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TMV-Based Capital Allocation
for Multivariate Risks

by Maochao Xu

ABSTRACT

This paper studies a novel capital allocation framework based

on the tail mean-variance (TMV) principle for multivariate risks.

The new capital allocation model has many intriguing proper-

ties, such as controlling the magnitude and variability of tail

risks simultaneously. General formulas for optimal capital allo-

cations are discussed according to the semideviation distance

measure. In particular, we discuss the optimal capital allocation

for comonotonic risks, and risks from multivariate elliptical dis-

tribution and multivariate skew-t distribution. Some numerical

examples are given to illustrate the results, and real data from an

insurance company is analyzed as well.
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Recently, Dhaene et al. (2012) proposed a criterion
to set the capital amount ki to Xi as close as possible
to minimize the loss. Specifically, the criterion is to
minimize the following loss function

L D X ki i
i

n

∑ ( )( ) −
=

k = , (1.1)
1

where D is some suitable distance measurement func-
tion, and k = (k1, . . . , kn) ∈Rn. A lot of work has been
motivated by this criterion; see Xu and Hu (2012),
Zaks (2013), Cheung, Rong, and Yam (2014), and
others. In fact, the idea of minimizing the loss func-
tion has been discussed in the framework of premium
calculation. For example, Zaks et al. (2006) used
quadratic distance measure D(x) = x2, and Laeven
and Goovaerts (2004) used the semi-deviation func-
tion D(x) = max{x, 0} as distance measure. This topic
was further pursued in Frostig, Zaks and Levikson
(2007), where they used the general convex distance
measure. However, most of the discussion on capi-
tal allocations in the literature has focused only on
the magnitude of the loss function L. In practice, the
variability also plays an essential role in determin-
ing the capital allocations. Indeed, the relevant idea
has already appeared in the premium calculation.
Furman and Landsman (2006) used the tail variance
risk measure to estimate the variability along the tails,
and to compute the premium based on the tail vari-
ance premium (TVP) model

TVP TCE TV , 0,X X Xq q q( ) ( ) ( )= + β β ≥

where TCEq and TVq represent tail conditional expecta-
tion, and tail conditional variance, respectively. That is,

EX X X x

V X X X x

q q

q q

( )
( )

( )

( )

= >

= >

TCE ,

T Var ,

where xq is qth quantile of risk X. See also Landsman,
Pat, and Dhaene (2013) for the discussion on the
tail variance related premium calculation. Motivated
by this observation, Xu and Mao (2013) proposed
a TMV model to discuss the optimal capital alloca-
tions, where they defined the loss function as

1. Introduction and motivation

In the actuarial literature, a fundamental question
is how to allocate the total amount of risk capital
to different subportfolios, divisions, or lines of busi-
nesses. The allocation problem is very important
since the amount of risk capital allocated to a busi-
ness consisting of multiple lines of businesses is
typically less than the sum of amounts of risk capi-
tal that would need to be withheld for each business
separately. Heterogeneity and dependence that may
exist between the performances of various business
units make capital allocation a nontrivial exercise.
Therefore, there exists an extensive amount of liter-
ature on this subject with a number of proposed cap-
ital allocation algorithms. For example, Myers and
Read (2001) considered capital allocation principles
based on the marginal contribution of each business
unit to the company’s default option. Denault (2001)
discussed capital allocations from the perspective of
game theory. The first multivariate top-down model
considered in Panjer (2002) studies the particu-
lar case of multivariate, normally distributed risks
and provides an explicit expression of marginal
cost-based allocations using TVaR (tail value-at-
risk) risk measure. This work has been extended by
Landsman and Valdez (2003) to model risks using
multivariate elliptical distributions, which include
the multivariate normal as a special case; see also
Dhaene et al. (2008). Furman and Landsman (2005)
studied the capital allocation for the risks follow-
ing multivariate gamma distributions. Cossette et al.
(2013) discussed the multivariate risks with mixed
Erlang marginals and the dependence structure is
modeled by the Farlie-Gumbel-Morgenstern copula.
One may refer to Dhaene et al. (2012), Xu and Hu
(2012), Tsanakas (2004), and Furman and Zitikis
(2008) and references therein for the recent devel-
opments on this topic.

Assume that a firm has a portfolio of risks X1, . . . , Xn,
and wishes to allocate the total capital K = k1 + . . . + kn

to the corresponding risks. The total risk is then

S X Xn+ += . . . .1
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Initiative) each year. For example, DHS allocated
a total of $490.4 million in 2012, $558.7 million
in 2013, and $587.0 million in 2014 to urban areas
to prevent terrorist attacks.1 The effective alloca-
tion of the total capital to urban areas is an impor-
tant but challenging problem, which has received
much attention in the security area (cf. Hu, Homem-
de-Mello, and Mehrotra 2011). A popular distance
measure used in this area is the semideviation func-
tion. In fact, in the literature of actuary science, the
semideviation function has been widely used in the
stop-loss premium calculation (Dhaene et al. 2012).
Based on the above discussion, in this paper, we are
motivated to study the capital allocation based on the
TMV model with the loss function defined as

X kL q X k S Si i q
i

n

∑[ ]( ) ( ) ( )= − >+
=

; , VaR .
1

We consider the following general mean-variance
model,

R
X

∑{ }
[ ]( )π

= ∈ = =







∈min ; , ;

. . : , 1, . . . , .
(1.2)

=1

k

k

k A L q

s t A k K i nn
ii

n

where p(.) is the mean-variance risk measurement,
and b ≥ 0. It is worth pointing out that Laeven and
Goovaerts (2004) considered a special case of the
TMV model (1.2). They discussed the case of n = 2
but without considering the tail risks. Specifically, they
discussed the optimal capital allocation based on mini-
mizing the following loss function,

X;

Var ,

1 1 2 2

1 1 2 2

EkL X k X k

X k X k

[ ]
[ ]

[ ]( ) ( ) ( )

( ) ( )
π = − + −

+ β − + −
+ +

+ +

over k ∈A. Therefore, the TMV model (1.2) is a natural
extension of their model.

Our main contributions in this paper are summa-
rized as follows. First, we derive the general equations

kXG q X k S Si i q
i

n

; , VaR ,2

1
∑[ ]( ) ( ) ( )= − >
=

where VaRq(S) is the qth quantile of S, and consid-
ered the following function

X X X; , ; , Var ; , ,Ek k kG q G q G q[ ] [ ] ( )( ) ( ) ( )π = + β

where p(.) is the mean-variance risk measurement,
which has been widely used in practice (Laeven and
Goovaerts 2004). The TMV model has many intrigu-
ing properties, such as simultaneously controlling
the magnitude and variability of tail loss, and pro-
viding neat optimal allocation formulas. From the
economic perspective, the perfect case is that the
company could prepare the capital to match the loss
exactly, since too much or less capital would result in
the loss of revenue for a company. Therefore, a com-
pany should prefer a capital allocation rule which
could provide the capital to match the loss as close as
possible. It is apparent that controlling the magnitude
of deviation of the capital from the loss is important.
However, the variability of deviation is also essen-
tial in determining the required capital, as the larger
variability would lead to more risk for the company.
Therefore, the property of controlling the magni-
tude and variability is appealing in determining the
required capital for business lines.

In practice, however, the shortage of capital may
often result in much severer consequences than that
caused by the excess of capital (Myers and Read
2001; Erel, Myers and Read 2013), which suggests
that the semideviation function may be preferred in
practice as the distance measure. This issue is also
related to the capital allocation of homeland secu-
rity, an area that has become centrally important
since the terrorist attacks of September 11, 2001.
Since catastrophes are highly risky and could lead
to severe consequences, the Department of Homeland
Security (DHS) has endeavored to use risk manage-
ment to determine the capital allocations on pre-
vention, response, and recovery from such national
catastrophes. The budget in DHS is allocated via
the program called UASI (Urban Area Security

1The data is from the website of Federal Emergency ManagementAgency,
https://www.fema.gov/fy-2014-homeland-security-grant-program-hsgp.
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In the following, by using the methodology of
Lagrange multipliers, we present the optimal capital
allocation equations based on the TMV model (1.2),
and the uniqueness condition is also given. The proof
is moved to the Appendix for the sake of readability.

Theorem 2.1. For the TMV model (1.2), assume
that X1, . . . , Xn are continuous risks, then an optimal
allocation solution k* = (k1*, . . . , kn*) is given by the
following equations, for any l = 1, 2, . . . , n,

2 Cov ,* * *

2 Cov , (2.1)* * *

.
=1

,

1. 1
=1

, 1

F k k k

F k k k

l S l
j

n

S j l

S
j

n

S j

∑

∑

( ) ( )

( ) ( )

+ β

= + β

+

+

and

k k Kn+ + =* . . . * .1

Further, if, for any l = 1, 2, . . . , n,

1 2 , VaR**

2 ECT (2.2)*
=1

E X k X k S S

k

j j l l q
j l

n

S
j

n

j

∑

∑

( )

( )

( )+ β − = > 

> β

+
≠

then the solution is unique.
From Theorem 2.1, it is seen that the capital allo-

cations based on Model (1.2) depend not only on the
magnitude of tail risks but also the covariance among
the tail risks. This property would allow the com-
pany to control the tail risks from both the magnitude
and variability perspectives. In general, there does
not exist an analytical solution to Eq. (2.1). The key
quantities required to solve the equation are F

–
i.S (.),

ECTS(.), and Cov+,S(., .), which, however, could be
efficiently computed by using any computer soft-
ware; see Section 4 for examples. It can be seen from
Eq. (2.2) that when b is small, then the uniqueness
condition is easily satisfied. In the following, we dis-
cuss a special case of b = 0 for Theorem 2.1, i.e., with-
out considering the penalty on the tail variance. For
this case, a closed-form solution could be obtained.

for the TMV model (1.2), based on which the numer-
ical programming could be easily implemented.
Second, we discuss the special case of comonotonic
risks, and the closed-form solutions are obtained.
Third, we compute the key quantities of optimal
capital allocation formulas for multivariate elliptical
distributions, and Monte Carlo simulation for those
quantities of multivariate skew-t distributions is also
mentioned. Finally, we conduct a real data analysis
and discuss the optimal capital allocation based on
the new model.

The rest of the paper is organized as follows. In
Section 2, we derive the general equations for the
TMV model, and discuss a special case. Section 3
studies the optimal capital allocations for the como-
notonic risks. In Section 4, we present some numeri-
cal examples to illustrate the different factors that
affect the capital allocations and conduct a real data
analysis of capital allocations for an insurance com-
pany. In the last section, we summarize the results and
present some discussion.

2. Optimal capital allocation:
General results

In this section, we provide general capital alloca-
tion equations for the TMV model (1.2). To facilitate
the discussion, let us denote the conditional survival
function of [Xi S > VaRq(S)] by

F k X k S S i ni S i i i q= > VaR , 1, . . . , .. ( )( ) ( )> =P

The conditional expectation of risk excess [(Xi – ki)+ 
S > VaRq(S)] is denoted by

k X k S SS i i i qECT VaR ,[ ]( )( ) ( )= − >+E

and the covariance between [(Xi – ki)+S > VaRq(S)]
and [I(Xj ≥ kj) S > VaRq(S)] is represented by

Cov ,

Cov , I > VaR ,

, k k

X k X k S S

S i j

i i j j q[ ]
( )

( )( ) ( )= − ≥
+

+

for i, j = 1, . . . , n, where I(.) is the indicator function.
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3. Comonotonic risks

Comonotonicity, an extremal form of positive
dependence, has been widely used in finance and
actuarial science over the last two decades. It is
well known that the comonotonic random variables
are always moving in the same direction simultane-
ously and hence are considered as extreme depen-
dent risks. Refer to Dhaene et al. (2002a; 2002b)
for the properties and applications of this concept
in actuarial science and finance. For a company
with several business lines, it is particularly impor-
tant for them to prepare for the worst scenario. It
is known in the literature that the aggregate risk
of comonotonic risks with finite means may be
regarded as the most dangerous case in terms of
convex order (Dhaene et al. 2002a). From the per-
spective of capital allocation allocations, it would
be interesting to know whether the comonotonic
dependence structure among risks is the most dan-
gerous case in terms of some stochastic measure.
Further, if it is the most dangerous scenario, what is
the optimal capital allocation strategy? In this sec-
tion, we first show that the comonotonic risks are
the most dangerous risks for the capital allocations
in the sense that the expected tail loss is the larg-
est. Then, we discuss the optimal capital allocation
based on the TMV model (1.2). We need the follow-
ing two lemmas.

The first lemma presents an equivalent charac-
terization of a comonotonic random vector (Dhaene
et al. 2002a).

Lemma 3.1. A random vector (X1, . . . , Xn) is como-
notonic if and only if there are increasing real-valued
functions f1, . . . , fn and and a random variable W such
that

, . . . , , . . . , ,1 1( ) ( ) ( )( )=X X f W f Wn
st

n

where =st represents that both sides of equality have
the same distribution.

The following lemma, essentially due to Sordo et al.
(2013), will also be used in the sequel.

Corollary 2.2. Under the same condition of Theo-
rem 2.1, for b = 0, a unique optimal allocation solu-
tion k* = (k1*, . . . , kn*) is given by

k F F K i ni i S S c( )( )= =−* , 1, . . . , ,.
1

where

,.
1

1
∑ ( )= −

=
S F Uc

i S
i

n

with F–1
i.S(U) = [Xi S > VaRq(S)] almost surely.

Proof: According to Theorem 2.1, the optimal
solution should satisfy the following equations:

* * (2.3). 1. 1F k F kl S l S( ) ( )=

for l = 2, . . . , n and k1* + . . . + kn
* = K. Now define the

,.
1

1
∑ ( )= −

=
S F Uc

i S
i

n

where U is the uniform random variable on [0, 1]. It
is known from Dhaene et al. (2012) that there exists
some 0 ≤ a ≤ 1 such that

F F K Ki S S
i

n

c∑ ( )( ) =( )− α

=
,.

1

1

where Fi.S
–1(a) (.) is the a-mixed inverse distribution

function. Therefore, an optimal solution is given by

* , 1, . . . , ,.
1 ( )( )= =( )− αk F F K i ni i S S c

which satisfies Eq. (2.3). Moreover, the uniqueness
condition in Eq. (2.2) is fulfilled since b = 0.

Hence, the required result follows. 

To conclude this section, we mention that the opti-
mal capital allocation based on the TMV model (1.2)
relies on several key quantities of risks from Eq. (2.1).
Those quantities are nontrivial to compute since they
depend on the tail conditional distribution of multi-
variate risks. In the following sections, we discuss
how to derive the optimal capital allocations for
comonotonic risks and some specific multivariate dis-
tributions, which are often used in the literature.
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Theorem 3.4. Under Model (1.2), a unique optimal
allocation solution k* = (k1*, . . . , kn*) when (X1, . . . , Xn)
are comonotonic risks with strictly increasing distri-
butions is given by

k F F K i ni i S S c( )( )= =−* , 1 , . . . , , (3.1).
1

where S
--c = Σn

i=1 F –1
i.S(U ), with F –1

i.S(U) = [Xi S >
VaRq(S)] almost surely.

Proof: Note that

Cov ,* *
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Cov , I VaR .* *
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1
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k k
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j j
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l l q
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

+
=

=
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+
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Since (X1, . . . , Xn) is a comonotonic vector, it holds
that

, . . . , VaR1[ ]( )( ) >X X S Sn q

is also comonotonic, and, further,

, . . . , VaR* *
1 1X k X k S Sn n q[ ]( ) ( ) ( )− − >+ +

is comonotonic. According to Proposition 1 of Cheung
(2009), it holds that

VaR*
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where =a.s.
 represents both sides are almost surely equal.

Therefore, we have
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I VaR

Cov , I VaR .

1

.

Lemma 3.2. Let X and Y be two continuous risks
with strictly increasing distribution functions F and G,
respectively. Then, for q ∈(0, 1], it holds that

X Y G q X X F qst[ ] [ ]( ) ( )> ≤ >− − ,1 1

where ≤st represents the usual stochastic order (Shaked
and Shanthikumar 2007). Particularly if X and Y are
comonotonic, then

X Y G q X X F qst[ ] [ ]( ) ( )> = >− − .1 1

By utilizing the above two lemmas, we show that
the comonotonic risks result in the largest tail losses,
which may have its own interest.

Theorem 3.3. Let (X1, . . . , Xn) be a continuous
random vector with strictly increasing distribution
functions, and (Xc

1, . . . , Xc
n) represents its comono-

tonic counterpart. Then,

E

E

∑

∑( ) ( )

( )( )− >
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


≤ − >
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+
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+
=
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i
c

i
c

q
c

i

n

VaR

VaR .

1

1

Proof: Since (Xc
i, Sc) are comonotonic for i =

1, . . . , n, from Lemma 3.1 it follows that

,X k Si
c

i
c( )( )− +

are also comonotonic, since h(x) = (x – ki)+ is an
increasing function of x. Therefore, according to
Lemma 3.2, we have

X k S S

X k X k X k

X k X k X k

X k S S

i
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i
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st
i
c

i i
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i q i
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i i i i q i i

st i i q
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[ ]
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( )
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( )
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( )
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= − − > −

= − − > −
≥ − >

+

+ + +

+ + +

+

VaR

VaR

VaR

VaR .

Hence, the required result follows immediately. 

Now, let us discuss the optimal capital allocation
based on Model (1.2) for this worst scenario, i.e.,
X1, . . . , Xn are comonotonic risks.
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It includes many well-known distributions, such
as multivariate normal distribution, multivariate t
distribution, multivariate logistic distribution, and
multivariate exponential power distribution, etc. For
more discussion of elliptical distribution, one may
refer to Fang, Kotz, and Ng (1987) and Landsman
and Valdez (2003).

In the following, we first give a brief review of
some properties of elliptical distribution, which is
pertinent to the discussion of our main results.

Definition 4.1. The random vector X has a multi-
variate elliptical distribution, denoted by X ∼ En( m, Σ,
y), if its characteristic function can be expressed as

t t t tX
T Texp 2i( ) ( )( )φ = µ ψ Σ

for some column-vector m, n × n positive definite
matrix Σ, and characteristic generator y(.).

It should be pointed out that not every multivari-
ate elliptical distribution has a density function. If
X ∼ En(m, Σ, y), and X has a density fX(x), then,

x x xX
1

2
, (4.1)

1 2
1f

c
gn

n
T( ) ( ) ( )=

Σ
− µ Σ − µ





−

where

2

2
,2

2 1

0

1
c

n
x g x dxn n

n
n∫( )( )

( )
( )= Γ

π
−∞ −

and

,2 1

0∫ ( ) < ∞−∞
x g x dxn

n

which guarantees gn(x) to be the density generator.
For this case, one may write X ∼ En(m, Σ, gn).

If the mean exists, we have E(X) = m. The condi-
tion guarantees the existence of the covariance matrix

y′(0)< ∞ and hence

XCov 0 .( )( ) = − ′ψ Σ

Without loss of generality, in the following discussion,
it is assumed that –y′(0) = 1, and hence Cov(X) = Σ.
For the comprehensive discussion of properties of

It is seen that Eq. (2.1) is fulfilled if k* is a solu-
tion. We conclude that k* is an optimal solution for
Model (1.2). Further, the solution k* is unique, as
it does not depend on the parameter b. Hence, the
required result follows. 

Theorem 3.4 presents a closed-form solution of
capital allocations for the comonotonic risks. It might
be a little surprising to observe that the optimal capital
allocation rule based on Model (1.2) for comonotonic
risks adopts the same formulas as that in Corollary 2.2,
i.e., without the penalty on the tail variance. A care-
ful checking of Theorem 2.1 reveals that, although
the formulas are the same, the meanings are quite dif-
ferent for both scenarios. Corollary 2.2 presents the
optimal capital allocations for any dependence struc-
ture by considering only the magnitude of tail risks.
However, Theorem 3.4 presents the optimal capital
allocations for the comonotonic risks by considering
both the magnitude and variability of tail risks. But,
for this particular dependence structure, the magni-
tude and variability of loss functions are minimized
simultaneously, which explains the same optimal
capital allocation formulas as in Corollary 2.2. One
may wonder whether the magnitude and variability of
loss functions could be minimized simultaneously for
other general multivariate risks, i.e., b is irrelevant to
the optimal capital allocations. The answer is negative
from the examples in Section 4. In fact, the penalty
parameter b has nonnegligible influence on the capi-
tal allocations.

4. Examples and applications

In this section, we present some examples of opti-
mal capital allocations based on Model (1.2) for spe-
cific multivariate distributions. We will also apply
the new capital allocation rule to real data from one
insurance company.

4.1. Elliptical distributions

In the literature of insurance and actuarial sci-
ence, the elliptical distribution has attracted much
attention, mainly due to its mathematical tractability.
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where z* = (ki – mi.w′)/ .ii Sσ  with w′ = .ii Sσ w + mS,
and w* = (VaRq(S) – mS)/ SSσ . The notation fi(. S >
VaRq(S)) represents the density function of [Xi S >
VaRq(S)]. and FS(s S > VaRq(S)) represents the dis-
tribution function of [SS > VaRq(S)].

Next, we provide a simple form for computing
ECTS(.).

ECT VaR
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The conditional covariance Cov+,S(ki, kj) can be rep-
resented as

Cov , I VaR

ECT .

,
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S i j i i j j q

S i j S j

[ ]( ) ( )
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Note that
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elliptical distributions, please refer to Fang, Kotz, and
Ng (1987).

We first recall the well-known property of elliptical
distributions.

Proposition 4.2. If X ∼ En( m, Σ, gn), and A is some
m × n matrix of rank m ≤ n, and b some m-dimensional
column-vector, then

X b b∼ , , .A E A A A gm
T

m( )+ µ + Σ

Next, we compute the key quantities, including
F
–

i.S(.), ECTS(.), and Cov+,S(., .) for the family of
elliptical distributions, which would facilitate the
computations of Eq. (2.1).

Note that if X ∼ En( m, Σ, gn), then by Proposi-
tion 4.2, it holds that

∼ , , ,1 , 1S E gS S S( )µ σ

where mS = Σn
i=1mi, and sS,S = Σn

j=1Σn
i=1sij with sij =

Cov(Xi, Xj). Further, by Xu and Mao (2013), we have
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with si,S = Σn
k=1sik.

The survival function of [Xi S > VaRq(S )] can be
computed as

VaR

VaR

.
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dependence, variance penalty parameter b, risk
level q, and heavy tail. Assume that an insurance
company has three business lines (X1, X2, X3), which
follow the multivariate student t distribution with
mean vector

6,10, 5 ,( )µ =

and

1

3

1

.
12 13

21 23

31 32

Σ =
σ σ

σ σ
σ σ













The total capital is assumed to be K = 25. In the fol-
lowing, we examine several scenarios by varying the
parameters s12, s13 and s23. The results are summa-
rized in Table 1, which are thoroughly discussed as
follows.

• Dependence effect. To study the dependence effect,
we vary the values of s12, s13 and s23. As seen from
Table 1, when s12 ranges from {0, .5, 1.5} and s23

from {–.5, 0, .5}, the more dependence results the
more capital requirement. For example, for the case
(n, b, q) = (5, .01, .95), when s12 changes from 0
to .5, and s23 changes from 0 to –.5, it is found that
the required capital for risk X1 increases from 6.618
(26.47%) to 7.280 (29.12%), but risk X3 reduces
from 5.618 (22.47%) to 4.963 (19.85%); when s13

changes from 0 to .1, which indicates increasing the
dependence between X1 and X3, it is found out that
the capital requirement for X3 increases from 4.793
(19.17%) to 4.849 (19.40%).

• Penalty b. From Table 1, it is observed that when b
changes from .01 to .1, the capital requirement on
X2 increases for all the cases. This is very reason-
able since X2 is the riskiest one. For example,
for (s12, s13, s23) = (1.5, .1, .5) and (n, q) = (5.99),
when b changes from .01 to .1, the allocation
amount changes from 14.074 (56.30%) to 14.216
(56.86%), which reflects the penalty on the variance
of new model as expected.

• Risk level q. Table 1 presents the capital alloca-
tions for two risk levels q = .95 and q = .99. The

where fi,j(., .S > Varq(S)) is the joint density func-
tion of [(Xi, Xj)S > VaRq(S)], which has the follow-
ing form

, VaR

, VaR
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,
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,
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,
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∞

where fi,j (xi, xj S = s) is the density function of
[(Xi, Xj) S = s], which is the bivariate elliptical dis-
tribution by Eq. (4.2). One may easily implement the
forms of Eqs. (4.3), (4.4) and (4.5) into Eq. (2.1) to
derive the solutions.

In the following, we present a numerical example
to study the optimal capital allocations based on
Model (1.2).

Example 4.3. An n-dimensional multivariate
student-t distribution belongs to an elliptical family
if its density generator can be expressed as

( ) = +





−

g x
x

k
n

p

p

1

where p > n/2, and kp is some constant depending
on p. For simplicity, we assume that p = n + n with
the degree of freedom n, and kp = n/2. The joint den-
sity has the following form:

x
x x

1 , (4.6)
1 2

f
cn

T n

( ) ( ) ( )=
Σ

+ − µ Σ − µ
ν







( )− − +ν

where

2

2
.2c

n
n

n( )
( )

( ) ( )= Γ + ν
Γ ν

πν −

Next, by using a specific example, we discuss how
the different factors affect the optimal capital allo-
cations based on Model (1.2), which include the
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• Tail effect. The cases of n = 5 and n = 50 are
used to calculate the capital allocations in
Table 1, which represent different tail thickness
of marginal distributions. It is known that when
n is smaller, the tail probability of t distribution
is larger. It is clearly seen from Table 1 that when
n is smaller, the capital allocation requirement is
larger. For example, it is seen that when (s12, s13,
s23) = (.5, .1, –.5), the capital requirement of X2 is
12.625 (50.40%) based on (n, b, q) = (5, .01, .95)
compared to that of 12.435 (49.74%) based on
(n, b, q) = (50, .01, .95).

risk level increases, reflecting that the insurance
company is more conservative about the risk.
Hence the insurance company may be willing
to allocate the more capital to the business lines
with larger risks. It is seen from Table 1 that the
capital allocation to X2 increases for all cases,
which meets the aim of controlling the risk. For
example, it is seen that when (s12, s13, s23) = (1.5,
.1, .5), for the case of (n, b) = (5, .1), the capital
requirement of X2 is 14.216 (56.86%) based on
q = .99 compared to that of 13.013 (52.05%)
based on q = .95.

Table 1. Optimal capital allocations (amounts and percentages) based on the TMV model (1.2) with a total capital K  25.

(s12, s13, s23) k1* k*2 k*3 k1* k*2 k*3

Parameters v = 5, b = .01, q = .95 v = 5, b = .01, q = .99

*(0, 0, 0) 6.618
26.47%

12.763
51.05%

5.618
22.47%

6.296
25.18%

13.408
53.63%

5.296
21.18%

*(1.5, 0, .5) 7.109
28.44%

13.099
52.40%

4.793
19.17%

7.059
28.24%

14.377
57.51%

3.564
14.26%

*(1.5, .1, .5) 7.195
28.78%

12.956
51.83%

4.849
19.40%

7.251
29.00%

14.074
56.30%

3.674
14.70%

*(.5, 0, –.5) 7.280
29.12%

12.758
51.03%

4.963
19.85%

7.393
29.57%

13.379
53.52%

4.229
16.92%

*(.5, .1, –.5) 7.339
29.36%

12.625
50.40%

5.036
20.14%

7.505
30.02%

13.154
52.62%

4.341
17.36%

Parameters v = 5, b = .1, q = .95 v = 5, b = .1, q = .99

*(0, 0, 0) 6.599
26.40%

12.801
51.20%

5.599
22.40%

6.275
25.10%

13.451
53.80%

5.275
21.10%

*(1.5, 0, .5) 7.122
28.49%

13.161
52.64%

4.717
18.87%

7.086
28.34%

14.518
58.07%

3.396
13.58%

*(1.5, .1, .5) 7.213
28.85%

13.013
52.05%

4.773
19.09%

7.285
29.14%

14.216
56.86%

3.499
14.00%

*(.5, 0, –.5) 7.306
29.22%

12.797
51.19%

4.897
19.59%

7.431
29.72%

13.426
53.70%

4.143
16.57%

*(.5,.1, –.5) 7.369
29.48%

12.656
50.62%

4.975
19.90%

7.548
30.19%

13.191
52.76%

4.261
17.04%

Parameters v = 50, b = .01, q = .95 v = 50, b = .01, q = .99

*(0, 0, 0) 6.731
26.92%

12.539
50.16%

5.731
22.92%

6.575
26.30%

12.851
51.40%

5.575
22.30%

*(1.5, 0, .5) 7.109
28.44%

12.752
51.01%

5.138
20.55%

7.078
28.31%

13.350
53.40%

4.572
18.29%

*(1.5, .1, .5) 7.170
28.68%

12.651
50.60%

5.180
20.72%

7.189
28.76%

13.170
52.68%

4.641
18.56%

*(.5, 0, –.5) 7.228
28.91%

12.535
50.14%

5.237
20.95%

7.281
29.12%

12.833
51.33%

4.885
19.54%

*(.5, .1, –.5) 7.274
29.10%

12.435
49.74%

5.291
21.16%

7.352
29.41%

12.689
50.76%

4.959
19.84%
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represents the density function of usual n-dimensional
Student’s t distribution with location ξ, positive
definite n × n dispersion matrix W, and T1(.; n)
denotes the univariate standard Student’s t cumula-
tive distribution function with degrees of freedom
n > 0.

It should be mentioned that although the multi-
variate skew-t distribution has many similar proper-
ties to the multivariate t distribution, it does not have
the preservation property that the conditional distri-
bution is still in the original family of distributions.
Therefore, the analytical forms of the key quanti-
ties in Eq. (2.1) are infeasible to derive. Instead, we
propose to use the Monte Carlo simulation method
to compute the key quantities. Specifically, we gen-
erate 1,000,000 observations from the multivariate
skew-t distribution to compute F

–
i,S(.), ECTS(.), and

Cov+,S(., .), which are illustrated by the following spe-
cific example.

Example 4.5. Assume that an insurance company
has three business lines (X1, X2, X3), which follow
the multivariate skew-t distribution with location
parameters

6,10, 5 ,( )ξ =

and shape parameters

10, 30, 20 .( )α =

The dispersion matrix is assumed to be

1

3

1

.
12 13

21 23

31 32

Ω =
ω ω

ω ω
ω ω













We note that although the dispersion matrix is not the
covariance matrix, it is linearly related to the cova-
riance matrix, which still reflects the dependence
between (X1, X2, X3). The specific relation may be
found in Eq. (6.26) of Azzalini (2014).

We use the same parameters as that in Table 1 to
compute the optimal capital allocations based on
Eq. (2.1). The results are summarized in Table 2.

From this example, it is observed that Model (1.2)
has many intriguing properties, such as reflecting the
effects of dependence, penalty, tail, and risk level.
The numerical results also possess the intuitive expla-
nations. It should be pointed out that the elliptical
distributions discussed here are symmetric. In the fol-
lowing section, we discuss a family of skewed multi-
variate distributions.

4.2. Multivariate skew-t family

Insurance risks may have skewed distributions,
for which the symmetric distributions such as multi-
variate normal or t distributions are not appropri-
ate models for insurance risks or losses. Therefore,
in the literature, the multivariate skewed distribu-
tions have been proposed as alternatives to model
such risks. Among many multivariate skewed
distributions, the multivariate skew-t distribution
has been favored since it provides the benefit of
flexibility with regard to skewness and thickness
of the tails. It allows unlimited range for the indices
of skewness and kurtosis for the individual com-
ponents. For a comprehensive discussion about
skewed-distribution family, one may refer to Azzalini
(2014).

In the following, we give the definition of a multi-
variate skew-t distribution.

Definition 4.4. The random vector X has a multi-
variate skew-t distribution, denoted by X ∼ ST (ξ, W,
a, n), if its density function can be expressed as

x x

x
x

X 2 ; , ,

;1
1

1 2

f t

T w
p

Q
n

n

T

( )

( )

( )

( )

= ξ Ω ν

α − ξ ν +
ν +







ν +





−

where Q(x) = (x – ξ)TW–1(x – ξ), a ∈Rn is the shape
parameter, and

x

x

; , ,
2

2

1

1 2 2

2

t
n

Q

n n

n

( ) ( )
( )

( )
( )

( )

ξ Ω ν = Γ ν +
Ω νπ Γ ν

+
ν





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4.3. Comparisons to other methods

In this section, we compare the TMV model (1.2)
to several models frequently used in the literature. For
comprehensive reviews on the methodologies of capi-
tal allocations, one may refer to Dhaene et al. (2012),
and Bauer and Zanjani (2013). Specifically, the capital
allocation rules considered in this section include:

(a) Haircut allocation:

1

1
1∑

( )
( )

=
−

−
=

k
F q

F q
Ki

X

Xj

n
i

j

For the multivariate skew-t distributions, we may
draw similar conclusions to those in Example 4.3,
i.e., the dependence, penalty parameter b, risk
level, and tail thickness all have significant effects
on the capital allocations based on Model (1.2). It
is interesting to observe that the capital require-
ments on risk X2 in Table 2 are larger than the
corresponding ones in Table 1. This may be intui-
tively explained by the large skewness of risk X2.
Hence, in practice, one should always seek a suit-
ably skewed distribution if the faced risks are
skewed.

Table 2. Optimal capital allocations (amounts and percentages) based on the TMV model (1.2) with a total capital K  25.

(w12, w13, w23) k1* k*2 k*3 k1* k*2 k*3

Parameters v = 5, b = .01, q = .95 v = 5, b = .01, q = .99

*(0, 0, 0) 6.448
25.79%

13.094
52.38%

5.458
21.83%

6.032
24.13%

13.902
55.61%

5.066
20.26%

*(1.5, 0, .5) 7.120
28.48%

13.769
55.08%

4.111
16.44%

7.194
28.78%

15.226
60.90%

2.580
10.32%

*(1.5, .1, .5) 7.258
29.03%

13.547
54.19%

4.194
16.78%

7.432
29.73%

14.788
59.15%

2.780
11.12%

*(.5, 0, –.5) 7.349
29.40%

13.073
52.30%

4.578
18.31%

7.499
30.00%

13.828
55.31%

3.673
14.69%

*(.5, .1, –.5) 7.437
29.75%

12.889
51.56%

4.674
18.70%

7.645
30.58%

13.529
54.12%

3.826
15.30%

Parameters v = 5, b = .1, q = .95 v = 5, b = .1, q = .99

*(0, 0, 0) 6.381
25.52%

13.169
52.68%

5.450
21.80%

5.999
24.00%

14.103
56.41%

4.898
19.59%

*(1.5, 0, .5) 7.318
29.27%

14.045
56.18%

3.637
14.55%

7.565
30.26%

15.816
63.26%

1.620
6.48%

*(1.5, .1, .5) 7.448
29.79%

13.838
55.35%

3.713
14.85%

7.750
31.00%

15.347
61.39%

1.903
7.61%

*(.5, 0, –.5) 7.413
29.65%

13.166
52.66%

4.422
17.69%

7.651
30.60%

14.020
56.08%

3.330
13.32%

*(.5, .1, –.5) 7.516
30.06%

12.974
51.90%

4.510
18.04%

7.819
31.28%

13.693
54.77%

3.488
13.95%

Parameters v = 50, b = .01, q = .95 v = 50, b = .01, q = .99

*(0, 0, 0) 6.659
26.64%

12.678
50.71%

5.662
22.65%

6.487
25.95%

13.016
52.06%

5.497
21.99%

*(1.5, 0, .5) 7.100
28.40%

13.030
52.12%

4.870
19.48%

7.088
28.35%

13.621
54.48%

4.291
17.16%

*(1.5, .1, .5) 7.186
28.74%

12.894
51.58%

4.920
19.68%

7.231
28.92%

13.416
53.66%

4.353
17.41%

*(.5, 0, –.5) 7.256
29.02%

12.664
50.66%

5.080
20.32%

7.295
29.18%

12.977
51.91%

4.729
18.92%

*(.5, .1, –.5) 7.311
29.24%

12.544
50.18%

5.145
20.58%

7.374
29.50%

12.820
51.28%

4.806
19.22%
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and

1 .5 .1

.5 3 .5

.1 .5 1

.Σ = −
−













The total capital is also assumed to be K = 25, and
the parameter b = .01. We calculate the optimal cap-
itals based on different allocation rules. The results
are presented in Table 3. It is seen that the quan-
tile allocation rule allocates the smallest amount
of capital to risk X2 (42.43%) compared to the
other allocation rules. In particular, the allocation
amount based on the quantile rule does not change
when the risk level q changes from .95 to .99. The
covariance allocation rule allocates the largest
amount of capital to risk X2 (57.91%) compared to
the other allocation rules, but it cannot reflect the
risk level. Compared to CTE and TMV, the haircut
rule allocates a relatively smaller amount of capi-
tal to X2. It is interesting to observe that when the
risk level increases from .95 to .99, the allocation
amount for the riskiest X2 decreases from 46.60% to
46.50%. Therefore, the haircut allocation rule does
not reflect the risk level very well. The CTE and
TMV are similar from the perspectives of alloca-
tion amounts and risk levels. Both of them allocate
relatively larger capitals to risk X2, and the alloca-
tion amounts increase when the risk level increases
from .95 to .99. However, the capital based on TMV
model increases from 50.40% to 52.62%, while the

where F–1
Xi (q) is the left continuous inverse of the

distribution function of Xi at q > 0;

(b) Quantile allocation:

1

1
1∑

( )( )
( )( )

=
−

−
=

k
F F K

F F K
Ki

X S

X Sj

n
i

j

where FS(K) = P(Σn
i=1F

–1
Xi (U) ≤ K), and U is a uniform

random variable on (0, 1);

(c) Covariance allocation:

Cov ,

Cov ,
1∑ ( )

( )=
=

k
X S

X S
Ki

i

jj

n

where S = Σn
i =1Xi;

(d) CTE (conditional tail expectation) allocation

E
E

1

1
1∑
[ ]

[ ]
( )

( )
=

>
>

−

−
=

k
X S F q

X S F q
Ki

i S

j Sj

n

where F–1
S (q) is the left continuous inverse of the dis-

tribution function of S at q > 0.

Example 4.6. For the purpose of comparison, we
use the same distribution as Example 4.3. That is,
three business lines (X1, X2, X3) follow a multivariate
Student t distribution with mean vector

6,10, 5 ,( )µ =

Table 3. Comparisons of optimal capital allocations (amounts and percentages) with a total capital K  25.

Model k1* k*2 k*3 k1* k*2 k*3

Parameters v = 5, q = .95 v = 5, q = .99

*TMV 7.339
29.36%

12.625
50.40%

5.036
20.14%

7.505
30.02%

13.154
52.62%

4.341
17.36%

*Haircut 6.741
26.96%

11.651
46.60%

6.607
26.43%

6.701
26.80%

11.625
46.50%

6.674
26.70%

*Quantile 7.575
30.30%

10.608
42.43%

6.817
27.27%

7.575
30.30%

10.608
42.43%

6.817
27.27%

*Covariance 7.667
30.67%

14.477
57.91%

2.856
11.42%

7.667
30.67%

14.477
57.91%

2.856
11.42%

*CTE 7.293
29.17%

12.649
50.60%

5.058
20.23%

7.344
29.38%

12.895
51.58%

4.761
19.04%
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By assuming that the joint distribution of these ten
random variables follows a multivariate normal dis-
tribution, Panjer (2002) discusses the optimal alloca-
tion problems for this data set. We assume that the
joint distribution follows a multivariate Student-t dis-
tribution with density function defined in Eq. (4.6).
Since the original data is not available to us, we use
n = 9 and n = 50 for the data set, which represent
small and large degree of freedoms, separately.

The total capital K is assumed to be 147 million,
which is around one standard deviation of estimated
means larger than the total sum of estimated means
134.13 million. This value is slightly larger than
the VaR.95(S) = 145 based on n = 9, where S = X1

+ . . . + X10. Table 4 summarizes the optimal capital
allocations for various scenarios based on q = .99.

From Table 4, it is observed that overall the larger
risks are allocated with more capitals. It is seen from
the covariance matrix that X2 has the largest mean and
variance, and it has a positive correlation with relatively
large risks, say larger than 9 million, (X4, X6, X7), but it
is uncorrelated with X1, and is negatively correlated
with X10. When b is increasing, the capital requirement
on X2 is increasing for both of n = 50 and n = 9; the
capitals for X2 with n = 9 are larger than the corre-
sponding ones with n = 50. This observation reflects
that the model penalizes the large variance and heavy
tail. For risks X1 and X6 with estimated means 25.69
and 24.05 millions, the capital requirements are
26.711 (18.17%) and 27.116 (18.45%) millions for

CTE only increases from 50.60% to 51.58%. This
reflects the advantage of TMV model in quickly
responding to a large risk level. It is also seen that
the allocated capital for risk X3 based on the TMV
model decreases by 2.78% while the allocated capi-
tal based on the CTE decreases by 1.19% for X3.
This is because the new TMV model takes into
account the negative dependence between X2 and X3

for allocations. To conclude, compared to the other
models, the new Model (1.2) has many desired prop-
erties, such as reflecting the effects of dependence,
and risk level.

4.4. Real data analysis

In this section, we analyze a real insurance data set
presented in Panjer (2002). The total number of busi-
ness lines is 10 with

, . . . , ,1 10( )=X X XT

which represent a range of insurance and other
related financial products. The estimated mean vec-
tor (million) is

25.69, 37.84, 0.85,12.70, 0.15, 24.05,14.41,

4.49, 4.39, 9.56 .

(
)

µ =

The correlation matrix was reported in Panjer (2002)
and Valdez and Chernih (2003) reported the covari-
ance matrix, which is reproduced here for the sake of
convenience.

7.24 0 0.07 0.07 0.28 2.71 0.51 0.28 0.23 0.21

20.16 0.05 1.6 0.05 1.39 1.14 0.91 0.81 1.74

0.04 0 0.01 0.08 0.01 0.02 0.02 0.07

1.74 0.17 0.26 0.19 0.14 0.18 0.79

0.32 0.24 0.01 0.02 0.08 0.01

14.98 0.43 0.33 1.89 1.6

2.53 0.38 0.13 0.58

0.92 0.16 0.4

1.12 0.58

6.71

− − − −
− − −

− − − −
− −

− − −
− − −
−

− −



























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the works by Laeven and Goovaerts (2004), Dhaene
et al. (2012), and Xu and Mao (2013), which capture
both magnitude and variability of tail risks. As seen
from the numerical evidence, the TMV model has
many intriguing properties, such as penalizing the large
risk, variance, positive dependence, and reflecting the
tail risk level. It also provides many intuitive expla-
nations on the optimal capital allocations. The penal-
ization parameter b, which is either determined by the
historical data or by the experience of the decision
maker, provides an additional flexibility for controlling
the tail variability. Since the analytical solutions for the
TMV model is infeasible, we explore the general equa-
tions which could be easily implemented in the software
(R code is available upon request). It may be interest-
ing to comprehensively compare the TMV model to
those in the literature (Bauer and Zanjani 2013) and
use the TMV model for DHS capital allocation. The
preliminary study shows that the TMV model pro-
vides some promising results, which is currently being
pursued, and will be reported when it is completed.

n = 50, respectively. The capital requirement on risk X6

slightly decreases when b changes from .01 to .5, which
may be caused by the correlations with the other
risks. For the case of n = 9, it is observed that the capital
requirements for risks X1 and X6 both increase when b
changes from .01 to .5, which may reflect the penalty
on the variability again. It is interesting to observe that
when b changes from .01 to .1 with n = 9, the capital
requirement on X1 is slightly less, while on X6 it is
slightly more. It may be explained by noting that
the variance of X1 is less than that of X6, and further X6

is positively correlated with X2. For risk X10, it is seen
that it is negatively correlated with (X1, X2, X4, X6), and
therefore, it is not surprising to observe that the capi-
tal requirements all decrease when b increases.

5. Conclusion

In this paper, we have suggested a new capital allo-
cation rule which stems from the tail mean-variance
premium calculation principle. It is also a variation of

Table 4. Optimal capital allocations (amounts and percentages) for various parameters based on TMV model (1.2) with a total
capital K  147 and q  .99.

n = 50 n = 9

b = .01 b = .1 b = .5 b = .01 b = .1 b = .5

*k1* 26.730
18.18%

26.711
18.17%

26.721
18.18%

26.611
18.10%

26.493
18.02%

26.816
18.24%

*k*2 45.358
30.86%

45.476
30.94%

45.655
31.06%

45.732
31.11%

46.257
31.47%

48.162
32.76%

*k*3 .840
.57%

.840

.57%
.843
.57%

.832

.57%
.823
.56%

.636

.43%

*k*4 13.609
9.26%

13.631
9.27%

13.725
9.34%

13.619
9.26%

13.639
9.28%

13.502
9.19%

*k*5 .241
.16%

.244

.17%
.260
.18%

.205

.14%
.194
.13%

.163

.11%

*k*6 27.181
18.49%

27.116
18.45%

26.916
18.31%

27.173
18.49%

27.205
18.51%

27.263
18.55%

*k*7 15.705
10.68%

15.615
10.62%

15.661
10.65%

15.655
10.65%

15.740
10.71%

16.506
11.23%

k*8 3.704
2.52%

3.664
2.49%

3.565
2.43%

3.591
2.44%

3.435
2.34%

2.385
1.62%

k*9 4.111
2.80%

3.793
2.58%

2.792
1.90%

3.700
2.52%

3.503
2.38%

2.230
1.52%

k*10 9.920
6.75%

9.889
6.73%

9.878
6.72%

9.881
6.72%

9.711
6.61%

9.337
6.35%
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Therefore, it holds that
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where f1, j(., .S > VaRq(S)) is the joint density of
[(X1, Xj)S > VaRq(S)]. Therefore, we have
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For l = 1, 2, . . . , n, it follows that
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Appendix

Proof of Theorem 2.1: Define

VaR
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According to Kuhn-Tucker theory (Bertsekas 1999),
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l = 1, . . . , n,
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Therefore, the Hessian matrix of the optimal solu-
tions can be represented as
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l ) means the diagonal matrix with

diagonal elements D*
l , l = 1, . . . , n. Hence, if
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then H is a positive definite matrix, as the covariance
matrix is positive semi-definite. Since the set

{ }+ + + =k k k k Kn. . .1 2

is convex, the optimal solution in Eq. (2.1) should
also be a globe optimal solution.

The required result follows immediately. 
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