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ABSTRACT

Risk aggregation is virtually everywhere in insurance applications. Indeed, 
in the vast majority of situations, insurers are interested in the properties 
of the sums of the risks they are exposed to, rather than in the stand-alone 
risks per se. Unfortunately, the problem of formulating the probability  
distributions of the aforementioned sums is rather involved, and as a 
rule does not have an explicit solution. As a result, numerous methods 
to approximate the distributions of the sums have been proposed, with 
the moment-matching approximations (MMAs) being arguably the most 
popular. The arsenal of existing MMAs is quite impressive and contains 
such very simple methods as the normal and shifted-gamma approxima-
tions that, respectively, match the first two and three moments only, as 
well as such much more intricate methods as the one based on the mixed 
Erlang distributions (Cossette et al. 2016). Note, however, that in practice 
the sums of insurance risks can have numerous and just a few summands; 
in the latter case the normal approximation is very questionable. Also, in 
practice the distributions of the stand alone risks can be light-tailed or 
heavy-tailed; in the latter case moments of higher orders (e.g., ≥2) may 
not exist, and so the approximation based on mixed Erlang distributions is 
of limited usefulness.

In this paper we put forward a refined MMA method for approximating 
the distributions of the sums of insurance risks. Our method approximates 
the distributions of interest to any desired precision, works equally well 
for light and heavy-tailed distributions, and is reasonably fast irrespective 
of the number of the involved summands.
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the risk RVs are not too skewed are quite common.  
Unfortunately, none of the above must be true in 
reality. Furthermore, statements (ii) and (iii) are often 
violated as insurance risk RVs due to distinct risk 
sources can be very unalike, and, as a rule, positively 
skewed. Another problem with the aforementioned 
variant of the CLT is that there are situations (not 
rare) where the risk RVs of interest have infinite 
second moments (e.g., Seal 1980 and references 
therein). We refer to Brockett (1983) and references 
therein for some interesting examples of how the CLT 
is misused in insurance applications.

The standard CLT-based approximation of the 
aggregate risk’s CDF, a.k.a. the normal approxima-
tion (NA), can be considered a moment matching 
approximation (MMA) that hinges on the first two 
moments only. A generalization of NA that incorpo-
rates skewness is the so-called normal-power (NP) 
approximation (e.g., Ramsay 1991). An alternative  
approach to count for skewness that is of great 
popularity among practising actuaries is the shifted-
gamma approximation (SGA), which aims to match 
the first three moments (Hardy 2004). Clearly, the 
choice of how many moments to match is somewhat 
ad hoc. Thus, more general approximations that aim 
at matching an arbitrary number of moments have 
been proposed (e.g., Cossette et al. 2016 for a recent 
reference).

Admittedly, MMAs, both the ones mentioned 
above and others alike, are convenient and intuitive 
to convey to upper management, yet rather prob-
lematic. For instance, even the two moments-based 
NA method requires finite second moments, and it 
is inapplicable otherwise. The approach of Cossette 
et al. (2016) achieves better accuracy at the price of 
requiring the finiteness of higher order moments.  
In addition, in the latter case, the method is often 
rather computationally intensive.

In this paper, we put forward a new efficient 
method to approximate the CDFs of the aggregate 
risk RVs Sn and SN. Our approach approximates 
the CDFs of interest to any desired precision, works 
equally well for light and heavy-tailed CDFs, and is 

1.  Introduction

Risk aggregation is of fundamental importance for 
insurance. This is because risk aggregation is in fact 
a precursor of risk pooling, a principle that is seen 
by some as the insurance’s reason d’etre. To see how 
crucial risk aggregation is for risk pooling, consider 
a group of n ∈ N individuals (also, business lines, 
risk components in a portfolio of risks, etc), where 
each one of i ∈ {1, . . . , n} faces a risk represented 
by the random variable (RV) Xi, then a sharing rule 
Y(X1, . . . , Xn) is called risk pooling if it is a func-
tion of the aggregate risk X1 + . . . + Xn, only, that is 
Y(X1, . . . , Xn) = Y(X1 + . . . + Xn) (e.g., Aase 2004 for 
details). Hence, it is clear that to reap the benefits of 
risk pooling, insurers must study and understand risk 
aggregation thoroughly. From now and on, X1, . . . , Xn 
stand for insurance risk RVs, and X1 + . . . + Xn := Sn 
denotes the associated aggregate risk.

Specific examples of risk aggregation are naturally 
abundant in all areas of insurance business. For clas-
sical applications, one has to go no further than the 
renowned individual (e.g., Dhaene and Vincke 2004) 
and collective (e.g., Goovaerts 2004) risk models. 
Specifically, in the case of the individual risk models 
(IRMs), for a fixed n as hitherto and independent but 
not identically distributed risk RVs X1, . . . , Xn, the 
aggregate risk is as before denoted by Sn. Also, in 
the case of the collective risk models (CRMs), the 
number of risks, denoted by N is assumed random and 
independent of identically distributed and mutually 
independent (IID) RVs X1, . . . , XN; the aggregate risk 
is then denoted by SN := X1 + . . . + XN.

In order to comprehend the implications of risk 
aggregation, and merely comply with the norms 
of the risk informed decision making, insurers are 
concerned with the stochastic properties of the RVs 
Sn and SN, that is, with the corresponding cumulative  
distribution functions (CDFs). Whether the IRM or 
CRM are considered, it is often tempting to approxi-
mate these CDFs with the use of the Lindeberg–Lévy 
central limit theorem (CLT). To this end, arguments 
like (i) the number of risks is large, (ii) the risks are 
not too heterogeneous, and (iii) the distributions of  
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very successfully. Namely, in Section 3, we approxi-
mate the Laplace transform φi with the help of the 
Laplace transform of certain gamma convolutions, 
and we utilize the machinery of Padé approximations 
to determine the involved shape and rate parameters. 
In Section 4, we reintroduce the family of generalized 
gamma convolutions, and, finally, in Section 5, we 
briefly explain the Gaver-Stehfest method to invert 
Laplace transforms. The proposed MMA may at the 
first glance seem complex, but when implemented it 
is utterly user-friendly and requires minimal human 
involvement.

3.  Padé approximations

To start off, we note that (1) requires approxi
mating the LT of the RV Xi (the CDF of the RV Xi 
is then established via (2)). We accomplish this with 
the help of m-fold convolutions of gamma-distributed 
RVs, succinctly Gi ∼ Gamma(αi, βi), i = 1, . . . , m. 
In other words, we seek to choose the parameters 
{αi}1≤i≤m and {βi}1≤i≤m, so that the CDF of the approxi-
mant of order m RV X̃i,(m) := Σm

i=1 Gi is close in an 
appropriate sense to the CDF of the RV Xi i = 1, . . . , n.  
In the rest of the paper, we omit the subscript (m) 
whenever the order of the approximation is fixed. 
Also, for the sake of the expositional simplicity of 
the discussion in the present section, and sometimes 
thereafter, we omit the subscript i and write X instead 
of Xi, and φ instead of φi.

In terms of LTs, we seek to choose the parameters 
{αi}1≤i≤m and {βi}1≤i≤m, so that the approximant LT
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is close to the function φ(z) = [exp(–zX)]. Our method 
is essentially an MMA. Note that the moments of X 
can be computed as [Xk] = (–1)nφ(k)(0), thus match-
ing the first m moments of X̃ and X is equivalent to 
matching the derivatives (of order k = 1, 2, . . . , m)  
of φ̃ and φ at z = 0. However, our approach allows 
for a number of important improvements.

reasonably fast, irrespective of the number of sum-
mands. We organize the rest of this paper as follows: 
Section  2 provides a high-level overview of our 
approach, and Sections 3, 4, and 5 explain in detail 
its three main pillars, which are, respectively, the 
class of Padé approximations, the family of gener-
alized gamma convolutions, and the Gaver-Stehfest 
algorithm. The theory we propose is then elucidated 
by a variety of practical examples borrowed from 
Bahnemann (2015). More specifically, in Section 6 
we demonstrate the effectiveness of the new MMA 
in the context of stand-alone risk RVs first, and then 
in the context of aggregate risk RVs with and without 
policy modifications.

2.  Brief description of the method

In order to outline the essence of our proposed 
technique in the simplest possible manner, in this 
section we consider the framework of the IRM; 
however, the ideas are equally applicable in the 
context of the CRM (Section 6 of this paper). Let 
X1, . . . , Xn be positive and mutually independent 
RVs with arbitrary corresponding CDFs F1, . . . , Fn.  
Also denote by φi(z) := [exp(–zXi)] the Laplace 
transform (LT) of the RV Xi, i = 1, . . . , n. Our goal 
is to approximate the CDF F of the aggregate RV  
S = X1 + . . . + Xn.

Let φ(z) := [exp(–zS)] (also, L(z)) denote the LT 
of the aggregate risk RV S, then we readily have

∏( ) ( )φ = φ
=

z zi
i

n

(1)
1

and

{ }( ) ( )( )
= φ ≥−LF x

z

z
x x, 0. (2)1

Hence, by combining (1) and (2), we are able to 
obtain the desired approximation of the CDF F given 
that there exist reliable methods to: (i) approximate 
each LT φi(z), and (ii) invert LTs. Next in Sections 3–5, 
we demonstrate that (i) and (ii) can be achieved 
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Note 1. A significant innovation of our method is that 
we match the derivatives of φ̃ and φ not at z = 0 but 
at some point z = z* > 0. This is crucial if we want 
our technique to be applicable to risk RVs with heavy 
tails, for which the moments (and thus the derivatives 
φ(k)(0)) may fail to exist. If the risk RV X has exponen-
tially light tails, we may as well choose z* = 0, but in 
general z* must be strictly positive.

Note 2. Another distinguishing feature of our approach 
is that φ̃ converges to φ uniformly and exponentially 
fast, and in particular the approximant RV X̃ converges 
in distribution to the RV X.

Note 3. Our method requires 2m parameters (unique 
up to permutation) to match the first 2m moments 
of the RVs X̃ and X. As at least 2m parameters are 
required to complete this task, the method we put for-
ward herein is optimal in this sense.

3.1.  Approximation of order two

In order to explain the main ideas behind our algo-
rithm, let us consider a simple case where m = 2 and 
z* = 1. In this case the problem reduces to the follow-
ing one: we want to find four positive numbers α1, 
α2, β1 and β2 such that the derivatives of the LT φ at  
z = 1 coincide with derivatives of the approximant LT

� z z z( ) ( )( )φ = + β + β( )
−α −α1 12 1 2

1 2

also at point z = 1. In order to compute the four 
constants α1, α2, β1 and β2 we need to have at least 
four equations, so now we need to solve the follow-
ing system
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If we were to compute the derivatives in the left-
hand side of (3) and then to simplify the resulting 
equations, we would have obtained a fairly compli-
cated system of four nonlinear equations in α1, α2, β1 
and β2. However, analysing these equations theoreti-

cally would not be feasible due to their complexity 
and even solving them numerically would be a major 
problem.

In order to avoid the complexity, we take loga-
rithms before differentiating. Thus, instead of match-
ing the derivatives φ(k) and φ̃(2)

(k) for k = 1, 2, 3, 4, we 
match the derivatives of ln(φ(z)) and ln(φ̃(2) (z)) of 
order k = 1, 2, 3, 4. The end result is clearly the same, 
but computing α1, α2, β1 and β2 is much simpler, as 
we demonstrate in a moment. With this change, the 
system of four equations for finding α1, α2, β1 and β2 
looks as follows:
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see later, it is easy to compute sk numerically in each 
case of interest, thus for now we treat these numbers 
as known quantities. Computing the derivatives in 
the left-hand side of (4), we obtain a system of four 
equations

s k
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At this stage, that is in order to solve the nonlinear 
equations in (5) and find α1, α2, β1 and β2, we employ 
the toolbox of Padé approximations.

Namely, we introduce yet another function y(z) := 
–φ′(z)/φ(z). Then system (4) is equivalent to
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Note that this system of four linear equations can 
be solved very easily by first finding C and D from 
the third and fourth equations, and then substitut-
ing these results into the first and second equations 
would give us the values of A and B.

Now that we have found A, B, C, and D, and so we 
can compute β1 and β2 by noting that

w w Cw Dw( )( )+ β + + β + = + +1 1 1 ,1 2
2

and then the constants α1 and α2 can be found by the 
formula

P
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i
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1
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Remarkably, all we have done so far is the partial 
fraction decomposition for the rational function 
P(w)/Q(w) as in (7). This process, which can be done 
by hand, has provided us with the desired constants 
α1, α2, β1 and β2, and so with the approximant LT φ̃(2).

3.2.  Extension to the approximation  
of any order

To generalize the method described in the previ-
ous subsection to arbitrary orders m and arbitrary 
choice z*, we follow the same steps and arrive at the 
problem of finding [m – 1/m] Padé approximant to 
the function y(z* + w), that is, instead of (7) and (8) 
we have
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where sk := (1/k!)y(k)(z*). This allows us to find the 
coefficients bi, ai by solving a system of linear equa-
tions similar to (10) and then to obtain the required 
numbers {αi}1≤i≤m and {βi}1≤i≤m by doing the partial 
fraction decomposition in (11).

The main input for this algorithm is the sequence 
of coefficients sk = (1/k!)y(k)(z*). These coefficients 

for some constants A, B, C and D. Now we can express 
system of four equations (6) in an equivalent way 
by saying that the first four terms of the Maclaurin 
expansion of the rational function
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expansion
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in other words we have a single equation
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(note that we have introduced here a new variable  
w := z – 1). Equation (8) tells us that the rational 
function P(w)/Q(w) is a [1/2] Padé approximation 
to the function y(1 + w). In general, a [p/q] Padé 
approximation to a function f is a rational function 
P(w)/Q(w) (with deg(P) = p and deg(Q) = q) that has 
the same first p + q + 1 terms in Maclaurin expan-
sion as the function f(w).

It turns out that single equation (8) contains all the 
information necessary for finding the constants A, B, 
C and D. By multiplying both sides of equation (8) 
by Q (w) = 1 + Cw + Dw2 we obtain
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Identifying the coefficients in front of powers of w in 
both sides of the above equation we obtain a system 
of four linear (!) equations
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We fix m = 2 and z* = 1; by computing numeri-
cally the integral in (12) we calculate

g g g

g g

≈ ≈ − ≈

≈ − ≈

0.5193711, 0.2123717, 0.2179689,

0.3665409, 0.8649004.

0 1 2
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Then we use (14) to find
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and solving system of linear equations (10) we obtain

A B

C D

≈ ≈

≈ ≈

0.4089017, 0.1766115,

1.0493709, 0.2472855.

The polynomial Q(w) = 1 + Cw + Dw2 has two roots ≈  
–2.7985663 and ≈ –1.4449925, thus we find β1 ≈ 
1.79856636 and β2 ≈ 0.4449925. Using the formula 
αi = P(–1 – βi)/Q′(–1 – βi) we find α1 ≈ 0.25501185 
and α2 ≈ 0.4591888. Thus we have found an approxi-
mation to the Weibull distribution of interest. Namely, 
we have approximated X with the help of X̃(2), such 
that the latter RV is equal in distribution to G1 + G2, 
with Gi ∼ Gamma(αi, βi), i = 1, 2.

We conclude this section with an important obser-
vation, which paves the path to the introduction of the 
class of GGCs latter on in the next section. Namely, 
let the RV X be distributed Weibull with the following 
PDF (the shape parameter is now greater than one)

f x x x x( )( )( ) = − ≥3 2 exp , 0.1 2 3 2

For this set-up, we find that β1 ≈ 2.58 – 1.37i and  
β2 ≈ 2.58 + 1.37i do not belong to (0, ∞), which 
shows that our algorithm does not always give a 
legitimate approximation in the form G1 + G2, with  
Gi ∼ Gamma(αi, βi). This outcome is rather unfortunate, 
but similar inconveniences have been encountered in 
the context of other MMAs (e.g., Cossette et al. 2016).

This raises an important question:

Does there exist a (rich) class of CDFs for which the 
Padé approximations described above always yield 
meaningful results?

are typically not available in closed form, but they 
can be easily computed numerically. Indeed, we first 
compute the numbers
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to a high precision by a numerical quadrature (the 
double-exponential quadrature of Takahasi and Mori 
(1974) is particularly well-suited for such calcula-
tions). Next we observe that
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at z* gives us
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Comparing the constant term in the Taylor series in 
the left-hand side and the right-hand side of the above 
equation we find that s0 = –g1/g0, and comparing the 
coefficients in front of (z – z*)k gives us
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which allows to compute sk recursively for all k ≥ 1.

3.3.  A simple numerical example  
and a question arising from it

To illustrate our method on a numerical example of 
actuarial interest, let us assume that X is distributed 
Weibull with the probability density function (PDF)

f x x x x( )( )( ) = − ≥− −3 4 exp , 0.1 4 3 4

Weibull distribution has been frequently chosen to 
model insurance risks (Mikosch 2009; Klugman et al. 
2012 for general discussions).
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In the next section we show that the answer to this 
question is in affirmative, and we also discuss the 
convergence of our refined MMA method.

4.  Generalized gamma 
convolutions

The class of Generalized Gamma Convolutions 
comprises distributions which are weak limits of the 
RVs of the form Σm

i=1 Gi, where Gi ∼ Gamma(αi, βi) 
and αi > 0, βi > 0, i = 1, . . . , m. It seems that GGCs 
were first used by Thorin in 1977, who employed 
their properties to prove that the log-normal distribu-
tion is infinitely divisible (e.g., Bondesson 1992 for 
an excellent discussion).

The most convenient way to describe the class of 
GGCs is via LTs. Note that for a RV Σm

i=1 Gi := X̃(m), 
which is our approximant from Section 3, we have
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where U(dt) is a discrete measure having support at 
points βi with mass U({βi}) = αi. Thus, the following 
result is not surprising.

Proposition 1. (Thorin 1977; see also Bondesson 
1992) The distribution on [0, ∞) of the r.v. X is a 
GGC if and only if its Laplace transform is

z zX

az z t U t

z



∫( )
[ ]

( ) ( )

( ) ( )

( )

φ = −

= − − +

≥

∞

: exp

exp ln 1 d

for Re 0 (15)

0

where a ∈ [0, ∞) is a constant, and U(dt) is a positive 
Radon measure, also called Thorin measure, which 
must satisfy

t t U dt∫ ( ) ( )( ) < ∞
∞

min ln , 1 .
0

It turns out that the algorithm outlined in Section 3  
always produces meaningful results when the RV 

being approximated has a CDF that belongs to the 
class of GGCs. By meaningful results we mean that 
the algorithm produces a set of positive numbers αi 
and βi that determine the approximant X̃(m) := Σm

i=1Gi,  
where Gi ∼ Gamma(αi, βi). Moreover, it can be 
shown (Furman et  al. 2018) that, as m → +∞, the 
LTs [exp(–zX̃(m))] converge to the LT [exp(–zX)] 
exponentially fast and uniformly in z on compact 
subsets of \(–∞, 0]. One may wonder at this point 
whether the class of GGCs is rich enough. We note 
in this respect that it comprises, e.g., such important 
distributions for actuarial applications as gamma, 
inverse gamma, inverse Gaussian, Pareto, log-normal, 
and Weibull with the shape parameter less than one, 
among a great variety of other distributions.

To summarize the findings of Sections  3 and 4, 
we emphasize that our MMA (i) converges very 
fast, (ii) always provides legitimate outcomes if 
the risk RV to be approximated has a CDF in the 
class of GGCs, (iii) yields unique parameters of the 
approximant CDF, and (iv) is optimal in the sense 
that only 2m parameters are required to match the first 
2m moments.

We conclude this section with outlining the cause 
for the algorithm described in Section  3 to be so 
well-suited for the RVs having CDFs in the class  
of GGCs. This reason in fact stems from the fact 
that the function y(z) = –d/dzln([exp(–zX)]) is 
given by

∫
( )

( )ψ =
+

∞ d
, (16)

0
z

U t

t z

which can be easily obtained from (15). Functions 
of the form ∫ 0

∞(t + z)–1U(dt) are called Stieltjes func-

tions, and they have been shown to enjoy many nice 
analytical properties. In particular, it has been proved 
that Padé approximations to such functions always 
exist and converge exponentially fast and uniformly 
in z on compact subsets of \(–∞, 0] (see Baker and 
Graves-Morris 1996). Since the algorithm outlined 
in Section 3 is essentially a Padé approximation 
method, this explains why RVs with CDFs in the 
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class of GGCs fit perfectly within our approxima-
tion scheme.

5.  Gaver-Stehfest algorithm

At this point of the discussion, we have hopefully 
convinced the reader that there is a mathematically 
sound way to approximate the risk RV X having 
a CDF in the class of GGCs with the help of an 
approximant RV X̃. The solution, however attrac-
tive, involves the corresponding LTs, that is φ̃ ≈ φ(z). 
However, our ultimate goal is to find the CDF of the 
approximant RV X̃, denoted by F̃. Thus, the remain-
ing step is to recover this CDF from the LT φ̃. Doing 
that is a classical problem in analysis, and a variety  
of solutions exist. One popular method is to use 
Bromwich integral, which requires integration over a 
path in the complex plane. Another method, and this 
is what we do in the present paper, is via the Gaver-
Stehfest algorithm. The main difference between 
the Gaver-Stehfest algorithm and the one based on 
the Bromwich integral, as well as most other Laplace 
inversion methods, is that it uses only the values of 
the Laplace transform on the positive real line and 
does not require any complex numbers. This method 
was invented in 1970 by Stehfest (1970), by improving 
upon the earlier method of Gaver, and since then it 
has been successfully used in many areas of applied 
mathematics, including in probability and statistics 
(Abate and Whitt 1992; Kou and Wang 2003), actu-
arial science (Badescu et al. 2005) and mathematical 
finance (Schoutens and Damme 2011).

The Gaver-Stehfest algorithm is very simple and 
easy to implement. To introduce it, consider a func-
tion f and its Laplace transform

z e f x xzx∫( ) ( )φ = −
∞

: d ,
0

where we assume that φ(z) is finite for all z > 0. For 
all integers m ≥ 1 we define

f x x a n k x xm k
k

m

∑ ( )( ) ( )( ) ( )= φ >−

=

−: ln 2 ln 2 , 0,

(17)

1

1

2
1

where the coefficients are defined as follows:

a m
m

j
n
j

j
j

j
k j

m k m

k

m k
m

j k

k m

∑( )
( ) = − 









 −







≥ ≤ ≤

[ ]

( )

( )

+
+

= +
:

1

!

2
,

1,1 2 .

1

1 2

min ,

It is known (Kuznetsov 2013) that the approxima
tions fm(x) converge to f (x) if f is continuous at x  
and of bounded variation in a neighborhood of x. 
There is also a lot of numerical evidence that the 
approximations fm(x) converge to f (x) very fast, 
provided that f is smooth enough at x (e.g., Abate 
and Whitt 1992; Davies and Martin 1979). When 
using the Gaver-Stehfest algorithm one should be 
careful with the loss of significant digits in the sum 
(17). This is due to the fact that the coefficients ak(m) 
are very large (for large k and m) and of alternating 
signs. This problem is readily solved by using any 
high-precision arithmetic package.

6.  Illustrative examples with  
log-normal, Pareto and Weibul 
risks of varying tail thickness

In this section, we demonstrate the usefulness of 
our new MMA method by applying it to a number 
of examples of actuarial interest. More specifically, 
motivated by numerical examples in Bahnemann 
(2015), we consider applications to risks that are 
distributed log-normally, Pareto of the second kind, 
a.k.a., Lomax, and Weibull. These distributions have 
been routinely chosen to model insurance risks (e.g., 
Kleiber and Kotz 2003; Mikosch 2009; Klugman 
et al. 2012 for a general discussion).

In what follows, we denote the CDFs of the 
log-normal, Lomax, and Weibull distributions, by, 
respectively, FL, FP, and FW. All these CDFs have 
explicit forms given by

F x
x

x

L



( )µ σ = + − µ
σ













> µ ∈ σ >

; ,
1

2
1 erf

ln

2
,

0, , 0, (18)
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F x
x

xP( )α β = − β
+ β







≥ α > β >
α

; , 1 , 0, 0, 0,

(19)

F x e xW
x( )β δ = − ≥ β > δ >( )− β δ

; , 1 , 0, 0, 0. (20)

In the above, s, α and d are shape parameters that 
stipulate how heavy-tailed the corresponding distri-
butions are. Namely, in the case of the log-normal 
distribution, larger values of s imply heavier right 
tails, whereas in the case of the Lomax and Weibull 
distributions, smaller values of α and d, respectively, 
suggest heavier right tails. Interestingly, there has been 
ample practical evidence that these are the parameter-
izations that correspond to the heavier tails that are of 
particular interest in non-life insurance applications, 
yet in the theoretical literature the light-tailed exam-
ples prevail (e.g., Cosette et al. 2016; Tao et al. 2016 
for recent references). In the rest of this section, we 
consider both heavy-tailed and light-tailed parameter-
izations of the CDFs FL, FP, and FW. Our choices of 
parameters are inspired by Bahnemann (2015).

6.1.  Stand-alone risks

We begin by approximating CDFs (18),(19), and 
(20). Genuinely speaking, these approximations are 
not the ultimate goal of this paper, and hence we 
remind the reader that: (i) after we have the approxi-
mations for the just-mentioned CDFs of the stand-
alone risks RVs, the CDFs of the aggregate risk RVs 
are obtained with the help of equations (1) and (2), 
(ii) in the context of the stand-alone risks, we are 
able to evaluate the accuracy of an approximation 
by comparing the approximant CDF with the actual 
CDF, and thus the discussion in this subsection can 
serve as an important evaluation of the various MMAs 
tested here.

To explore the effectiveness of the distinct MMAs, 
we employ the Kolmogorov-Smirnov (KS) metric to 
measuring how close the distribution of an approxi-
mation is to the desired distribution. The KS distance 
(dKS) of an approximant RV X̃ (with CDF F̃ ) to the 
RV X (with CDF F ), denoted dKS (F̃ , F ), is given by

� �d X X F x F xKS
x

( ) ( ) ( )= −
≥

, sup .
0

This metric yields the worst distance and, thus, small 
values of dKS suggest the approximation is good on 
the entire domain. However, on a different note, rela-
tively large values of dKS do not necessarily mean the 
approximation is worthless, as it can turn out very 
reasonable in some regions of the CDFs domain.

In the examples below, we illustrate the effective
ness of our approximation by comparing it with 
three simple MMAs: the normal approximation, the 
normal power approximation (NPA), and the shifted 
gamma approximation, when applicable. These three 
MMAs are referred to as “the most commonly cited 
in practice” by Hardy (2004). In addition, we com-
pare our approximation with the mixed Erlang dis-
tribution (MED) approach of Cossette et al. (2016), 
when applicable. The MED method uses the first 
m moments of a risk RV to determine a mixture of  
Erlang distributions for approximating this RVs CDF. 
We use the results in Cossette et al. (2016), for the 
log-normal distribution (µ = 0, s = 0.5) and apply 
their algorithm to our additional cases of interest  
(Pareto and Weibull), when applicable. (When imple-
menting the MED method, we only considered 
moment-matching of orders m = 3 and m = 4, as 
with m ≥ 5 the method requires a large number of 
computations.)

In what follows, we denote the CDF of our approx-
imant RV X̃(m) by F̃(m), we denote the mixed Erlang 
CDF by F̃Wm,l

, and the CDFs of the NA, NPA, and 
SGA methods by F̃NA, F̃NP, and F̃SG, respectively.

Example 1. To start off, let us consider log-normally 
distributed risk RVs. The log-normal distribution 
has been found appropriate for modeling losses 
originating from a great variety of non-life insurance 
risks (e.g., Mikosch 2009, Klugman et  al. 2012). 
More specifically, Kleiber and Kotz (2003) mention 
applications in property, fire, hurricane, and motor 
insurances, to name just a few (also, e.g., Dropkin 
1964; Bickerstaff 1972; O’Neill and Well 1972). 
Furthermore, the standard formula of the European 
Insurance and Occupational Pensions Authority 
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explicitly assumes the log-normality of insurers’ 
losses (EIOPA-14-322 2014).

Table 1 provides the KS distances of several approx-
imations for the parameter sets (µ = 0, s = 0.5),  
(µ = 1.5240, s = 1.2018), and (µ = 5.9809, s = 1.8). 
The choice of the larger value of the s parameters 
is motivated by Example 5.8 in Bahnemann (2015), 
whereas the choice of the smaller one is due to 
Cossette et  al. (2016) and Dufresne (2007). As the 
parameter s gets larger, it becomes increasingly 
difficult to obtain a valid approximation with any of 
the methods (this is perhaps the reason why in the 
examples manifesting in the academic literature, 
smaller values of the s parameter are very common). 
With s = 1.2018 and s = 1.8, the MED method does 
not produce potential solutions using the parameters 
m = 4 and l = 70, in the former case, and m = 3,  
or 4 and l = 70, in the latter case. As suggested 
in Cossette et  al. (2016), this can be remedied by 
increasing the parameter l; however, increasing this 
parameter too much results in the method being 
computationally infeasible.

Figure 1 provides the plots of the approximating 
CDFs in Table  1 as well as the actual CDF FL (in 
blue). Figures 1a, 1c, and 1e depict our approxima-
tions (dark green and light green, where light green 
corresponds to the better approximation) and the 
MED approximation (in red, when applicable). 
Figures 1b, 1d, and 1f depict the simple moment-
matching methods: NA (orange), NPA (salmon), and 
SGA (black). Apparently, the NA and NPA approxima-
tions are inadequate for the more skewed log-normal 
cases, that is, for the parameterizations (µ = 1.5240, 
s = 1.2018) and (µ = 5.9809, s = 1.8). This is not 

surprising, as it is well known that the NPA provides 
fairly accurate results for the skewness values not 
exceeding one (e.g., Ramsay 1991), whereas the two 
aforementioned cases of the log-normal distribution 
lead to the skewness values of 11.23 and 136.38, 
respectively. In the context of the SGA, higher skew-
ness values imply very small scale parameters, and 
these in turn result in a nearly vertical rise in the 
corresponding CDF, thus aggravating the accuracy 
significantly.

Example 2. The next distribution we consider is 
Lomax. As in the case of the log-normal distribution 
discussed earlier, there is ample of evidence that the 
Lomax distribution is an adequate model to describing 
non-life insurance risks. We refer to Seal (1980) for 
a list of references, and in particular to Benckert and 
Sternberg (1957), Andersson (1971), and Ammeter 
(1971) for fire insurance losses, and Benktander 
(1962) for automobile insurance losses.

Table 2 provides the KS distances for two param-
eter sets: (α = 2.7163, β = 16.8759), and (α = 2,  
β = 3000) (e.g., Example 5.7 in Bahnemann 2015). 
Recall that the mth moment of the Pareto distribu-
tion is finite only when m < α. Consequently, most 
of the existing MMAs are not applicable for these 
examples; in the first case, only the NA method and 
MED method with m = 2, are applicable. In con-
trast, our approximation is feasible in both cases and 
works well.

Figure 2 compares the plots of the CDFs in Table 2 
against the actual CDF FP (in blue). Figures 2a, 
and 2c depict our approximations (dark green and 
light green, where light green corresponds to the  

Table 1.  The KS distances, dKS (•, XL), of the approximations to risk RVs distributed log-normally

Parameters F̃(5) F̃(10) F̃W5,70
F̃NA F̃NP F̃SG

µ = 0, s = 0.5 9.029E–04 2.950E–06 1.131E–03 9.834E–02 7.165E–02 3.870E–02

Parameters F̃(3) F̃(16) F̃W3,70
F̃NA F̃NP F̃SG

µ = 1.5240, s = 1.2018 6.070E–03 2.118E–06 3.400E–02 0.290E00 0.730E00 0.5919E00

Parameters F̃(3) F̃(36) F̃W3,70
F̃NA F̃NP F̃SG

µ = 5.9809, s = 1.8 7.968E–03 1.113E–06 — 0.420E00 0.835E00 0.8015E00



Risk Aggregation: A General Approach via the Class of Generalized Gamma Convolutions

VOLUME 13/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 243

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a) The CDFs FL, F
~

(5), F
~

(10), and F
~

W5, 70. (b) The CDFs FL, F
~

NA, F
~

NP, and F
~

SG.

(d) The CDFs FL, F
~

NA, F
~

NP, and F
~

SG.

(f) The CDFs FL, F
~

NA, F
~

NP, and F
~

SG.

(c) The CDFs FL, F
~

(3), F
~

(16), and F
~

W3, 70.

(e) The CDFs FL, F
~

(3), and F
~

(36).

Figure 1.  The log-normal CDFs and the corresponding approximations as per Table 1

Table 2.  The KS distances, dKS (•, XP), of the approximations to risk RVs distributed Pareto

Parameters F̃(2) F̃(10) F̃W2,200
F̃NA F̃NP F̃SG

a = 2.7163, b = 16.8759 1.273E–02 4.320E–05 3.477E–02 0.302E00 — —

Parameters F̃(3) F̃(10) — F̃NA F̃NP F̃SG

a = 2, b = 3000 6.532E–02 9.525E–03 — — — —
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better approximation) and the MED approximation 
(in red, when applicable). Figure 2b depicts the nor-
mal approximation (orange).

Example 3. The final distribution we consider is 
Weibull, which is a GGC when d < 1, and these are 
the values of interest when modeling non-life insur-
ance risks (Bahnemann 2015). Very much like the 
log-normal and Pareto distributions, the Weibull 
distribution has been commonly chosen to model 
insurance data. We refer to Mikosch (2009); Klugman 
et al. (2012) for a general discussion, as well as to 
Hogg and Klugman (1983) for an application to 
hurricane loss data.

Table 3 provides the KS distances for the param-
eters β = 220.653 and d = 0.8 (e.g., Example 2.13 in 
Bahnemann 2015).

Figure 3 compares the plots of the CDFs in Table 3 
with the actual CDF FW (in blue). Figure 3a depicts 
our approximations (dark green and light green, where 
light green corresponds to the better approximation) 
and the MED approximation (red). Figure 3b depicts 
the simple moment-matching methods: NA (orange), 
NPA (salmon), and SGA (black).

In summary, we note with satisfaction that the 
proposed refined MMA method has performed exactly 
as expected in all of the three examples discussed 
above. That is, it has outperformed all other MMAs 
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Figure 2.  The Pareto CDFs and the corresponding approximations as per Table 2

Table 3.  The KS distances, dKS (•, XW), of the approximations to a risk RV distributed Weibull

Parameters F̃(3) F̃(10) F̃W3,70
F̃NA F̃NP F̃SG

b = 220.653, d = 0.8 3.297E–02 5.337E–04 2.075E–02 0.213E+00 0.345E+00 0.1374E+00
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with m = 25 and arithmetic precision to 300 digits 
and precomputed coefficients of the approximant 
Laplace transforms. Remarkably, the computation 
speed can be significantly enhanced (without dramatic 
drop in accuracy) by reducing the degree of precision 
and using a smaller value for m. Specifically, we set 
m = 10 and the arithmetic precision to 100 digits. 
Then in, e.g., the log-normal case with µ = 5.9809 and 
s = 1.8, F̃(3) and F̃(36) can be computed in 0.948 and 
9.396  seconds, respectively, while achieving the KS 
distances of 7.968e–3 and 1.123e–06, respectively.

We further turn to the aggregate risk RVs, and we 
demonstrate that the advantages of our approximation 
method carry on.

6.2.  Aggregate risks with full  
and partial coverage

We begin by approximating the CDF of the RV  
Sn = X1 + . . . + Xn - the individual risk model (e.g., 
Dhaene and Vincke 2004), and the CDF of the RV 
SN = X1 + . . . + XN - the collective risk model (e.g., 
Goovaerts 2004). In the former case, we sum  
n independent RVs with possibly different distribu-
tions. In the latter case, we sum a random number N  
of IID RVs. Furthermore, as ceding insurers often 
turn to a reinsurer in order to reduce the variability 
of the underwriting outcomes, we conclude the dis-
cussion in this section with the stop-loss reinsurance 
set-up. We note briefly that due to Borch (1969), 
the variance of the cedent insurer’s payouts is the 

in the cases when the latter are applicable (e.g., the 
lighter-tailed log-normal CDFs with s = 0.5, s = 
1.2018 and the Weibull CDF), and it has provided a 
feasible and accurate alternative, otherwise (e.g., the 
heavier-tailed log-normal CDF with s = 1.8 and the 
Pareto CDFs).

We conclude this section by addressing a request 
of a referee to report the times required to com-
pute the CDFs in Tables 1, 2, and 3 using the MMA 
approach put forward herein. These times are pro-
vided in Table 4. (All calculations were performed 
on a laptop computer with 12 GB of memory and  
an IntelCoreTM i5-5200U CPU.) The numbers rep-
resent the time, in seconds, required to perform 
the Gaver Stehfest algorithm described in Section 5 
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Figure 3.  The Weibull CDF and the corresponding approximations as per Table 3

Table 4.  Computation times for the CDFs in Tables 1, 2, and 3

Log-normal F̃(5) F̃(10)

µ = 0, s = 0.5 19.256 39.120

Log-normal F̃(3) F̃(16)

µ = 1.5240, s = 1.2018 14.068 71.052

Log-normal F̃(3) F̃(36)

µ = 5.9809, s = 1.8 15.924 162.052

Pareto F̃(2) F̃(10)

a = 2.7163, b = 16.8759 8.876 43.856

Pareto F̃(3) F̃(10)

a = 2, b = 3000 13.308 40.912

Weibull F̃(3) F̃(10)

b = 220.653, d = 0.8 12.528 39.852
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Thus we approximate the CDF of the RV Sn by first 
approximating the LTs of the severities and then 
evoking the Gaver-Stehfest method on

� � � �i iz z z z( )( ) ( ) ( ) ( )φ = φ φ φ .1 6 11

5

Figure 5 shows our approximation of the CDF of Sn 
(dark green; denoted by F̃Sn,(40),(36),(30)) and the CDF 
obtained by means of MC simulation (blue). In this 
case, we used approximation orders m = 40, m = 36, 
and m = 30 to approximate the underlying log-normal, 
Pareto, and Weibull CDFs, respectively. Note that the 
RV Sn has only one finite moment and, hence, other 
MMAs are not applicable.

Example 6. In the previous examples we consid-
ered aggregate risks with full coverages, that is there 
were no deductibles, policy limits, or other policy 
modifications applied by the insurer to reduce the 
payouts of the benefits. However, this is not always 
the case. Consequently, in this example, we explorer 
the so-called stop-loss r.v. Sr,l, which is given, for 
positive retention r and limit l, by

S

X r

S r r X r l

l r l X

r l =

<

− ≤ < +

+ ≤ < ∞




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



0,

,

,

,

where the RV S is the aggregate risk RV within either 
the IRM or CRM. It is a standard exercise to show 
that the CDF of the RV Sr,l is given by

[ )
( ) =

≤ + <

≤






F s

S s r s l

l s
r l

,

1,
.,

Consequently, the CDF of the risk RV Sr,l is approxi-
mated similarly to the case in Example 4 (if the RV S 
refers to the aggregate risk within CRM), and simi-
larly to the case in Example 5 (if the RV S refers to 
the aggregate risk within IRM). To demonstrate, we 
consider the following CRM: S := SN = X1 + . . . + XN,  

smallest under the stop-loss reinsurance contract. 
Irrespective of whether coverage modifications of 
the aggregate risks are allowed or not, we assume 
that the stand-alone risks have CDFs (18),(19), and 
(20). As explicit CDFs of the aggregate risks are not 
available, we use the Monte-Carlo (MC) method as 
a benchmark.

Example 4. Consider the CRM, SN = X1 + . . . + XN, 
where N has a Poisson(l) distribution, and Xi, i =  
1, . . . , N has a log-normal distribution with param-
eters µ = 5.9809, and s = 1.8 (Bahnemann 2015, 
Example 5.9). The Laplace transform of the RV SN is 
given by

[ ]( )( ) ( )φ = λ φ −exp 1 .
1

z zS XN

Thus we obtain an approximation for φ(z): = 
[exp(–zSN)] as follows

� �z z( )( ) ( )φ = λ φ − exp 1 .1

Then we evoke the Gaver-Stehfest algorithm to obtain 
the approximating CDF of the RV SN.

Figure 4 summarizes the results. Namely, Figures 4a,  
4c, and 4e show the CDFs of our approximation 
(dark green; succinctly F̃SN,(36)) and the CDF produced 
by means of MC simulation with 106 samples (blue; 
succinctly FM), for l = 5, 10, and 15, respectively.  
In each one of our approximations, we used m = 36  
to approximate the underlying log-normal severity 
distribution. Figures 4b, 4d, and 4f depict the MC 
CDF (blue), as well as the CDF obtained via NA 
(orange), NPA (salmon), and SGA (black).

Example 5. Consider the IRM, Sn = X1 + . . . + Xn, 
with n = 15. We assume Xi, i = 1, . . . , 5, are dis-
tributed log-normally with parameters µ = 5.9809,  
s = 1.8, Xi, i = 6,..10, are distributed Pareto with 
parameters α = 2, β = 3000, and Xi, i = 11, . . . , 15 
are distributed Weibull with parameters β = 220.653, 
d = 0.8; all independent. The LT of the aggregate risk 
RV Sn, denoted by φ(z) := [exp(–zSn)], is given by
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Figure 4.  The collective risk model: SN = X1 + . . . + XN, N } Poisson(k), and the Xi’s are IID log-normally 
with the parameters (l = 5.9809, r = 1.8)
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N ∼ Poisson(15), and the Xi’s are IID with log-normal 
distribution and the parameters µ = 5.9809, s = 1.8. 
For the sake of the demonstration, we set r = [N ] • 
3000 = 45000, and l = [N ] • 5000 = 75000. Figure 6 
depicts the approximating CDF F̃r,l of the risk RV Sr,l 
(dark green) and the CDF obtained by means of the 
MC simulation FM (blue).
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