
34 CASUALTY ACTUARIAL SOCIETY VOLUME 10/ISSUE 1

Computing Semiparametric Bounds on 
the Expected Payments of Insurance 
Instruments via Column Generation

by Robert Howley, Robert H. Storer, Juan C. Vera, and Luis F. Zuluaga

ABSTRACT

It has been recently shown that numerical semiparametric bounds 

on the expected payoff of financial or actuarial instruments can 

be computed using semidefinite programming. However, this 

approach has practical limitations. Here we use column genera-

tion, a classical optimization technique, to address these limita-

tions. From column generation, it follows that practical univariate 

semiparametric bounds can be found by solving a series of linear 

programs. In addition to moment information, the column gen-

eration approach allows the inclusion of extra information about 

the random variable, for instance, unimodality and continuity, as 

well as the construction of corresponding worst/best-case distri-

butions in a simple way.
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Bertismas and Popescu 2002; Boyle and Lin 1997; 
Cox et al. 2013, 2010). An alternative numerical 
approach to solve semiparametric bounds proposed 
in the stochastic programming literature by Birge 
and Dulá (1991), based on the classical column gen-

eration (CG) approach for mathematical optimization 
problems (see, e.g., Dantzig 1963, ch. 22; Lubbecke 
and Desrosiers 2005), has received little attention in 
the financial and actuarial science literature.

Here, we consider the use of CG to obtain semi-
parametric bounds in the context of financial and actu-
arial science applications. In particular, we show that, 
for all practical purposes, univariate semi parametric 
bounds can be found by solving a sequence of lin-
ear programs associated to the CG master problem 
(cf. Section 3). We also show that the CG approach 
allows the inclusion of extra information about the 
random variable such as unimodality and continuity, 
as well as the construction of the corresponding worst/ 
best-case distributions in a simple way. Also, the CG 
methodology achieves accurate results at a very small 
computational cost, it is straightforward to imple-
ment, and the core of its implementation remains the 
same for very general and practical instances of semi-
parametric bound problems.

To illustrate the potential of the CG approach, in 
Section 5.1, semiparametric lower and upper bounds 
are computed for the loss elimination ratio of a right-
censored deductible insurance policy when the under-
lying risk distribution is assumed to be unimodal and 
has known first- and second-order moments. In Sec-
tion 5.2, we illustrate how continuous representations 
of the worst/best-case distributions associated with 
the semiparametric bounds can be readily constructed 
and analyzed.

2. Problem description

Consider a random variable X with an unknown 
underlying distribution p, but known support  ⊆  
(not necessarily finite), and interval estimates [s-

j , s+
j ], 

j = 1, . . . , m for the expected value of functions gj :  
 →  for j = 1, . . . , m (e.g., typically, gj (x) = xj). The 

1. Introduction

Many financial and insurance instruments protect  
against underlying losses for which it is difficult to 
make exact distributional assumptions. Under these  
circumstances, it is difficult to provide a good esti-
mate of the loss distribution, which in turn makes it 
difficult to estimate payments on the corresponding 
insured loss. Computing semiparametric bounds on 
the expected payments is an approach that has been 
successfully used to deal with this problem. This 
involves finding the minimum and maximum expected 
payments on the insurance instrument, when only par-
tial information (e.g., moments) of the underlying 
loss distribution is known. For example, consider 
the work of Cox (1991), Jansen et al. (1986), and 
Villegas et al. (2012). This approach has also been used 
to address the estimation of bounds on extreme loss 
probabilities (Cox et al. 2010) and the prices of insur-
ance instruments and financial options (Brockett et al. 
1996; Lo 1987; Schepper and Heijnen 2007). These 
semiparametric bounds are useful when the structure 
of the product is too complex to develop analytical 
or simulation-based valuation methods, or when it is 
difficult to make strong distributional assumptions on 
the underlying risk factors. Furthermore, even when 
distributional assumptions can be made, and analyti-
cal valuation formulas or simulation based prices can 
be derived, these bounds are useful to check the con-
sistency of such assumptions.

The semiparametric bound approach is also referred 
to as distributionally-robust (see, e.g., Delage and Ye 
2010) or ambiguity-averse (see, e.g., Natarajan et al. 
2011). Also, it has been shown that this approach par-
tially reflects the manner in which persons naturally 
make decisions (cf. Natarajan et al. 2011).

In the actuarial science and financial literature, 
there are two main approaches used to compute semi-
parametric bounds: analytically, by deriving closed-
form formulas for special instances of the problem 
(see, e.g., Chen et al. 2011; Cox 1991; Schepper 
and Heijnen 2007), and numerically, by using semi-
definite programming techniques (cf. Todd 2001) 
to solve general instances of the problem (see, e.g., 
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different support sets  of the distribution of X (see, 
e.g., Bertismas and Popescu 2002, Proposition 1).

Birge and Dulá (1991) proposed an alternative 
numerical method to solve the semiparametric bound 
problem (1) by using a CG approach (see, e.g., Dantzig  
1963, ch. 22; Lubbeck and Desrosiers 2005) that has 
received little attention in the financial and actuarial 
science literature. Here, we show that the CG solution 
approach addresses the limitations of the SDP solu-
tion approach discussed earlier. Additional advantages 
of the CG solution approach in contrast to SDP tech-
niques will be discussed at the end of Section 3.

It is worth mentioning that, although in the next 
section we present the proposed algorithm in pseudo-
algorithmic form (e.g., see Algorithm 3), our imple-
mentation of the algorithm is available upon request 
to the authors.

3. Solution via column generation

In this section, we present the CG solution approach 
proposed by Birge and Dulá (1991, Sec. 3) to solve 
the semiparametric bound problem (1). For the sake of 
simplifying the exposition throughout we will assume 
that (1) has a feasible solution, and that the functions 
f(), gj(), j = 1, . . . , m are Borel measurable in  ⊆  
(cf. Zuluaga and Peña 2005). Now let J ⊆  be a set 
of given atoms, and construct the following linear pro-
gram (LP) related to (1) by associating a probability 
decision-variable px for every x ∈ J:
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Furthermore, we assume that the set J ⊆  is fea-
sible; that is, the corresponding LP (2) is feasible. The 
existence of such J ⊆  follows from the classical 

upper semiparametric bound on the expected value 
of the (target) function f :  →  is defined as:
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a probability distribution on , (1)

where Ep() represents the expected value under the 
distribution p. That is, the upper semiparametric bound 
of the function f is calculated by finding the supre-
mum of Ep( f (X)) across all possible probability dis-
tributions p, with support on the set , that satisfy the 
2m expected value constraints. The parameters s-

j , s+
j, 

j = 1, . . . , m allow for confidence interval estimates 
for the expected value of Ep(gj(X)), that are not typi-
cally considered in the analytical solution of special 
instances of (1) (i.e., typically s-

j = s+
j  in analytical 

solutions).
The lower semiparametric bound of the function f  

is formulated as the corresponding minimization 
problem, that is, by changing the sup to inf in the 
objective of (1). We will provide details about the 
solution of the upper semiparametric bound prob-
lem (1) that apply in analogous fashion to the cor-
responding lower semiparametric bound problem. 
Also, for ease of presentation we will at times refer 
to both the upper and lower bound semiparametric 
problems using (1).

While specific instances of (1) have been solved 
analytically (see, e.g., Lo 1987; Cox 1991; Schepper 
and Heijnen 2007; Chen et al. 2011), semidefinite 
programming (SDP) is currently the main approach 
used in the related literature to numerically solve the 
general problem being considered here (cf. Boyle 
and Lin 1997; Bertismas and Popescu 2002; Popescu 
2005) whenever the functions f() and gj() are piece-
wise polynomials. However, the SDP approach has 
important limitations in terms of the capacity of prac-
titioners to use it. First, there are no commercially 
available SDP solvers. Second, the formulation of the 
SDP that needs to be solved for a given problem is not 
“simple” (Cox et al. 2010) and must be re-derived for 
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bution is known to be compact, then the asymptotic 
convergence of the column generation algorithm 
follows from Dantzig (1963, Theorem 5, Ch. 24). 
However, for the numerical solution of the practical 
instances of (1) considered here, it suffices to have a 
“stopping criteria” for the CG algorithm.

Theorem 1. Let J ⊆  be given, and B*, M*
J , S*r,t 

be the optimal objective values of (1), (2), and (3) 
respectively. Then 0 ≤ B* - M*

J ≤ S*r,t .

Theorem 1 follows from Dantzig (1963, Theorem 3,  
Ch. 24), and states that the LP approximation in (2) 
will be within e of the optimal objective of (1) if the 
objective of subproblem (3) is less than e. It is worth 
mentioning that under additional assumptions about 
the feasible set of (1), one has that in the long-run  
S*r,t → 0; that is, the CG algorithm will converge to the 
optimal solution of the semiparametric bound prob-
lem (1). This follows as a consequence of Dantzig 
(1963, Theorem 5, Ch. 24). In practice, Theorem 1 
provides a stopping criteria for the implementation 
of the CG algorithm under only the assumption of the 
original problem (1) being feasible. Specifically, the 
CG Algorithm 3 can be used to find the optimal upper 
bound B* up to e-accuracy. As mentioned before, a 
Phase I version (cf. Bertsimas and Tsitsiklis 1997) 
of the CG Algorithm 3 can be used to construct an 
initial feasible set J0 ∈ .

Note that (in principle) problem (1) has an infinite 
number of columns (i.e., variables) and a finite num-
ber of constraints; that is, the semiparametric bound 
problem (1) is a semi-infinite program. Thus, the 
approach outlined above is an application to a semi-
infinite program of column generation techniques ini-
tially introduced by Dantzig and Wolfe (1961) for LPs, 
generalized linear programs, and convex programs (cf. 
Dantzig 1963, ch. 22-24). For a survey of column gen-
eration methods, see Lubbecke and Desrosiers (2005).

3.1. Solving the subproblem

As observed by Birge and Dulá (1991), the main 
difficulty in using the CG approach to solve the 
semiparametric bound problem (1) is that the sub-
problem (3) is in general a non-convex optimization 

result by Kemperman (1968, Theorem 1), and can be 
found by solving algorithmically a Phase I version 
(cf. Bertsimas and Tsitsiklis 1997) of the CG Algo-
rithm 3. Following CG terminology, given a set J ⊆   
we will refer to (2) as the master problem.

Notice that any feasible solution of problem (2) 
will be a feasible (atomic distribution) for problem (1).  
Also, the objectives of the two problems are the 
expected value of the function f (x) over the corre-
sponding decision variable distribution. Thus, M*

J is 
a lower bound for the optimal value of the upper 
semi parametric bound problem (1). Furthermore, it 
is possible to iteratively improve this lower bound 
by updating the set J ⊆  using the optimal dual 
values (cf. Bertsimas and Tsitsiklis 1997) of the con-
straints after the solution of the master problem (2). 
Namely, let r-

j , r+
j , j = 1, . . . , m and t be the dual 

variables of the upper/lower moment (i.e., first set 
of constraints in eq. (2)) and total probability (i.e, 
∑x ∈Jpx = 1) constraints respectively. Given a feasible 
set J ⊆ , the dual variables can be used to select a 
new point x ∈ , to add to J ⊆ , that will make the 
corresponding LP (2) a tighter approximation of (1). 
In particular, given r-

j , r+
j , j = 1, . . . , m and t, con-

sider the following subproblem to find x:

D
S f x g x
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The objective value of (3) represents the reduced 
cost of adding the new point x to J; that is, the marginal 
amount by which the objective in (2) can be improved 
with the addition of x in the master problem (2).  
Using the master problem (2) and sub problem (3) 
admits an iterative algorithm that (under suitable con-
ditions) converges to the optimal value of (1). More 
specifically, at each iteration, the master problem (2) is 
solved and its corresponding dual variables are used in 
the subproblem (3) to select a new point x to be added 
to the set J ⊆ . This is called a CG algorithm since at 
each iteration, a new variable px, corresponding to the 
new given point x, is added to the master problem (2).

If the functions f (), gj(), j = 1, . . . , m are continu-
ous, and the support  of the underlying risk distri-
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problem have degree higher than 5. In turn, this means 
that Algorithm 1 would perform well for instances of 
the problem with high degree polynomials.

Generating semiparametric bounds using the CG 
approach outlined above has several key advantages 
over the semidefinite programming (SDP) solution 
approach introduced by Bertsimas and Popescu (2002) 
and Popescu (2005). First, only a linear program-
ming solver for (2) and the ability to find the roots 
of polynomials with degree no more than four for (3) 
is required in most practically relevant situations. 
This means that the methodology can use any com-
mercial LP solver allowing for rapid and numerically 
stable solutions. Second, the problem does not need 
to be reformulated for changes in the support  of 
the underlying risk distribution p of X. Accounting 
for alternate support requires only limiting the search 
space in the subproblem (3). Finally, problem (2) is 
explicitly defined in terms of the distribution used 
to generate the bound value. So, for any bound com-
puted, the worst-case (respectively, the best-case for 
the lower bound) distribution that yielded that bound 
can also be analyzed; with the SDP approach no such 
insight into the resulting distribution is, to the best of 
our knowledge, readily possible. The ability to analyze 
the resulting distribution would be of particular use 
to practitioners in the insurance and risk management 
industry and will be further discussed in Section 5.2. 
Third, the CG approach works analogously for both the 
upper and lower semiparametric bound problems. In 
contrast, the SDP approach commonly results in SDP 
formulations of the problem that are more involved 
for the lower than for the upper semiparametric bound. 

problem (cf. Nocedal and Wright 2006). However, 
in the practically relevant instances of the problem 
considered here, the following assumption holds.

Assumption 1. The functions f (), and gj(), j =  
1, . . . , m in (1) are piecewise polynomials of degree 
less than five (5).

More specifically, typically no higher than fifth-
order moment information on the risk will be assumed 
to be known (e.g., gj(X) = Xj for j = 1, . . . , m and m ≤ 5). 
Also, the function f() typically defines the piecewise 
linear cost or payoff of an insurance instrument (e.g., 
f(x) = max{0, x - d}); a ruin event using a (piecewise 
constant) indicator function (e.g., f (x) = I[0,r](x)); or a 
lower than fifth-order moment of the risk or insurance 
policy cost/payoff (see, e.g., Brockett et al. 1996; Cox 
1991; Lo 1987; Schepper and Heijnen 2007). In such 
cases, the objective of (3) is an univariate fifth-degree 
(or lower) piecewise polynomial. Thus, subproblem 
(3) can be solved “exactly” by finding the roots of 
fourth degree polynomials (using first-order optimal-
ity conditions (see, e.g., Nocedal and Wright 2006)). 
As a result, we have the following remark.

Remark 2. Under Assumption 1 and using the 
CG Algorithm 1, the solution to problem (1) can be 
found by solving a sequence of LPs (2) where the 
column updates (3) can be found with simple arith-
metic operations.

Moreover, thanks to current numerical algorithms 
for finding roots of univariate polynomials, it is not 
difficult to solve subproblem (3) numerically to a high 
precision, even when the polynomials involved in the 

Algorithm 1. Semiparametric bounds via column generation
1: procedure GC(feasible J0, e > 0)
2:  J ← J0, S*r,t = ∞
3:  while S*r,t > e  do
4:   compute M*

J , p* := {p*
x }x ∈J, the optimal objective and solution of master problem (2)

5:   compute S*r,t, x*, the optimal objective and solution of subproblem (3)
6:   J ← J ∪ {x*}
7:  end while
8:  return J* = J, p*, and M*

J ≈ B* (where ≈ stands for M*
J  approximates B*)

9: end procedure
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More specifically, assume that, besides the moment 
information used in the definition of the semiparamet-
ric bound problem (1), it is known that the distribu-
tion p is a mixture of known probability distributions 
Hx, parameterized by a single parameter x ∈ . For 
example, x could be the mean of the distribution Hx, 
or Hx could be a uniform distribution between 0 and x. 
Note that for any g :  → , it follows from the mix-
ture composition of the distribution p that

E g g u E H u du
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This means that with the additional distribution mix-
ture constraint, the associated semiparametric bound 
problem can be solved with the CG Algorithm 1 after 
replacing
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for j = 1, . . . , m in (2), and (3).
Note that in many instances, the expectations in (5)  

can be computed in closed-form as a function of 
the mixture distribution parameter x. Moreover, the 
expectations in (5) are commonly piecewise poly-
nomials in x (e.g., if Hx is a uniform distribution 
between 0 and x), or can be written as polynomials 
after an appropriate change in variable (e.g., if Hx is a 
lognormal distribution with chosen volatility param-

eter s ∈ +, and mean e
x

1
2

2+ σ
). In such cases, after 

applying the transformation (5) the objective of sub-
problem (3) will be a piecewise polynomial on x. As 
discussed in Section 3.1, the subproblem can then be 
solved “exactly,” and Remark 2 will still hold as long 
as Assumption 1 is valid after the transformation (5). 
This is illustrated in Example 1 below. Also, as we 
show with numerical experiments in Section 5, this 
is the case in most practical applications.

Finally, as shown in Section 4, the CG approach allows 
the addition of information about the class of distribu-
tion to which the under lying risk belongs (e.g., con-
tinuous, unimodal) without changing the core of the 
solution algorithm.

4. Additional distribution 
information

As mentioned earlier, in practical instances of the 
semiparametric bound problem (1) the functions gj(), 
j = 1, . . . , m are typically set to assume the knowl-
edge of moments of the underlying loss distribution; 
for example, by setting gj(X ) = Xj, j = 1, . . . , m in (1). 
The general semiparametric bound problem (1) can 
be extended to include additional distributional infor-
mation other than moments (see, e.g., Popescu 2005; 
Schepper and Heijnen 2007). This is important as the 
resulting bounds will be tighter and the corresponding 
worst/best-case distribution will have characteristics 
consistent with the practitioner’s application-specific 
knowledge about continuity, unimodality, and heavy 
tails in financial loss contexts. In this section it is shown 
that the CG solution approach outlined in Section 3 for 
semiparametric bound problems can be extended to 
constrain the underlying distribution to be unimodal 
and continuous.

4.1. Mixture transformation

Note that a point x ∈ J* obtained after running the 
CG Algorithm 1 can be interpreted as the mean of 
Dirac delta distributions dx parametrized by (centered 
at) x. In turn, the resulting optimal distribution p* of 
the random variable X in (2) is a mixture of Dirac 
delta distributions; that is, p* : ∑x ∈J*pxdx. As we show 
below, the CG Algorithm 1 can be used to obtain 
optimal worst/best-case distributions associated with 
the semiparametric bound problem (1) when, besides 
the expected value constraints, information is known 
about the class of distribution to which p belongs; for 
example, unimodal, smooth, asymmetric, etc. Basi-
cally this is done by replacing dx → Hx in the mixture 
composition of p, where Hx is an appropriately chosen 
distribution parameterized by x.
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Before discussing this, it is worth mentioning that 
there are problems in the context of actuarial science 
where it is not appropriate to assume unimodality. 
For example, as shown in Lee and Lin (2010), this 
is the case when the underlying random variable is 
associated with property/casualty losses which often 
exhibit a multimodal behavior due to the combina-
tion sources compounding the loss (e.g., fire, wind, 
storms, hurricanes).

It has been shown by Popescu (2005) that semi-
parametric bound problems with the additional con-
straint of the underlying distribution being unimodal 
can also be reformulated as a SDP by calling upon 
the classical probability result by Khintchine (1938) 
regarding the representation of unimodal distribu-
tions. Specifically, Khintchine (1938) proved that any 
unimodal distribution can be represented by a mix-
ture of uniform distributions, each of which have M 
as an endpoint (either the right or left endpoint). This 
same result can be embedded in the framework of 
Section 3 by leveraging the variable transformation 
of Section 4.1.

Recall that the CG algorithm can be defined in 
terms of mixing distributions Hx, where x represents 
a parameter of the distribution. In particular, for given 
(mode) M ∈ , let

H Uniform x M x Mx ( ){ } { }: min , , max , . (6)

Using Hx above in (5) to transform the semiparam-
etric bound problem (1) will lead to a bound over 
distributions that are unimodal with mode M.

The simple transformation (5) using the mixture of 
uniforms (6) allows the CG approach to leverage the 
results of Khintchine (1938) while avoiding a com-
plex reformulation as in the case of the SDP method-
ology of Popescu (2005). Enforcing unimodality is a 
straightforward special case that highlights the flex-
ibility of the methodology discussed in Section 3.

4.3. Smoothness and unimodality

The base method of Section 3 computes the desired 
semiparametric bounds, and provides a discrete 

Example 1. Consider a simple insurance policy 

with no deductible on a loss X for which the non-

central moments up to m-order are assumed to be 
known. Specifically, let f (x) = max{0, x}, and gj(x) = x j,  
j = 1, . . . , m. Also, assume that the distribution of 
the loss X is known to be a mixture of uniform dis-
tributions Hx of the form Hx : Uniform(0, x) in (4). 

That is, 
1

.0,IH u
x

ux x( ) ( )= [ ]  From (5), it follows that 

E f
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j
xHx j
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for j = 1, . . . , m, and 

Remark 2 will hold for any m ≤ 4.

In other cases, that is, when Assumption 1 does 
not hold after the transformation (5), one can sharply 
approximate the expectations in (5) using up to fifth-
degree piecewise polynomials on x to take advantage 
of Remark 2. Alternatively, given that the subproblem 
(3) is an univariate optimization problem, global opti-
mization solvers such as BARON (cf. Tawarmalani and 
Sahindidis 2005) can be used to effectively solve it.

In Section 4.2 we will discuss how the mix-
ture transformation (5) can be used to substantially 
strengthen semiparametric bounds by using reason-
able assumptions about the underlying risk distri-
bution regarding unimodality and/or continuity by 
using a mixture of appropriate distributions. In Sec-
tion 5.2, we use this transformation to construct rea-
sonable worst/best-case distributions associated to 
a given semiparametric bound problem.

4.2. Unimodality

In many instances of the semiparametric bound 
problem, it might be reasonable to assume that the 
unknown distribution p of X in (1) is unimodal with 
known mode M. This is particularly the case when 
the underlying random variable represents a finan-
cial asset or a portfolio of financial assets which are 
typically modeled by a lognormal distribution when 
using parametric techniques (see, e.g., Schepper and 
Heijnen 2007). In this section, we discuss how the 
unimodality information can be used in a straight-
forward fashion within the CG algorithm solution 
approach to obtain tighter semiparametric bounds. 
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ric bound problem (1) where the underlying worst/
best-case distribution is both unimodal and smooth, 
and replicates as close as possible the semiparametic 
bound obtained when the distribution is assumed to 
be unimodal (and not necessarily smooth). This is in 
part thanks to the additional degree of freedom given 
by the choice of the parameter a in (8). To see this, 
let us refer to
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and assume that µ̃+, µ̃-, s̃2 are bounded (i.e., this will 
be the case if gj(X ) = Xj, j = 1, . . . , m, with m ≥ 2 
in (1)), and that  ⊆ + (as in practice). Clearly, for 
the lognormal distribution mixture (7) to be feasible 
for the semiparametric bound problem (1), a in (8) 
should be chosen such that a2 ≤ s̃2 to ensure that the 
variance of the lognormal distribution used for the 
mixture is less than the maximum possible variance 
of the probability distributions p associated with the 
expected value constraints in (1). Moreover, as a → s̃, 
the only feasible solution of the semiparametric bound 
problem with lognormal mixture would be a (single) 
lognormal with variance a2 and mean x satisfying  
µ̃- ≤ x ≤ µ̃+, which is unimodal. Thus, there exists an 
a ∈ [0, s̃], such that the lognormal mixture obtained 
with the CG Algorithm 1 will be unimodal. To find the 
value of a such that the lognormal mixture obtained 
with the CG approach is both unimodal and as close 
as possible to replicate the semiparametric bound 
obtained by assuming that the probability distribution 
p in (1) is unimodal (and not necessarily smooth), one 
can use the bisection Algorithm 2.

(atomic) worst/best-case distribution (x, px) for all 
x ∈ J associated with the bound. In practice it is more 
desirable and intuitive to work with a continuous prob-
ability density function. If one is considering a prob-
lem measuring financial loss, then having discrete 
loss values may not provide the insight that a continu-
ous probability density function would, given that a 
discrete collection of outcomes is highly unrealistic. 
Using the uniform mixture defined in (6) is guaranteed 
to yield a unimodal distribution in the computation of 
the semiparametric bounds (1). However, the resulting 
density will contain multiple discontinuities, includ-
ing at the mode itself. Furthermore, the density will 
only be nonzero over the interval [min{x : x ∈ J*}, 
max{x : x ∈ J*}]; that is, it has finite support. It would 
be desirable to obtain worst/best-case distributions 
associated with the semiparametric bounds that are 
smooth, that is, both continuous and differentiable.

By appropriately choosing the distribution Hx (and 
its parameters) in the mixture, it is possible to obtain 
worst/best-case distributions that are both smooth and 
unimodal and that closely replicate the corresponding 
upper (best) and lower (worst) semiparametric bounds. 
This can readily be done using the CG approach by 
reformulating the semiparametric bound problem (1) 
using the transformation (5), and choosing

H lognormalx x x( )µ σ: , , (7)

where µx, sx are given in terms of x by the equations

e x

e e

x x

x x x( )
=

− = α

µ + σ

σ µ +σ

,

1 . (8)

1
2

2

2 2 2 2

for a given a ∈ +. That is, the lognormal distribution 
Hx is set to have a mean of x and variance a2. Note 
that besides the mean parameter x, which will be used 
to construct the mixture using the CG Algorithm 1, 
one needs to set a second parameter a in (8) to prop-
erly define the lognormal distribution Hx in (7).

The lognormal mixture approach (i.e., (7), and (5)) 
can be used to obtain solutions to the semiparamet-
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Theorem 3. The semiparametric bound problem (1),  
with the additional constraint of the underlying dis-
tribution being smooth and unimodal is equivalent to 
problem (1), with the additional constraint of the under-
lying distribution being unimodal. (6).

Proof. Let B*
u be the bound corresponding to the 

semiparametric bound problem (1), with the addi-
tional constraint that the underlying distribution p 
is unimodal. Note that there exists a distribution p* 
such that B*

u := Ep*( f(X)) and p* is a mixture of uni-
form distributions (cf. Section 4.2); that is, with Hx : 
Uniform(min{x, M}, max{x, M}) in (5). Now, for h > 0,  
let ph be the mixture obtained after replacing Hx by

H u
b x a x e e

x u a x u b x=
1 1

1

1

1
,

(10)

( )
( ) ( )− +

−
+





( )( )( ) ( )

η
−η − −η −

in the mixture p*, where a = min{x, M} and b = 
max(x, M), where M is the mode of p*. The statement 
follows since by letting h → ∞, one obtains a smooth 
distribution H h

x (see Lemma 1 in Appendix A) that is 
arbitrarily close to Hx (see Lemma 2 in Appendix A).

A numerical example to illustrate Theorem 3 is 
provided in Section 5.2.

Note that in the discussion above, the choice of the 
lognormal distribution is not key. Instead, the same 
would apply as long as the mixture distribution in (7) 
is smooth, unimodal, and has at least two appropri-
ate degrees of freedom in the choice of parameters 
(e.g., in case of random variables with support on the 
whole real line, the normal distribution could be used 
to form the mixture). In Section 5.2, we illustrate with 
a numerical example how the bisection Algorithm 2 
can be used to obtain a smooth and unimodal worst-
case distribution that closely replicates the behavior 
of the worst-case unimodal distribution.

When using a smooth distribution to define the 
mixture component Hx in (5), it is important to under-
stand the impact of the selection of mixture compo-
nents Hx. Ideally, computing the bound with a mixture 
of smooth distributions Hx would yield the optimal 
value across all possible smooth distributions in the 
semiparametric bound problem (1). Instead, it is the 
semiparametric bound across all mixtures with com-
ponents Hx. However, in Theorem 3, we show that 
the optimal semiparametric bounds across all smooth 
unimodal distributions is the same as the one across 
unimodal distributions. Loosely speaking, this fol-
lows from the fact that the density function of a uni-
form distribution can be arbitrarily approximated by 
an appropriate smooth density function.

Algorithm 2. Smooth and unimodal worst/best-case distribution
1: procedure Bisection(0 < alo < ahi < s̃, e > 0)

2:  while ahi - alo > e do

3:   k lo hi( )α ← α + α1

2
 

4:   compute J*, p* := {p*
x }x ∈J, using CG Algorithm 1 and Hx in (7) 

5:   if p  ∼ ∑x ∈J*p*
x Hx is unimodal then

6:    ahi ← ak 
7:   else
8:        alo ← ak 
9:   end if

10:  end while
11:  return J*, p*, a = ak, and M*

J

12: end procedure
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note that the expected LER associated with a policy 
with payoff max{0, X - d} is (cf. Cox 1991)

E X
E X d

E X

E X E X d

E X

LER =
min ,

=
max , 0

. (13)

( )

( )

( )

( )

( )( )
( )

( )
( )

− −

Being able to compute bounds on the expected LER 
would be beneficial for an insurer attempting to set a 
deductible in cases where the actual loss distribution 
is ambiguous. For example, in Cox (1991, Section 3), 
the relationship (13) is used to obtain upper and lower 
semiparametric bounds on the expected LER of an 
insurance policy with deductible, assuming only the 
knowledge of the mean and variance of the loss, and 
that the loss cannot exceed a known maximum.

Another sensible premise is to assume that the loss 
distribution is unimodal. To illustrate the potential 
of the CG approach, in Figure 1 we use the mixture 
transformation of Section 4.2 to compute upper and 
lower semiparametric bounds on the insurance pol-
icy with payoff max{0, X - d} when the mean µ and 
variance s2 of the loss are assumed to be known, and 
the loss cannot exceed the value of b, where d is the 
policy’s deductible, and the loss distribution is also 
assumed to be unimodal with mode M. The results are 
compared with the analytical formula of Cox (1991, 
Section 3) to illustrate the tightening of the bounds 
obtained by adding the unimodality assumption. Spe-
cifically, following Cox (1991, Section 4), in Figure 
1 we set µ = 50, s = 15, b = 100, and M = {45, 50}.

Observe in Figure 1 that the expected LER gap, 
that is, the difference between the upper and lower 
semiparametric expected LER’s bounds, is signifi-
cantly tighter when unimodality is included. When 
M = 50 the gap is symmetrical with a small spike at 
the mean/mode. The case in which M = 45 yields a 
corresponding peak in the gap around the mode. For 
either very high or very low deductible values, the 
choice of the mode has little impact on the size of 
the gap. Regardless of the mode’s value, the gaps are 
of similar magnitude and narrower than in the case 

5. Numerical illustration

Problem (1) is of particular interest in actuarial 
science because the target function f () in (1) can 
take the form of payoffs for common insurance and 
risk management products for which the distribution 
of the underlying random loss is ambiguous (see, 
e.g., Delage and Ye 2010 and Natarajan et al. (2011) 
for recent references); that is, it is not known pre-
cisely. Let X represent the loss, and d be the deduct-
ible associated with an insurance policy on X. For 
example, Schepper and Heijnen (2007, Sections 3.1 
and 3.2) provide upper and lower bounds on the 
expected cost per policy payment max(X - d, 0) 
when only up to third-order moment information on 
the loss distribution is assumed to be known. This 
is done by solving (1) analytically with

f X X d g X X

j m m

j
j

j j �D

( )( ) ( )−

σ σ+ − +

= max , 0 , = ,

= for = 1, . . . , , = , and = 2, 3. (11)

In practice, losses do not exceed a certain maximum, 
say b. Taking this into account, Cox (1991, Propo-
sition 3.2) provides upper and lower bounds on the 
expected cost per policy max(X - d,0) when only 
the maximum potential loss b and up to second-
order moment information on the loss distribution is 
assumed to be known. Accordingly, this is done by 
solving (1) analytically with

D… �

f X X d g X X

j m b m

j
j

j j [ ]

( )( ) ( )−

σ σ ⊂+ − +

= max , 0 , = ,

= for = 1, , , = 0, , and = 2.

(12)

5.1. Second-order LER bounds  
with unimodality

Let us reconsider the semiparametric bound on the 
expected cost per policy defined in (12). Note that 
from semiparametric bounds on the expected cost per 
policy, one can readily obtain bounds on the expected 
loss elimination ratio (LER) of the policy. Specifically, 
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provided by Popescu (2005), or the uniform mix-
ture approach of Section 4.2 with components (6). 
The CG uniform mixture method readily provides a 
worst-case distribution. This distribution, however, 
is not smooth, has finite support, and is unrealistic as 
a model for the uncertainty of losses. For this reason 
we compute upper bounds using the smooth mixture 
compontents in (5) and inspect the resulting worst-
case probability and cumulative density functions. 
The resulting smooth distribution is then compared 
to the optimal unimodal uniform mixture distribu-
tion. Specifically, we use the lognormal mixture (7).

In particular, let us sample the values of µ, s in 
(14) from a lognormal asset price dynamics model 
which is also commonly used to model (a non-
ambiguous) loss distribution (see, e.g., Cox et al. 
2004; Jaimungal and Wang 2006). Namely, let µ =  

X0e
rT, and X e erT T( )σ −ν= 10

1
2

2

  for values of X0 = 

49.50, r = 1%, n = 20%, and T = 1. Also let d = X0 
in (11); that is, consider a policy where the expected 
value of the loss is equal to the deductible.

The semiparametric upper bound was computed 
using the lognormal mixture (7) for different values of 
a ∈ [1, 1.5, . . . , 20] and the percent above the paramet-

where the underlying loss distribution is not assumed 
to be unimodal.

5.2. Examining worst-case distributions

Suppose we wish to compute the semiparametric 
upper bound defined by (11) with m = 2. Specifically, 
let the expected value (moment) constraints in (1) be 
given by

E X E X= , = , (14)2 2 2( )( ) µ σ + µπ π

for given µ, s ∈ +. That is, both the mean and the 
variance of the underlying loss distribution are 
assumed to be known. In this case, Equation (9) 
reduces to µ+

p = µ-
p = µ, and s2

p = s2.
A closed-form solution for the corresponding semi-

parametric upper bound problem was derived by Lo 
(1987), where he considers f in (11) as the payoff of 
an European call option with strike d. If, furthermore, 
it is assumed that the underlying distribution p of 
the loss (or asset price) is unimodal, the correspond-
ing semiparametric upper bound can be computed 
using the analytical formula provided by Schepper 
and Heijnen (2007, Section 3.3), the SDP techniques 
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Figure 1. Expected LER bounds (left) and gaps (right) for different values of the deductible d, when  
the mean l = 50, and variance r2 = 225 of the underlying loss, as well as its potential maximum value 
b = 100, are assumed to be known. Gaps indicates the difference between upper and lower bounds. 
Results are presented for bounds without the unimodality constraint, and with unimodality constraint 
with mode M = {45, 50}.
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smooth, unimodal bound obtained with the bisection 
Algorithm 2 and a mixture of lognormal distribu-
tions. Also, the plot illustrates the point (a = 11.34) 
at which the the bounds obtained by the bisection 
Algorithm 2 and the CG Algorithm 1 with a mixture 
of uniform distributions are equal.

In Figure 2 one can observe that for extremely 
low values of a, the component distributions of the 
mixture are very narrow, approaching the pessimistic 
discrete distribution case associated with closed-form 
bound of Lo (1987). We also see that as a → s =  
20.4 the resulting bound distribution converges to 
the lognormal specified by the Black and Scholes 
asset pricing framework. This convergence is seen in 
Figure 2 since the error goes to zero and the upper 
bound price equals the analytical Black-Scholes price.

Figure 2 also highlights the result discussed in 
Theorem 3. The bound computed using uniform mix-
ture components is greater than the unimodal bound 
from the lognormal mixture with the gap size under 
4%. Note that the unimodal upper bound using log-
normal mixture components occurred at a = 13.75. 
As mentioned before, the a that yields the same bound 
value as that from the uniform mixture is a = 11.34. 
The smaller the a in the lognormal mixture (7), the 
higher the conservatism associated with the semi-
parametric bound. Figure 3 shows the probability 

ric value of the policy based on Black-Scholes formula 
was plotted in Figure 2. The corresponding semi-
parametric bound without the unimodality assump-
tion (given by Lo 1987), and unimodal bounds with a 
uniform mixture from Section 4.2 are also plotted for 
reference. The bold point in Figure 2 represents the 

Figure 2. Percentage above the parametric 
Black and Scholes price of the Lo (1987) upper 
bound (Lo’s Bound) and the lognormal mixtures 
obtained from Algorithm 2 (lognormal Mixture 
Bounds). The bold point denotes the value of  
` = 13.75 in which the lognormal mixture bound 
obtained from Algorithm 2 produces a unimodal 
distribution.
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Figure 3. PDF and CDF that yields the optimal unimodal bound via uniform mixtures compared with an 
associated lognormal distribution.
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5.3. Illustration of Theorem 3

We finish this section by providing numerical 
results to illustrate Theorem 3. Reconsider the semi-
parametric bound problem defined in (11) with m = 2 
(i.e., with up to second-order moment information), 
and the additional constraint that the underlying loss 
distribution is unimodal.

Suppose we compute the semiparametric upper 
bound of the at-the-money policy described in Sec-
tion 5.2 enforcing the first two known moments and 
continuity. To illustrate Theorem 3, the upper bound 
is also computed for the option using (10) and vari-
ous levels of h. The percentage difference between 
the former and latter are plotted against h in Figure 5.

From Figure 5 we see that by implementing the 
algorithm with (10) and increasing h, the upper 
bound converges to that computed with mixture com-
ponent (6). Bounds computed using smoothness and 
unimodality can yield values arbitrarily close to, but 
not greater than, those obtained when only unimodality 
is enforced. The implication of Theorem 3 is that any 
tightening of the upper bound from a smooth mixture 
is a byproduct of the choice of the mixture distribu-
tion Hx, and is not from the inclusion of smoothness. 
In practice it can be confirmed that the change in 
bound from choice of Hx is generally fairly small.

distribution function (PDF) and cumulative distri-
bution function (CDF) of the lognormal mixtures 
at a = {11.34, 13.75} as well as the associated true 
lognormal distribution with mean and variance equal 
to the moments used to compute the semiparametric 
bounds. To highlight the advantage of using the log-
normal mixtures instead of the uniform mixtures, 
Figure 4 shows the optimal PDF and CDF of the latter 
along with the associated true lognormal distribution.

Observe in Figure 3 that the unimodal lognormal 
mixture at a = 13.75 is relatively close to the shape of 
the associated true lognormal distribution. Contrast 
this with the PDF of the unimodal mixture of Figure 4 
which bears little similarity to the associated true log-
normal probability density. The primary difference to 
note is that the lognormal mixture approach yields a 
unimodal distribution, but the mode is not specified. 
Using the uniform mixture approach of Section 4.2 
will produce a density with a specified mode, but at 
the cost of an unrealistic distribution. The lognormal 
mixture at s = 11.34 is bimodal and does not resemble 
the true density. In each case the cumulative densities 
are fairly close to the true CDF. This example high-
lights the ability of the lognormal mixture approach 
to construct realistic unimodal distributions while still 
being close to the optimal unimodal bound; here the 
gap was shown to be under 4%.

Figure 4. PDFs and CDFs that yield the optimal bounds via lognormal mixtures (cf. Algorithm 2)  
for ` = {11.34, 13.75}, compared with an associated lognormal distribution.
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policy payoffs, and the functions gj, j = 1, . . . , m 
can be used to represent the knowledge of other than 
non-central moment’s information. As an example, 
let cj be the European call prices on some stock X for 
various strike prices Kj, j = 1, . . . , m. Recall that the 
payoff for this type of option is the same as that of the 
d-deductible policy described in (11). The constraint 
set for (1) can be defined to enforce market prices of 
options by setting

E g X E X K c j mj j j( ) ( )( )( ) −π π:= max , 0 = , = 1, . . . , .

(15)

The market price constraints (15) can then be used to 
compute semiparametric bounds on the variance of 
the underlying asset. This is accomplished by defi-
ning the target function f(X ) in (1) as

E f X E X:= (16)2( )( ) ( )( ) − µπ π

where µ is the known first moment of X. In  
Bertsimas and Popescu (2002) it was shown that 
computing semiparametric bounds on (16) using 
knowledge on the prices (15) is a useful alternative 
to the standard methods of computing implied vola-
tilities. For risk management purposes, semiparamet-
ric bounds can also be used to compute bounds on 
one-sided deviations of the underlying risk, that is, 
its semivariance. Each of these common applications 
readily fit into the framework of the CG methodol-
ogy presented in Section 3, demonstrating the variety 
of contexts in which the CG approach can be used to 
compute semiparametric bounds.

7. Summary

The CG methodology presented here provides a 
practical optimization-based algorithm for comput-
ing semiparametric bounds on the expected payments 
of general insurance instruments and financial assets. 
Section 3 described how the general problem described 
in (1) can be solved, in most practical instances, by 

6. Extensions

Besides the common features of insurance policies 
considered in Section 5, such as the policy’s deduct-
ible d, and the fact that losses typically do not exceed 
a maximum loss b, a maximum payment and coinsur-
ance are also common features in insurance policies.  
If a policy will only cover up to a maximum loss 
of u ∈ R +, and coinsurance stipulates that only some 
proportion g ∈ [0, 1] of the losses will be covered, 
then the policy’s payoff can be written as f (X ) = 
g [min(X, u) - min(X, d )]. All of these policy modi-
fications can be readily incorporated into the CG 
solution approach framework. In particular, the CG 
methodology can be applied to compute bounds on 
the expected policy loss for a wide variety of standard 
functions of loss random variables used in industry.

In the numerical examples in Section 5, the target 
function f in (1) was used to model piecewise linear 
insurance policy payoffs, and the functions gj, j =  
1, . . . , m to use the knowledge of up to m-order non-
central moments of the loss distribution. However, 
the methodology discussed here applies similarly to 
functional forms of f that are not piecewise linear 

Figure 5. Illustration of how the upper bound 
with mixture components (10) converges to 
the unimodality bound (6) (without smoothness 
requirements) as g ã Ç. The plot shows the 
difference in percentage between these bounds 
as a function of g.
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Appendix A. Smooth approximations 
of the uniform distribution

Let X be a random variable that is uniformly dis-
tributed on the interval [a, b]. The probability density 

function (PDF) of X is f x
b a

=
1

( )
−

. It is possible 

to construct a smooth function that approximates 
f(x) and is asymptotically equal to the true PDF. We 
define the following h parameterized function.

f x
b a e ex a x b

( ) =
− +

−
+





( )( )η −η − −η −

1 1

1

1

1
(A.1)

The probability function fh(x) is the difference in two 
shifted logistic functions.

Lemma 1. For any h > 0, and a, b ∈  such that 

b ≥ a, the cumulative probability distribution Fh(x) 
associated with the probability distribution fh(x) is 

F x
b a

e

e

x b

x a= 1
1

ln
1

1( )
( ) −

η −
+
+







( )

( )η

−η −

−η − . In particular, 

limx→∞ Fh(x) = 1, limx→-∞ Fh(x) = 0, and 
dF x

dx
0

( )
≥η

for all x ∈ .

In Lemma 2 we show that as h → ∞ (A.1) will 
converge to the PDF of X.

Lemma 2. As h → ∞ the function fh(x) in (A.1) 

converges to a uniform distribution on [a, b].

Proof. To show that fh(x) → Uniform(a, b) as  
h → ∞ consider three different cases corresponding 
to three intervals of x. First consider the case in which 
x < a. For x < a each of the exponent terms are posi-
tive, i.e., 0 < -h(x - b) < -h(x - a), for all h > 0. So, 
for x < a we see that fh(x) → 0. Next we look at x > b.  
In this case each of the exponent terms are negative, 

solving a sequence of linear programs that are updated 
using simple arithmetic operations. The CG approach 
also readily provides a representation of the worst/
best-case distributions associated with a semiparam-
etric bound problem.

To illustrate the potential of the of the CG algo-
rithm, semiparametric bounds on the payoff of com-
mon insurance policies were computed. It was also 
shown that additional distributional information such 
as continuity and unimodality can be incorporated 
in the formulation in a straightfoward fashion. The 
ability to include these constraints provides tighter 
bounds on the quantity of interest as well as distri-
butions that fit the practitioner’s problem specific 
knowledge. Note that from the recent work of Lee 
and Lin (2010), it follows that for some property/
casualty insurance problems it will be suitable to 
consider that the underlying random variable fol-
lows a distribution that is a mixture of Erlang distri-
butions. The advantage of using mixtures of Erlang 
distributions is the existence of extremely efficient 
expectation–maximization (EM) algorithms for para-
meter estimation from raw data. This interesting line 
of work will be the subject of future research work.

The CG methodology offers a powerful and com-
pelling alternative for computing semiparametric 
bounds in comparison with the main approaches used 
in the literature to compute them, namely, deriving 
analytical solutions to special cases of the problem 
or solving it numerically using semidefinite program-
ming. This is due to the speed, generality, and ease of 
implementation of the CG algorithm. The CG algo-
rithm achieves accurate results at a very small com-
putational cost. The straightforward implementation 
used for the test problems shown here generated solu-
tions in, at most, one to two seconds. Furthermore, 
although the examples considered here focused on 
obtaining semiparametric bounds for insurance poli-
cies with piecewise linear payoff given moment infor-
mation about the underlying loss, the CG approach 
presented here allows for a very general class of uni-
variate semiparametric bounds to be computed using 
basically the same solution algorithm.
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which again yields a limit of 0. Finally, consider  
a < x < b. On this interval the exponent terms satisfy 
-h(x - a) < 0 < -h(x - b) for all h > 0. So, for a < x 

< b we have f x
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To demonstrate Lemma 2, consider X : Uniform 
(20, 30). The PDF of X can be approximated using 
(A.1) with a = 20 and b = 30. In Figure 6 we plot the 
PDF of X as well as the approximation curve for 
different values of h.

From Figure 6, we see that as the parameter h 
increases, the curve of (A.1) approaches the PDF of X.
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