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Severity Curve Fitting 
for LongTailed Lines: 

An Application of Stochastic
Processes and Bayesian Models

by Greg McNulty

ABSTRACT

I present evidence for a model in which parameters fit to the

severity distribution at each report age follow a smooth curve

with random error. More formally, this is a stochastic process,

and it allows us to estimate parameters of the ultimate severity

distribution. I detail a Bayesian hierarchical model that takes

a modestly sized dataset of triangulated individual claim data

and returns posterior distributions for the parameters of the

ultimate severity distribution, trend and loss to an excess layer.

Currently available methods are also discussed. Full code and

data are provided in the appendices.
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given a modestly sized simulated dataset. These criti
cal values will give us estimates of trend, the ultimate
severity distribution and excess layer losses. Finally,
I will contrast with current methods.

2. Stochastic severity 
distribution parameters

2.1. Empirical evidence for the model

The method I will present in this paper was inspired
by patterns found in actual data. Figure 1 shows the

 parameter of a lognormal distribution fit for each
accident year and evaluation age from a grouped data
set of incurred amounts from commercial general
liability claims. The number of claims in that dataset
is on the order of hundreds of thousands. Lognormal
was the best fit among about a dozen parametric
distributions of one to four parameters. Each line is a
single accident year.

Figure 2 shows the µ parameters of a lognormal
distribution fit to each accident year and age of a
ground up dataset of approximately three thousand
individual professional liability claims.

The remainder of this paper will show how we can
build a model around this pattern we see in the data.
The purpose of the model is to solve the problem
stated in the introduction: how to produce parametric

1. Introduction

Severity distributions are very important in actu
arial science. They allow for the calculation of rating
parameters such as increased limits factors and rein
surance costs. Fitting parametric curves to severity
distributions is highly desirable for smoothing the
data and adequately modeling tail losses. A difficult
problem faced by actuaries is how to produce para
metric or semiparametric severity distributions repre
senting ultimate settlement values for longtailed lines
of business where losses develop slowly over time.

For lines of business in which all claims and their
ultimate values are known soon after occurrence,
fitting a curve to the individual claim amounts is a
straightforward exercise. For longtailed lines, how
ever, any finite set of individual claim data is biased
due to the tendency for individual claim amounts to
increase as the time since claim occurrence increases.
Also, some claims are not reported until years after
they occur, so the actuary’s dataset may not be com
plete, nor will they know if it is complete.

In this paper I will present evidence that a param
eter fit to the severity distribution for each accident
year and age will appear to follow a stochastic process.
Then I detail a Bayesian hierarchical model which
reasonably reproduces the theoretical true values for
the critical parameters of the stochastic process when
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Figure 1. Fitted lognormal µ by AY and age from large dataset 
of grouped liability claims
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in Figure 3: each parameter appears to be following
a smooth curve. By extrapolating the curves beyond
the observation period, say to infinity, we will have
an estimate for the distribution of ultimate settlement
amounts.

These points can be fitted by exponential decay
in the first differences, e.g., following the formulas:
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as a closedform solution to the above recursive
relations, it can then be written as

t e t0 1 1( )( )( )µ = µ + ∆ −µ
− θ

0 1 .2( )( )( )σ = σ + ∆ −σ
− θt e t

or semiparametric severity distributions represent
ing ultimate settlement values for longtailed lines
of business where losses develop slowly over time.

2.2. Initial data and the basic model

The goal is to produce a parametric severity distri
bution representing sizes of loss for claims occurring
in the prospective accident period. I’m assuming the
user is starting with a dataset as shown in Table 1
with annual evaluations of individual claim amounts
from a set of accident years.

As in the reallife examples of Section 2.1,
suppose we observe individual claim incurred loss
amounts for a given accident year for ten years. At
the end of each year we record the total incurred
amount for every claim, whether open or closed, and
then fit a parametric distribution, e.g., lognormal,
to the claim amounts. This gives us ten  parameters
and ten  parameters. Suppose we observe the pattern
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Figure 2. Fitted lognormal µ by AY and age from dataset 
of professional liability claims

Table 1. Assumed format of available data

Claim
Accident

Year
Age 1

Incurred
Age 2

Incurred
Age 3

Incurred

1 1 500 1000 1100

2 2 100 500

3 2 100 300

4 3 200
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2.3. Stochastic processes

A perfectly smooth curve is obviously an idealized
model of the loss process and in reality will be subject
to multiple layers of parameter risk. One risk is the
potential for the actual severity distribution param
eters to stray from the assumed deterministic path. The
modern mathematical framework for random vari
ables indexed by time like this is stochastic processes.

Suppose we observe multiple accident periods and
see the pattern in the fitted lognormal mean param
eters as shown in Figure 4, which more closely resem
bles the real data.

Note that the  terms depend on  and  but not t.
Now with these formulas we can determine the param
eters of the ultimate severity distribution:

t
t
lim 0( )( )µ = µ + ∆
→∞

µ

lim 0 .( )( )σ = σ + ∆
→∞

σt
t

This would give us an estimate of the ultimate
average logseverity. We could also use these param
eters to determine the amount of loss that would ulti
mately be in an excess layer or calculate ILFs.
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Figure 3. Smooth curve of severity distribution parameter by report age

8.50

9.00

9.50

10.00

10.50

11.00

11.50

AY 1

AY 2

AY 3

AY 4

AY 5

l

1 2 3 4 5 6 7 8 9 10

Report Age

Figure 4. Smooth curve of severity distribution parameter µ
with stochastic error
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formulas for a single accident year. A complete model
must incorporate the data from multiple accident
years simultaneously. This can be done by assuming
all accident years follow different realizations of the
same stochastic process, as in Figure 4. Additionally,
we can incorporate the traditional assumption that
losses in each successive accident year will be higher
than the previous by a fixed rate of inflation, or trend.

Using the notation (i, j ) where the first variable
is the accident year and the second is the report age,
we can incorporate trend very simply as follows:

,1 1,1 .( ) ( )µ = µ − +i i trend

Equivalently, if we define  to be a fixed number
representing a baseline value for  at accident year 0
and age 1, then we can write

�,1 .( )µ = µ +i trend i

In our final model below, we will also add a random
error term to each (i, 1).

3. Application of Bayesian statistics

3.1. Extension to the small or medium
dataset case

Even with a large volume of data, there will always
be a range of possible estimates for the parameters
of the smooth curve, the error variances, and all the
other parameters of the stochastic process. This is
the parameter risk of the stochastic model. How can
we confidently use this model when we don’t have a
very large dataset?

Instead of taking our small to mediumsized data
set and trying to fit a model from scratch, we can start
with an a priori set of possible models and use the data
to modify the probability that each model is correct.
The modern tool for this type of statistical analysis is
a Bayesian hierarchical model. An excellent reference
is Zhang, Dukic, and Guszcza (2012).

To put our stochastic process in the framework of a
Bayesian hierarchical model, instead of simply saying
the accident year inflation rate of the  parameter is

The  parameter still appears to follow a smooth
curve, but with a random error component between
each reporting age. Also note that the paths appear
to follow a moving average trend with drift, meaning
each point is influenced by the prior points on the same
graph, not the overall average among all paths. If we
wanted to be more formal we could write the differ
ence equation of the severity distribution parameters as

t t e tt �1 1 1( )( ) ( )µ − µ − = δ +( )
µ

− − θ
µ

1 .1 2 �( )( ) ( )σ − σ − = δ +( )
σ

− − θ
σt t e tt

With error variances that decay in time,

Var t v e t� 1( )( ) = ( )
µ µ

− η

.2�( )( ) = ( )
σ σ

− ηVar t v e t

From here we could compute the ultimate severity
distribution by taking limits of sums and also their
variances by using stochastic calculus (beyond the
scope of this paper).

2.4. Caveat on real-life sigma parameters

In the interest of full disclosure, the charts of the
 parameters for the real datasets in Figures 1 and 2

also follow what look like a stochastic process around
a smooth curve, but the smooth curve is not as
simple as the exponential decay model developed
above. They look more like a bell curve with a local
maximum within the first several years. For simplicity
I will assume it does follow the exponential decay
model, but if you look at real data, expect to see a
more complicated pattern. The model developed in
this paper can be expanded to handle other types of
smooth curves. I would just urge the reader to visu
ally inspect graphs of their data and fitted parameters
to make sure your model is reasonable.

2.5. Trend, the link between 
accident years

So far we have seen multiple accident years
together in Figures 1, 2, and 4 but we have only given
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from the most recent. The result is 1,100 data points.
The data is simulated randomly from a process iden
tical to the model so that we know the answer and
can compare the Bayesian posterior estimates with
the true theoretical values.

I have assumed mostly uninformative uniform
distributions over wide ranges relative to the true
parameter values for purposes of this example. In a
real application, the true benefit of this model is the
ability to use an informative prior. For example, if
10 similar datasets have been analyzed and growth

appears to be normally distributed with mean 5 and
standard deviation 2, then that would be a reasonable
prior to use in analyzing the 11th dataset. Even for a
brand new dataset, there is likely some type of expec
tation by the analyst of the range of parameters and
the prior is how those expectations enter the model.

In this example, the priors for µstart and start are
very specific, however. These variables represent the
parameters of the distribution of claims at the first
reporting age. Since these claim amounts are imme
diately available, this is a classical fitting exercise.
I assume the variance between our estimate and the

5% per year, we specify that it is normally distributed
with mean 5% and standard deviation 1%, or that
the exponential decay of the first differences in the

 parameter isn’t 30%, but normally distributed with
mean 30% and standard deviation 5%. These are our
prior distributions. Then, given a dataset of indi
vidual claim amounts indexed by accident year and
report age, we can calculate the Bayesian posterior
distributions of all our severity distribution stochastic
process parameters.

3.2. Bayesian hierarchical model 
of stochastic severity development

I created an implementation of this model in
Stan, a free and opensource R package for building
Bayesian models and calculating posterior estimates.
The full code of the model can be found in Appen
dix A. For readers who are not familiar with Bayesian
modeling and would like more background, an excel
lent reference is Scollnik (2001).

I assume that claims in each accident year and age
are lognormally distributed with the  and  param
eters following discrete time stochastic processes
defined by the following formulas.

i trend i istart � �,1 ,1( ) ( )µ = µ + + µ

i istart �,1 ,1( ) ( )σ = σ + σ

i j i j eincr
j

u
growth� �, , 1 i, j1( ) ( ) ( )µ = µ − + µ +( )− − µ

i j i j eincr
j growth� �, , 1 i, j1( ) ( ) ( )σ = σ − + σ +( )− − σ

σ

i j N p e j r
�

�� , 0, 1∼ ( )( ) ( )
µ µ

− − µ

� �, 0, .1� ∼ ( )( ) ( )
σ σ

− − σi j N p e j r

Explanations of each variable are given in Table 2.
The input data, shown in Appendix B, represents

20 claim amount observations per accident year and
report year from the upper half of a 10 by 10 accident
year/report year triangle. There will be 10 report ages
observed from the oldest accident year and only one

Table 2. Variable definitions

Parameter Definition

mu_start The theoretical value of  at report time 1 without
process risk

mu_incr The amount  is expected to increase between
report ages, subject to decay

mu_growth Rate of decay in the amount  is expected to
increase between report ages

sigma_start The theoretical value of  at report time 1 without
process risk

sigma_incr The amount  is expected to increase between
report ages, subject to decay

sigma_growth Rate of decay in the amount  is expected to
increase between report ages

trend Expected increase in  at age 1 between successive
accident years

p_mu Standard deviation of error term for  in age 1

r_mu Rate of decay in variance term for  between 
successive report ages

p_sigma Standard deviation of error term for  in age 1

r_sigma Rate of decay in variance term for  between 
successive report ages
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means will be closer if either we have more data or
supply informative priors.

Since µult and ult are stochastic, they do not have
a true value but rather a true mean. For any combina
tion of these variables, we will get a different layer
loss and frequency which is why the “true value”
is ambiguous. Parameter variance in the model for
ground up losses becomes leveraged and adds to
the expected layer loss and frequency; therefore, the
expected value depends on which types of parameter
risk are considered to be contributors. As defined in
the code, layer_loss and layer_freq depend only on
µult, ult and the trend and the model means reflect
the uncertainty in those parameters. One could argue
that they should also depend on the process variance
of a generic accident year, introducing pµ and p  into
the equation.

Figures 5 through 8 show histograms of the poste
rior distribution of the critical output variables.

4. Survey of current methods

4.1. ISO: Fitting by closure age

ISO provides ultimate severity distributions for
many longtailed liability lines of business. Their
method of accounting for severity development is to
fit a distribution to claims closed at each reporting
age, then weight those curves together by the pro
portion of claims expected to be settled in each age.
Once a claim is closed, then the loss amount is fixed,
so there is no bias in the fit to the data for a given
closure period.

In the later ages the data thins out and there may
be a problem fitting credible curves. ISO’s solution
is to group all closed claims beyond a certain age
together and give them a single severity distribution.
Industry excess loss triangles would indicate that this
assumption is not accurate, but it may be immaterial
for the volume of data and number of years ISO
has available. For an application with less data or a
shorter history, it may be necessary to make explicit
adjustment for development beyond the reporting
ages observed.

true values (9 for µstart and 0.5 for start) is given by
Fisher’s information; see Example 15.9 in Klugman,
Panjer, and Wilmot (2008).

Near the end of the code I define the outputs of
interest, µult and ult. These are calculated by extrap
olating the smooth curve out to report time infinity.
We are not limited to the estimate for µ(i, 10) or

(i, 10).
Finally, we calculate the expected layer loss and

frequency to a $1M excess $1M layer for the next
accident year. The output is an approximation to the
Bayesian posterior distribution of the expected layer
loss. Note that this is per claim since the model does
not have a frequency component.

3.3. Model output and performance

Table 3 summarizes the model output and com
pares the posterior estimates to the true values used
to simulate the data.

Table 3 shows the model coming within approxi
mately one standard deviation of the true value for
the critical output parameters of µult, ult and trend,
but the posterior means differ somewhat from the true
values. The point is not that the model can exactly
reproduce the true parameter values but that in the
case of a small to mediumsized dataset the model is
able to produce a reasonable estimate of the stochas
tic process parameters, and also give an estimate of
the uncertainty around those estimates. The posterior

Table 3. Bayesian model output

Parameter Model Mean Model Std. Dev. True Value

mu_start 9.00 0.03 9

mu_incr 0.75 0.15 0.79

mu_growth 3.89 1.17 3

mu_ult 11.40 0.39 11

sigma_start 0.52 0.02 0.5

sigma_incr 0.43 0.75 0.20

sigma_growth 2.36 1.57 3

sigma_ult 1.08 0.15 1

trend 0.03 0.02 0.05

layer_loss 19,969 43,592 *

layer_freq 0.04 0.06 *
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Meyers acknowledges the loss development prob
lem and proposes a solution in which each possible
loss model has an early report distribution and a cor
responding ultimate loss distribution. The Bayesian
calculation is done using the immature individual
loss data and the early report severity curves, then
the same posterior probabilities are given to the cor
responding ultimate severity distributions. Construc
tion of the ultimate severity distributions associated
to immature report distributions is not described.

4.4. Stochastic models

The papers by Drieksens et al. (2012) and Korn
(2015) develop more detailed stochastic models of
the claims process in order to calculate reserve distri
butions and more. They use multiple evaluations for
each claim, paid and incurred amounts, open/closed
status and separate treatment of IBNR claims in a
detailed stochastic framework that mimics the actual
movement of individual claims.

Drieksens recognizes the need for a tail factor
to account for development beyond observed ages,
but the determination of the factor is left to ad hoc
methods. Korn discusses two methods for determin
ing severity distributions based on a Cox proportional
hazard model in a GLM framework with semi
parametric distributions. These appear to be very
robust approaches, although they may suffer in cases

4.2. NCCI: Claims dispersion

The method put into practice by the NCCI and
WCIRB for fitting ultimate severity distributions for
worker’s compensation losses is claims dispersion;
see Corro and Engl (2006) and California WCIRB
(2012). The basic idea behind claims dispersion is,
given a claim amount, we can find the distribution
of the ultimate settlement value by looking at the
historical movement of individual claims over time.
The aggregation of the ultimate settlement distribu
tion for each current claim gives the ultimate severity
distribution.

If we are working with a low to medium volume of
data, it may not be possible to fit two or more param
eters between every reporting age independently.
Also, if the average IBNR claim is larger than the
average previously reported claim, then some of the
severity distribution development cannot be captured
by measuring the change in existing claims.

4.3. Bayesian methods

An excellent application of Bayesian statistics to
the fitting of loss distributions is given in Meyers
(2005). Given a multitude of possible full severity
distributions, Meyers uses the observed claim experi
ence along with Bayes’ Theorem to calculate poste
rior probabilities that each model is correct, then uses
these probabilities to calculate the expected layer loss.
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The Bayesian model responds appropriately to
the volume of data provided, hence we can proceed
with a small to mediumsized dataset. If the dataset
is limited in time, the method explicitly accounts for
development beyond the latest observed report age.
With a limited number of accident years, minimal
information on trend is available and the model will
fail to update the posterior significantly from the
prior, which is a good thing in that case.

Finally, I am providing readers with full computer
code and sample dataset for easy reproduction of the
results presented and the ability to conduct further
experimentation.
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of low data volume unless enhanced with Bayesian
credibility as suggested by the author.

5. Conclusion

We saw evidence from actual data that when we
observe a fitted parameter to the severity distribution
for each single accident year and age, it will appear
to follow a smooth curve with some random error.
I formulated this more precisely in terms of stochastic
processes. Then I showed how a Bayesian hierarchi
cal model can reasonably reproduce the theoretical
true values for the critical parameters of the stochastic
process when given a modestly sized dataset of indi
vidual claim amounts at multiple evaluations. Readers
now have at their disposal a new method for devel
oping ultimate severity distributions for longtailed
lines of business.

Beyond simply being an additional method,
I believe the “Bayesian stochastic severity” frame
work has many benefits over currently available
methods. Our method has very minimal data require
ments. Data in the format of Table 1 is required,
although we never actually use the information on
the movement of an individual claim. Only triplets
of (accident year, report age, incurred amount) are
necessary.

Although the link between reports for each indi
vidual claim is lost, data from multiple accident
years and report ages are used simultaneously in a
unified and visually intuitive way through the sto
chastic process. The smooth curve portion is easy to
communicate and compare between applications.
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6. Appendix A

Below is the code for the Stan model, stored in the file “model.stan” called from the R code:

data {
 int<lower=0  N;
 real size_of_loss[N];
 int<lower=0  year[N];
 int<lower=0  age[N];
}
parameters {
real mu_start;
real mu_incr;
real<lower=0  mu_growth;
real trend;
real<lower=0.01  sigma_start;
real<lower=0  sigma_incr;
real<lower=0  sigma_growth;
real<lower=0  p_mu;
real<lower=0  r_mu;
real<lower=0  p_sigma;
real<lower=0  r_sigma;
real err_mu[10,10];
real err_sigma[10,10];
}
transformed parameters {
real sd_mu[10];
real sd_sigma[10];
real mu[10,10];
real sigma[10,10];
real claim_mean[N];
real claim_sd[N];

for( i in 1 : 10 ) {
         sd_mu[i] <− p_mu * exp(−(i − 1) * r_mu);
         sd_sigma[i] <− p_sigma * exp(−(i − 1) * r_sigma);

         mu[i , 1] <− mu_start + trend * i + err_mu[i , 1];
         sigma[i , 1] <− sigma_start + err_sigma[i , 1];

         for( j in 2 : 10 ) {
             mu[i , j] <− mu[i , j − 1] + mu_incr * exp(( −j + 1) / mu_growth) + err_mu[i , j];
              sigma[i , j] <− sigma[i , j − 1] + sigma_incr * exp(( −j + 1) / sigma_growth) +

 err_sigma[i , j];
         }
     }

for( i in 1 : N ) {
             claim_mean[i] <− mu[year[i] , age[i]];
             claim_sd[i] <− sigma[year[i] , age[i]];
     }
}
model {
mu_start  normal(9, 0.035);
mu_incr  uniform(0.01, 20);
mu_growth  uniform(0.01, 20);
trend  normal(0, 0.1);
sigma_start  inv_gamma(400,200);
sigma_incr  uniform(0.01, 20);
sigma_growth  uniform(0.01, 20);
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p_mu  uniform(0.01, 5);
r_mu  uniform(0.01, 20);
p_sigma  uniform(0.01, 5);
r_sigma  uniform(0.01, 20);
for (i in 1:10){
     for (j in 1:10){
         err_mu[i , j]  normal(0, sd_mu[j]);
         err_sigma[i , j]  normal(0, sd_sigma[j]);
     }
}
for (i in 1:N){
     size_of_loss[i]  lognormal(claim_mean[i], claim_sd[i]);
}
}
generated quantities {
real mu_ult;
real sigma_ult;
real a;
real b;
real layer_loss;
real layer_freq;
real mu_next;
mu_ult <− mu_start + mu_incr * exp(−1/mu_growth) / (1 − exp(−1/mu_growth));
sigma_ult <− sigma_start + sigma_incr * exp(−1/sigma_growth) / (1 − exp(−1/sigma_growth));
a <− 1000000;
b <− 2000000;
mu_next <− mu_ult + trend * 11;
layer_loss <− exp(mu_next + 0.5 * square(sigma_ult)) * Phi((log(b) − mu_next 
 − square(sigma_ult)) / sigma_ult) + b * Phi((mu_next − log(b)) / sigma_ult) 
 − exp(mu_next + 0.5 * square(sigma_ult)) * Phi((log(a) − mu_next − square(sigma_ult)) 
 / sigma_ult) − a * Phi((mu_next − log(a)) / sigma_ult);
layer_freq <− 1−Phi( (log(a)−mu_next) / sigma_ult);
}

Next is the companion R code for running the model:

library(rstan)
source(“data.txt”)
set.seed(123); fit<− stan(file = ‘model.stan’, data=data, iter=5000, chains = 2)
print(fit, pars=c(“mu_start”, “mu_incr”, “mu_growth”, “mu_ult”, “p_mu”, “r_mu”,
”sigma_start”, “sigma_incr”, “sigma_growth”, “sigma_ult”, “p_sigma”, “r_sigma”,

 ”trend”, “layer_loss”, “layer_freq”))
traceplot(fit, pars=c(“mu_ult”, “sigma_ult”, “trend”, “layer_loss”, “layer_freq”), 
 inc_warmup = FALSE)
x<−extract(fit, pars=c(“mu_ult”, “sigma_ult”, “trend”, “layer_loss”), permuted = TRUE, 
 inc_warmup = FALSE)
attach(x)
hist(mu_ult, breaks = 50, xlim = range(10,13))
hist(sigma_ult, breaks = 50, xlim = range(0.5,1.5))
hist(trend, breaks = 50, xlim = range(−0.05,0.1))
hist(layer_loss, breaks = 500, xlim = range(0,60000))
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7. Appendix B

Below is the data used in the Stan model, stored in the file “data.txt” and called from the R code:

data<− list(N = 1100, size_of_loss = c(27391, 5247, 5626, 8498, 18732, 29296, 4640, 
14200, 6993, 10798, 9891, 6765, 6784, 13998, 20273, 4723, 6620, 16061, 24055, 26241,
11551, 20260, 16801, 27092, 15732, 49591, 19493, 35771, 21991, 17305, 117541, 79469,
29029, 23251, 32613, 16767, 31875, 42086, 79740, 40686, 22013, 91399, 12690, 5225, 6159,
50562, 82580, 12879, 45203, 28509, 7504, 75341, 36510, 15472, 740283, 76052, 66960,
330890, 90372, 289358, 22775, 113945, 199806, 87982, 7115, 38619, 452900, 144612, 48155,
14116, 124650, 62953, 263282, 13678, 71177, 239511, 40455, 180691, 8042, 33629, 143648,
47681, 119368, 73799, 24349, 96274, 8424, 128084, 34222, 24907, 15400, 67429, 98406,
93242, 741785, 41395, 74027, 155411, 17781, 679444, 178249, 74269, 23854, 10552, 19624,
14673, 20129, 64344, 51649, 284291, 154198, 379181, 150379, 101411, 200118, 22749, 81948,
4888, 492670, 72041, 59343, 357935, 444824, 167078, 71670, 40626, 130953, 41356, 89383,
491058, 645837, 75096, 62314, 59012, 295248, 312625, 51843, 35446, 199074, 19205, 113792,
48475, 657834, 112167, 140254, 65132, 31324, 270400, 33393, 1203011, 67180, 112681, 41516,
334095, 47855, 263742, 13038, 91708, 12786, 24915, 292404, 42813, 44328, 106793, 197605,
73142, 9847, 140268, 195790, 291079, 18695, 45046, 495291, 148617, 169532, 567873, 70130,
20424, 19081, 72215, 59949, 24246, 689893, 315562, 44716, 75738, 44495, 1828832, 99438,
106000, 8664, 344798, 353197, 272017, 176736, 56721, 36720, 184906, 209506, 192954, 7463,
5557, 6625, 6425, 1936, 16045, 2351, 5989, 9643, 4951, 10521, 6381, 2494, 42536, 4930,
4366, 4511, 36721, 12348, 6422, 50323, 10163, 13721, 15319, 4188, 11599, 13316, 20149,
8805, 16261, 1512, 6248, 17815, 5567, 61026, 14356, 18175, 20636, 14121, 13975, 33310,
24455, 186401, 36094, 208388, 12510, 14165, 42712, 39457, 34097, 16094, 66558, 58838,
25800, 126406, 36057, 116894, 55234, 118106, 22765, 46170, 19395, 46569, 38020, 19006,
16416, 64137, 25676, 75195, 14450, 32161, 3263, 36796, 9969, 37453, 20506, 143506, 19716,
138778, 74603, 38587, 240670, 25254, 14047, 109233, 353390, 141065, 17313, 27969, 113089,
125258, 70727, 10955, 144470, 67605, 31260, 106717, 96548, 41624, 61368, 44722, 113191,
92237, 101002, 41609, 46192, 152294, 28334, 7599, 48700, 155066, 177534, 130983, 165544,
9338, 77806, 56396, 13707, 31609, 251547, 190457, 17546, 50830, 149937, 41248, 58396,
389251, 29244, 161436, 93445, 73427, 48216, 77142, 30448, 244308, 85139, 65575, 86181,
149661, 96704, 143106, 102066, 164646, 144970, 78455, 89236, 1336131, 41302, 69487, 75280,
341458, 37486, 165637, 142835, 97178, 229452, 112998, 43624, 19580, 215436, 163919,
130124, 156586, 67557, 59918, 122495, 109581, 127714, 84716, 201129, 143145, 164793,
44320, 24383, 131758, 371019, 7783, 83966, 90372, 15359, 3307, 13665, 12801, 7727, 9381,
6927, 9085, 16676, 10232, 10292, 9872, 17645, 5114, 3641, 6582, 5125, 6599, 10376, 9925,
8915, 7101, 9674, 39673, 44349, 11586, 8014, 47398, 9231, 8749, 8755, 35577, 26803, 11433,
5556, 5706, 7729, 27343, 3145, 9803, 9913, 14619, 31510, 2267, 23245, 41074, 23828, 6049,
39367, 138770, 4815, 53012, 80507, 1803, 13671, 25257, 8868, 14324, 32148, 75268, 6393,
12289, 42779, 12595, 69797, 6538, 54523, 67595, 11403, 46451, 9720, 27337, 2715, 11443,
8396, 30312, 29386, 122162, 34861, 4551, 4446, 177268, 65600, 70106, 15082, 106718,
278412, 3587, 758210, 4599, 383022, 36282, 24875, 125631, 74215, 5042, 6075, 11989, 27858,
10718, 27807, 18454, 60956, 109004, 138845, 23947, 118984, 25004, 3801, 122783, 17966,
24468, 99368, 67037, 83109, 15686, 24555, 28000, 88171, 32114, 83804, 406543, 85813,
118656, 23121, 14278, 5185, 19115, 91406, 764318, 645227, 7539, 64905, 27599, 44745,
50258, 49787, 100134, 22960, 195094, 177531, 89873, 24199, 171135, 369367, 4128, 17674,
17456, 26677, 28912, 27763, 21711, 58541, 132510, 2063, 11827, 3999, 112228, 89860, 22672,
39198, 9756, 8338, 3781, 9194, 7306, 10672, 24336, 1766, 3948, 17081, 2946, 14141, 3605,
7129, 7890, 20126, 16645, 4926, 11193, 8274, 12421, 15053, 27175, 6973, 9257, 29861,
11225, 2756, 7919, 23980, 21839, 11814, 9948, 11344, 4770, 21957, 6896, 33266, 3219, 8254,
16041, 72735, 6768, 14823, 48228, 40420, 12070, 28574, 23307, 11663, 12180, 7522, 13506,
1652, 39369, 6242, 52273, 12457, 28490, 5775, 9431, 156860, 85657, 18746, 15866, 21796,
13242, 71418, 17132, 15611, 50649, 5122, 48639, 16540, 59757, 15958, 27394, 9353, 46000,
38188, 46426, 19602, 144475, 25218, 96294, 14467, 8506, 4876, 8500, 33080, 66834, 17376,
86244, 57509, 45856, 2378, 3168, 19850, 34751, 12670, 8610, 59768, 11081, 188032, 3640,
20240, 88980, 12805, 33166, 9257, 2105, 211269, 38215, 12551, 63909, 221840, 24685,
176227, 59358, 10332, 233916, 295171, 36118, 4498, 200729, 73205, 20838, 136954, 67975,
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13481, 11789, 41257, 59247, 296266, 34576, 37410, 47969, 110565, 195800, 51182, 24509,
24511, 12829, 2310, 18035, 1379, 6263, 14536, 4973, 8308, 5339, 26998, 11820, 10889,
41262, 2379, 11452, 2066, 4539, 34569, 28295, 39552, 59826, 13050, 7006, 25295, 10214,
73978, 12991, 3177, 31040, 42004, 9617, 27460, 16233, 68031, 92051, 10424, 27124, 60105,
125429, 72524, 49698, 29015, 15517, 36180, 134900, 9296, 34172, 13368, 59032, 46054,
18931, 496097, 9841, 73585, 70621, 14348, 9129, 19698, 33035, 8323, 141706, 48913, 71584,
30464, 6933, 8451, 100269, 7579, 33592, 57368, 90100, 86556, 15448, 6820, 24334, 47515,
77507, 101397, 126396, 27546, 381525, 23828, 48660, 98779, 27822, 219425, 52089, 7611,
9098, 49513, 42052, 244808, 11640, 299800, 23857, 101466, 55359, 46966, 134068, 18618,
261676, 66430, 14123, 9805, 4683, 55212, 102559, 26864, 46025, 9077, 18518, 172388, 25343,
43835, 22867, 10910, 40012, 22372, 5179, 4124, 2595, 6968, 6652, 4845, 7074, 9383, 8012,
4084, 8949, 3618, 9118, 6683, 5552, 5289, 4054, 7074, 5292, 8292, 17568, 10965, 11926,
9943, 10456, 34421, 5836, 17285, 21685, 5709, 5734, 8264, 4641, 16110, 12007, 10848,
28022, 14285, 9405, 9705, 19794, 17890, 26057, 21008, 13247, 22175, 42704, 35119, 64196,
28956, 31347, 21549, 7746, 21572, 52759, 13975, 14236, 17333, 10527, 16173, 12615, 52775,
12137, 128238, 37771, 5743, 178456, 29841, 53745, 103006, 15033, 28217, 75519, 128955,
13608, 138403, 19301, 35530, 48332, 40114, 123332, 35887, 184976, 33680, 100884, 55896,
144192, 72605, 83371, 13180, 76799, 19945, 37723, 126639, 56243, 60166, 8729, 34179,
63260, 20302, 15928, 4552, 4489, 5875, 5997, 9998, 7607, 4550, 5823, 17420, 5521, 12223,
7149, 4895, 5323, 11346, 6839, 28098, 10006, 9231, 10000, 44015, 13689, 6844, 16760, 29511,
3108, 23621, 11691, 5926, 8725, 4631, 8913, 38441, 16933, 16518, 7714, 12639, 3423, 18180,
4916, 5068, 12989, 25711, 16723, 14176, 17281, 3032, 4160, 6838, 3999, 9527, 47089, 12226,
36726, 115216, 10511, 1925, 14189, 4563, 53425, 25311, 10557, 23210, 15156, 16759, 21798,
13990, 9988, 25392, 4907, 27560, 5149, 13007, 33751, 21484, 37233, 72361, 2648, 55069,
24033, 16207, 1832, 4120, 6292, 14665, 22673, 6664, 5021, 3537, 5298, 7419, 31747, 10902,
7122, 6316, 10638, 5370, 2262, 8558, 14902, 9535, 6206, 21237, 8085, 3994, 11773, 7096,
4200, 8465, 3751, 5945, 9725, 33511, 35704, 2010, 10870, 14557, 2910, 48417, 9400, 4993,
12413, 96128, 31515, 67238, 22102, 37779, 55615, 6371, 35608, 21921, 28420, 35139, 4114,
5023, 46936, 32402, 63517, 20610, 22862, 27657, 7008, 35614, 28462, 25641, 33311, 10685,
8902, 17272, 14586, 8149, 14887, 9687, 11534, 9932, 26758, 22743, 9157, 35436, 21014,
12393, 20690, 9959, 27647, 12830, 26770, 20651, 10932, 8520, 41510, 12694, 19110, 15630,
6532, 63756, 53265, 22679, 10150, 248012, 41556, 17472, 17723, 19403, 11277, 9885, 13352,
14362, 23355, 6851, 16872, 18915, 16844, 21619, 18243, 13301, 29362, 16026, 20139, 34050),
year = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

14953-07_McNulty-3rdPgs.indd   131 8/9/18   10:05 AM



Variance Advancing the Science of Risk

132 CASUALTY ACTUARIAL SOCIETY VOLUME 11/ISSUE 1–2

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10),
age = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
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