
On the Subadditivity of
Tail Value at Risk:

An Investigation with Copulas
by S. Desmedt and J.-F. Walhin

ABSTRACT

In this paper, we compare the point of view of the regulator
and the investors about the required solvency level of an
insurance company. We assume that the required solvency
level is determined using the Tail Value at Risk and analyze
the diversification benefit, both on the required capital and
on the residual risk, when merging risks. To describe the
dependence structure, we use a range of various copulas.
This allows us to judge whether or not the Tail Value at
Risk is too subadditive under a wide range of conditions.
Furthermore, we discuss the effect of different copulas on
the diversification possibilities.
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1. Introduction

Assume that the loss incurred by an insurance
company is given by the realization of a ran-
dom variable X, defined on a probability space
(−,F ,P). To protect the insured, regulators de-
mand that the insurance company hold an amount
of money large enough to be able to compensate
the policyholders with a high probability. Obvi-
ously, a fraction of that amount is provided by the
premiums paid by the policyholders. The missing
amount is provided by the shareholders who put
money at risk in the insurance company. They
demand a certain return on this capital.
In this paper, we will concentrate on measures

to calculate the required solvency level. Because
this has obvious connections with the right tail
of the random variable representing the loss, a
risk measure based on quantiles seems to be ad-
equate. Quantiles have been called Value at Risk
(VaR) by bankers for a long time and we will fol-
low this terminology here. The VaR at the level
p is given by:

VaRp[X] = inffx 2 R j FX(x)¸ pg, 0< p< 1,

where FX(x) = P[X · x] is the cumulative den-
sity function of X. More generally, we will re-
sort to risk measures to determine the required
solvency level. Therefore, let (−,F ,P) be a prob-
ability space and let ¡ be a nonempty set of F-
measurable random variables. A risk measure ½
is a functional:

½ : ¡ ! R[f1g:
Let us now analyze the situation when we merge
two risks X1 and X2. The regulator wants to min-
imize the shortfall risk:

(X ¡ ½[X])+ = max(0,X ¡ ½[X]):
For a merger, the following inequality holds with
probability one (Dhaene et al. 2008):

(X1 +X2¡ ½[X1]¡ ½[X2])+
· (X1¡ ½[X1])+ + (X2¡ ½[X2])+:

(1.1)

Therefore, from the viewpoint of avoiding short-
fall, the aggregation of risk is to be preferred in
the sense that the shortfall decreases. The under-
lying reason is that within the merger, the short-
fall of one of the entities can be compensated by
potentially better results for the other.
However, when investors have an amount of

capital ½[X1]+ ½[X2], they will prefer investing
in two separate companies because the following
inequality holds with probability one:

(½[X1]+ ½[X2]¡X1¡X2)+
· (½[X1]¡X1)+ + (½[X2]¡X2)+:

Investors will get a higher return by investing in
two separate companies due to the firewalls that
exist between X1 and X2. Indeed, if for one of
the separate companies X1¡ ½[X1]> 0, this will
not affect Company 2. For a merger, however,
if ½[X2]¡X2 > 0 and X1¡ ½[X1]> 0, a part of
the capital invested in Company 2 will be used
to compensate the bad results for Company 1.
Investors may have incentives to invest in the
merger once:

½[X1 +X2]· ½[X1] + ½[X2]: (1.2)

A risk measure ½ that conforms to (1.2) for all
X1,X2 2 ¡ is said to be subadditive. On the other
hand, a risk measure is superadditive when for all
X1,X2 2 ¡ :

½[X1 +X2]¸ ½[X1] + ½[X2]:
It is well known that the VaR is not subadditive.
Therefore, we will look for other risk measures
that are subadditive. For such a risk measure, we
do not necessarily have that

(X1 +X2¡ ½[X1 +X2])+
· (X1¡ ½[X1])+ + (X2¡ ½[X2])+

(1.3)

for all outcomes of X1 and X2. Of course, when
½ is superadditive, (1.3) is fulfilled for all out-
comes of X1 and X2. However, for the reasons
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given above, superadditive risk measures will not
motivate investors.
As mentioned in Dhaene et al. (2008), if for

a given random couple (X1,X2) we have that
P[X1 > ½[X1],X2 > ½[X2]]> 0 and that equation
(1.3) is satisfied for all outcomes of X1 and X2,
then we need to have that ½[X1 +X2]¸ ½[X1] +
½[X2]. Therefore, a subadditive risk measure sat-
isfying (1.3) for every outcome of all random
couples (X1,X2) needs to be additive for all ran-
dom couples for which P[X1 > ½[X1],X2 >
½[X2]]> 0. Only for random couples with P[X1 >
½[X1],X2 > ½[X2]] = 0, could a credit be given
for the capital requirement of the merger. Hence,
condition (1.3) limits the range of possible risk
measures considerably.
Dhaene et al. (2008) analyzed the effect of

weakening the condition that ½ should satisfy in-
equality (1.3) for any outcome of all random cou-
ples (X1,X2) to the requirement that couples on
average satisfy (1.3)

E(X1 +X2¡ ½[X1 +X2])+
· E(X1¡ ½[X1])+ +E(X2¡ ½[X2])+

(1.4)

for all random couples (X1,X2). They showed
that all translation invariant and positively ho-
mogeneous risk measures satisfy condition (1.4)
for every bivariate normal distribution and more
generally, for every bivariate elliptical distribu-
tion. A risk measure is said to be translation
invariant if for all b 2 R and for each random
variable X 2 ¡ we have that ½[X + b] = ½[X] + b.
A positively homogeneous risk measure satis-
fies ½[aX] = a½[X] for all a > 0 and X 2 ¡ . Now
suppose a risk measure is translation invariant,
positively homogeneous and subadditive. If it
also satisfies the property that for all X1,X2 2 ¡
with P[X1 · X2] = 1 we have that ½[X1]· ½[X2]
(monotonicity), it is said to be coherent in the
sense of Artzner et al. (1999).
Although there exist several coherent risk mea-

sures, we will focus in the present paper on the

TVaR only. This is undoubtedly the most popu-
lar coherent risk measure in practice. The TVaR
of a random variable X is defined as

TVaRp[X] =
1

1¡p
Z 1

p

VaRq[X]dq, 0< p< 1,

where p is a given confidence level. TVaR at a
level p is equal to the average of all quantiles of
X above the p-quantile. This gives it, just like the
VaR, a nice intuitive interpretation. The TVaR, as
we define it, is related to the expected shortfall
as defined in Acerbi and Tasche (2002). These
authors see losses as a negative outcome of a
random variable and hence look at the left-hand
side of the distribution. For continuous random
variables, the TVaR is equal to the conditional
tail expectation (CTE), which is defined as

CTEp[X] = E[X j X >VaRp[X]], 0< p < 1:

The CTE is not subadditive (see Dhaene et al.
2008). As shown in Dhaene et al. (2008), ex-
amples can be constructed for which (1.4) does
not hold for the TVaR. Hence, TVaR can be too
subadditive in the sense of condition (1.4).
The purpose of this paper is twofold. On the

one hand, we want to show that the TVaR is able
to deal in an appropriate fashion with the diver-
sification benefit of a merger under a wide range
of dependence structures and margins. In our
examples, we will observe that the TVaR only
gives a credit for diversification when appropri-
ate, thereby providing a framework for compro-
mise between the expectations of the investors
and those of the regulator. On the other hand,
by taking a practical approach based on copu-
las to describe the dependence structure between
the margins, we want to learn more about the be-
havior of different copulas with respect to the di-
versification benefit. Copulas have been gaining
a lot of interest in insurance applications [e.g.,
Frees and Valdez (1998), Venter (2001), and
Blum, Dias, and Embrechts (2002)] and in other
research areas. This has been the cause for some

VOLUME 2/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 233



Variance Advancing the Science of Risk

warnings and discussion lately [Mikosch (2006)
and the subsequent discussion papers].
The rest of the paper is organized as follows.

In Section 2, we define some measures to com-
pare the residual risk of a conglomerate and of
stand-alone companies. We illustrate the effect of
merging independently and identically distribut-
ed exponential subsidiaries on these measures
when TVaR is used as a risk measure. In Sec-
tion 3, we define the concept of a copula and the
copulas which are used in this paper. Some well-
known dependence measures are defined in Sec-
tion 4, where we also make a graphical analysis
of some copulas. In Section 5, we then analyze
the residual risk of a conglomerate and a group
of stand-alone companies based on a simulation
study. We again use TVaR to determine the re-
quired solvency level. We conclude in Section 6.

2. Residual risk of conglomerate
and stand-alones
Assume the risks Xi with i 2 f1, : : : ,Kg. For the

conglomerate X =
PK
i=1Xi, we will compute the

mean, the variance, the skewness and the kurtosis
of the residual risk RRX = (X ¡ ½[X])+:

E[RRX] =
Z +1

½[X]
(x¡ ½[X])fX(x)dx,

Var[RRX] = ¾2[RRX]

=
Z +1

0
((x¡ ½[X])+¡E[RRX])2

£fX(x)dx,

°[RRX] =
1

Var[RRX]3=2

Z +1

0

£ ((x¡ ½[X])+¡E[RRX])3fX(x)dx,

·[RRX] =
1

Var[RRX]2
Z +1

0

£ ((x¡ ½[X])+¡E[RRX])4fX(x)dx:
For each of the entities Xi looked at as stand-
alones, we assume we use the same risk measure
½ to determine the solvency level. Hence, we can

write the mean, variance, skewness, and kurtosis
of the residual risk RRXi = (Xi¡ ½[Xi])+ as

E[RRXi] =
Z +1

½[Xi]
(x¡ ½[Xi])fXi(x)dx,

Var[RRXi] = ¾
2[RRXi]

=
Z +1

0
((x¡ ½[Xi])+¡E[RRXi])2

£fXi(x)dx,

°[RRXi] =
1

Var[RRXi]3=2

Z +1

0

£ ((x¡ ½[Xi])+¡E[RRXi])3

£fXi(x)dx,

·[RRXi] =
1

Var[RRXi]2
Z +1

0

£ ((x¡ ½[Xi])+¡E[RRXi])4

£fXi(x)dx:
We denote

¹3[RRXi] =
Z +1

0
((x¡ ½[Xi])+¡E[RRXi])3

£fXi(x)dx
and

¹4[RRXi] =
Z +1

0
((x¡ ½[Xi])+¡E[RRXi])4

£fXi(x)dx:
In the case that the risks Xi are identically
and independently distributed, the mean, vari-
ance, skewness, and kurtosis of the sum of the
residual risk of the separate entities, RRX1;K=PK
i=1(Xi¡ ½[Xi])+, can be written as follows:

E[RRX1;K ] =
KX
i=1

E[RRXi],

Var[RRX1;K ] = ¾
2[RRX1;K ] =

KX
i=1

Var[RRXi],

°[RRX1;K ] =

PK
i=1¹3[RRXi]

Var[RRX1;K ]
3=2 ,

·[RRX1;K ] =

PK
i=1¹4[RRXi]
Var[RRX1;K ]

2 :
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In the more general case, the variance, skewness,
and kurtosis of the sum of the residual risk of the
separate entities and the distribution of the loss
of the merger depend on the dependence struc-
ture and the marginal distributions of each of
the entities. In such cases, we will use a sim-
ulation model. As a basis for comparison for the
results generated through simulation, we first as-
sume the subsidiaries are all identically and in-
dependently exponentially distributed, since this
allows us to use explicit formulas and numerical
approximation methods.

If Xi
iid»Expo(¸) for i 2 f1,2g, i.e.,

FXi(x) = 1¡ e¡¸x, for x > 0 and ¸ > 0,

then it is well known that E[Xi] = ¾[Xi] = 1=¸
and that X = X1 +X2 »Gamma(®= 2, ¯ = ¸),
where the distribution function of a Gamma(®,¯)
-distributed random variable X is given by

FX(x) =
Z x

0

¯®

¡ (®)
y®¡1e¡¯ydy,

for x > 0, ® > 0 and ¯ > 0,

where ¡ (®) denotes the Gamma-function. Be-
cause the ®-parameter is an integer, we in fact
have the Erlang Distribution.
The VaR and TVaR for an exponential distri-

bution are given by

VaRp[Xi] =¡
ln(1¡p)

¸
,

TVaRp[Xi] =
1
¸
+VaRp[Xi] =

1
¸
(1¡ ln(1¡p)):

In general, the VaR for the gamma distribution
has no closed form but good numerical approx-
imations are available in a lot of statistical soft-
ware packages. As shown in Landsman and
Valdez (2004), if X »Gamma(®,¯), we have
that

TVaRp[X] =
®(1¡FY(VaRp[X]))

¯(1¡p) ,

where Y »Gamma(®+1,¯).
Now assume that X1 and X2 are i.i.d. accord-

ing to the exponential distribution with param-

Table 1. Risk measures of residual risk for 2 independent
exponential risks

TVaR0:95 TVaR0:99

Risk Measure X1;2 X1 +X2 X1;2 X1 +X2

E[RR] 1.839 1.065 0.368 0.206
¾[RR] 13.450 10.902 6.060 4.765
°[RR] 11.011 15.156 24.708 34.335
·[RR] 260.252 306.018 815.487 1563.420

P[RR = 0] 0.964 0.981 0.993 0.996

eter ¸= 1=50. Then we have that TVaR0:95[Xi]
= 200, for i 2 f1,2g, and TVaR0:95[X] = 296
and that TVaR0:99[Xi] = 280, for i 2 f1,2g, and
TVaR0:99[X] = 388. For the residual risk, when
taking the TVaR at a 95%- and 99%-level, we
find the risk measures as summarized in Table 1.
Both at the 95% and 99% level, we observe

that even though the TVaR for the conglomer-
ate is considerably lower than the sum of the
solvency levels of the two separate entities, the
mean and the standard deviation of the residual
risk of the conglomerate are considerably lower
than for the sum of the separate entities. The
skewness and the kurtosis of the residual risk for
the merger are larger than for the two separate
entities. The probability of default for the merger
is considerably lower. This illustrates that due
to the diversification benefit given by Equation
(1.1) and allowing for the subadditivity implicit
to the TVaR, the conglomerate performs better
both with respect to the mean and the standard
deviation of the residual risk.
We make the same exercise at a 99% confi-

dence level for a merger of 5 and of 10 inde-
pendent risks with Expo(1=50)-distribution mar-
gins. We then have TVaR0:99[

P5
i=1Xi] = 650 and

TVaR0:99[
P10
i=1Xi] = 1024. The results are given

in Table 2.
In Table 2, we observe that for the conglomer-

ate, the expectation and standard deviation of the
residual risk increase about 20% when the num-
ber of subsidiaries is increased from 5 to 10. For
the separate entities, however, these measures in-
crease 100% and 41% respectively. This exam-
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Table 2. Risk measures of residual risk for 5 and 10 independent exponential risks

TVaR0:99 TVaR0:99 10D vs. 5D

Risk Measure X1;5 X =
P5

i=1Xi X1;10 X =
P10

i=1Xi Separate Merger

E[RR] 0.920 0.252 1.839 0.305 200% 121%
¾[RR] 9.581 5.758 13.550 6.913 141% 120%
°[RR] 15.627 33.550 11.050 33.013 71% 98%
·[RR] 326.195 1478.030 163.097 1420.910 50% 96%

P[RR = 0] 0.982 0.996 0.964 0.996 98% 100%

ple shows the interest in merging risks and that
the TVaR is not too subadditive, if we are in-
terested in these measures of the residual risk.
Of course, the probability that at least one of
the subsidiaries defaults increases when the num-
ber of subsidiaries increases. For the conglom-
erate, however, this probability remains (nearly)
constant, showing that the subadditivity of the
TVaR does not increase the default probability
for the merger in this example. The skewness
and kurtosis for the merger decrease only slowly
when moving from 5 to 10 dimensions. These
risk measures are significantly larger when the
companies are separated. This is, however, a sim-
ple consequence of the fact that the distribution
of the residual risk for the merger has a probabil-
ity of being zero, which is a lot more important.
Therefore, this should not be a reason to con-
clude that the TVaR is too subadditive.
In what follows, we use the average residual

risk and the probability that the residual risk is
zero to assess whether the subadditivity of the
TVaR is acceptable. We also assess what happens
with the standard deviation of the residual risk
for the merger and the sum of the stand-alones.

3. Copulas
3.1. Definition and existence

The notion of copula was introduced by Sklar
(1956). We define a d-dimensional copula.

DEFINITION 1 (Multivariate Copula). A d-dimen-
sional copula C is a nondecreasing right-contin-
uous function from the unit cube [0,1]d to the

unit interval [0,1] which satisfies the following
properties:

1. C(u1, : : : ,ui¡1,0,ui+1, : : : ,ud) = 0 for i 2 f1,
: : : ,dg,

2. C(1, : : : ,1,ui,1, : : : ,1) = ui for i 2 f1, : : : ,dg,
3. For all (a1, : : : ,ad) and (b1, : : : ,bd) in [0,1]

d

with ai < bi for i 2 f1, : : : ,dg:
¢a1,b1

: : :¢ad ,bd
C(u1, : : : ,ud)¸ 0

for all (u1, : : : ,ud) 2 [0,1]d, (3:1)

where

¢ai,biC(u1, : : : ,ud) =

C(u1, : : : ,ui¡1,bi,ui+1, : : : ,ud)

¡C(u1, : : : ,ui¡1,ai,ui+1, : : : ,ud):

A copula can be interpreted as the joint distri-
bution function of a random vector on the unit
cube. Note that condition (3.1) in Definition 1
ensures that

P[a1 ·U1 · b1, : : : ,ad ·Ud · bd]¸ 0
for all (a1, : : : ,ad) and (b1, : : : ,bd) in [0,1]

d with
ai < bi for i 2 f1, : : : ,dg and where (U1, : : : ,Ud)
denotes a d-dimensional uniform random vector
with copula C.
It follows from the next theorem that the joint

distribution function of a continuous random vec-
tor can be written as a function of its margins and
a unique copula.

THEOREM 1 (Sklar’s Theorem in d-dimensions).
Let F be a d-dimensional distribution function with
marginal distribution functions F1, : : : ,Fd. Then
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there is a d-dimensional copula C such that for
all x 2 Rd

F(x1, : : : ,xd) = C(F1(x1), : : : ,Fd(xd)): (3.2)

If F1, : : : ,Fd are all continuous, then C is unique.
Conversely, if C is a d-dimensional copula, and
F1, : : : ,Fd are distribution functions, then F defined
by (3.2) is a d-dimensional distribution with mar-
gins F1, : : : ,Fd.

See Nelsen (1999) for a proof.

3.2. Examples of copulas

Every d-dimensional copula C satisfies the in-
equality

max

8<:0,
dX
i=1

ui¡ (n¡ 1)
9=;· C(u1, : : : ,ud)

·minfu1, : : : ,udg,
for all (u1, : : : ,ud) 2 [0,1]d: (3.3)

For d ¸ 3, the left-hand side of (3.3) does not sat-
isfy the condition for being a copula [see Denuit
et al. (2005) for an explanation]. In dimension 2,
the left-hand side of (3.3) is called the Fréchet
lower bound copula, which we denote with CL.
Random couples with this copula are said to be
countermonotonic. The right-hand side of (3.3) is
the d-dimensional Fréchet upper bound copula,
which we denote with CU. Random vectors with
this copula are said to be comonotonic. Comono-
tonicity is the strongest possible dependence.
Below, we define some other well known cop-

ulas:

² The independence copula
For d independent random variables X1, : : : ,Xd
with respective distribution functions F1, : : : ,Fd,
the joint distribution function is equal to
¦di=1Fi(xi). Therefore, the copula underlying
independent risks is given by

CI(u1, : : : ,ud) =
dY
i=1

ui,

for all (u1, : : : ,ud) 2 [0,1]d:

² The survival copula or flipped copula
Let C be a d-dimensional copula and let (U1,
: : : ,Ud) be a uniform random vector on [0,1]d

with copula C. The survival function is defined
and denoted with

CS(u1, : : : ,ud) = P[U1 > u1, : : : ,Ud > ud]

for all (u1, : : : ,ud) 2 [0,1]d:
CS is not a copula since CS(0, : : : ,0) = 1. How-
ever,

C̄(u1, : : : ,ud) = CS(1¡ u1, : : : ,1¡ ud)

for all (u1, : : : ,ud) 2 [0,1]d

is a copula, which we call the survival copula
or the flipped copula of the copula C.
If (U1, : : : ,Ud) is a uniform random vector on
[0,1]d with copula C, then (1¡U1, : : : ,1¡Ud)
is a uniform random vector on [0,1]d with cop-
ula C̄.

² The normal copula
The d-dimensional random vector X = (X1,
: : : ,Xd)

t has a multivariate normal distribution
with mean vector ¹= (¹1, : : : ,¹d) and positive-
definite dispersion matrix § if its distribution
function is given by

º¹,§(x) =
Z x1

¡1
¢¢ ¢
Z xd

¡1

1p
(2¼)dj§j

£ exp
μ
¡1
2
(²¡¹)t§¡1(²¡¹)

¶
d²1 : : :d²d,

where ²= (²1, : : : ,²d)
t and x= (x1, : : : ,xd)

t. Note
that for the normal distribution, § =Cov[X],
where Cov[X] denotes the variance-covariance
matrix of X. It follows from Sklar’s theorem
that this multivariate distribution gives rise to a
unique copula. The copula of a random vector
is invariant under strictly increasing transfor-
mations of the random vector (Nelsen 1999).
Therefore, the copula of a º¹,§-distribution is
identical to that of a º0,P-distribution, where
P is the correlation matrix implied by the dis-
persion matrix §. In what follows, we will im-
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plicitly assume that § refers to the correlation
matrix and we will work with the standardized
version of the multivariate normal distribution,
denoted with º§ . The d-dimensional normal
copula with correlation matrix § is then de-
fined and denoted by

C§(u1, : : : ,ud) = º§(©
¡1(u1), : : : ,©

¡1(ud)),

for all (u1, : : : ,ud) 2 [0,1]d,
where © denotes the distribution function of
the univariate standard normal distribution. A
simulation algorithm for the normal copula can
be found in Wang (1999) or in Embrechts,
Lindskog, and McNeil (2003).

² The Student copula
The d-dimensional random vector X = (X1,
: : : ,Xd)

t has a (nonsingular) multivariate Stu-
dent distribution with m degrees of freedom
(m> 0), mean vector ¹, and positive-definite
dispersion matrix § if its distribution function
is given by

tm,¹,§(x)

=
Z x1

¡1
¢¢ ¢
Z xd

¡1

¡

μ
m+d
2

¶
j§j¡1=2

¡
³m
2

´
(m¼)d=2

£
·
1+

1
m
(²¡¹)t§¡1(²¡¹)

¸¡(m+d)=2
d²1 : : :d²d,

where ²= (²1, : : : ,²d)
t and x= (x1, : : : ,xd)

t. The
multivariate Student distribution with m= 1 is
also called the multivariate Cauchy distribu-
tion. Note that for the Student distribution with
m degrees of freedom (m> 2), we have § =
(m=(m¡ 2))Cov[X] [see Demarta and McNeil
(2005) and references therein]. The covariance
matrix is only defined for m> 2. As for the
normal copula, in what follows, we will im-
plicitly assume that § refers to the correlation
matrix and denote the standardized version of
the multivariate Student distribution with m
degrees of freedom with tm,§ . The Student cop-
ula with m degrees of freedom and correlation

matrix § is then defined and denoted by

Cm,§(u1, : : : ,ud) = tm,§(t
¡1
m (u1), : : : , t

¡1
m (ud)),

for all (u1, : : : ,ud) 2 [0,1]d:

A simulation algorithm for the Student cop-
ula can be found in Embrechts, Lindskog, and
McNeil (2003).

The normal copula is certainly one of the most
popular copulas in practice. The dependence
structure between different risks can be taken
into account by means of a correlation matrix.
It is symmetric (in the sense that it is equal to its
survival copula) and has no tail dependence (see
Section 4.3), making it not sufficiently flexible
for contexts where extreme outcomes of the mar-
gins may be more correlated. The Student copula
exhibits tail dependence (again see Section 4.3),
which makes it more flexible than the normal
copula. However, it remains symmetric.

3.3. Archimedean copulas

A popular class of copulas are the so-called
Archimedean copulas, which were described in
Genest and MacKay (1986a) and Genest and
MacKay (1986b). Let ' : [0,1]! [0,+1[ be
some continuous, strictly decreasing and convex
function for which '(1) = 0. Every such function
' generates a bivariate copula C':

C'(u1,u2)

=

8>><>>:
'¡1['(u1)+'(u2)]

if '(u1)+'(u2)¸ '(0),
0 otherwise.

(3.4)

' is called the generator of the Archimedean cop-
ula C'. The independence copula is Archimedean
with generator '(t) =¡c ln(t), where c is an ar-
bitrary constant in ]0,+1[.
It is possible to create multivariate Archime-

dean copulas from the bivariate version. There-
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fore, assume a bivariate Archimedean copula
with generator '. Now define the function C[d]'
by the following iteration for d ¸ 3:
C[d]' (u1, : : : ,ud) = C'(C

[d¡1]
' (u1, : : : ,ud¡1),ud),

for all (u1, : : : ,ud) 2 [0,1]d:
(3.5)

C[d]' is a copula for all d ¸ 2 if and only if '¡1 is
completely monotonic in R+ (Kimberling 1974).
A function g is said to be completely mono-
tonic on the interval J if it is continuous and has
derivatives of all orders which alternate in sign,
i.e.,

(¡1)k d
k

dtk
g(t)¸ 0 for all t 2 J

and k 2 f0,1,2, : : :g:
(3.6)

If the generator '(t) is the inverse of the Laplace
transform of a distribution function G on R+ sat-
isfying G(0) = 0, the following procedure can be
used to simulate the Archimedean copula defined
by

C'(u1, : : : ,ud) = '
¡1('(u1)+ ¢ ¢ ¢+'(ud)),

(u1, : : : ,ud) 2 [0,1]d

(Marshall and Olkin 1988):

² Generate S with distribution function G such
that the Laplace transform of G is '¡1.

² Generate a d-dimensional uniform random
vector (U1, : : : ,Ud) on [0,1]

d such that all Ui,
for i 2 f1, : : : ,dg, are independent.

² Then Vi = '¡1(¡ ln(Ui)=S), i 2 f1, : : : ,dg, is a
uniform random vector on [0,1]d with copula
C'.

For an extensive list of one-parameter bivari-
ate families of Archimedean copulas, we refer to
Nelsen (1999). Three popular Archimedean cop-
ulas are the Clayton, the Frank and the Gumbel-
Hougaard copulas. These copulas have been
given different names by different authors. We
again refer to Nelsen (1999) for an overview.

² Clayton’s copula
For any ® > 0, the d-dimensional Clayton cop-
ula is defined and denoted by

CC,®(u1, : : : ,ud) = (u
¡®
1 + ¢ ¢ ¢+ u¡®d ¡ d+1)¡1=®,

for all (u1, : : : ,ud) 2 [0,1]d:

The generator of Clayton’s copula is

'C,®(t) =
1
®
(t¡®¡ 1), where t 2 [0,1]

and ® > 0:

Its inverse is the Laplace transform of a
Gamma random variable S »Gamma(1=®,1).

² Frank’s copula
For any ® > 0, the Frank copula can be defined
in general dimensions d ¸ 2 (Nelsen 1999). It
is defined and denoted by

CF,®(u1, : : : ,ud)

=¡ 1
®
ln

Ã
1+

Qd
i=1(exp(¡®ui)¡ 1)
exp(¡®)¡ 1

!
,

for all (u1, : : : ,ud) 2 [0,1]d: (3.7)

The generator of Frank’s copula is

'F,®(t) =¡ ln
"
e¡®t¡ 1
e¡®¡ 1

#
where t 2 [0,1]

and ® > 0:

Its inverse is equal to the Laplace transforma-
tion of a discrete distribution S with a proba-
bility density function given by

P[S = s] =
(1¡ e¡®)s

s®
, for s 2 f1,2, : : :g:

(3.8)

In the bivariate case, definition (3.7) also gives
rise to a copula for ® < 0. In Frank (1979), it is
shown that this copula is the only Archimedean
copula satisfying C(u1,u2) = C̄(u1,u2) for all
(u1,u2) 2 [0,1]2.

² Gumbel-Hougaard copula
For any ®¸ 1, the Gumbel-Hougaard copula
can be defined in general dimensions d ¸ 2
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(Nelsen 1999). It is defined and denoted by

CG,®(u1, : : : ,ud)

= exp[¡[(¡ ln(u1))®+ ¢ ¢ ¢+(¡ ln(ud))®]1=®],
for all (u1, : : : ,ud) 2 [0,1]d:

The generator of the Gumbel-Hougaard copula
is

'G,®(t) = (¡ ln(t))® where t 2 [0,1]
and ®¸ 1:

Its inverse is equal to the Laplace transform of
a positive stable random variable S » St(1=®,
1,°,0) with

° =
μ
cos
μ
¼

2®

¶¶®
and ® > 1. In order to generate a Stable ran-
dom variable S » St(®,¯,°,±) with ® 2 (0,2]n
f1g and ¯ 2 [¡1,1], one can use the following
procedure (Weron 1996):
² Generate V » U[¡¼=2,¼=2] and W » Expo
(1).
² Set

B®,¯ =
arctan(¯ tan(¼®=2))

®
and

S®,¯ = [1+¯
2 tan2(¼®=2)]1=(2®):

² Compute S » St(®,¯,°,±) as:

X = S®,¯
sin(®(V+B®,¯))

(cos(V))1=®

·
cos(V¡®(V+B®,¯))

W

¸(1¡®)=®
S = °X+ ±:

Note that this procedure is not valid for ®=
1, which is not relevant within the context of
simulating a Gumbel copula.

We refer to Nelsen (1999) for some limiting
and special cases for the Archimedean copulas
defined above. For each of the three examples,
the parameter ® can be interpreted as a measure
for the strength of the dependence. Archimedean
copulas are more flexible than the normal and
Student copula in the sense that they are not
necessarily symmetric and can exhibit either up-
per or lower tail dependence (see Section 4.3).
For multidimensional problems, they may be less

flexible since the dependence structure is based
on solely one parameter, implying the same de-
pendence structure between all margins.

4. Measures of dependence

In this section, we focus on three well-known
dependence measures. Kendall’s tau and the
measures of tail dependence of a random cou-
ple can be defined as a function of their copula.

4.1. Pearson’s correlation

Consider two random variables X1 and X2 with
finite variance. Pearson’s correlation coefficient
is then defined and denoted by

½P(X1,X2) =
Cov[X1,X2]p
Var[X1]Var[X2]

: (4.1)

½P(X1,X2) is a measure of the degree of linear
relationship between X1 and X2. A substantial
drawback of Pearson’s correlation is that it is
not invariant under strictly increasing transfor-
mations t1 and t2. That is, in general, ½P(t1(X1),
t2(X2)) is not equal to ½P(X1,X2). It follows from
the Cauchy-Schwartz inequality that ½P(X1,X2)
is always in [¡1,1]. If X1 and X2 are inde-
pendent, then ½P(X1,X2) = 0. As explained in
Embrechts, McNeil, and Straumann (2002), it is
possible to construct a random couple with al-
most zero correlation for which the components
are co- or countermonotonic. This contradicts the
intuition that small correlation implies weak de-
pendence.

4.2. Kendall’s rank correlation

Consider two random variables, X1 and X2,
and let Y1 and Y2 denote two other random vari-
ables with the same joint distribution but inde-
pendent of X1 and X2. Kendall’s tau is defined
as

½¿ (X1,X2) = E[sign[(X1¡Y1)(X2¡Y2)]]
= P[(X1¡Y1)(X2¡Y2)> 0]
¡P[(X1¡Y1)(X2¡Y2)< 0]:
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Hence, if ½¿ (X1,X2) is positive, there is a higher
probability of having an upward slope in the
relation between X1 and X2 and conversely if
½¿ (X1,X2) is negative. If ½¿ (X1,X2) = 0, we intu-
itively expect upward slopes with the same prob-
ability as downward slopes. Kendall’s tau is in-
variant under strictly monotone transformations.
This implies that ½¿ (X1,X2) only depends on the
copula of (X1,X2). It can easily be verified that
Kendall’s tau for a flipped copula is the same as
for the original copula.

4.3. Tail dependence

The coefficient of upper and lower tail depen-
dence of a random couple (X1,X2) with marginal
distribution functions F1 and F2 are respectively
defined and denoted by

¸U = lim
v!0

P[X1 > F̄¡11 (v) j X2 > F̄¡12 (v)]

¸L = lim
v!0

P[X1 · F¡11 (v) j X2 · F¡12 (v)],

where F̄i(x) = 1¡Fi(x) for i 2 f1,2g. As explain-
ed in Denuit et al. (2005), if F1 and F2 are con-
tinuous, the tail dependence coefficients can be
written as

¸CU = lim
v!1

1¡ 2v+C(v,v)
1¡ v

¸CL = lim
v!0

C(v,v)
v

,

where C denotes the copula of the random couple
(X1,X2).

4.4. Examples

In Table 3, we summarize the Kendall’s tau
and the coefficients of tail dependence for the
copulas defined in Section 3. Note that C® and
Cm,® repectively denote the 2-dimensional nor-
mal copula with correlation ® and the 2-dimen-
sional Student copula with m degrees of freedom
(m> 0) and correlation ®.
For Kendall’s tau, see Lindskog, McNeil, and

Schmock (2003) for proofs for the normal and

Table 3. Dependence measures for different copulas

Copula ½¿ ¸L ¸U

CI 0 0 0
CU 1 1 1
CL ¡1 0 0

C® 2arcsin(®)=¼ 0 if ® < 1 and 1 if ® = 1

Cm,® 2arcsin(®)=¼ 2tm+1

Ã
¡
p
m+ 1

r
1¡®
1 +®

!
CC,®

®

®+ 2
0 2¡1=®

CF,® 1¡ 4
®

+
4
®2

Z ®

0

t

et ¡1
dt 0 0

CG,® 1¡ 1
®

2¡21=® 0

Table 4. Parameters and tail dependence for a Kendall’s tau
of 0.5

Copula ½¿ ® ¸L ¸U

C® 0.5 0.707 0 0
C4,® 0.5 0.707 0.397 0.397

CC,® 0.5 2 0.707 0

CF,® 0.5 5.736 0 0

CG,® 0.5 2 0 0.586

Student copula and Nelsen (1999) for the other
examples. For the tail dependence, seeEmbrechts,
McNeil, and Straumann (2002) or Demarta and
McNeil (2005) for proofs regarding the Student
and the normal copula. The Clayton copula ex-
hibits lower but no upper tail dependence. For
applications with asymptotic dependence in the
upper tail, it may be interesting to work with
the flipped Clayton copula. This copula has also
been called the heavy right tail copula (Venter
2001).
Below, we plot simulations for some of the

copulas defined in Section 3. In order to make
the copulas comparable in some way, we ensure
that they all have a Kendall’s tau of 0.5. This
implies that the copulas have parameters and tail
dependence as specified in Table 4. For the Stu-
dent copula, we choose four degrees of freedom.
In Figures 1 and 2, we show 10,000 simula-

tions for the normal and the Student copula. For
both copulas, we make a zoom at (1,1).
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Figure 1. C0:707-copula

Figure 2. C4,0:707-copula

We see that the Student and the normal cop-
ula have a rather similar shape. For the Student
copula, there are some points around (1,0) and
(0,1), whereas for the normal copula, these re-
gions are almost empty. In the zooms, we ob-
serve a stronger concentration of points around
(1,1) for the Student than for the normal copula.
This illustrates the tail dependence.

In Figure 3, we show 10,000 simulations for
a Clayton copula. We make a zoom both around
(0,0) and (1,1).
The shape of this copula is totally different

than the normal and the Student copula. In the
tails, we detect a totally different behavior. The
zoom at (1,1) looks more or less like an indepen-
dent copula, whereas the zoom at (0,0) exhibits
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Figure 3. CC,2-copula

some kind of conic shape with a strong concen-
tration around the origin.
In Figures 4 and 5, we show 10,000 simula-

tions for a Frank and a Gumbel-Hougaard cop-
ula. For both copulas, we make a zoom around
(1,1).
In Figure 4, we detect the symmetry for the

Frank copula. The shape, however, is very dif-
ferent from that of the normal and the Student
copula. Above the first bisector, the normal and
Student copula seem to exhibit a concave shape,

whereas that of the Frank copula looks more con-
vex. The zoom of the Frank copula around (1,1)
again looks like the independent copula, where-
as the zoom for the Gumbel-Hougaard copula
shows a concentration around (1,1).

5. Analysis of residual risk using
TVaR
For every analysis we make in this section, we

assume that all margins are identical. This al-
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Figure 4. CF,5:736-copula

Figure 5. CG,2-copula

lows comparisons between 2- and 5-dimensional
results and creates some symmetry which makes
interpretation more straightforward. A similar
analysis can of course be made if margins are
different. We look at exponential and lognormal
margins. The results for exponential margins will
verify the accuracy of the simulations with the
results obtained in Section 2. X has a lognormal
distribution with parameters ¹ and ¾2 (¾ > 0) if it

has the probability density function as specified
by (5.1):

fX(x) =
1

x¾
p
2¼
e¡(ln(x)¡¹)

2=2¾2 for all x > 0:

(5.1)
It is well known that if X » LN(¹,¾2),

E[X] = e¹+¾
2=2 and (5.2)

Var[X] = e2¹+2¾
2 ¡ e2¹+¾2 : (5.3)
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Table 5. Risk measures of residual risk for 2 exponential risks (½¿ = 0:5)

Copula Variable E:95 ¾:95 E:99 ¾:99 P:95 P:99 TVaR:95 TVaR:99

RRX 1.826 18.9 0.368 8.60 0.982 0.996 399 562
CU RRX1;2

1.826 18.9 0.368 8.60 0.982 0.996 399 562

Div Ben 0% 0% 0% 0% 0.000 0.000 0% 0%

RRX 0.909 9.5 0.189 4.43 0.982 0.996 235 315
CL RRX1;2

1.838 13.4 0.373 6.20 0.963 0.993 400 560

Div Ben 51% 29% 49% 29% 0.018 0.004 41% 44%

RRX 1.060 10.8 0.208 4.80 0.981 0.996 296 389
CI RRX1;2

1.829 13.4 0.367 6.07 0.963 0.993 400 560

Div Ben 42% 20% 43% 21% 0.018 0.004 26% 31%

RRX 1.606 16.7 0.321 7.55 0.982 0.996 368 510
C0:707 RRX1;2

1.843 15.8 0.369 6.93 0.969 0.993 399 562

Div Ben 13% ¡6% 13% ¡9% 0.013 0.003 8% 9%

RRX 1.727 18.1 0.356 8.31 0.982 0.996 373 526
C4,0:707 RRX1;2

1.829 16.9 0.369 7.55 0.971 0.994 399 561

Div Ben 6% ¡7% 3% ¡10% 0.010 0.002 7% 6%

RRX 1.133 11.4 0.213 4.88 0.981 0.996 330 430
CC,2 RRX1;2

1.830 13.5 0.368 6.08 0.964 0.993 399 562

Div Ben 38% 15% 42% 20% 0.017 0.004 17% 23%

RRX 1.832 19.0 0.366 8.44 0.982 0.996 390 553
C̄C,2 RRX1;2

1.831 18.4 0.367 8.18 0.976 0.995 398 560

Div Ben 0% ¡3% 0% ¡3% 0.005 0.001 2% 1%

RRX 1.201 12.0 0.220 5.12 0.981 0.996 347 451
CF,5:736 RRX1;2

1.841 13.7 0.367 6.16 0.965 0.993 399 560

Div Ben 35% 13% 40% 17% 0.016 0.004 13% 19%

RRX 1.811 19.0 0.373 8.78 0.982 0.996 385 544
CG,2 RRX1;2

1.834 18.0 0.375 8.30 0.974 0.995 400 560

Div Ben 1% ¡5% 1% ¡6% 0.008 0.002 4% 3%

RRX 1.449 14.9 0.281 6.49 0.981 0.996 354 479
C̄G,2 RRX1;2

1.852 14.8 0.368 6.30 0.967 0.993 400 561

Div Ben 22% ¡1% 24% ¡3% 0.015 0.003 11% 15%

In order to work with margins which are com-
parable, we will fix their mean and variance. It
follows easily from (5.2) and (5.3) that in order
to have a lognormal distribution with mean
and variance 1=¸, we need the following param-
eters:

¹=¡1
2 ln(2¸

2) and

¾ =
q
ln(2¸2)¡ 2ln(¸):

(5.4)

The same analysis can of course be made for all
kinds of margins which can be simulated.

5.1. Merger of two identical companies

In Table 5, we give summary statistics for the
residual risk for the merger and for the sum of
the separate subsidiaries for exponential margins
with parameter ¸= 1=50. The results are based
on 1,000,000 simulations. In order to make the
results comparable, the parameters of the copulas
are chosen to obtain a Kendall’s tau of 0.5, ex-
cept for the comonotonic, countermonotonic, and
independent copula, of course. The subscripts .95
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and .99 in Table 5 indicate the level of the TVaR.
The columns P:95 and P:99 give the estimated
probabilities that the residual risk is 0 when a
TVaR at level 0.95 or 0.99 is used as a solvency
level. The numerical accuracy of the results in the
independent case can be compared with Table 1.
Except for the comonotonic case, the simulations
for the margins are not necessarily the same. The
comparison of the results for the mean residual
risk and the sum of the TVaRs for the separate
subsidiaries gives an idea about their numerical
variability.
In Table 5, we observe that among all depen-

dence structures, there is a maximum diversifi-
cation benefit on the TVaR for the merger of
about 41% on the 0.95-level and 44% on the
0.99-level in the countermonotonic case. When
we compare the normal and the Student cop-
ula, we observe that the Student copula requires
more capital due to the tail dependence, but it
should be noted that the difference, certainly at a
0.95-level, is small. The difference is larger if the
solvency level increases. For a higher probabil-
ity level, we detect a smaller difference between
the average residual risk for the merger and the
stand-alones for the Student copula, whereas for
the normal copula it is nearly constant. We also
see a clear influence of the strong tail depen-
dence for the flipped Clayton and the Gumbel-
Hougaard copula. There is almost no diversifi-
cation effect in such an environment. Increasing
the solvency level makes the effect on the capi-
tal even smaller. This is opposed to the situation
for the Frank, the Clayton, and to a lower extent
also for the flipped Gumbel-Hougaard copula.
These copulas exhibit a clear diversification ben-
efit both on the capital requirement and on the
mean of the residual risk, which increases with
the solvency level. We observe that when look-
ing at capital requirements, it is very important
to correctly take into account the stochastic de-
pendence in the tails. Our simulations illustrate
that if strong tail dependence is present but is not
taken into account, the required capital can be
substantially underestimated. With respect to the

Table 6. Parameters and tail dependence for a Kendall’s tau
of 0.25

Copula ½¿ ® ¸L ¸U

C® 0.25 0.383 0 0
C4,® 0.25 0.383 0.195 0.195

CC,® 0.25 0.667 0.354 0

CF,® 0.25 2.372 0 0

CG,® 0.25 1.333 0 0.318

standard deviation of the residual risk, we note
for most of the cases with a Kendall’s tau of 0.5
an increase for the merger. Only for the Clayton
and the Frank copula does this statistic decrease.
Note that the level of dependence we chose may
be fairly high for practical considerations. Still,
the increase when compared to the stand-alone
scenario is never larger than 10%. The probabil-
ity of default can be substantially decreased by
merging the risks, mainly in situations where tail
dependence is low.
In Table 7, we give the same results as in Ta-

ble 5 but now for two identical lognormal mar-
gins with mean and standard deviation equal to
50 and for a Kendall’s tau of 0.25. It follows
from (5.4) that the margins have parameters ¹=
3:565 and ¾ = 0:8326. The choice for Kendall’s
tau implies that the copulas have parameters and
tail dependence as specified in Table 6.
In Table 6, we see that the lower tail depen-

dence for the Clayton copula is, just as for a
Kendall’s tau of 0.5, larger than the upper tail
dependence for the Gumbel-Hougaard and the
tail dependence for Student copula.
In Table 7, we observe that among all depen-

dence structures, there is a maximum diversifi-
cation benefit on the TVaR for the merger of
about 36% on the 0.95-level and 40% on the
0.99-level. If we exclude the comonotonic case,
we again have a minimum diversification benefit
for the flipped Clayton copula, which is about
9% both at a 0.95 and 0.99 probability level. For
the Gumbel-Hougaard copula, the diversification
benefit on the TVaR now also remains nearly
constant in function of the probability level,
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Table 7. Risk measures of residual risk for two lognormal risks (½¿ = 0:25)

Copula Variable E:95 ¾:95 E:99 ¾:99 P:95 P:99 TVaR:95 TVaR:99

RRX 2.817 34.23 0.737 19.68 0.983 0.997 417 674
CU RRX1;2

2.817 34.23 0.737 19.68 0.983 0.997 417 674

Div Ben 0% 0% 0% 0% 0.000 0.000 0% 0%

RRX 1.583 19.49 0.405 10.88 0.984 0.997 265 408
CL RRX1;2

2.831 24.57 0.733 13.90 0.967 0.993 417 674

Div Ben 44% 21% 45% 22% 0.017 0.003 36% 40%

RRX 1.662 19.91 0.416 10.87 0.983 0.997 314 466
CI RRX1;2

2.804 24.33 0.738 13.88 0.967 0.993 417 674

Div Ben 41% 18% 44% 22% 0.016 0.003 25% 31%

RRX 1.983 23.23 0.495 13.09 0.983 0.997 350 531
C0:383 RRX1;2

2.807 25.15 0.748 14.54 0.968 0.993 417 676

Div Ben 29% 8% 34% 10% 0.014 0.003 16% 21%

RRX 2.294 28.65 0.642 17.68 0.983 0.997 359 573
C4,0:383 RRX1;2

2.833 28.41 0.763 16.95 0.971 0.994 418 680

Div Ben 19% ¡1% 16% ¡4% 0.013 0.003 14% 16%

RRX 1.721 20.09 0.430 11.30 0.983 0.997 329 484
CC,0:667 RRX1;2

2.829 24.41 0.752 14.31 0.967 0.993 417 676

Div Ben 39% 18% 43% 21% 0.016 0.003 21% 28%

RRX 2.546 31.21 0.682 18.69 0.984 0.997 379 614
C̄C,0:667 RRX1;2

2.807 29.93 0.740 17.64 0.973 0.994 417 675

Div Ben 9% ¡4% 8% ¡6% 0.011 0.002 9% 9%

RRX 1.757 20.44 0.438 11.67 0.983 0.997 339 498
CF,2:372 RRX1;2

2.831 24.47 0.746 14.38 0.967 0.993 418 677

Div Ben 38% 16% 41% 19% 0.015 0.003 19% 26%

RRX 2.487 31.65 0.667 18.10 0.984 0.997 371 599
CG,1:333 RRX1;2

2.839 30.52 0.746 17.14 0.972 0.994 418 677

Div Ben 12% ¡4% 11% ¡6% 0.011 0.002 11% 11%

RRX 1.852 21.80 0.465 12.53 0.983 0.997 338 505
C̄G,1:333 RRX1;2

2.818 24.86 0.750 14.72 0.968 0.993 416 674

Div Ben 34% 12% 38% 15% 0.015 0.003 19% 25%

whereas for the Student copula, it now even in-
creases with the probability level. However, for
each of the latter three copulas, the average resid-
ual risk still shows a lower relative diversification
benefit when increasing the probability level. We
see a clear influence of the fatter tails for the log-
normal marginals both on the TVaR and on the
risk measures of the residual risk. The subaddi-
tivity of the TVaR is never such that it increases
the average residual risk of the merger. How-
ever, in cases with (strong) positive tail depen-

dence, the diversification benefit on the residual

risk remains small if we compare with the inde-

pendent situation and with the situations without

tail dependence. The probabilities of default are

slightly larger than for the exponential margins,

which have less fat tails.

5.2. Merger of five identical companies

In Table 8, we give the results of the same

simulations as in Table 5 but in five dimensions.
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Table 8. Risk measures of residual risk for five exponential risks (½¿ = 0:5)

Copula Variable E:95 ¾:95 E:99 ¾:99 P:95 P:99 TVaR:95 TVaR:99

RRX 4.614 47.5 0.897 21.1 0.981 0.996 999 1400
CU RRX1;5

4.614 47.5 0.897 21.1 0.981 0.996 999 1400

Div Ben 0% 0% 0% 0% 0.000 0.000 0% 0%

RRX 1.340 13.4 0.258 6.0 0.981 0.996 533 649
CI RRX1;5

4.575 21.2 0.927 9.7 0.911 0.982 999 1405

Div Ben 71% 37% 72% 38% 0.070 0.015 47% 54%

RRX 3.608 37.3 0.736 17.1 0.982 0.996 870 1198
C0:707 RRX1;5

4.578 32.7 0.938 14.0 0.944 0.987 997 1408

Div Ben 21% ¡14% 22% ¡22% 0.038 0.009 13% 15%

RRX 4.117 43.4 0.871 20.0 0.982 0.996 888 1263
C4,0:707 RRX1;5

4.585 38.7 0.931 17.2 0.954 0.990 996 1402

Div Ben 10% ¡12% 6% ¡17% 0.028 0.006 11% 10%

RRX 1.800 17.6 0.300 6.7 0.981 0.996 707 857
CC,2 RRX1;5

4.623 22.3 0.914 9.6 0.917 0.982 1000 1402

Div Ben 61% 21% 67% 30% 0.063 0.014 29% 39%

RRX 4.604 48.0 0.918 21.7 0.982 0.996 966 1363
C̄C,2 RRX1;5

4.613 45.7 0.917 20.7 0.970 0.994 998 1396

Div Ben 0% ¡5% 0% ¡5% 0.012 0.002 3% 2%

RRX 2.120 20.1 0.345 7.6 0.980 0.996 782 960
CF,5:736 RRX1;5

4.588 22.9 0.923 9.8 0.923 0.982 997 1403

Div Ben 54% 12% 63% 22% 0.057 0.014 22% 32%

RRX 4.594 47.7 0.914 21.3 0.982 0.996 946 1337
CG,2 RRX1;5

4.630 43.5 0.913 19.2 0.960 0.992 1001 1397

Div Ben 1% ¡10% 0% ¡11% 0.022 0.005 6% 4%

RRX 2.799 28.2 0.522 12.0 0.981 0.996 801 1045
C̄G,2 RRX1;5

4.604 27.6 0.918 11.1 0.935 0.985 999 1403

Div Ben 39% ¡2% 43% ¡9% 0.046 0.012 20% 25%

Note that for the normal and the Student cop-
ula, all elements in the correlation matrix, apart
from those on the diagonal, are equal to the value
specified in Table 4. This may in practice, of
course, not be very realistic, but we make this
choice in order to use copulas which are com-
parable with respect to their Kendall’s tau. It is
clear that for the normal and Student copulas, it
is possible to use different dependence structures
between the margins (if we look at them 2 by 2),
whereas for multivariate Archimedean copulas,
the dependence structure between the margins (2
by 2) is always the same and based on solely one
parameter.

As we could expect, the diversification benefit

on the TVaR and the default probability is now

always larger than in the 2-dimensional situation.

For the average residual risk, we have a higher

diversification benefit as well. From our list of

copulas, the independent situation now leads to

the highest diversification benefit. For the rest,

the same conclusions hold as in two dimensions.

In cases where the volatility of the residual risk

of the merger increased compared to the stand-

alone situation, it now increases more and vice

versa if it decreased. If our main interest is the

average residual risk or the default probability,
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Table 9. Risk measures of residual risk for five lognormal risks (½¿ = 0:25)

Copula Variable E:95 ¾:95 E:99 ¾:99 P:95 P:99 TVaR:95 TVaR:99

RRX 7.116 88.0 1.906 52.0 0.983 0.997 1049 1698
CU RRX1;5

7.116 88.0 1.906 52.0 0.983 0.997 1049 1698

Div Ben 0% 0% 0% 0% 0.000 0.000 0% 0%

RRX 2.078 23.7 0.495 12.3 0.983 0.997 564 755
CI RRX1;5

7.018 38.3 1.875 22.2 0.920 0.983 1040 1691

Div Ben 70% 38% 74% 45% 0.063 0.013 46% 55%

RRX 3.624 40.8 0.851 21.9 0.983 0.996 749 1072
C0:383 RRX1;5

7.066 43.9 1.886 24.4 0.931 0.985 1045 1695

Div Ben 49% 7% 55% 10% 0.051 0.012 28% 37%

RRX 4.897 61.1 1.338 38.4 0.984 0.997 797 1239
C4,0:383 RRX1;5

7.105 59.3 1.883 35.3 0.945 0.988 1045 1692

Div Ben 31% ¡3% 29% ¡9% 0.039 0.009 24% 27%

RRX 2.244 24.8 0.542 14.1 0.982 0.997 636 847
CC,0:667 RRX1;5

6.980 38.4 1.937 24.1 0.922 0.984 1039 1696

Div Ben 68% 35% 72% 41% 0.060 0.013 39% 50%

RRX 5.990 74.6 1.661 46.3 0.984 0.997 885 1433
C̄C,0:667 RRX1;5

7.054 69.3 1.894 42.2 0.954 0.991 1042 1688

Div Ben 15% ¡8% 12% ¡10% 0.029 0.006 15% 15%

RRX 2.582 27.9 0.532 13.3 0.982 0.996 693 918
CF,2:372 RRX1;5

7.044 39.7 1.851 22.2 0.924 0.983 1042 1690

Div Ben 63% 30% 71% 40% 0.058 0.013 34% 46%

RRX 5.901 72.6 1.615 43.9 0.984 0.997 855 1411
CG,1:333 RRX1;5

7.012 64.1 1.861 37.8 0.946 0.989 1041 1695

Div Ben 16% ¡13% 13% ¡16% 0.038 0.008 18% 17%

RRX 2.752 30.6 0.649 17.2 0.982 0.997 683 934
C̄G,1:333 RRX1;5

6.998 40.3 1.883 24.1 0.926 0.984 1040 1689

Div Ben 61% 24% 66% 29% 0.056 0.012 34% 45%

in these examples, the TVaR is never too subad-

ditive.

In Table 9, we give the same results as in Ta-

ble 7 but for 5 identical lognormal risks.

In the case the risks are independent, we again

observe a very substantial benefit on the required

capital. For all copulas, the relative decrease of

the TVaR and of the average residual risk is again

more important than when we compare with the

2-dimensional case. Just as we observed by com-

paring Table 5 and 8, if in two dimensions, the

standard deviation of the residual risk of the mer-

ger increased compared to that of the sum of

the stand-alone companies, it now increases more

and vice versa if it decreased.

In Table 10, we give the same results as in

Table 9 but for five identical lognormal risks with

mean 50 and a coefficient of variation (COV)

of 25%. This means that we use the parameters

¹= 3:882 and ¾ = 0:2462 for the margins. This

may correspond better to the shape of aggregate

distributions for different lines of business.

In this setting, the tail is substantially smaller

than for a COV of 100%. Therefore, the TVaR is

reduced importantly. The relative diversification

benefit on the TVaR for the merger varies be-
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Table 10. Risk measures of residual risk for five lognormal risks with a COV of 25% (½¿ = 0:25)

Copula Variable E:95 ¾:95 E:99 ¾:99 P:95 P:99 TVaR:95 TVaR:99

RX 0.737 7.52 0.140 3.20 0.981 0.996 405 468
CU RX1;5

0.737 7.52 0.140 3.20 0.981 0.996 405 468

Div Ben 0% 0% 0% 0% 0.000 0.000 0% 0%

RX 0.256 2.54 0.045 1.02 0.981 0.996 313 335
CI RX1;5

0.737 3.36 0.141 1.47 0.910 0.982 405 469

Div Ben 65% 24% 68% 30% 0.071 0.015 23% 29%

RX 0.458 4.58 0.085 1.95 0.981 0.996 355 393
C0:383 RX1;5

0.743 3.91 0.139 1.56 0.923 0.983 405 468

Div Ben 38% ¡17% 39% ¡25% 0.058 0.013 12% 16%

RX 0.600 6.41 0.125 2.96 0.982 0.996 360 412
C4,0:383 RX1;5

0.744 5.18 0.143 2.25 0.937 0.987 405 469

Div Ben 19% ¡24% 12% ¡31% 0.045 0.009 11% 12%

RX 0.287 2.77 0.049 1.10 0.980 0.996 334 359
CC,0:667 RX1;5

0.738 3.42 0.141 1.47 0.912 0.982 405 469

Div Ben 61% 19% 65% 26% 0.068 0.015 17% 23%

RX 0.716 7.33 0.139 3.28 0.981 0.996 377 438
C̄C,0:667 RX1;5

0.746 5.93 0.142 2.60 0.949 0.990 405 468

Div Ben 4% ¡24% 2% ¡26% 0.033 0.007 7% 7%

RX 0.331 3.13 0.053 1.17 0.980 0.996 347 375
CF,2:372 RX1;5

0.744 3.47 0.141 1.46 0.914 0.982 405 469

Div Ben 56% 10% 62% 20% 0.066 0.014 14% 20%

RX 0.735 7.53 0.141 3.32 0.981 0.996 375 439
CG,1:333 RX1;5

0.740 5.68 0.142 2.51 0.939 0.988 405 469

Div Ben 1% ¡33% 1% ¡32% 0.043 0.009 7% 6%

RX 0.341 3.37 0.062 1.38 0.981 0.996 340 370
C̄G,1:333 RX1;5

0.740 3.61 0.142 1.49 0.918 0.982 405 469

Div Ben 54% 7% 57% 8% 0.063 0.014 16% 21%

tween 52% of the value in Table 9 for the inde-

pendent copula and 38% for the Gumbel copula

(both at a 99%-level). At a 95%-level, the rela-

tive diversification benefit on the average resid-

ual risk for the mergers is reduced most impor-

tantly for the Gumbel and the flipped Clayton

copula (resp. 4% and 26% of the diversification

benefit in Table 9). For the other copulas, it varies

between 63% of the level in Table 9 for the Stu-

dent copula and 93% of this level for the inde-

pendent copula. A comparable conclusion can be

drawn at a 99%-level. For all simulations, the

diversification “benefit” on the standard devia-

tion of the residual risk is lower than in Table 9.

The probabilities that the residual risk is zero are

slightly lower than in Table 9. The differences

between the default probabilities for the merger

and the stand-alones increase about 10% in these

scenarios.

In all 5-dimensional examples, the TVaR

seems to give an acceptable benefit to the diver-

sification for the merger. The subadditivity of the

TVaR is never such that the average residual risk

and the probability of default of the merger in-

crease compared to the situation of the stand-

alones.
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6. Conclusion
Our examples have clearly demonstrated the

possible diversification benefit when risks are be-
ing merged. This benefit plays not only on the re-
quired capital but also on the residual risk after
capital allocation and on the default probability.
If the TVaR is used as a risk measure, merging
risks can be in the interest both of the sharehold-
ers and of the regulator defending the interests of
the policyholders. When using the average resid-
ual risk as a benchmark, our examples demon-
strate that the TVaR is not too subadditive under
a wide range of dependence structures. The same
holds when the default probability is considered.
The standard deviation of the residual risk for the
merger can be both larger and smaller than the
standard deviation of the sum of the residual risk
for the stand-alone companies, depending on the
strength of the (tail) dependence. These results
make us believe that the TVaR is a very valid
candidate for a risk measure providing, in itself,
a basis for compromise between the interests of
the shareholders and the regulator.
Based on a simulation model taking various

copulas for describing the dependence structure
between the margins, we have seen that results
for copulas which all have the same Kendall’s
tau may be very different. This clearly illustrates
the importance of the tails in general and the ef-
fect of tail dependence in particular for capital
calculation purposes. If possible tail dependence
in the data is being neglected, this may lead to a
capital relief for a merger which is too large.
In case of positive upper tail dependence and

a high value for Kendall’s tau, the diversifica-
tion benefit on the capital relatively decreases if
we increase the solvency level. If Kendall’s tau
and the strength of the upper tail dependence de-
crease, this is not necessarily true. When there is
no upper tail dependence, a higher solvency level
leads to a higher relative diversification benefit,
both for higher and lower values for Kendall’s
tau.

In a multidimensional setting, Archimedean
copulas based on one parameter may lack flexi-
bility to effectively capture the dependence struc-
ture. The normal and Student copulas are more
flexible in this sense, since they allow the user
to work with more parameters based on a corre-
lation matrix. The normal copula has the draw-
back that is does not allow the user to model
tail dependence. We have seen that the tail de-
pendence for the Student copula drives the re-
sults for the normal and Student copula further
apart for higher probability levels. Further analy-
sis based on real-life data should be made to see
whether the Student copula is flexible enough
to capture the tail dependence in an appropriate
manner.
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