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A Cost-of-Capital Risk  
Margin Formula for  

Nonlife Insurance Liabilities
by Glenn Meyers

ABSTRACT

A Bayesian Markov chain Monte Carlo (MCMC) stochastic loss 

reserve model provides an arbitrarily large number of equally 

likely parameter sets that enable one to simulate future cash 

flows of the liability. Using these parameter sets to represent 

all future outcomes, it is possible to describe any future state 

in the model’s time horizon including those states necessary to 

calculate a cost-of-capital risk margin. This paper shows how 

to use the MCMC output to (1) calculate the risk margin for an 

“ultimate” time horizon; (2) calculate the risk margin for a 

one-year time horizon; and (3) analyze the effect of diversifica-

tion in a risk margin calculation for multiple lines of insurance.
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ogy. In the concluding remarks, we describe the main 
differences between the approach in this paper and 
that specified by Solvency II.

A Bayesian MCMC stochastic loss reserve model 
provides an arbitrarily large number (say 10,000) 
of equally likely parameter sets that enable one to  
simulate future cash flows of the liability. From those 
parameter sets, it is possible to describe any future 
state in the model’s time horizon including those states 
necessary to calculate the technical provisions. That 
is what this paper will do.

Here is a high-level description of that cash flow:

1.	 At the end of the current calendar year (call this 
time t = 0), the insurer posts its best estimate of 
the liability. The insurer also posts the amount of 
capital, C0, needed to contain the uncertainty in 
this estimate. It invests C0 in a fund that earns 
income at the risk-free interest rate i.

2.	 At the end of the next calendar year, at time t = 1, 
the insurer uses its next year of loss experience to 
reevaluate its liability.2 It then posts its updated 
estimate of the liability and the capital, C1, needed 
to contain the uncertainty in this estimate. The 
difference between C0 • (1 + i) and C1 is returned 
to the investor. If that difference is negative, as it 
occasionally will be, the investor is expected to 
contribute an amount to make up that difference.

3.	 The process continues for future calendar years, t, 
with the amount,

C i Ct ti ( )+ −− 1 ,1

being returned to (or being contributed by) the 
investor.

4.	 At some time t = u, the loss is deemed to be at  
the ultimate—that is, no significant changes in the 
loss are anticipated—and so we set Ct = 0 for  
t > u. For the examples in this paper, u = 9.

1.  Introduction

With the growing influence of Bayesian Markov 
chain Monte Carlo (MCMC) models in stochastic 
loss reserving (e.g., Meyers 2015), this paper will 
illustrate one way to use such a model to calculate 
a cost-of-capital risk margin for nonlife insurance 
liabilities. The need for such a calculation is found in 
the “technical provisions” specified in the European 
Union’s Solvency II act.1

Those technical provisions refer to the insurer’s 
liability for unpaid losses. Specifically:

1.	 “The value of the technical provisions shall be 
equal to the sum of a best estimate and a risk 
margin.”

2.	 “The best estimate shall correspond to the  
probability-weighted average of future cash 
flows, taking account of the time value of money 
using the relevant risk-free interest rate term 
structure.”

3.	 “The risk margin shall be calculated by determin-
ing the cost of providing an amount of eligible 
own funds equal to the Solvency Capital Require-
ment necessary to support the insurance obliga-
tions over the lifetime thereof.”

4.	 “Insurance undertakings shall segment their 
insurance obligations into homogeneous risk 
groups, and as a minimum by lines of business, 
when calculating the technical provisions.”

This paper illustrates a way to implement the 
principles expressed in the above provisions of 
the act. Although the act goes on to provide some 
specific provisions on how to implement those prin-
ciples, the purpose of this paper is more to show how 
to implement the principles underlying Solvency II 
using more theoretically sound risk management 
principles along with the Bayesian MCMC technol-

1The provisions quoted here are stated in Section 2, Article 77 and 
Article 80, of Chapter VI of the act, p. 222, http://register.consilium.
europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf.

2As the risk margin is for the current liability, this paper does not con-
sider new business in future calendar years.
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•	 First we show how to use the Bayesian MCMC 
machinery to calculate the cash flows and cor
responding loss estimates implied by the model.

•	 Then we show how to calculate the best estimate 
and the risk margins from the cash flows.

•	 Then we investigate the effect of insurer size and 
line of business on risk margins.

•	 Then we address the effect of diversification by 
line of business.

Whereas the examples in this paper focus on an 
“ultimate” time horizon, jurisdictions such as the 
European Union require insurers to calculate their 
capital requirements based on a one-year time 
horizon. The final section shows, with an example, 
how to adjust the models so that the one-year time 
horizon can be incorporated within the framework 
of this paper.

The data for the examples in this paper are taken 
from the Casualty Actuarial Society (CAS) Loss 
Reserve Database. The data consist of 50 loss tri-
angles in the commercial auto (CA), personal auto 
(PA), workers’ compensation (WC), and other liability 
(OL) lines of insurance. The loss triangles used in 
this paper were selected from the list given in Appen-
dix A of Meyers (2015).

The algorithms described in this paper are compu-
tationally intensive. The reader of this paper might 
question whether the computations can be done in a 
reasonable time. The answer is yes. The scripts that 
are included with the paper were run on the author’s 
standard issue laptop. The run times for the calcula-
tions are about two minutes per loss triangle for the 
model in Section 3 and about 17 minutes per triangle 
for the model in Section 5.

2.  Cash flows and statistics  
of interest

This paper uses the changing settlement rate (CSR) 
model described in Meyers (2015) as modified in 
Meyers (2018). As those papers show, the model 
has been successfully validated on the lower triangle 
holdout data for a set of 200 loss triangles, 50 from 

The present value, discounted at the risky rate r, 
of the amount returned is equal to
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Since r > i, this present value will be less than the 
initial capital investment of C0. To adequately com-
pensate the investor for taking on the risk of insuring 
policyholder losses, the difference can be made up 
at time t = 0 by what we now define as the cost-of-
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with the second equality coming after some algebraic 
manipulations.3

The problem that now needs to be addressed is 
the calculation of the Cts. A straightforward way to 
project a future cash flow for this process would be 
to take a fitted Bayesian MCMC model and simulate 
an additional calendar year of losses for t = 1. Then 
fit another Bayesian MCMC model to the original 
data and the simulated data to get the loss estimate 
and capital requirements for t = 1. Then continue this 
process for t = 2, . . . , u.

While the execution speed of Bayesian MCMC 
software has significantly increased in recent years, 
repeating this for 10,000 simulated future cash flows 
would undoubtedly strain the patience of most prac-
ticing actuaries. This paper will propose a faster way 
to simulate the future cash flows to calculate the 
capital requirements for this process.

Now that we have defined the cost-of-capital risk 
margin, here is the route we will take to address the 
problems we must solve to calculate the risk margin:

3Note that RCOC is similar to, but not identical to, the Solvency II risk 

margin: R r i
C

i
SII t

u t
t

i Σ
( )

( )≡ −
+=

1
0 .
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For the lower triangle of {X j
w,d}j=1 

10,000, define the 
simulated loss trapezoid for future calendar year t 
that includes the upper loss triangle, T0, and the first  
t diagonals of the lower loss triangle—that is,

T

X w d w

X w t

d w w t
t
j

w d

w d
j

( )
≡

= = −

= +
= − − +


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for 1, . . . ,10 and 1, . . . ,11

for 1, . . . ,10 and

12 , . . . , min 11 ,10
(4)

,

,

where X j
w,d is simulated from a lognormal distribution 

with parameters µ j
w,d and σ d

j .
Let’s temporarily drop the assumption that we 

know the parameter set index j. All we have is an 
observed loss trapezoid, Tt. Then using Bayes’ theo-
rem and the fact that, initially, all j are equally likely, 
the probability that the parameter set index is equal 
to j given Tt, for t > 0, is given by

J j T
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where φ is the probability density function for the 
normal distribution.

At this point, one can choose from a number of 
options to calculate the various statistics that are of 
interest to insurer risk managers. For example, given 
Tt, one could calculate the ultimate loss estimate, Et, as

E E X T J j T Ut w t
w

t
j

ji∑ ∑ [ ]≡ 
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


= =
= =

Pr . (6),10
1

10

1

10,000

If one accepts that the Bayesian MCMC output 
is representative of all future scenarios, Equation 6 
is exactly the right calculation for the loss estimate 
given Tt. But let’s consider what one should do to 
calculate, say, the 99.5th percentile. First one should 
sort the scenarios in order of increasing Uj. It is not 
uncommon to find a case where there is a scenario, 
j, with Pr[J ≤ j |T9] = 0.9900 and Pr[J ≤ j + 1|T9] = 
0.9960.

each of four lines of business. The model describes 
the distribution of outcomes Xw,d ∼ lognormal(µw,d, σd), 
where the accident year w = 1, . . . , 10 and the devel-
opment year d = 1, . . . , 11 − w. It is fit to a cumulative 
paid loss triangle, T0 ≡ {Xw,d}. This model allows for 
accident year effects, development year effects, and 
a variable claim settlement rate. The details of the 
model can be found in Section 3 of Meyers (2018). 
What is relevant for this paper is that given the loss 
triangle, T0, the model uses Bayesian MCMC to 
obtain a sample of 10,000 equally likely lognormal,  
{µ j

w,d, σ d
j}j=1

 10,000, parameter sets from the posterior 
distribution, {µw,d, σd |T0}. This paper uses these 
parameter sets to describe the possible future cash 
flows by a simulation.

With these parameter sets we can calculate the best 
estimate of the liability, as specified by Solvency II,  
as the probability weighted average of the present 
value of expected future cash flows. This will be 
equal to the expected value of the differences in the 
cumulative payments between development years—
that is,

i
E
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This calculation assumes that the losses are paid 
one-half year before the end of future calendar year 
t = w + d − 11.

For the scope of this paper, let’s also select the 
ultimate loss, Uj, associated with the jth parameter 
set to be the sum of the expected values of the losses 
for d = 10 over all the accident years—that is,

U expj w
j j

w
∑ ( )( )= µ + σ

=
2 (3),10 10

2

1

10

For those wishing to allow for loss development 
after d = 10, we suggest that a Bayesian MCMC 
version of Clark (2003) would be a good place  
to begin.
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Also of interest are the paths of the required capital, 
Ct

k, for t = 0, . . . , 9. Figure 2.2 shows the paths of Ct
k 

that correspond to the paths taken by Et
k in Figure 2.1. 

This figure illustrates that as the estimates of the Et
ks 

become more certain, the required capital, Ct
k, tends 

to decrease over time.

3.  Risk margins

This section applies the cost-of-capital risk margin 
formula given by Equation 1 to the set of required 
capital paths, {Ck

0, . . . , Ck
9}k=1 

10,000. Recall that the 
formula defined the cost-of-capital risk margin as 
the present value of the capital released as the loss 
reserve liability becomes more certain. Figure 3.1 
shows the paths of released capital that correspond 
to the paths taken by the Ct

ks in Figure 2.2. In gen-
eral, this figure shows that most of the capital gets 

To deal with this, we decided to calculate the  
statistics of interest by first taking a random sample of 
size 10,000 (with replacement), {St}, of the Ujs with 
sampling probabilities Pr[J = j|Tt]. It was quite easy to 
implement and surprisingly fast in R. This is subject to 
an additional simulation error, but it should be small.

The statistics of interest for risk margin are, for  
t = 0, . . . , 9,

•	 the mean, Et, which is equal to the arithmetic aver-
age of {St}; and

•	 the tail value at risk at the α level (TVaR@α), 
which is equal to the arithmetic average of the 
(1 − α) • 10,000 highest values of {St}.4

Let’s denote the total required capital by Ct ≡ 
TVaR@α − Et.

We summarize the above in Algorithm 1.
The examples in this paper use α = 97%. This 

selection is for illustrative purposes only.
Calculating Et

k for t = 0, . . . , 9 yields the kth path 
that the loss estimate takes as it moves toward its 
ultimate value. Of interest for what follows is the 
set of possible paths that the loss estimate can take. 
Figure 2.1 shows those paths that contain the 100th, 
the 300th, . . . , and the 9,900th highest E9

ks of Insurer 
#353 for commercial auto in the CAS Loss Reserve 
Database. This figure illustrates that the Et

ks tend to 
become more certain over time.

Algorithm 1.  Calculate capital scenarios

1:  for k = 1, . . . , 10, 000 do
2:      for t = 0, . . . , 9 do
3:     �     Simulate cash flows {Tt

k} using the parameter set {(µk
w,d, σd

k)}.
4:     �     Use Equation 5 to calculate Pr[J = j |Tt

k] for each  
    j = 1, . . . , 10,000.

5:     �     Take a random sample of size 10,000 with replacement,  
    {St

k}, of {Uj} j=1 
10,000 with sampling probabilities  

    Pr [J = j |Tt
k ].

6:          Set Et
k  equal to the arithmetic average of {St

k}.
7:     �     Set Ct

k  equal to the arithmetic average of the highest  
    (1 − α) • 10,000 highest values of {St

k}, minus Et
k .

8:      end for
9:  end for 0 2 4 6 8
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Figure 2.1.  Paths of ultimate loss estimates
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Figure 2.2.  Required capital by calendar year

4Although this paper does not use the value at risk (VaR) in its examples, 
one could calculate the VaR@α as the (1 − α) • 10,000th highest value 
of {St}.
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between the log of the risk margin and the log of 
the best estimate. Figure 3.3 shows the plots of the 
log(RCOC) against log(EBest), along with the coefficients, 
along with their standard errors, of an ordinary linear 
regression of the form

ilog R a b log ECOC Best( ) ( )= + (9)

We can rewrite Equation 9 in the form

R

E
e ECOC

Best

a
Best

bi ( )= − (10)1

Note from Figure 3.3 that b < 1 for all four lines 
of insurance. This implies that the risk margin–to–
best estimate ratio decreases as the best estimate 
increases. As Figure 3.4 shows, the ratio can be quite 
high for insurers with small best estimates. It is easy 
to see where some insurers might object, especially 
if the line with the high ratio is a small part of the 
insurer’s book of business.

 4.  Diversification

As noted in the introduction, one provision of 
the European Union Solvency II act says explicitly, 
“Insurance undertakings shall segment their insurance 
obligations into homogeneous risk groups, and as a 
minimum by lines of business, when calculating the 
technical provisions.” This means that the total risk 
margin for a multiline insurer is the sum of the risk 
margins over its individual lines of business.

Longtime observers of the insurance business 
have recognized that multiline insurers benefit from 
the diversification of their risk of loss. This being 
the case, they might well want to reflect the benefits 
of diversification in their risk margins. The problem 
with a formal recognition of diversification is that the 
benefits have been difficult to quantify. What many 
are afraid of is the possibility that significant losses 
from the different lines of business could happen at 
the same time. This possibility is often referred to as 
the “dependency problem.”

released early on, and that occasionally it is necessary 
to add capital.

Applying Equation 1 we get for each k

R C
C i C

r
COC
k k t

k
t
k

t
t

u i
∑ ( )

( )
≡ − + −

+
−

=

1

1
(7)0

1

1

Then the risk margin is given by

R RCOC COC
k

k
∑=

=

1

10,000
(8)

1

10,000

Figure 3.2 shows a histogram of the Rk
COCs for our 

example.
Of interest is the ratio of the risk margin and the 

size of the best estimate. To investigate, we calculated 
the risk margins for all 200 loss triangles in our data. 
After some exploratory analysis, we concluded that 
(1) significant differences exist by line of business; 
and (2) there is an approximate linear relationship 

Figure 3.1.  Paths of released capital
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Figure 3.2.  Risk margin
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5Three small volatile insurers had negative best estimates and were 
excluded from the linear regression.

4 6 8 10 12 14 16

2
4

6
8

10
12

lo
g(

R
is

k 
M

ar
gi

n)
Commercial Auto

log(Best Estimate)
a = 0.981 (0.288) b = 0.671 (0.035)

4 6 8 10 12 14 16

2
4

6
8

10
12

lo
g(

R
is

k 
M

ar
gi

n)

Personal Auto

log(Best Estimate)
a = –0.528 (0.292) b = 0.761 (0.03)

4 6 8 10 12 14 16

2
4

6
8

10
12

lo
g(

R
is

k 
M

ar
gi

n)

Other Liability

log(Best Estimate)
a = –0.087 (0.373) b = 0.869 (0.047)

4 6 8 10 12 14 16

2
4

6
8

10
12

lo
g(

R
is

k 
M

ar
gi

n)

Workers’ Compensation

log(Best Estimate)
a = 0.869 (0.43) b = 0.647 (0.046)

Figure 3.3.  log(Risk Margin) vs. log(Best Estimate)5

As such, the Solvency II nonrecognition of diver-
sification may appear to some to be prudent.

Mathematical tools that can be used to describe 
dependency have been available for quite some 
time. See, for example, Frees and Valdez (1998) 
and Wang (1998). The main tool described in those 
papers is called a copula, which is a multivariate 
distribution on an L-dimensional unit hypercube 
in which the marginal distributions have a uniform 
(0,1) distribution. Given a copula  and samples {lS t

k} 
(see Section 2), for each line l of L lines of busi-

ness one begins to calculate RCOC by first executing 
Algorithm 2.

Use the output of this algorithm to calculate  
{TCt

k}k=1 
10,000 for t = 1, . . . , 9 and Equations 7 and 8 to 

calculate TRCOC.

Algorithm 2.  Calculate samples for dependent lines

1:  for k = 1, . . . , 10,000 do
2:      for t = 1, . . . , 9 do
3:     �     Simulate an L-tuple vector {Pl

k}L
l=1 of uniform(0,1) numbers  

    from the copula .
4:     �     For each line of business, l, select lQt

k to be the Pl • 10,000  
    highest value of {lS t

k}.
5:      end for
6:      Set the total ultimate loss TSt

k = 1Qt
k + . . . +LQt

k.
7:  end for
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only in the range zero to very modest. There is  
little evidence in favor of the high correlation 
assumed in some jurisdictions. The evidence sug-
gests that these assumptions derived from either 
poor modeling or a misconception of the cross-
LoB dependencies relevant to the purpose to which 
they are applied.”

Meyers (2018) arrives at a similar conclusion. 
That paper first shows how to fit a bivariate CSR 
model, that allows for dependencies, to triangles for 
two lines of business from the same insurer. It then 
compares the fit of the bivariate model to a similar 
bivariate model that assumes independence for 102 
within-insurer pairs. Taking into account the addi-
tional parameter introduced by the dependent model, 
it concludes that the model assuming independence 
has a better fit for all 102 pairs of triangles.

In other words, the appropriate dependency struc-
ture is to assume that the lines of business are inde-
pendent. This assumes, as demonstrated in Meyers 
(2018) for the CSR model used in this paper, that 
careful modeling has been carried out.

The independence assumption allows us to simplify 
the procedure described at the beginning of this 

So if one believes that the lines of business are 
correlated, it is possible to calculate the risk margin 
for the total liability that reflects whatever diversifi-
cation one’s choice of a dependency structure warrants. 
As it turns out, there has been some recent empirical 
work on determining that structure.

Let’s first look at Avanzi, Taylor, and Wong (2016). 
The point of their paper is that correlations can arise 
from an inappropriate model. To quote their abstract: 
“We show with some real examples that, sometimes, 
most (if not all) of the correlation can be ‘explained’ by 
an appropriate methodology. Two major conclusions 
stem from our analysis.

1.	 “In any attempt to measure cross-LoB correla-
tions, careful modeling of the data needs to be 
the order of the day. The exercise will not be well 
served by rough modeling, such as the use of 
simple chain ladders, and may indeed result in 
the prescription of excessive risk margins and/or 
capital margins.

2.	 “Such empirical evidence as examined in the 
paper reveals cross-LoB correlations that vary 
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Figure 3.4.  Risk margin ratio vs. best estimate6

6A small number of estimates fell outside the range of these figures.
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(1999) are two of many papers that were published 
around then. Forgoing the seemingly endless discus­
sion that accompanies this topic, this paper allocates 
combined capital to lines of insurance in proportion 
to each line’s marginal cost of capital.

Once one has done the coding necessary to 
calculate the combined risk margin, it takes only a 
little additional computer run time to allocate the 
combined risk margin to individual lines. So let’s 
proceed.

Given the samples, {lS t
k}, for each line l of L lines 

of business one begins to calculate marginal cost of 
capital for line l, (l)RCOC, by first executing Algorithm 4 
below. Then for each line l execute Algorithm 5.

The fourth column of Table 4.1 gives the marginal 
cost of capital, (l)RCOC, by insurer for each line of 
insurance. Note that the sum of the marginal cost 
of capitals by line is less than the combined cost of 
capital in the “Total” column. We then allocate the 
cost of capital by line of insurance in proportion to 
the marginal capital by

iR R
R

R R
l ACOC l COC

T COC

COC L COC

≡
+ +( )

( ) ( )
( ). . .

(11)
1

Note that there are many instances where the 
diversification credit is in excess of 80%. This occurs 

Algorithm 3.  Calculate samples for independent lines

1:  for k = 1, . . . , 10,000 do
2:      for t = 1, . . . , 9 do
3:     �     Set the total ultimate loss sample to be {TSt

k} = {1St
k} + . . .  

    + {LSt
k}.

4:      end for
5:  end for

section. Given the samples {lS t
k}, for each line l of 

L lines of business one begins to calculate RCOC by 
first executing Algorithm 3.

Use the sample, {TS t
k}, to obtain {TC t

k} k=1 
10,000 for  

t = 1, . . . , 9. Then use Equations 7 and 8 to calcu­
late the combined risk margin, TRCOC.

The combined risk margins in this paper were 
calculated using the independence assumption. This 
choice was not made for mathematical convenience. 
Meyers (2018) shows how to estimate the param­
eters of a model with dependency between the lines. 
The steps outlined at the beginning of this section 
show how to implement a dependency assumption 
if warranted.

From the loss triangles studied in Meyers (2015), 
five insurers had a loss triangle in all four lines. 
Table 4.1 gives the combined risk margin for those 
five insurers in the “Total” rows in the “Allocated Risk 
Margin” column. Over all five insurers, the diversi­
fication credit,

−1
Combined Risk Margin

Total Standalone Risk Margin
,

ranged from 30.3% to 48.3%.
Of interest, if not essential, is to see how this com­

bined risk margin is allocated down to the individual 
lines of insurance. Allocating the cost of capital to 
individual lines is more important for pricing than 
for financial reporting as the former case requires an 
insurer to quote a price for an individual insurance 
contract. For the latter case, a risk margin need only 
apply to the total insurer liabilities.

Allocating the cost of capital has been debated in 
the actuarial profession for decades. About 15 years 
ago, a number of papers addressed the issue in a pric­
ing context. Mango and Ruhm (2003) and Meyers 

Algorithm 4.  Calculate leave-line-out samples

1:  for k = 1, . . . , 10,000 do
2:   �   Set the total ultimate loss sample to be {TSt

k} = {1St
k} + . . .  

    + {LSt
k}.

3:      for t = 1, . . . , 9 do
4:     �     Set the leave-line-out ultimate loss sample for line l to be  

    {(−l)St
k} = {TSt

k} – {lS t
k}.

5:      end for
6:  end for

Algorithm 5.  Calculate marginal cost of capital

1:  for l = 1, . . . L do
2:      for t = 1, . . . 9 do
3:     �     Use the sample, {(−l)St

k}, to calculate the leave-line-out capital,  
    {(−l)Ct

k}k=1 
10,000.

4:      end for
5:   �   Use Equations 7 and 8 to calculate the leave-line-out cost-of- 

    capital risk margin, (−l)RCOC.
6:   �   Calculate the marginal cost-of-capital risk margin,  

(l)RCOC ≡ TRCOC − (−l)RCOC.
7:  end for
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vency II, specify that the insurer should assume a  
one-year time horizon. This section extends the 
methodology of the previous sections to cover the 
one-year time horizon.

A high-level description of the methodology is 
to use a Bayesian MCMC model to obtain 10,000 
equally likely scenarios that represent the future 
evolution of the line of business that produced the 
loss triangle. Then, as new losses come in, one uses 
Bayes’ theorem to update the probability of each 
scenario. From those updated probabilities, one can 
then calculate the statistics that are needed to calcu-
late the risk margin.

when a “small” line of insurance is part of the port-
folio of a “large” insurer. Regardless of what one 
thinks of allocating the cost of capital, one cannot 
deny that a small line of insurance adds little to the 
risk of a large insurer. The insurer size effect illus-
trated in Figure 3.4 can be significantly reduced by 
taking diversification into account.

5.  One-year time horizon

In the risk margin calculations above, we assumed 
an “ultimate” time horizon to establish the required 
capital. Some regulatory jurisdictions, such as Sol-

Table 4.1.  Risk margins by type and line of business

Grp./Line
Estimated  
Ult. Loss Best Estimate

Marginal  
Risk Margin

Allocated  
Risk Margin

Stand-Alone  
Risk Margin Diver. Credit

1528/CA 88,756 13,822 464 852 1,447 41.1%

PA 311,659 36,507 542 996 1,519 34.4%

WC 129,762 13,207 61 111 550 79.8%

OL 19,143 4,697 243 447 1,065 58.0%

Total 549,320 68,233 1,310 2,406 4,581 47.5%

1767/CA 2,205,897 310,203 108 171 5,963 97.1%

PA 90,312,996 9,921,107 20,620 32,566 76,527 57.4%

WC 1,677,179 227,010 175 276 5,637 95.1%

OL 2,443,660 956,344 76,495 120,812 132,428 8.8%

Total 96,639,732 11,414,664 97,398 153,825 220,555 30.3%

3240/CA 97,298 18,684 346 554 1,653 66.5%

PA 1,092,757 136,373 1,862 2,983 3,208 7.0%

WC 38,960 4,155 42 67 467 85.7%

OL 13,774 2,638 36 58 459 87.4%

Total 1,242,789 161,850 2,286 3,663 5,787 36.7%

5185/CA 96,071 23,262 837 1,592 2,544 37.4%

PA 268,908 43,305 952 1,811 2,719 33.4%

WC 100,322 16,768 91 173 1,100 84.3%

OL 140,606 22,440 216 410 1,346 69.5%

Total 605,907 105,775 2,095 3,985 7,709 48.3%

14176/CA 28,929 11,759 982 1,716 2,191 21.7%

PA 144,563 26,494 380 663 1,439 53.9%

WC 111,498 20,075 263 460 1,229 62.6%

OL 5,290 1,287 35 61 326 81.3%

Total 290,280 59,615 1,660 2,900 5,185 44.1%

Note: CA = commercial auto; PA = personal auto; WC = workers’ compensation; OL = other liability.
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Under a one-year time horizon capital requirement, 
the capital is determined by the estimate of the ultimate 
losses after one more calendar year of loss experience. 
A key step in this methodology is to determine the 
ultimate loss estimate associated with each scenario. 
For the ultimate time horizon, it is simply Uj. However, 
as Figure 2.1 illustrates, with only one year of losses 
from the jth scenario, there may be several scenarios 
with a significant positive probability.

To get a good approximation, Ot,j, of the expected 
ultimate loss for the jth scenario, one can simulate 
future loss experience from the parameter set of that 
scenario and calculate the ultimate loss estimate, 
M times. Then set Ot,j equal to the average of those 
estimates. Algorithm 6 shows the details.

Both the accuracy of the estimate of Ot,j and the 
computer run time increase with M. After experi-
menting with different values of M, we found that 
M = 12 obtained results that were sufficiently accu-
rate given the intrinsic variation of the underlying 
MCMC simulation.

Algorithm 7 is used to calculate the risk margin 
for the one-year time horizon. In this algorithm, one 
simply substitutes Ot+1,j for Uj in the fifth step of 
Algorithm 1. Given the output of Algorithm 7, one 
then calculates risk margins using Equations 7 and 8.

Figures 5.1, 5.2, and 5.3 show the one-year time 
horizon capital paths, release paths, and risk margins 
of Insurer #353 for commercial auto that correspond 
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Figure 5.1.  Required capital by calendar year
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Figure 5.2.  Paths of released capital

Algorithm 7.  Calculate capital scenarios for a one-year  
time horizon

for k = 1, . . . , 10,000 do
    for t = 0, . . . , 9 do
        Simulate cash flows {Tt

k} using the parameter set {(µk
w,d, σd

k)}
    �    Use Equation 5 to calculate Pr [J = j |Tt

k] for each j = 1, . . . ,  
    10,000

    �    Take a random sample of size 10,000 with replacement,  
    {St

k}, of the {Ot+1,j} j=1 
10,000 with sampling probabilities  

    Pr [J = j |Tt
k].

        Set Et
k equal to the arithmetic average of {St

k}.
    �    Set Ct

k equal to the arithmetic average of the highest  
    (1 − α) • 10,000 highest values of {St

k}, minus Et
k.

    end for
end for

Algorithm 6.  Calculate scenario estimates by calendar year

for m = 1, . . . , M do
    for j = 1, . . . , 10,000 do
        for t = 1, . . . , 9 do
            Simulate Tt using the parameters (µk

w,d, σd
k).

            Use Equation 5 to calculate {Pr [J = j |Tt]} j=1 
10,000.

            Use Equation 6 to calculate the ultimate loss estimate, Om
t,k.

        end for
        Set Om

10,j = Om
9,k

    end for
end for
for j = 1, . . . , 10,000 do
    for t = 1, . . . , 10 do
        Set Ot,j = mean(Om

t,k).
    end for
end for

to Figures 2.2, 3.1, and 3.2, respectively, for the 
ultimate time horizon.

6.  Concluding remarks

There has been no universal agreement on the 
assumptions underlying a cost-of-capital risk margin 
formula. Beyond the underlying Bayesian MCMC 
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2. For a multiline insurer, the risk being transferred
is unlikely to consist of a single line of insurance.

3. Dependency between lines is model dependent.
In Meyers (2018) the author demonstrated that
the independence assumption is warranted for the
CSR model used in this paper.

4. The theoretical advantages of the TVaR@α over
the VaR@α have been well documented by Artz-
ner et al. (1999). Whatever computational diffi-
culty there may have been with the TVaR is not
an issue with the methodology used in this paper.

Recognizing that reasonable people may differ in
their assumptions, this paper points the way to use 
alternative assumptions. The methodology described 
in this paper can be readily adopted for any Bayesian 
MCMC model.

Appendix

Included with this paper is a zip archive containing 
the following:

• RM 1Line.R—The script that produces the risk
margin calculations in Sections 2 and 3

• RM 4Line.R—The script that produces the risk
margin calculations in Section 4

• RM 1Line 1yr.R—The script that produces the risk
margin calculations in Section 5

• Risk Margins for 200 Triangles.xlsx—Risk margin
single-line calculations for all 200 triangles

The computer language for the scripts is R
(https://www.r-project.org.) The computer language 
for the MCMC calculations is Stan (http://mc-stan.
org/interfaces/ rstan.html.)
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