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Reserving for Infrastructure 
Service Contracts

by Thomas E. Wendling

ABSTRACT

In volume 8, no. 2 of Variance, a technique using actuarial 

present value was applied to infrastructure service contracts 

(ISCs) as a way to manage obsolescence in portfolios of fixed, 

physical capital assets. The theory put forth in that paper was 

purely deductive and used basic financial mathematics to posit 

some untested hypotheses. In contrast, this paper documents a 

simulation experiment using rudimentary machine learning to 

computationally demonstrate the idea that culling and replacing 

obsolete physical assets might be critical to maximizing the 

recovery of significant efficiencies expressible as shareholder 

value. We will simultaneously create an objective definition of 

obsolescence and describe a robust stochastic reserving method 

for long-term ISCs providing asset replacement coverage in the 

contingent event of obsolescence.
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reinsurance, and other industry resources could further 
assure the most efficient allocation of capital, while 
simultaneously providing a cheaper and less volatile 
risk-financing delivery method for the replacement of 
aging infrastructure.

It is incumbent on actuaries to use their special 
knowledge of risk outside the strict context of exist-
ing insurance practices, and this is the whole point of 
enterprise risk management. The basic CAS educa-
tion provides an ample toolkit that, if applied fun-
damentally in other industries, might result in new 
stem areas of practice where property and casualty 
actuaries could provide new insights to old problems 
outside of insurance that currently lack theoretical 
foundation.

1.2. Physical assets

Physical assets in the sectors of transportation, 
power, water supply, healthcare, and communications 
make up the infrastructure that allows society to thrive. 
Machines, vehicles, buildings, and structures are man-
ufactured at great expense; then, as they age, they 
run at an ever-increasing cost relative to advancing 
replacement technology. Eventually the economic 
advantages of a newer machine become so cogent 
that they inevitably force a replacement decision, 
even under the most austere budget management. Is 
there a best time that organizations are missing to 
take this action?

Resources to manufacture and operate physical 
assets are scarce, yet they represent the vast propor-
tion of all materials and energy consumed by society. 
The optimization theory tested in this paper suggests 
that potentially significant creation and destruction 
of wealth are at stake in the critical timing of infra-
structure replacement and that life cycle costs of 
aging infrastructure can be minimized by handling 
obsolescence as an insurable event.

Obsolescence can be thought of as a state, or as 
a temporal transition to a state, of an asset when it 
should be replaced. In this state, the asset may still be 
in good working order yet be obsolete. In industry, 
obsolescence can occur because a like replacement 
becomes available that is economically superior in 

1. Introduction

The theory tested in this paper involves the environ-
mental processes inseparably tied to the obsolescence 
of the ordered investments of material, time, and 
energy that we call physical assets. These exogenous 
processes, such as advancing technology, changing 
energy costs, changing costs of capital, increasing 
costs of labor, or emerging government incentives to 
adopt new technology, act in the aggregate over time 
to render some types of infrastructure capital obso-
lete. Although mechanical wear on physical assets is 
an important endogenous influence on asset mortality, 
we are speaking equally of quantifiable socioeconomic 
processes that drive obsolescence; therefore, the role 
of actuarial science cannot be abrogated.

1.1. The role of the actuary

The subject of this paper may push the boundaries 
of what is considered actuarial science, particularly if 
one’s definition is limited only to activities associated 
with existing insurance products. Nevertheless, as 
this paper deals with populations of mortality risks, it 
is no wonder that the vocabulary of actuarial science 
is the most apt at defining obsolescence and expos-
ing never-before-seen optimization relationships at 
the portfolio level. Only actuaries possess the specific 
training to reveal this kind of phenomenon.

The processes that drive obsolescence of infrastruc-
ture assets are primarily socioeconomic, not physical. 
Without actuarial science, balancing the costly activi-
ties of manufacturing and operation in the face of 
the uncertain future forces of advancing technology, 
changing energy and labor costs, and even regula-
tion is often pragmatically dealt with through simple 
deferral of the replacement decision, which leads to 
the systematic destruction of resources and wealth 
and an enormous opportunity for their recovery.

By defining this problem in the context of insurance, 
the industry’s full actuarial talent could be brought to 
bear on what would essentially become a ratemaking 
and reserving exercise to assure the appropriate port-
folio treatment of pooled, homogeneously grouped 
physical assets treated as mortality risks. Underwriting, 
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Machines have no vital signs that would make such 
a determination easy, and any machine can always 
be repaired or refurbished ad nauseam to the point 
of immortality. The ISC today exists in a vacuum 
of theoretical understanding about objective criteria 
that constitute the end of life of a physical asset or 
why the timing of this replacement should matter.

Although ISCs are relatively obscure, Wendling 
(2014) argued that if they are modified with a defini-
tion of obsolescence based on the portfolio theory 
of that paper, the humble ISC would transform into 
a powerful tool for optimizing life cycle costs and 
creating wealth in the form of prospectively valued 
operating costs savings. Furthermore, underwriting 
ISCs as insurance could provide added benefits in 
the form of tax deductions and reinsurance.

1.4. M(t)

The subject theory is ontological in that it provides 
a fundamental explanation of why a phenomenon—
the periodic replacement of physical assets—occurs 
in the first place. A fundamental investigation into 
this phenomenon uncovers and lays bare the struc-
ture of its underlying causes. We will find in this 
investigation that the phenomenon itself invokes the 
ontic existence of cyclical costs M(t) that drive it; in 
addition, only these cyclical costs, treated statistically, 
can ground the familiar phenomenon of asset mortal-
ity, much of which we already think we understand 
through pseudo-conceptions, which only seem to have 
been demonstrated. Since we already know that physi-
cal assets exhibit mortality with certain characteris-
tics, we then invent the underlying concept of M(t)—a 
time-dependent function equal to the rising, cyclical, 
calendar-year opportunity costs of not substituting an 
old asset with a new replacement asset—to explain the 
observed features of this mortality.

M(t) captures anything that creates an opportunity 
cost in an existing physical asset through the existence 
of a substitute asset, such as energy savings; lower 
staffing needs; lower maintenance costs associated 
with new assets; and all other quantifiable calendar-
year costs of time, energy, and materials needed above 
and beyond those of owning the newest, latest like 

some way. A replacement asset may have compara-
tive advantages to the existing asset, such as supe-
rior energy usage or comparatively reduced losses 
due to increasingly frequent unplanned failures of 
the old asset. Obsolescence may also be due to the 
availability of more advanced technology, changing 
energy costs, lost tax shelters from expired deprecia-
tion, the physically aging condition of the asset itself, 
or, more likely, the sum of all these factors working 
together. What is important in defining the state of 
obsolescence is the existence of a transition from a 
state of non-obsolescence and the fact that this tran-
sition may occur at a localized time.

A major assumption of this theory is that there exist 
aggregate processes of obsolescence that may dif-
fer greatly among different classes of assets but that 
remain relatively stationary over time. Processes of 
obsolescence, such as those manifested by Moore’s 
law for computing hardware or by the U.S. Department 
of Transportation’s data on vehicle longevity, are evi-
dence of stable forces of mortality on physical assets.

1.3. Infrastructure service contracts

Contracts that contain provisions requiring the 
replacement of aging physical assets over long 
periods were first referred to as infrastructure service 
contracts (ISCs) in volume 8, issue 2 of Variance. In 
practice, such contracts require the service provider 
to replace a physical asset, such as underground  
piping, a machine, or a vehicle, when its life is 
deemed to have expired. Such contract provisions 
exist only in a very small percentage of infrastructure 
services, usually as a part of an alternative deliv-
ery method such as a design, build, operate contract, 
in which a contractor is responsible not only for the 
design and construction of infrastructure but also for 
its long-term operation for several decades. ISCs 
also exist in military utilities privatization, where 
whole bases may be turned over to a private contrac-
tor for management of such utilities as water, power, 
sewage, and steam systems for up to 50-year terms.

A good part of Wendling (2015) discussed the 
absence (in industry) of an objective definition of 
when this expiration of life occurs in a physical asset. 
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into an incurred loss triangle to aggregate all effects 
into one quantitative bulk measurement. It is like 
measuring the force of a fluid on a surface area to 
measure pressure instead of having to calculate the 
trajectory and momentum of every molecule in a vol-
ume to achieve the same. In our analysis, M(t) is the 
rising needle on the gauge of obsolescence. Knowing 
the point on the gauge’s scale when action must be 
taken and whether this matters are questions that we 
will explore; they can be answered by applying actu-
arial science to engineering data.

1.5. Criticism: Parsimony versus  
black box

We often want a simpler model involving fewer 
variables instead of a black box predictor involving 
them all. Wendling (2014) required estimating an error 
term β that may not be as trivial as it was described. 
The model also involved considerable judgment that 
was not transparent and was possibly inaccurate. That 
paper also emphasized the use of empirical asset mor-
tality data. Such data—essentially, the distributions 
of ages of assets at mortality—were meant to create 
life tables for homogeneous groups of assets suscep-
tible to similar forces of mortality and to be input into 
an algorithm that would determine the appropriate 
threshold of M(t) to cull and replace an asset. How-
ever, asset mortality data are not readily available, and 
there are usually no accurate records of physical asset 
longevity. In addition, the algorithm was iterative 
and required a calibration period that would not allow 
immediate projection of costs. For these reasons, the 
experiment and reserving method described in this 
paper will emphasize the use of empirical M(t) data 
instead of asset mortality data; it will also attempt to 
eliminate actuarial judgment entirely.

Although M(t) data are typically not recorded, 
they can be analyzed using existing engineering data 
and economic analysis of replacement technologies. 
Such data are cross-sectional in time and therefore 
do not require historical records, which were never 
established in the first place. We can also work with 
relatively sparse amounts of M(t) data to completely 
characterize an asset class.

asset. Such costs, by definition, begin at zero when 
the asset is new and then generally increase as the 
asset ages. These costs are an abstraction (a model) 
and are not usually recorded, though they can be 
tracked in real time if necessary. We ask the reader to 
take a leap of faith in accepting that such costs exist, 
so that we can proceed to arguments illustrating their 
hypothetical utility.

In some cases, these costs may indeed be com-
prised mostly of unscheduled repair costs, such as 
the ever-increasing cost of maintaining line breaks 
in a length of underground pipeline. In such a case, 
M(t) quantification is more of an accounting exer-
cise than one involving an engineering evaluation of 
competing replacement technologies. In other cases, 
the analysis may be much more complex and involve 
costs that are not as easy to objectively quantify.

Even the expected value of a catastrophic loss is, 
in theory, a constituent of M(t). The chance of some 
mechanical failure causing loss of life, property, or 
revenues, such as in the case of a communications 
satellite or a mission-critical component of a manufac-
turing process, has been studied in other fields through 
the analysis of endogenous, mechanical aging pro-
cesses of the machine itself. Great advances in reli-
ability have been made through this kind of analysis 
and have even given a stochastic explanation of 
machine mortality. Yet these traditional theories of 
machine component failure do not begin to explain 
why some assets, such as certain pumps or bridges, 
never need to be replaced or why some fleet assets 
with a fluid resale market have a better chance of 
continued survival if they are very old rather than 
newer assets in the same fleet. These latter phenom-
ena beg for a better understanding of why managers 
must choose between keeping an existing asset and 
replacing it with an expensive new one.

By condensing all the opportunity costs that could 
possibly motivate a manager to make an expensive 
replacement into a single, measurable quantity called 
M(t), we are using an aggregate approach to obso-
lescence risk management, much like combining 
all possible causes of mortality into a life table or 
including the whole field of causes of liability claims 
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we have spaciously spread out the program and pro-
vided ample comments to explain what is happening.

2.1. Simulating “true” M(t)

Module A generates a time series of “true” costs, 
such as shown in Figure 2.1. The plot in Figure 2.1, 
which is the foundation of the experiment, consists of 
generating projections of stochastically rising M(t) 
costs for an asset, which are occasionally interrupted 
when M(t) crosses some predetermined threshold 
that triggers the replacement of an asset. When a 
replacement occurs, a replacement cost of $10,000 
is added to the time series. Once a replacement takes 
place, M(t) begins again at zero and increases sto-
chastically until the threshold is exceeded once 
again, resulting in the next replacement, and so forth. 
A typical time series thus generated looks like what 
is shown in Figure 2.1. This simulation will test hun-
dreds of trials at different replacement thresholds. 
The horizon of 100 years is sufficiently long so that 
the present value of the most distant costs will gradu-
ally converge to zero. There is no escalation of costs 
over time, since a real discount rate will be used in 
the subsequent present-value calculation. The real 
discount rate also incorporates the chance that own-
ership of the infrastructure asset will possibly end at 
some point in the distant future. We will incorporate 
shorter contract terms of 50 years or less later when 
calculating contract reserves.

The code then calculates the present value of each 
time series generated in Figure 2.1 and performs this 
calculation N.Sim = 200 times at each of multiple 

2. Simulation experiment

Wendling (2014) inductively arrived at the prin-
ciples that form the hypotheses of this experiment—
that is, (1) there is only one instant in time when an 
asset must be replaced in order to optimize the present- 
value cost impact to the enterprise, (2) this instant can 
be observed at a threshold value of M(t) at which to 
execute the replacement, and (3) the present-value 
cost impact of the timing of this action is significant.

The method of this simulation experiment will be 
not only to prove these hypotheses but also to under-
stand what would happen if we randomly sampled 
M(t) in the real world using a small, realistically 
obtainable set (n = 10) of M(t) measurements within 
a homogeneous group of like assets—for example, 
similar vehicles or comparable wind turbine compo-
nents, such as blades, nacelles, or generators—and 
then applied statistical learning techniques to extrapo-
late mortality characteristics for a class of assets and 
reserves for long-term service contracts covering these 
assets. We want to know what kind of modeling fidel-
ity can be attained using a very limited amount of data.

At the start of the experiment, we will simulate real-
ity with an M(t) time series to calculate “true” values 
of interest; we will then learn from a small sampling 
of that reality to calculate the analogous modeled 
values. At the end of the experiment, we will compare 
the “true” results against the modeled results.

The code used to test our hypotheses, provided in 
Appendix 2, is divided into subroutines labeled mod-
ules A through J for easy reference. The code was writ-
ten using RStudio. Proponents of efficient code may be 
dismayed that many of the subroutines have repeated 
lines, including loops that create the time series projec-
tions of M(t). Many of these modules could have been 
combined to create an abbreviated, elegant program 
that runs faster, but then the functioning of the code 
would have become opaque, because the density of 
assumptions would have undermined the pedagogic 
clarity we are trying to achieve. The main goal in 
writing this code was transparency of the underly-
ing computations to someone reading it, not speed 
or minimizing the number of lines. For this reason, 
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Figure 2.1. Simulated time series of both M(t) 
and replacement costs for a single asset
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management approach. If N.Sim = 1, then the noise 
of the process would make it impossible to recognize 
the optimum mean in Figure 2.2, and the optimum 
threshold would not be statistically significant to the 
manager making a decision to replace only one asset 
isolated from the whole fleet.

Figure 2.2 is a plot of the “true” APV, since we 
are using this simulated data as the control against 
which the success of our experiment will be mea-
sured. In module B, we find the minimum median 
value of the box plot in Figure 2.2 and match it with 
the corresponding optimum replacement threshold. 
This threshold value is then recorded in an array, 
which will later be compared to the modeled result. 
Module C finds the minimized APV median value of 
the box plot of Figure 2.2. This value is also stored 
in an array that will later be compared to the mod-
eled result.

2.2. Plotting the lifespan distribution

Since we are analyzing a mortality problem, it  
is appropriate to ask what kind of time to replace-
ment (obsolescence) distribution the process in 
Figure 2.1 creates. Module K creates a histogram in 
Figure 2.3 for the M(t) process used in Figures 2.1 
and 2.2, using a replacement threshold of 800 for an 
asset with replacement value of $10,000 (8% replace-
ment threshold). We generated 5,000 trials in module J 
to produce this distribution. It is important to note that 
the distribution will not be the same for each threshold 
of M(t) used. As the threshold selected increases, the 

thresholds of M(t) to generate the box plot shown 
in Figure 2.2. The data points in Figure 2.2 are the 
present values of hundreds of random trials of the 
time series of the kind shown in Figure 2.1 at vari-
ous threshold values of M(t). The median bars in 
Figure 2.2 are close proxies for the expected values 
of the present values—the actuarial present values 
(APVs)—of all future costs for a specific threshold 
replacement cost, which happens to be minimized at 
M(t) = $1,000 in Figure 2.2.

These data points are all generated using a single real 
discount rate (3.1%), which is derived in Appendix 1 
using the example of a large power utility company. The 
shape in Figure 2.2 is very common for typical discount 
rates and demonstrates that there is indeed an optimum 
threshold to replace an asset if it is part of a fleet or 
portfolio of similar assets. Figure 2.2 also shows how 
deviating too low from the optimum threshold is less 
forgiving than erring with too high a threshold. This 
plot reveals a kind of optimization problem in which 
the selection of the optimum replacement threshold of 
M(t) can create important valuation differences in the 
APV of all future costs associated with an asset and its 
future replacements.

Figure 2.2 was generated by module A for a range 
of threshold costs ranging from $200 to $3,000 in 
increments of $200 for an asset with a replacement 
value of $10,000. This calculation was done N.Sim = 
200 times at each threshold tested; it was then plotted 
in box plot form. The 200 samples allow extraction of 
a statistically significant mean value of M(t) thresh-
old, which illustrates why this is a portfolio capital 
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Polynomial coefficients are extracted and saved for 
use in modeling the M(t) time series in module G.

The residuals of the polynomial fit are then fitted 
using a normal distribution in module F. There may 
be better distributions than this, as the noise about 
the polynomial should never result in negative val-
ues of M(t), but it is a close approximation of what 
we are trying to model in the simulation.

In fitting both the polynomial and the noise to the 
M(t) sample, we have created an automatic process 
based only on R’s lm function that does not use human 
judgment to aid selection. No goodness of fit diagnos-
tics are evaluated or used to reject the fitted form of 
M(t) at any time. For this reason, the code does not 
always generate the ideal plots shown in this paper. 
Some of the outliers in the simulated data can be 
explained by a bad fit of the polynomial that resulted 
in obviously anomalous results such as inflected poly-
nomials with negative values or concavity, which are 
unlikely in reality; these outliers could have been 
prevented if human judgment had been applied.

2.4. Generating the modeled values  
with the fitted M(t)

Once the sample of “true” M(t) has been fitted, 
the routine executed in module A is repeated again in 
module G to generate an analogous box plot, but this 
time using the modeled M(t) process.

As in modules B and C, we extract from the box 
plot the threshold that minimized the modeled APV 
in module H and the modeled minimum APV in 
module I. Also, as in module A, we can set N.Sim 

distribution will shift to the right because the time 
to replacement will be longer with M(t) having to 
reach ever higher levels before triggering a replace-
ment decision.

The time to obsolescence histogram in Figure 2.3 
underscores the life contingency nature of the prob-
lem. However, unlike human mortality, these distribu-
tions are not objectively fixed across different owners, 
since obsolescence is subjectively defined by factors 
unique to the owner of the asset. The theory suggests 
that determination of obsolescence is influenced 
by the owner’s real cost of capital; in addition, the 
life distribution can shift in either direction for dif-
ferent owners, even for otherwise identical cohorts 
of assets. The life distributions can also shift over 
time because of environmental changes simultane-
ously affecting the entire population of assets in a 
class, such as technology advances or changes in 
energy costs.

2.3. Sampling and fitting “true” M(t)

In module D, we randomly select n = 10 samples 
of the same M(t) process that was used to create the 
“true” plots in Figures 2.1 and 2.2. This is analogous 
to randomly selecting 10 like assets in the field, such 
as industrial blowers of a particular class, such that 
their ages are random. Each asset would then undergo 
an engineer’s analysis to quantify M(t) costs.

The data in Figure 2.4 are then fitted using a second-
order polynomial in module E. This fitting process is 
automatic, with no constraints around the form of 
the polynomial as long as it is the least squares fit. 
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predict using this code only because the difference 
between adjacent APVs became less significant at 
higher discount rates and because it was harder for 
the code to discern the differences. A higher number 
of trials in the N.Sim variable in modules A and G 
could have helped increase precision, but this diver-
gence took place for unrealistically high real discount 
rates of greater than 15%, which is much higher than 
what is usually expected for owners of infrastructure.

In Figure 2.7, the red line represents perfect corre-
lation between the modeled thresholds and the “true” 
threshold. The data on optimized APV at these thresh-
olds were gathered simultaneously and are compared 
in Figure 2.8.

What is interesting about the data in Figure 2.8 is 
that there does not seem to be any particular bias of 
the modeled results compared to the “true” results 
in determining both the optimum threshold and the 
minimized APV. This is notable given that both the 
“true” M(t) process and the fitted M(t) process were 
generated differently and were arbitrarily selected. 
The red line represents perfect correlation between 
true and modeled results. The objective of showing 
the two correlation plots in a side-by-side compari-
son, as in Figure 2.8, is to show how there is room 
for error in selecting the critical replacement thresh-
old of M(t), which has little impact on the accuracy 
of the APV and, consequently, on the calculation of 
reserves, which follows the same calculation method 
with only slight modifications.

as high as we want to fit as many simulated points 
into each threshold box as needed to aid in selecting 
a statistically significant optimum threshold of M(t). 
It costs nothing but computer time to run these trials 
once the “true” M(t) has been sampled, but it does 
increase precision.

In module I (bis), the first correlation plot to test 
our modeled results against the “truth” is for only one 
point, as shown in Figure 2.6. Because this is only 
one trial, it does not give a true appreciation of poten-
tial biases or accuracy at higher discount rates. The 
real discount rate used in this example was 3.01%.

Figure 2.7 was generated by going through 80 iter-
ations of modules A through I, with the real discount 
rate incrementing by 0.2% with each new point gen-
erated. This created a range of r = 3.01% to 19.01%. 
As the discount rate increased, the optimum threshold 
became larger and the accuracy of prediction became 
worse. The greater thresholds were more difficult to 
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tioned lack of actuarial judgment in the automated fit-
ting of M(t) in this experiment; it is also partly due to 
a distortion that happens at certain contract lengths. 
We use violin plots, instead of box plots, to compare 
reserves because an unusual phenomenon happens 
around shorter contract terms that are near to low mul-
tiples of the asset’s average lifespan. This phenome-
non creates distortions in the distribution of outcomes, 
which cannot be observed in a simple box plot.

Figure 2.9 shows a reserve for a 50-year contract 
and a faithfully modeled reserve both in the expected 
value and in the description of the variability around 
that value. However, for the 40-year contract in Fig-
ure 2.10, which has a term close to twice the average 
lifespan of the asset, the distribution begins to exhibit 
a barbell-like behavior because the threshold value of 
M(t) may be attained for the second time with about 
an even probability. The asset will be replaced, or not, 
for a second time with more or less the same chance, 
though modeling this accurately is especially diffi-
cult. The larger white dot in the violin in Figure 2.10 
represents the mean, while the smaller dot represents 
the median. There is considerable distortion on the 
predicted median as the potential outcomes “squeeze 
through the aperture,” and it becomes difficult to 
model this phenomenon accurately, as can be seen 
by the difference in the two shapes of Figure 2.10. 
The distortion on the mean is not as acute as on the 
median, and the median is no longer as good a proxy 
for the mean for reserve calculations as it was in the 
box plots for the APV calculations. The impact on 
modeled distribution of outcomes around the mean 
is worse than on the mean itself.

2.5. “True” versus modeled reserves

Once the optimum threshold of M(t) that mini-
mizes the APV has been determined, the reserve 
can be calculated by generating the M(t) and replace-
ment cost curves once again, though for the shorter 
terms more typical of the ISCs—say, 20 to 50 years. 
The latter term is typical for military utilities pri-
vatization contracts. The future cash flows, once  
projected this way, can be discounted using a dif-
ferent discount rate more appropriate for an insur-
ance company’s reserve calculation, or they can be 
left undiscounted, as in the examples that follow. We 
use the “true” M(t) process and optimum threshold; 
we then repeat the same calculations for the modeled 
M(t) process and optimum threshold. As a reminder, 
the reserve we are calculating is only for a single 
asset of replacement value $10,000. The following 
plots were generated in module J.

Figure 2.9 is a violin plot of “true” versus modeled 
reserves. A violin plot is a combination of a box plot 
and a rotated kernel density plot to each side of the 
box plot, giving an appreciation of the variability of 
the reserve outcomes around its mean.

The reader should be aware that Figure 2.9 is 
probably a better modeling result than usual. The 
means of the reserve violins can be expected to be 
in agreement only to the same extent as the APVs of 
Figure 2.8, which can create somewhat less-perfect-
looking plots in this side-by-side comparison. Even if 
the means are nearly equal, the fitted result may fail to 
accurately duplicate the distribution of values about 
the mean. This is partly due to the previously men-
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Figure 2.9. Comparison of “true” versus modeled 
reserves, n = 10, term = 50 years, r = 0%

Figure 2.10. Comparison of “true” versus modeled 
reserves, n = 10, term = 40 years, r = 0%
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From the property, plant, and equipment category 
at the top of the balance sheet, we know that the 
replacement value of NextEra’s fixed capital assets is 
equal to $68.042B. This is replacement value, because 
depreciation and amortization are listed as a separate 
line item. This replacement value is the company’s 
single largest asset category, with total assets equaling 
$74.929B. Total equity is $20.168B, of which nearly 
all is common shareholders’ equity at $19.916B. We 
will use the ratio of replacement value of fixed assets 
to shareholder equity in order to demonstrate the 
sensitivity of firm valuation to changes in the man-
agement of the obsolescence of physical assets. This 
ratio will naturally be higher for companies such as 
utilities, which have mostly fixed capital assets.

In Figure 2.2, we see that the APV associated with 
our $10,000 test asset can vary from about $14,000 
to $22,000, depending on the selection from a com-
mon range of replacement thresholds of M(t). This 
equals 1.4 to 2.2 times the replacement value of  
the modeled asset, or a range equal to 2.2 – 1.4 =  
0.8 times the replacement value. In reality, NextEra 
has dozens of different classes of assets with many 
different replacement values to analyze, not just the 
one of our simulation. For simplification, however, 
if we generalize this range to the entire enterprise 
fixed asset replacement value, the range of value 
at stake is 0.800 x $68.042B = $54.434B. In terms 
of shareholder value, the range that can be created 
or destroyed through portfolio obsolescence man-
agement is $54.434B/$19.916B = 2.733, or a stake 
approaching nearly three times the common share-
holder equity.

3. Conclusion

This simulation experiment may not have provided 
rigorous proof of the hypotheses, since the M(t) pro-
cess used in the code was arbitrary and cannot rep-
resent all the possible ways that M(t) costs might 
actually evolve over time in reality. Nevertheless, 
for this one arbitrary example, the impact of the M(t) 
threshold on prospectively measured valuations was 
found to be significant.

We are calling these values reserves, because we 
wish to embrace the financial reporting context in 
this hypothetical exercise. ISCs are not yet managed 
as insurance and do not yet require the establish-
ment of reserves in their accounting. However, the 
theory suggests that obsolescence may be best 
treated as an insurable contingency, thus creating the 
need to demonstrate that such future expenditures can 
be accounted for as reserves under an extended service 
contract and that such costs are reasonably estimable.

Expected future costs should be perceived as a 
liability on the balance sheet, even if there is not yet 
a statutory requirement to report it. We will show that 
the magnitude of this invisible liability is significant 
for certain kinds of companies and can be minimized 
to increase the firm’s equity.

There are also elements of M(t) that would not 
usually be covered under a service contract (essen-
tially, anything that is not an unscheduled repair); 
these elements would have to be removed from the 
reserve value calculation. For the sake of simplicity, 
however, this adjustment was not done in the code. 
In theory, all the constituents of M(t) plus the asset 
replacement could be covered under the ISC.

The mean in these violin plots is what would be 
recorded as a liability, and virtually all of it would 
be recorded as unearned premium reserve. When 
the asset is deemed obsolete during the term of the 
contract (that is, when its M(t) crosses its contrac-
tual threshold), settlement of the claim would be so 
rapid compared to the contract term (1 year com-
pared to 50 years) that only a very small portion of 
the unearned premium reserve would become a loss 
reserve for any amount of time.

2.6. Magnitude of efficiency gains

The impact of obsolescence management of physi-
cal assets on firm valuation will next be demonstrated 
using a concrete example of a major power utility, 
NextEra Energy, which relies heavily on its physi-
cal infrastructure to generate revenues. The following 
data are taken from page 74 of the NextEra 10K state-
ment for the fiscal year ended December 31, 2014:
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Appendix 1

The real interest rate of 3.01% was used for most 
of the APV calculations and was derived from the 
following information:

The NextEra Energy Inc. (NYSE:NEE) weighted 
average cost of capital was 3.94% on April 19, 2016. 
The inflation rate for the U.S. dollar was 0.9% through 
the 12 months ended March 2016, as published by the 
U.S. government on April 14, 2016.

Letting r denote the real discount rate, i = 3.94% 
denote the nominal discount rate, and p = 0.9% 
denote the inflation rate and using the Fisher equa-
tion, we have:

 1 + i = (1 + r)(1 + p)
 1 + .0394 = (1 + r)(1 + 0.009)
 r = 3.01%

There is no way of knowing whether owners of 
infrastructure are not already achieving the optimum 
level of efficiency depicted in Figure 2.2 indirectly 
through other methods. However, as described in 
Wendling (2012), managers who do not take a port-
folio view of physical assets and who make replace-
ment decisions in isolation may have incentives to 
defer asset replacements past the optimal time indi-
cated by the portfolio theory. They may act inde-
pendently and rationally according to their own 
self-interest but behave contrary to the interests of 
the owner of the entire asset portfolio by managing 
the turnover of assets at some point other than at the 
optimum time, thus depleting the shared resources 
symbolized by Figure 2.2.

As was mentioned in Section 2.6, the actuary would 
need samples of M(t) for dozens of different asset 
classes grouped according to their mortality charac-
teristics. Classification of assets would involve yet 
other methods and would be an additional source of 
modeling imprecision. Such a level of analytical work 
is unprecedented in the management of infrastructure 
asset mortality but might be well worth the effort if 
the valuation impacts mentioned in Section 2.6 are 
true and manifest themselves over time through more 
traditional measures of financial performance.
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Appendix 2
# RESERVING FOR INFRASTRUCTURE SERVICE CONTRACTS
r=0.0301 #initial value of r the real cost of capital.
CorPoints=1 #number of trials to create correlation plot points.
#some variables defined for the subsequent correlation graph comparisons:
TrueAPV<-rep(1:CorPoints) #these 4 variables are placeholders for the correlation plots.
TheoryAPV<-rep(1:CorPoints)
MinThreshold<-rep(1:CorPoints)
TheoryThreshold<-rep(1:CorPoints)
for (k in 1:CorPoints) {
 r=r+.001 #real cost of capital increments by this amount for each k.

######################################################################################
# Module A: a routine to generate the optimization curve from the “true” M(t) process.
N.Sim<-200 #this is the number of points in each box of the boxplot.
Design.mtx<-expand.grid(
“Cost.Threshold”=seq(200,3000,200), #sweeping through a range of M(t)thresholds . . . 
“Sim”=1:N.Sim

)
Total.Runs<-nrow(Design.mtx)
PV=c(1:Total.Runs)
for(j in 1:Total.Runs){
PVA=0
x=0
result<-rep(1,100)
for (i in 1:100) {
x=x+1#x is another variable that can be reset to 0 even as i continues counting.
result[i]<-1.5*(–118+x*5.23+x^2*1.89)-runif(1,min=0,max=1)*(–118+x*5.23+x^2*1.89)
if (result[i]>Design.mtx$Cost.Threshold[j]
) {
result[i]<-10000 #this is the replacement cost.
x=0

}
PVA=PVA+result[i]/(1+r)^i #this calculates the present value of the process.
PV[j]=PVA

}} #ends i and j
plot(result)
res=boxplot(PV∼Design.mtx$Cost.Threshold, main=””,

xlab=”M(t)Threshold Cost”, ylab=”’True’ Actuarial Present Value”)
####################################################################################
#Module B: this code finds the threshold that minimized APV in simulation.
df=res$stats[3,]
TheoryThreshold[k]=res$names[which(df==min(df))]
####################################################################################
#Module C: this code finds the minimum ‘true’ APV
TrueAPV[k]=min(res$stats[3,])
####################################################################################
#Module D: a routine to randomly sample from M(t).
#first, we generate the field of values from M(t) to sample from.
Age=seq(1:100)
x=0
for (i in 1:100) {
x=x+1 #x is another variable that can be reset to 0 even as i continues counting
Age[i]=x
result[i]<-1.5*(–118+x*5.23+x^2*1.89)-runif(1,min=0,max=1)*(–118+x*5.23+x^2*1.89)
if (result[i]>3000
) {x=0}

} #ends the i loop
plot(result, main=”field of samples”)

15080-05_Wendling-2ndPgs.indd   210 4/25/19   10:34 AM



Reserving for Infrastructure Service Contracts

VOLUME 12/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 211

#sampling from M(t)
n=10 #number of random samples taken from M(t)
SampleAge=rep(NA,n)
SampleResult=rep(NA,n)
for(i in 1:n){
s=round(runif(1,min=0,max=1)*100,digits=0)+1 #selects a uniformly random number  
between 1 and 100
SampleAge[i]=Age[s]
SampleResult[i]=result[s]

} #ends the for
plot(SampleAge,SampleResult, main=””,ylab=”Sampled M(t)”)
####################################################################################
#Module E: a routine to fit a polynomial with the above randomly sampled M(t).
#this code fits a polynomial and extracts the coefficients.
lm=lm(SampleResult ∼ poly(SampleAge, 2, raw=TRUE))
a=summary(lm)$coefficients[1,1]
b=summary(lm)$coefficients[2,1]
c=summary(lm)$coefficients[3,1]
d=summary(lm)
## end of code that does the fitting and extracting coefficients.
####################################################################################
## Module F: this code now fits the noise using the residuals of the polynomial fit
library(fitdistrplus) #type ‘install.packages(“fitdistrplus”)’ in the console
fit.noise <- fitdist(lm$residuals, “norm”)
summary(fit.noise)
plot(fit.noise)
mean=fit.noise$estimate[1]
sd=fit.noise$estimate[2]
####################################################################################
#Module G: this code now generates the optimization boxplot from the fitted M(t)
#plotted out at different replacement thresholds using design.mtx
N.Sim<-200
Design.mtx<-expand.grid(
“Cost.Threshold”=seq(400,3000,200),
“Sim”=1:N.Sim

)
Total.Runs<-nrow(Design.mtx)
PV=c(1:Total.Runs)
for(j in 1:Total.Runs){
PVA=0
x=0
result<-rep(1,100)
for (i in 1:100) {
x=x+1 #x is another variable that can be reset to 0 even as i continues counting
result[i]<-(a+x*b+x^2*c)+rnorm(1,mean,sd)

if (result[i]>Design.mtx$Cost.Threshold[j]
) {
result[i]<-10000 #this is the replacement cost.
x=0

} # ends if
PVA=PVA+result[i]/(1+r)^i #this calculates the present value of the process.
PV[j]=PVA

}} #ends i and j.
plot(result, main=”fitted”)
res=boxplot(PV∼Design.mtx$Cost.Threshold, main=””,

xlab=”M(t) Threshold Cost”, ylab=”Modeled APV”)
####################################################################################
#Module H: this finds the modeled threshold that minimized PV with fitted M(t).
df=res$stats[3,]
MinThreshold[k]=res$names[which(df==min(df))]
####################################################################################

15080-05_Wendling-2ndPgs.indd   211 4/25/19   10:34 AM



Variance Advancing the Science of Risk

212 CASUALTY ACTUARIAL SOCIETY VOLUME 12/ISSUE 2

#Module I: this code finds the theoretical minimum APV from the fitted M(t).
TheoryAPV[k]=min(res$stats[3,])

} #ends k
#Module I(bis): this code plots the correlations done over k iterations.
par(mfrow=c(1,2))
plot(TheoryThreshold,MinThreshold, xlab=”’true’ M(t) threshold”, ylab=”modeled M(t) 
threshold”, pch=20)
abline(a = 0, b = 1, col = 2)
plot(TheoryAPV,TrueAPV, xlab=”’true’ APV”, ylab=”modeled APV”, pch=20)
abline(a = 0, b = 1, col = 2)
par(mfrow=c(1,1))
######################################################################################
#Module J Reserve calculations:
#This calculates the reserve for n=Term year ISC using the above
#fitted M(t), but at a term of only n years, and undiscounted.
#This code cannot be run without A through I run first, but at only CorPoints=1
Term=50 #this is the term of the contract.
r=0 #you have to reset this here if the discount rate is different than for APV.
T<-as.numeric(TheoryThreshold) #TheoryThreshold would otherwise still be a string.
Total.Runs<-200
PVModeled=c(1:Total.Runs)
for(j in 1:Total.Runs){
PVA=0
x=0
result<-rep(1,Term)
for (i in 1:Term) {
x=x+1 #x is another variable that can be reset to 0 even as i continues counting.
result[i]<-(a+x*b+x^2*c)+rnorm(1,mean,sd)
if (result[i]>T
) {
result[i]<-10000 #this is the replacement cost.
x=0

} # ends if
PVA=PVA+result[i]/(1+r)^i #this calculates the present value of the process.
PVModeled[j]=PVA

}} #ends i and j
# This calculates the ‘true’ reserve also for an n year ISC using the above
# simulated ‘true’ M(t).
T<-as.numeric(MinThreshold) #MinThreshold would otherwise still be a string.
Total.Runs<-200
PVTrue=c(1:Total.Runs)
for(j in 1:Total.Runs){
PVA=0
x=0
result<-rep(1,Term)
for (i in 1:Term) {
x=x+1 #x is another variable that can be reset to 0 even as i continues counting
result[i]<-1.5*(–118+x*5.23+x^2*1.89)-runif(1,min=0,max=1)*(–118+x*5.23+x^2*1.89)
if (result[i]>T
) {
result[i]<-10000 #this is the replacement cost
x=0

} # ends if
PVA=PVA+result[i]/(1+r)^i #this calculates the present value of the process
PVTrue[j]=PVA

}} #ends i and j
######################################################################################
#Module J(bis) This plots the side by side comparison of the “true” vs the
#modeled reserves.
#type install.packages(“vioplot”) in console to get this
library(vioplot)
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vioplot(PVTrue, PVModeled, names=c(“‘True’ Reserve”, “Modeled Reserve”),
col=”white”)

points(1, mean(PVTrue), pch = 21, cex =1.75, bg = “white”)
points(2, mean(PVModeled), pch = 21, cex =1.75, bg = “white”)
######################################################################################
#Module K
#A routine to create histogram of life distribution
Life<-rep(NA,5000)
for(j in 1:5000){
x=0
result<-rep(1,100)
for (i in 1:100) {
x=x+1 #x is another variable that can be reset to 0 even as i continues counting
result[i]<-x*runif(1, min =0.0, max = 1)+x^2*runif(1, min =0.0, max = 1)+x^3* 
runif(1, min =0.0, max = .1)

if (result[i]>800
) {
Life[j]=x
result[i]<-x^2+10000 #this is the cost of repair plus the replacement cost
x=0

} #ends if
}} #ends i and j

hist(Life, main=” “,xlab=”Years to Replacement”)
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