activate Sheets” button.
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Figure 1. Event History sheet—Sample timeline

This will give a selection box in which the sheets
are listed in the order they appear in the work-
book. Check the boxes next to “simplest” and
“two year XS” and uncheck all others. Click
“OK.” Those two sheets are activated and placed
between the sheets “Event History” and “Sched-
ule.” On the sheet “Event History” set the “Hori-
zon” cell (all user-defined input cells are blue) to
1, if it is not already at that value. At this point
you may click “Run” and see one realization.
You may repeat the “Run” as often as desired.
Each “Run” will generate one realization, a time-
line of events. Most of the events will be Direct
Paid Loss (DPL) but some will be Ceded Paid
Loss (CPL).
The source on sheet “simplest” is named

“Large Auto Losses” and is a pure Poisson with
frequency 6 and a single payment which is a
Pareto with mean 390,724. The contract on sheet
“two year XS” has an occurrence limit of 100,000
with a retention of 400,000 and an annual limit
of 300,000 and an annual retention of 50,000,
with an 80% participation. In these timelines,
the source for every event is either “Large Auto
Losses” or another event. In Figure 1, the di-

rect paid loss (code DPL) at time 0.0378477 is
the source for the “contract touched” event at
0.0378478 and that is the source of the ceded
paid loss (code CPL) at 0.0378479. The amount
of ceded loss is 80% of (100,000 less the 50,000
annual deductible).
It can be seen that there are three more large

losses, which respectively cede 80,000, 80,000,
and 40,000. The last is less than 80,000 because
the aggregate limit for the contract has been
reached. Further losses would cede nothing.
It is also possible to step through a realization.

On the sheet “Event History” click “Prepare.”
This will go through the activated sheets and
make sure they have all the needed ranges de-
fined, as well as some other consistency checks.
Click the “Initialize” button.20 This will empty
the timeline, and the cells labeled “next poten-
tial21 event” will show what is waiting to hap-
pen. Going to the sheet which has the source
“Large Auto Losses” on it (so far, there is only

20If you click this one before “Prepare” you may get a message that
“Preparation must be completed before initialization.” Just click
“Prepare” and then “Initialize” again.
21“Potential” because at some point current time plus its delay time
will exceed the event horizon.
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Figure 2. Reports sheet—Sample output

one random source, namely “simplest”) we can
see the calculation that led up to the incurred
value shown for the next potential event, starting
with the gold cell with a random uniform value
in it. Then back on “Event History” click “Step.”
This will put the event on the timeline and bring
up the next potential event. If the current event
is large enough to exceed the $400,000 occur-
rence retention, then we will also see, as above, a
“contract touched” event and a ceded loss (CPL)
event. In order to see this, repeatedly click “Ini-
tialize” until the next potential event amount ex-
ceeds the retention, and then click “Step.” Going
to the contract sheet “two year XS,” we can see
all the calculations which created the ceded loss.
As we repeatedly step and look at the contract
sheet for each cession, we can see the annual
totals being created. Again, for each event the
complete calculation is available (until the next
event is created).
Especially when stepping, it is convenient to

change sheets by the “Go to generator” button.
Clicking it will display an alphabetical dropdown

list by either source name or sheet name. High-
lighting a name and clicking “OK” will take you
to that sheet. If you are on a sheet and its name
is highlighted, clicking “OK” will take you back
to the main sheet “Event History.” Other tips: if
you get tired of stepping, you can click on “run
to completion” to finish the realization; “toggle
sources” will show additional information on the
timeline.
It is also possible to show more detail on the

timeline for more complex situations. In fact,
anything of interest, including internal states of
the generators, can be published on the time-
line. Some situations require this information,
as when a backup contract is used and needs to
know when the backed-up contract has been ex-
hausted or when a contract needs the policy limit
of the loss.
On the “Reports” sheet to the left of “Event

History,” we see the totals of various amounts
of interest for this realization. The total DPL is
$8,232,395.71; the total DPL discounted at 4%
is $8,046,674.69. The discounting uses the actual
times, of course. Figure 2 is an excerpt.
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We can also see that we have no ceded pre-
mium, which means either that we got a very
good deal from the reinsurer or that we probably
need to extend the model.
In order to do a simulation, after having acti-

vated the appropriate sheets (and preferably done
a few runs to make sure things are working cor-
rectly) we can select cells on the “Reports” sheet
and then click on the “Simulate” button. This just
repeats “Run” the desired number of times, and
puts statistics and a cumulative distribution func-
tion on the sheet “Simulation Results,” which
will be created if it is not present.
The sheet “simplest” has just the basic ele-

ments. The frequency is constant. The severity is
ballasted Pareto (for the formula, see the sheet).
The severity is conditional on the losses being
between 50,000 and 10,000,000, since we are
looking at just large losses. Various interesting
measures about the severity are also on the sheet,
including two moments and the cumulative prob-
ability distribution, both direct F(x) and inverse
x(F). With x set to 400,000, the retention of the
contract, we see that F(x) = 78:2% so that for
any single Large Auto loss the probability of ex-
ceeding the retention and possibly generating a
ceded loss is 21.8%.
This simplest form–a pure Poisson generator

–is typically what is used when parameter un-
certainty is ignored. There is no particular restric-
tion to a Pareto severity; it was used here because
it is both simple and typical for large losses.
Another point of note is on the contract sheet

“two year XS” where we need some way of accu-
mulating ceded losses to see the effect of the con-
tract’s occurrence and annual limits. This is done
by using VB code to write information from the
current calculation into a cell for use by the next
calculation of the spreadsheet. The reason it is
done this way is to avoid a recursive formula
which Excel could not handle. The area where
it happens is labeled “changing state variables”
because it contains variables relating to the state

of the contract, which are necessary for the con-
tract calculation and which are not fixed, unlike
the limits and retentions.
To watch it work, click on the button “Initial-

ize Recursion” to reset the accumulators to their
initial values, in this case zero. Type 420,000
into the cell B8 labeled “current payment” and
click on “Calculate.” This mimics the effect of an
event with coverage being seen by the contract.
It calculates everything to the left of the vertical
double red lines. We will see the cell F22 labeled
“current potential ceded” now contains 20,000.
If the cell B11 labeled “occurrence time” con-
tains a number between zero and one, then the
cell I5 labeled “year 0 total–next” will also con-
tain 20,000. The cell J5 labeled “year 0 total–
current” contains zero. Now click on “Step Re-
cursion” and see that “year 0 total–current” also
contains 20,000. The sheet is now ready for the
next calculation. Change the “current payment”
to 430,000 and click on “Calculate” again. Then
“current potential ceded” now contains 30,000
and “year 0 total–next” contains 50,000. If you
click on “Step Recursion” again, then “year 0
total–current” also contains 50,000 and we are
ready for the next event. The number of invoca-
tions tells how often the sheet has been calcu-
lated. This same procedure is followed on many
sheets that need to retain information for subse-
quent use.
Note that this is a two-year contract. If we

change the horizon on “Event History” to 2 and
click “Run” we can see the results for both years.

5.2. Source interdependence and event
codes

For a very simple example, click on “Activate
Sheets” and select “Line A” and “Line B.” Line
A is exactly the same as “simplest” except for
the labels on the source name and on the output
type. The output is “DPL A” which is just short-
hand for direct paid loss from line A. The report
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Figure 3. Event History—Line A, line B example

Figure 4. Reports—Line A, line B example

summaries which are, as above, set to “included”
will read any code that has “DPL” included in it
as direct paid loss.
The line B source name is, unimaginatively,

“depends on Line A.” Line B has again the same
severity, but has a variable frequency depending
on line A output. If the last line A loss is less
than a threshold then the frequency is zero and
there are no line B events; if it is greater than
the threshold, then the frequency jumps to 30.
With the threshold set to 1,000,000, by looking
at the line A sheet where F(1,000,000) = 86:8%
we may anticipate on average about one large
event per run. Since the frequency of line A is 6,
what we expect is an average of about 5 line B
events for every large line A event.22

The user is encouraged to do a number of runs,
and to play with the parameters to see how they

22Because the average line A delay time is 1/6 and the average line
B delay time is 1/30, there will be on average about 5 line B events
before the next line A event. That event is likely to be small, thus
putting the line B frequency back to zero.

influence the appearance of events on the time-
line. One run generated this timeline shown in
Figure 3.
The reporting on DPL (and LAE, of which

there is none) showed the sum of the amounts,
and the report on DPL B gave just the line B
amounts. In Figure 4 we can create reports on
any event code.
While there may not be an insurance situation

with a dependency precisely like that of line B
on line A, this simple example illustrates that if
you can state the algorithm for the dependency
in Excel you can simulate with it. The reader is
encouraged to add Large Auto losses back in the
mix,23 and see that the auto losses and line A
just act independently, whereas line B is always
tied to line A output. The next timeline shows an
example where some Large Auto losses occur in
the middle of a set of line B losses because line A

23By clicking “Activate Sheets” and selecting simplest, line A, and
line B.
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Figure 5. Event History—Activate auto losses

starts with a large loss and there is a long delay
to a small loss in Figure 5.

5.3. Negative binomial, random
payouts, and the schedule

This example, on the sheet “gamma mix,” has
a negative binomial frequency. As usual, to see
it run alone we must click “Activate” and select
“gamma mix” while deselecting others. The neg-
ative binomial frequency is created by having an
initial draw for the frequency from a gamma dis-
tribution. We specified the frequency parameters
in terms of the mean frequency and the coeffi-
cient of variation of the mixing distribution and
calculated the negative binomial moments, but
we could as easily have done it the other way
around. The severity is again Pareto.
Perhaps of more interest is the payout pattern.

There is an initial payment, followed by a ran-
dom number of randomly timed payments. To
keep life a little simple, the amounts are all made
the same. We could easily have made it even sim-

pler by insisting that the payments only happen
at fixed intervals after the claim occurrence, the
way most simulations work now. The number of
subsequent payments is Poisson24 with mean 5.4,
and the interval times between payments are ex-
ponential with mean 0.25. The source name is
“Casualty 2” and the payment behavior is meant
to have more of the randomness that might char-
acterize a casualty line.
When the generator is invoked, the subsequent

payments go to the schedule. We can see this by
stepping through the realizations. On one partic-
ular timeline, after the first invocation the sched-
ule shows in Figure 6.
After the next step, which is a new event be-

fore the next scheduled event, we see five new
payments sorted into the schedule in Figure 7.
The first part of the resulting timeline shown in
Figure 8.

24This compounding, which is negative binomial with Poisson,
could clearly be done with other distributions or in several stages
of compounding just as easily.

80 CASUALTY ACTUARIAL SOCIETY VOLUME 3/ISSUE 1



Theory and Practice of Timeline Simulation

Figure 6. Schedule sheet—Realization step 1

Figure 7. Schedule sheet—Realization step 2

Figure 8. Event History—Gamma mix activated

We can pick any one event, say the 23,858.52
loss at 0.9723323 and track back its sources
through the preceding events at 0.8953636 and
0.7869403 to the original event of this cascade at
0.7634110. What you do not see at time
0.9723323 is that the last payment of this se-

ries is actually at 3.0050366. In the spreadsheet
if we click “Toggle Sources” we see the column
labeled “original source event.” There is a filter
set up on this column, and we can filter on the
original source event and see the whole cascade
in Figure 9.

VOLUME 3/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 81



Variance Advancing the Science of Risk

Figure 9. Event History—Filter by source event

Figure 10. Event History—Exposure and monthly aggregates

As alluded to above, the intent of the “source”
column is to provide an audit trail whose meta-
phor is that of picking up one bead on a string
and being able to follow the string back to the
original source. Every event either connects to a
prior event labeled by its time, or is an original
event from a random or scheduled source.

5.4. Exposure and scheduled events

The sheet “exposure” has an exposure
which is stochastic about a time-dependent mean
value. The sheet “exposure-driven freq” has a
loss frequency which is proportional to the
exposure. The sheet “monthly aggregates” uses
the same exposure as a factor on its mean sever-
ity. The latter two sheets use the function
GetMostRecentValue(code, default value), which
is available to any worksheet, for looking at the
timeline. This function is also used in the exam-

ple of Section 5.2 and many other sheets. The
intent here is to provide a simple example for
an exposure-driven model of both large losses
and bulk aggregation of small losses. The large
losses are modeled as having an immediate pay-
ment resulting from a Beta distribution applied
to the total and a second payment of the remain-
der at a random time later. Currently the mean of
the Beta is 60% and the mean time to the second
payment is 1.2 years, but of course these can be
changed to anything desired.
One timeline begins as in Figure 10. Since

the amount column is formatted for dollars and
cents, we see the exposure index rounded to two
figures although its complete value is used in cal-
culation. The schedule plays a slightly different
role here, because while the times for the bulk
losses are known at the beginning, the amounts
are To Be Determined (TBD). If we click
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Figure 11. Schedule—At “Initialize” step

“Initialize” and then look at the schedule we will
see in Figure 11.
During subsequent steps, at the appropriate

time, the source is called to do a calculation and
create the current amount. For the exposure the
source can simply create the amount, but for the
bulk losses the source must look back in history
to see the current exposure value. A similar look
back is done when the frequency for the large
losses is polled in order to find the next event.

5.5. Loss generation with full
uncertainty

The sheet “full uncertainty” is a loss generator
with a basic form that is negative binomial with a
Pareto severity. However, it has various forms of
parameter uncertainty represented as well. The
initial calculation draws from a parameter distri-
bution specified by the uncertainties of the neg-
ative binomial and Pareto distributions, which
come from a curve-fitting routine. The calcula-
tion then adds a projection uncertainty to account
for uncertainties in the on-leveling, missing data,
environmental changes, etc. The latter is mostly
subjective and dependent on the individual com-
pany and line of business. This draw from param-
eter distributions is, as discussed before, either
a reflection of our ignorance or a reflection of
the complexity of the world, depending how we
think of it. In any case, what is essential is that
the draw be done only at the beginning of each
realization, and not every time the frequency or

severity distribution is used. The parameters re-
main the same throughout the realization, and
only change for the next realization.
It is worth noting how the initial choice of pa-

rameters is done. This whole calculation is to
the right of the double red lines. If we click the
button “Initial Calculation” we can see the vari-
ous random choices being made and the result-
ing frequency and severity parameters. This fea-
ture is also present in the previously used sheet
“gamma mix” and many others. There is a range
“calc initially” (which can be seen by using the
“Edit-Go To” command on the Excel menu) that
is calculated by the VB code initially or by click-
ing the button “Initial Calculation.”
This sheet also generates a random number of

payments, each some random fraction of the cur-
rent outstanding value, at random times. In the
end, any one timeline is still a set of dollar loss
amounts at different times, so it does not look
very different from what we have seen. However,
being able to model the uncertainties explicitly
will give fairly different results from using just
the simple form at the modal values, especially
in the tail.
This sheet also publishes additional detail,

namely the current outstanding value for each
loss at each payment time. This is needed for
some contracts, such as the European index
clause.

5.6. A general liability model

Well, sort of. The sheet “General Liability” is
similar to the above in the uncertainties and is
meant to be a suggestion toward a model of loss
and legal fees by paying legal fees and then ei-
ther winning or losing in court. There is an ini-
tial direct incurred loss (DIL), and then typically
a stream of relatively small loss adjustment ex-
pense payments (LAE) followed by a large di-
rect paid loss (DPL) with no change in the in-
curred value. Sometimes there are no payments,
and there is a takedown of the incurred. There
are a variable number of payments (the mean
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Figure 12. Event History—Activate “Generalize Liability”

Figure 13. Event History—“Good Lawyer” parameter illustrated

number increases with the claim size) at random
times with a mean delay between them of 0.5,
and the legal payment totals are about 30% of the
original incurred. The larger claims, having more
payments on average, will tend to take longer to
settle since the mean delay time is fixed. At the
end, there is a “good lawyer” parameter. If the
final outstanding is less than this parameter, the
(high) legal fees are presumed successful and the
final payment is zero, with a takedown in the in-
curred occurring one half day after the final pay-
ment.
Figure 12 shows a sample timeline showing a

typical claim and a close without payment claim.
The published details are the current outstanding
value for the combined loss and LAE claim.
Figure 13 shows a claim where the good law-

yer prevailed. This is a timeline filtered on the
original event.

5.7. Loss generation from policy limits

The sheet “Property w Policy Limit” contains
a policy limit profile. It generates a loss amount

using a beta distribution with a large standard
deviation times a factor greater than one, and
limiting the result to one, and multiplying by
a randomly chosen policy limit. This results in
the classic shape of a property curve with many
small losses and an uptick at very large losses.
In a separate simulation, the mean and standard
deviation of the policy limits, the percentage of
policy limit, and the loss amounts are generated
to confirm the desired behavior.
When the loss generation is based on estimated

exposure rather than on a specific policy limit,
the percentage drawn should not be capped at
one, so that losses beyond the estimated expo-
sure are allowed. The same could also be said
for losses beyond policy limit, depending on the
situation.

5.8. Multiple part contract

The example is a surplus share corridor, which
could actually have been done on a single sheet
but is done this way to show again how genera-
tors can communicate via events on the timeline.
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Figure 14. Event History—Surplus share example

The three sheets which must be activated (in ad-
dition to “Property w Policy Limit,” which is the
source of loss to which they apply) are “Surplus
Share Corridor.A,” “Surplus Share Corridor.B,”
and “Surplus Share Corridor.” Parts A and B are
standard surplus share contracts which also have
aggregate limits, and the corridor itself is the sum
of the two. The aggregate coverages are 5M ex-
cess 5M on part A, and 5M excess 15M on part
B, leaving open the corridor 5M excess 10M for
the cedant. Both Part A and Part B are nine line
coverages with a 1M retained line. This means
that on a 1M policy, they cede nothing, on a 2M
policy they cede 50%, on a 5M policy they cede
80%, on a 10M policy they cede 90%, etc.
There are several interesting features. First, the

surplus share contracts need to know the policy
limit in order to calculate the cession percentage.
To do this, the Property source publishes the pol-
icy limit as an interesting loss detail. Then parts
A and B look at the loss and the policy limit,
and produce LOSS.A and LOSS.B. The corridor
itself picks these up as well as the policy limit
and creates a ceded loss.
One timeline, shown in Figure 14, where the

large losses used up all aggregate limits, first in
part A and then in part B.

Note that each loss also carries with it the cor-
responding policy limit, which the surplus share
contracts need to do their calculation. They ac-
cess it using the function OriginalLossDetail.

5.9. Stochastic premiums

In this example we know the relative planned
amounts on a semiweekly basis and want to gen-
erate random premium or other entries. Basically,
this is meant to show how to use the schedule to
include quite complicated random inputs in the
simulation. Here we want random entries whose
sum has a given mean and coefficient of varia-
tion. The sheet “direct premiums” has 104 ran-
dom entries with specified relative means, and
generates them as deviates from a normal dis-
tribution whose parameters are chosen to give
the desired overall results on average. Although
these are stated as premiums, these events could
be time-signals or exposure measures to modify
frequencies, for example. If we think of this as
written premium, we can earn it out over time.
Here, the specified mean is 1,000,000 and its co-
efficient of variation is 3%. The following is the
underlying variation of the mean values, with a
peak in the spring and a dip in the fall in Figure
15. Figure 16 shows one realization produced.
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Figure 15. Direct Premiums sheet—Relative mean chart

Figure 16. Direct Premiums sheet—Actual amount realization

It would be hard, looking at this as data, to infer

the actual underlying 15% rise in spring and 15%

drop in late summer of the relative means.

5.10. Cats, copula, cat cover, and
inurance

The sheet “hurricane” is a catastrophe modeled
as three Pareto severities connected by a copula.
This sheet will give separate events for Florida,
Georgia, and South Carolina. It also puts out
events for the start and end of each cat. The hur-

ricane season is modeled as having uniform fre-
quency from August through October, but clearly
we can do better than that and put in more accu-
rate seasonality. On the timeline, there are events
to start and end the season.
The sheet “cat cover” is a contract for

50,000,000 excess of 50,000,000 with one free
reinstatement and 95% participation on the to-
tal loss from each cat. There is a Florida-only
contract and the sheet “FL excess” inuring to it
which has one reinstatement at 100%. This con-
tract has ceded paid premium (CPP) and reinsur-
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Figure 17. Event History—Hurricane cat example

ance paid premium (RPP), the latter being the
premium paid for reinstatement.
It should be noted that contracts are evaluated

in workbook order, and a contract which inures
to another must be evaluated first. Hence “FL
excess” must precede “cat cover.” Figure 17 is
one timeline.
The ceded paid premiums occur at the middle

of each quarter. It might be mentioned that the
cat cover itself is apparently free, since there is
no ceded premium for it. The events at .583 and
.833 are meant to express the boundaries of the
hurricane season and change the frequency on
the loss generator. The events noting the end of
each cat are used in the cat contract to aggregate
the losses less the inuring loss on the Florida
portion and pay (or not) on the total.

5.11. Other examples

The European index clause in some of its
incarnations is sheet “Euro indexed XS.” This
clause requires more timeline look-ups than any
other so far, since it needs to know external in-

dices and times of various events in order to
do its calculation. The source to which it refers,
“uniform mix,” is where the frequencies are ran-
domly chosen from a uniform distribution on a
specified range. There is a random number of
payments for each loss, at random times. The
excess contract uses the times and the current
outstanding values, as well as the current index
value. The index is on the sheet “index” and is
lognormal. It must create values at least as far
out on the timeline as the last payment, and so
the checkbox “Initial Schedule past Horizon” on
the sheet “Event History” needs to be checked.
The sheet “freq pdf” allows an arbitrary den-

sity function for the frequency, assigning random
times during the years to randomly drawn num-
bers of annual events. It also allows for a Horizon
which is not an integer. At the moment it does at
most three years.
The sheets “XOL w Backup” and “Backup on

XOL” are, respectively, an excess of loss contract
which has a backup, and the backup contract.
The former puts out an event with code CBL,
for ceded backup loss. Again, there is no restric-
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tion on what may be a valid code, and the user is
invited to create any codes which may be helpful
in her particular problem. The applicable loss is
“Property” and the sheet generating it is “Prop-
erty w Policy Limit.” Because the backup con-
tract may be dealing with only a partial payment
from the contract it backs up, it needs the func-
tion “AmountFromContractOnCurrentEvent.”
The sheets “Time by loss” and “Loss by time”

are two slightly different ways of implementing
the presumption that large losses close later than
small losses on average. In both sheets, there is
a single payment at some random time after the
incurred loss. In the former, the mean of the (ex-
ponential) time distribution is proportional to a
power of the ratio of the random loss to its mean.
In the latter, the severity mean is a power of the
random time to pay to its mean. These corre-
spond to the intuitions that (1) if a claim is large,
then it will usually close later (perhaps because
we will fight it in court); or (2) if a claim takes a
long time to pay, it is probably large (perhaps be-
cause the court case is complex). The point here
is that you can model either way quite easily with
only a few parameters, rather than with many.
The author would love to see someone with data
actually parameterize and validate or invalidate
these models, and then build something that can
be used.
There is a contagion example on the “conta-

gion” sheet, where the presence of a claim in-
creases the probability of more claims. Here the
frequency is linear in the counts, and results in a
negative binomial at any point in time, the mean
of which exponentially increases with time. For a
mass tort situation, it might make more sense to
have a very low frequency which increases non-
linearly in the number of claims to a maximum.
Perhaps it even decreases again later.
There are a few more sheets illustrating mis-

cellaneous things: how to put in historical (or
any fixed) losses, how to have an exact number
of losses, a simple version of stochastic reserves,

a quota share contract with insurances, a contract
on just the largest three claims, and finally a con-
tract which is only active on September 11 of any
year.

6. Epilogue

The suggested conclusion is “try it, you’ll like
it.” There is much more control over interacting
events in a timeline formulation, and it is easier
to express intuitions.
However, there are very few actuarial models

which work on this level. The big challenge is to
create and then parameterize such models, start-
ing with doing maximum likelihood on actual
time delays.
A case in point is accident year data. One use-

ful model is that an accident occurs at a random
time during a year, and then there is a single
payment whose time delay from occurrence also
has a random distribution. The accident year data
is the time from zero to payment, which is the
sum of the time to occurrence plus the payment
delay, and thus the convolution of two random
variables. Since our data comes in this form, we
need to be able to produce a payment time delay
distribution by fitting to it.
Clearly, one solution (which corresponds to

the collective risk model) is to say that for acci-
dent-year data, payments either happen when the
accident occurs, exactly one year afterward, ex-
actly two years after, and so on with no payments
at other intermediate times. However, it is hard to
believe that this is how a claims department ac-
tually works. Another solution has been found,
using a piecewise linear continuous payment dis-
tribution. It is usually possible to fit a payment
pattern exactly, but that can result in an unreal
density, especially for payments on high excess
contracts. Compromising between the quality of
the fit and a smoother payment density results in
graduated payout patterns. An additional virtue
of this procedure is that the calculations can be
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done exactly for the case where, say, the first
accident year is only seven months of data. Or-
dinarily we would multiply by 12=7 or use some
interpolation procedure as a guess, but we can
actually evaluate the payout probabilities over
any time interval, rather than just whole years
or quarters. If we had not been thinking in terms
of timelines, this whole graduation approach–
which can be used in non-timeline problems–
would not have occurred to us.

References
Feller, W., An Introduction to Probability Theory and Its Ap-
plications, vol. 1, New York: Wiley, 1968.

Kreps, R., “Parameterizing Payout Lag Time Distributions,”
Variance 2, 2008, pp. 209—230.

Appendix A. Mathematical Derivations

A.1. Derivation of the Poisson

To derive Equation (3.19), the solution of
Equation (3.18), we first make a substitution to
eliminate the term on the right hand side in Pn(t):

Pn(t) = e
¡¸tpn(t): (A.1)

Then Equation (3.18) becomes

P0n (t) = e
¡¸t[¡¸pn(t)+p0n(t)]

= e¡¸t[¡¸pn(t)+¸pn¡1(t)] (A.2)

p0n(t) = ¸pn¡1(t): (A.3)

We can solve this recursively: Equation (3.6) be-
comes

P0(t) = e
¡¸t, (A.4)

and so p0(t) = 1. Successively solving Equation
(A.3) and using the implied boundary conditions
pn(0) = 0, we obtain

p1(t) = ¸t; p2(t) =
(¸t)2

2
;

p3(t) =
(¸t)3

2 ¢ 3 ; p4(t) =
(¸t)4

2 ¢ 3 ¢ 4; : : : :
(A.5)

It is not hard to see the general solution emerging
above and to verify that pn(t) = (¸t)

n=¡ (n+1) is

in fact the solution of Equation (A.3), and thus by
Equation (A.1) the Poisson solution is as claimed
in Equation (3.19), namely

Pn(t) =
(¸t)n

¡ (n+1)
e¡¸t: (A.6)

We can easily obtain the factorial moments of a
Poisson distribution (we take t = 1 for notational
convenience) by

E[n(n¡ 1) : : :(n¡ k+1)]

=
1X
n=0

n(n¡ 1) : : : (n¡ k+1)Pn

= e¡¸
1X
n=0

n(n¡ 1) : : : (n¡ k+1) ¸n

¡ (n+1)

= e¡¸¸k
dk

d¸k
e¸ = ¸k: (A.7)

Thus the mean is ¸, and the variance is also ¸:

var = E[n(n¡ 1)]+E[n]¡E[n]2

= ¸2 +¸¡¸2 = ¸: (A.8)

At arbitrary time t, the factorial moment is mul-
tiplied by tK , so the mean and variance to mean
ratio are multiplied by t.

A.2. Derivation of count-dependent
frequency

This is done similarly to the above derivation
of the Poisson. Equation (3.4) now reads

P0n (t) =¡(¸+ bn)Pn(t) + [¸+ b(n¡ 1)]Pn¡1(t):
(A.9)

We again make a substitution to eliminate the
first term and get a recursively solvable set of
equations.

Pn(t) = e
¡t(¸+bn)fn(t): (A.10)

This leads us to

f 0n(t) = [¸+ b(n¡ 1)]ebtfn¡1(t): (A.11)

With the boundary conditions f0(0) = 1, fn(0) =
0 for all n¸ 1. We start with n= 1 and see that

f 01(t) = ¸e
bt: (A.12)
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The solution satisfying the boundary condition is

f1(t) = ®(e
bt¡ 1), ®´ ¸=b: (A.13)

For n= 2 we then have

f 02(t) = (¸+ b)e
btf1(t) = ®(®+1)be

bt(ebt¡ 1):
(A.14)

The solution is

f2(t) =
®(®+1)

2
(ebt¡ 1)2: (A.15)

Just for confidence we do n= 3 before venturing
a guess as to the final form.

f 03(t) = (®+2)be
btf2(t)

=
®(®+1)(®+2)

2
bebt(ebt¡ 1)2:

(A.16)
The solution is

f3(t) =
®(®+1)(®+2)

2 ¢ 3 (ebt¡ 1)3: (A.17)

We now posit that

fn(t) =
®(®+1)(®+2) : : :(®+ n¡ 1)

2 ¢ 3 : : : ¢ n (ebt¡ 1)n

=
¡ (®+ n)

¡ (®)¡ (n+1)
(ebt¡ 1)n, (A.18)

and need to show that this satisfies Equation
(A.11). We have

f 0n(t) =
¡ (®+ n)
¡ (®)¡ (n)

bebt(ebt¡ 1)n¡1

= (®+ n¡ 1)bebtfn¡1(t)

= [¸+ b(n¡ 1)]ebtfn¡1(t): (A.19)

This means, going back to Equation (A.10), that

Pn(t) = e
¡t(¸+bn) ¡ (®+ n)

¡ (®)¡ (n+1)
(ebt¡ 1)n

= (1¡ e¡bt)ne¡t¸ ¡ (®+ n)
¡ (n+1)¡ (®)

,

(A.20)

and this is Equation (3.25). We can also verify di-
rectly that Equation (A.20) is a solution to Equa-

tion (A.9). The boundary conditions are clearly
satisfied for all n, and

P 0n (t) =
¡ (®+ n)

¡ (®)¡ (n+1)
[(¸+ bn)e¡t(¸+bn)(ebt¡ 1)n

+ nbebte¡t(¸+bn)(ebt¡ 1)n¡1]

=¡(¸+ bn)Pn(t)+
¡ (®+ n¡ 1)
¡ (®)¡ (n)

(®+ n¡ 1)

£ be¡t[¸+b(n¡1)](ebt¡ 1)n¡1

=¡(¸+ bn)Pn(t)+ [¸+b(n¡ 1)]Pn¡1(t):
(A.21)

A.3. Comments on the negative
binomial

In the parameterization of this paper, the con-
nection with the power series expansion of a neg-
ative binomial is obvious. We have

(1¡ ½)¡® =
1X
n=0

¡ (®+ n)
¡ (®)¡ (n+1)

½n:

(A.22)

The sum converges for ½ < 1. The probabilities
of Equation (3.26) are repeated here for conve-
nience

Pn =
½n(1¡ ½)®¡ (®+ n)
¡ (n+1)¡ (®)

: (A.23)

One immediate consequence of comparing
Equations (A.22) and (A.23) is that the proba-
bilities clearly sum to 1. Further, we can easily
get moments as functions of the parameters by
an artifice similar to that used for the Poisson.
We write the mean as

E[n] =
1X
n=0

nPn = (1¡ ½)®
1X
n=0

¡ (®+ n)
¡ (®)¡ (n+1)

n½n

= (1¡ ½)®½ d
d½
(1¡ ½)¡®

= (1¡ ½)®½®(1¡ ½)¡®¡1

=
½®

1¡ ½: (A.24)
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For the variance, we consider the factorial second
moment

E[n(n¡ 1)] =
1X
n=0

n(n¡ 1)Pn

= (1¡ ½)®
1X
n=0

¡ (®+ n)
¡ (®)¡ (n+1)

n(n¡1)½n

= (1¡ ½)®½2 d
2

d½2
(1¡ ½)¡®

= (1¡ ½)®½2®(®+1)(1¡ ½)¡®¡2

=
½2®(®+1)
(1¡ ½)2 : (A.25)

Then

var = E[n(n¡ 1)]+E[n]¡E[n]2

=
½2®(®+1)
(1¡ ½)2 +

½®

1¡ ½ ¡
μ
½®

1¡ ½
¶2

=
½2®(®+1)+ ½®(1¡ ½)¡ ½2®2

(1¡ ½)2

=
½®

(1¡ ½)2 : (A.26)

This leads to the result

var=mean = 1=(1¡ ½): (A.27)

The higher order factorial moments are similarly
done.

E[n(n¡ 1) : : :(n¡ k+1)]

= (1¡ ½)®½k d
k

d½k
(1¡ ½)¡®

=
½k¡ (®+ k)
(1¡ ½)k¡ (®) : (A.28)

The limit to the Poisson is a little delicate here,
as it corresponds to keeping the mean fixed while
letting the variance to mean ratio go to 1. This is
the limit as ½! 0 and ®!1 but ¸´ ®½ remains
finite. We substitute for ½ in Equation (A.23) and

write the probabilities as

Pn =
(¸=®)n(1¡¸=®)®¡ (®+ n)

¡ (n+1)¡ (®)

=
¸n

¡ (n+1)
(1¡¸=®)®¡ (®+ n)

¡ (®)®n
:

(A.29)

In the limit ®!1 we recover the Poisson prob-
abilities

Pn!
¸n

¡ (n+1)
e¡¸, (A.30)

since (1¡¸=®)®! e¡¸ and ¡ (®+ n)=¡ (®)®n

! 1.

Appendix B. Estimation of Parameters

We can, of course, estimate parameters for the
Poisson or mixed distributions by looking at the
number of counts over the years exactly as we
have always done. However, since we are look-
ing at aggregated data, intuition suggests that we
are losing a lot of information. In the Poisson
case, if we have two years of data with 8 and 12
claims in each, the maximum likelihood solution
for the frequency is just the sample average. This
is two pieces of information, either framed as 8
and 12 or as 20 claims in 2 years. But when we
are looking at inter-arrival times we actually have
19 pieces of information and would like to use
it all.
A fair question is whether the claims depart-

ments actually have the time data. They certainly
have the date in the claim files, and available
electronically as shown by the large loss listings.
However, most electronic actuarial data seems to
round the date to the quarter, which involves a
serious loss of information. It is also true that
claim-specific dates for all claims would be a
lot of data–but terabytes of information are not
that uncommon now. The compromise is usually
to group the small claims and look at large ones
individually, both in the reports seen by manage-
ment and in the models. Perhaps if the actuaries
start asking, the claim systems would give us ac-
tual dates on more claims.
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For the Poisson case, we are working with a
waiting time probability density given by Equa-
tion (3.10) for constant ¸:

f(t) = ¸e¡¸t: (B.1)

We assume N waiting times Ti i = 1, : : : ,N and
the likelihood function is

L(¸) = ¸N exp

Ã
¡¸

NX
i=1

Ti

!
: (B.2)

The negative log-likelihood is

NLL(¸) = ¸
NX
i=1

Ti¡N ln¸: (B.3)

The maximum likelihood solution ¸0 is where
the first derivative of the NLL is zero.

d

d¸
NLL(¸) =

NX
i=1

Ti¡N=¸) ¸0 =N=
NX
i=1

Ti:

(B.4)

That is, ¸0 is the inverse of the average waiting
time. Looking at the counts amounts to assuming
that everything in a year has the same waiting
time.
However, that is not the end of the story. What

we really want is not a single value, but the pre-
dictive distribution for ¸. For frequency we pre-
fer a 1=¸ Bayesian prior. Given that, we can use
the suitably normalized likelihood as the predic-
tive distribution for the instantaneous frequency.
Specifically, the mixing density is gamma

f(¸) =
¸N¡1 exp(¡¸N=¸0)
(¸0=N)N¡ (N)

: (B.5)

The mean of this distribution is ¸0 and the co-
efficient of variation is 1=

p
N . In actually doing

a simulation, at the start of each realization we
would draw from this distribution to get the fre-
quency. If we look at the counts over all realiza-
tions, we will get a negative binomial since we
are mixing with a gamma.
In the case of a mixed Poisson, we work from

first principles of conditional probabilities. The

probability of ¸ being in a small interval of size
¢¸ is the probability density function f(¸,~a)
times ¢¸. We have indicated the set of param-
eters of the density by ~a. The probability of n
events given ¸ is Poisson, so the unconditional
probability of n events is their product, summed
over possible ¸. This is Equation (3.27), repeated
here for clarity:

Pn(t,~a) =
Z 1

0

(¸t)ne¡¸t

¡ (n+1)
f(¸,~a)d¸: (B.6)

In particular, the probability for no events is
just a Laplace transform of the frequency den-
sity:

P0(t,~a) =
Z 1

0
e¡¸tf(¸,~a)d¸: (B.7)

The cumulative distribution of waiting time is

F(T,~a) = 1¡P0(T,~a) = 1¡
Z 1

0
e¡¸Tf(¸,~a)d¸,

(B.8)

and the probability density of waiting time is its
derivative

f(T,~a) =
d

dT
F(T,~a) =

Z 1

0
¸e¡¸Tf(¸,~a)d¸:

(B.9)

With N waiting times Ti i = 1, : : : ,N the likeli-
hood function is

L(~a) =
NY
i=1

Z 1

0
¸e¡¸Tif(¸,~a)d¸: (B.10)

Again, for a simulation one would use this as
a probability density, perhaps with a change of
variables and a Bayesian prior, to draw a random
set of parameters at the start of each realization,
and then use those parameters in the frequency
density to get a random frequency.
In some cases the integral can be done explic-

itly. Specifically, for the gamma density of Equa-
tion (3.38) which leads to a negative binomial,
we have from Equation (3.39)

P0(t) = (1+ μt)¡®, (B.11)
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and hence the waiting time density is

f(T) = ®μ(1+ μT)¡®¡1: (B.12)

The likelihood is

L(®,μ) = (®μ)N
NY
i=1

(1+ μTi)
¡®¡1: (B.13)

The negative log-likelihood is

NLL(®,μ) =¡N ln(®μ) + (®+1)
NX
i=1

ln(1+ μTi):

(B.14)
The partial derivatives are

@

@®
NLL(®,μ) =¡N

®
+

NX
i=1

ln(1+ μTi)

(B.15)
@

@μ
NLL(®,μ) =¡N

μ
+(®+1)

NX
i=1

Ti
1+ μTi

:

We can solve for ® at the mode as

®0 =
NPN

i=1 ln(1+ μ0Ti)
: (B.16)

And then get an equation for μ at the mode:

1
μ0
=
(®0 +1)

PN
i=1

Ti
1+ μ0Ti

N

=

Ã
1PN

i=1 ln(1+ μ0Ti)
+
1
N

!
NX
i=1

Ti
1+ μ0Ti

:

(B.17)

This is not particularly transparent, but solvable
numerically.
It may be helpful to switch to the mean of the

distribution ¹´ ®μ as a variable and re-express
the negative log-likelihood as

NLL(¹,μ) =¡N ln(¹)+ ((¹=μ) +1)
NX
i=1

ln(1+ μTi):

(B.18)

In this form it is easy to see that we recover the
Poisson in the limit μ! 0. The minimum of this

must be obtained numerically. The partial first
derivatives, which are zero at the minimum, are

@

@¹
NLL(¹,μ) =¡N

¹
+
1
μ

NX
i=1

ln(1+ μTi)

@

@μ
NLL(¹,μ) =¡ ¹

μ2

NX
i=1

ln(1+ μTi) (B.19)

+ ((¹=μ)+ 1)
NX
i=1

Ti
1+ μTi

:

The modal solution for ¹0 in terms of μ0 is Equa-
tion (B.16) multiplied by μ0. When μ0Ti¿ 1 the
relation for ¹0 becomes the Poisson Equation
(B.4). The modal value μ0 itself is the solution
of Equation (B.17) as before.

Appendix C. Finding the Mixing
Function for an Arbitrary Set of
Probabilities

We know the determination of probabilities
from a mixing function as Equation (3.27), re-
peated here

Pn(t) =
Z 1

0

(¸t)ne¡¸t

¡ (n+1)
f(¸)d¸: (C.1)

In the previous context we assumed that f(¸)
was a probability density, which implies that it
never has negative values. When we want to in-
vert this equation and specify f(¸) in terms of
an arbitrary set of probabilities we will have to
relax this restriction.
This is really more of a mathematical exercise

to see how we could go from the probabilities to
the mixing function than a useful recipe. In some
cases, the result may be a probability density. It is
clear, for example, that if f(¸) satisfies Equation
(C.1) then

1X
n=0

Pn(t) = 1 =
Z 1

0

1X
n=0

(¸t)n

¡ (n+1)
e¡¸tf(¸)d¸

=
Z 1

0
f(¸)d¸ (C.2)

so the normalization is correct. We shall restrict
considerations to time t= 1 to simplify formulas.
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The essential realization is that the Laguerre
polynomials25 are orthogonal on the semi-axis
with weight function e¡x. The relation isZ 1

0
e¡xLm(x)Ln(x)dx= ±nm: (C.3)

Where ±nm is one if n=m and zero otherwise.
While this relation can be used to define the poly-
nomials, their representation is

Ln(x)´
ex

¡ (n+1)
dn

dxn
(e¡xxn): (C.4)

Under reasonable requirements for convergence
(not to be addressed here) we can expand any
function into an infinite sum of these polynomi-
als.

f(¸) =
1X
n=0

QnLn(¸): (C.5)

We note that because of the orthogonality condi-
tion (and blithely assuming we can interchange
the infinite sum and the integral) we can use this
to get Z 1

0
e¡¸Ln(¸)f(¸)d¸

=
Z 1

0
e¡¸Ln(¸)

1X
k=0

QkLk(¸)d¸

=
1X
k=0

Qk

Z 1

0
e¡¸Ln(¸)Lk(¸)d¸

=
1X
k=0

Qk±nk

=Qn (C.6)

However, we can also see, using the defining
Equation (C.1), thatZ 1

0
e¡¸Ln(¸)f(¸)d¸=

Z 1

0
e¡¸

nX
k=0

dnk¸
kf(¸)d¸

=
nX
k=0

dnk

Z 1

0
e¡¸¸kf(¸)d¸

=
nX
k=0

dnk¡ (k+1)Pk (C.7)

25These are actually the Laguerre polynomials with parameter zero.
With parameter p, the weight function is xpe¡x. There is also a
simple representation and similar properties.

where we have expanded the nth polynomial in
terms of the powers of x:

Ln(x) =
nX
k=0

dnkx
k: (C.8)

Putting Equations (C.6) and (C.7) together, we
get as a necessary condition Equation (3.44)

Qn ´
nX
k=0

¡ (k+1)dnkPk: (C.9)

We note that this is a finite sum for any n.
We would like to show (sort of) that this is also

sufficient; that Equations (C.5) and (C.9) imply
Equation (C.1). We will take a brief digression
into Laguerre polynomials and introduce a lit-
tle more notation. First, we can also express any
power of x as a combination of Laguerre poly-
nomials:

xk =
kX
j=0

ekjLj(x): (C.10)

and note that if we substitute Equation (C.10)
into Equation (C.8) we get

Ln(x) =
nX
k=0

dnk

kX
j=0

ekjLj(x): (C.11)

Because of the independence of the Laguerre
polynomials, we must have

±jn =
nX
k=j

dnk e
k
j : (C.12)

Similarly, if we substitute Equation (C.8) into
Equation (C.10) are use the independence of the
powers of x, we obtain the symmetric relation-
ship

±jn =
nX
k=j

enkd
k
j : (C.13)

We can now launch into the fray by evaluat-
ing the right-hand side of Equation (C.1) using
Equation (C.5), once again interchanging the or-
ders of summation and integration, putting in the
representation Equation (C.9), and using Equa-
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tion (C.13) at the end:Z 1

0
f(¸)

¸ne¡¸

¡ (n+1)
d¸

=
1X
k=0

Qk
¡ (n+1)

Z 1

0
Lk(¸)¸

ne¡¸d¸

=
1X
k=0

Qk
¡ (n+1)

Z 1

0
Lk(¸)

nX
j=0

enj Lj(¸)e
¡¸d¸

=
1X
k=0

Qk
¡ (n+1)

nX
j=0

enj ±jk

=
nX
j=0

Qj
¡ (n+1)

enj

=
nX
j=0

jX
k=0

djkPk
¡ (k+1)
¡ (n+1)

enj

=
nX
k=0

¡ (k+1)
¡ (n+1)

Pk

kX
j=0

djke
n
j

=
nX
k=0

¡ (k+1)
¡ (n+1)

Pk±nk

= Pn: (C.14)
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