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ABSTRACT

This paper presents closed-form formulas in order to estimate,
based on the historical triangle of ultimate estimates, both the
one-year and the total run-off reserve risk. This is helpful in case
(as is often usual in practice) the reserve risk formulas related
to the applied reserving methodology are unknown or in case
such formulas cannot be rigorously derived since a fully well-
defined stochastic model supporting the reserving methodology
is missing (e.g., due to mixing of reserving methods).
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1. Introduction

Within the stochastic claims reserving theory,
it is good practice to derive estimators for both the
one-year and the total run-off reserve risk (predic-
tion uncertainty) whenever a new reserving model is
defined. This is usually done considering the appro-
priate conditional mean square error of prediction
(MSEP).

For example, for the standard chain-ladder (CL)
methodology, which is the most popular reserving
methodology and is generally supported by Mack’s
(1993) distribution-free model, the total run-off
prediction uncertainty estimator is usually given by
Mack’s formula, and the one-year prediction uncer-
tainty estimator is given by Merz and Wiithrich’s
(2008) formula.

Unfortunately, such estimators have not yet been
derived in a closed form for all existing stochastic
reserving models, and for many reserving methodol-
ogies used in practice within the insurance industry,
a fully well-defined supporting stochastic model is
missing (often because of a mixture of basic methods).
Therefore, the reserve risk estimators cannot be rigor-
ously derived.

The lack of such formulas is currently an open
problem in the insurance industry (see Dal Moro
and Lo 2014). The central question is how to quan-
tify the prediction uncertainties (both one-year and
total run-off) if one is faced with the above-stated
situation.

In this paper I suggest an answer to this question.
As already proposed in Rehman and Klugman (2010),
I will take the following unusual approach that also
allows to implicitly account for model risk asso-
ciated with the choice of an appropriate reserving
methodology:

I do not specify the stochastic reserving model sup-
porting the reserving methodology (since, as already
mentioned, this cannot always be well defined) but
only assume a stochastic model for the ultimate esti-
mates. That allows one to derive an estimator for
the conditional MSEP of the prediction uncertainties
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Table 1. Ultimate estimates (U,)
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(both one-year and total run-off) based on the histori-
cal triangle of ultimate estimates only, i.e., regardless
of which underlying reserving methodology generates
the ultimate estimates.

In Table 1, I denote with Ul ; the estimated ultimate
claims amount for accident year i € {0, . . ., [} at
development period j € {0, ..., I}.

Basically, the stochastic model for the ultimate
estimates presented in this paper assumes that for
any accident year i, the estimated ultimate losses of
two consecutive development periods j and j + 1 are
related by a proportionality factor g, which depends
on only the development period j, i.e., it holds true that

A A

Ui,j+1 =g Ui,j-

This assumption is very similar to what the CL
reserving method assumes for claims data triangles
(cumulative payments or incurred losses), and in the
context of my model, the factors (g;) can be expected
to be close to 1 since the relationship is established
between estimated ultimate losses.

Based on the available ultimate estimates data,
the main result for the one-year reserve risk will be

———

msepz::nc/l)\R,»(Hl)l%(O)
[ ~ ~ ~
= Z[éﬁ—: Ui+ (gl—i - 1)2 . Uzz',l—i]
i=1

+2 Z (g’l—i ° gl—j - gl—i - g’l—j + 1) ° Ui,l—i ° l}j,l—j-

1<i<j<I
(1.1)

where, for a specific development period j, the esti-
mated development factor ¢; is a weighted average
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of the individual accident year development factors

A

U, A .
L while G]? is a measure of the volatility of these

L]
development factors around their weighted average
in absolute terms, i.e., scaled to the estimated ultimate
amounts.

Moreover, based on the available ultimate esti-
mates data, the main result for the total run-off reserve
risk will be

A I .
meps: o (£ 201 )
i=0

1

=1kl s SR .
[ z ( gj) . Gk . ( gj )] . Ui’l_i
1| Lk=1-i\ j=1-i Jj=k+1

1

1 I-1 R
Jj=1

-1 1-1 R R
+2 Z (1_ gk)(l_ H gk)'Ui,li'l]j,lj-
1<i<j<I k=I-i =1
(1.2)

Remarks:

* Both estimator (1.1) and estimator (1.2) are given
by the sum of two components: the first component
is the sum of all risk estimators for single accident
years (first row); the second component is an addi-
tional covariance term (second row) as it generally
appears when calculating the variance of the sum
of random variables.

Moreover, the first component of each estimator
consists of the sum of two terms representing the
process variance (first term) and the parameter&
model uncertainty (second term), respectively.

e Note that both estimators (1.1) and (1.2) can be
easily implemented in a spreadsheet, and therefore
they have a high potential for application in actu-
arial practice.

* Within my model the following implication holds
true:

— No parameter&model uncertainty in the ultimate
estimates generating process implies the propor-

tionality factors (g;) to be equal to 1.
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— Note that this is reflected within my results
since in case of no underlying parameter&model
uncertainty, the estimated factors (g;) will be
forced to be equal to 1, and as a consequence,
the parameter&model uncertainty and the covar-
iance terms in estimators (1.1) and (1.2) are
equal to 0.

The paper will be organized as follows:

In Section 2, I provide some technical notations
and definitions.

In Section 3, I precisely formulate my model
assumptions for the ultimate estimates which allows
me to derive unbiased estimators for the model
parameters without assuming independence between
accident years.

In Section 4, I derive MSEP for the one-year
reserve risk within my model.

In Section 5, I derive MSEP of the total run-off
reserve risk within my model.

In Section 6, I compare my formulas with Mack’s
(total run-off view, 1993) and Merz and Wiithrich’s
(one-year view, 2008) formulas and provide some
toy numerical examples for didactic purposes.

In the appendices, technically oriented readers can
find all the rigorous details for deriving the presented
formulas.

For practically oriented readers, throughout the
paper [ will evaluate step by step the following numer-
ical example (see Table 2) for which I show here the
main results.

The estimated parameters (§;) and (612.) (see also
Section 3.1 for more insights) are given by

and can be easily evaluated to be equal to the values
shown in Table 3.
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Table 3. Estimated parameters (g;) and (67): Numerical example

j 0 1 2 3 4 6 7 8 9 10 11
g 1.0188 1.0030 1.0024  0.9996 0.9984 1.0002 1.0002 1.0001 1.0001 1.0000 1.0000 1.0000
62 241.45 118.62 37.85 11.80 8.32 0.41 0.03 0.04 0.01 0.00 0.00

J

The square rooted estimators (1.1) and (1.2) as
well as Mack’s (1993) and Merz and Wiithrich’s
(2008) results are reported in Table 4.

Note that my formulas deliver similar results as
Mack’s (1993) and Merz and Wiithrich’s (2008) for-
mulas and that the latter have been evaluated using
the related claims payments triangle (C; ), shown in
Table 5.

2. Notations and definitions

Consider accident years i € {0, . .., I} and devel-
opment periods j € {0, ..., I}.

Denote with U’ the ultimate claim amount (random
variable) for accident year i.

Denote with &, k € {0, ..., 2I} the (unspecified)
total information available to the insurance company
at the end of calendar year k (as usual, I consider
here the run-off situation, i.e. no information related
to accident years i > [ is taken into account).

Denote with lAJ,J the estimated ultimate claims
amount for accident year i at development period j,
i.e., the estimated ultimate claims amount for accident
year i at the end of calendar year i + ;.

Define the following sets of information:

«

9= o Ufdis.-... 0} 5.
i=0

I
I+1 S S
D= G(U{Ui,o, e Ui,min(1i+1,1)}) < Fras
i=0

Table 4. One-year and total run-off prediction uncertainties:
Numerical example

One-year risk Total run-off risk

— 12 12 N
msepy;, o1y () msepz:zou'\@,(E[ZEOUW%])

. 1 A A
@§+k = G(L_%{Ui,Oa cees []i,max(j+k—i,j) }),
k,je{0,...,1}.

Remarks:

* As already mentioned, the total information avail-
able, &, k € {0, ..., 2I}, is unspecified, i.e., it
could be generated by the claims payments or by
the claims-incurred amounts (or even both) and
could include additional information.

e The information, 9%, k € {0, ..., 2I}, is a subset
of the total information %, and contains the avail-
able information given by the ultimate estimates
only, which means that I do not focus anymore on
the underlying claims payments or claims incurred
amounts.

* The unusual information, %/*, k, j € {0, ..., I},
contains the ultimate estimates information at the
end of calendar year j + k as well as the ultimate
estimates information until development period j for
all accident years (as introduced in Dahms 2012).

3. The model assumptions

As outlined in the Introduction, I will not specify
the stochastic reserving model supporting the reserv-
ing methodology but will

* assume the underlying reserving methodology is
generating ultimate estimates, and
* assume a stochastic model for the ultimate estimates.

In mathematical terms, I make the following model
assumptions:

Model Assumptions 1 (ultimate estimates model)

My model 12,025 15,228 (A)

Underlying 11,203 13,457 — The “best estimate” ultimate, E[U"I%ﬁ], i,j €
CLmodel  (MerzWithrich) (Mack) {0, ..., I}, can be identified to be given as a
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function of %, -measurable random variables and
a collection of underlying parameters.

- U,=E[U|F
mated ultimate position obtained by replacing

1,i,je {0,..., 1} is an esti-

i+j

the unknown underlying parameters with appro-
priately &, -measurable parameter estimators.

- U = lA]iy,, ie {0,...,1I},ie., at development

period / the ultimate estimates are fully developed.
(B)

— There exist parameters g,, ..., g, ;and 63, . ..,
67, such that for all i € {0, ..., I} andj €
{0,...,I-1},

E[Ui,j+1|@6+i]: gj'Ui,jy
Val’([ji’jﬂ |gbjj+l) = 63 . (ji,j'
Remarks:

* Assumption (A) expresses the traditional ultimate
estimates representation in claims reserving (see
equations 2.9 and 2.10 in Wiithrich and Merz
2008) and allows one to model the situation where
a fully well-defined stochastic model supporting
the reserving methodology is missing.

* Note that I do not require any quality assumptions
with respect to the underlying parameter estima-
tors. This allows for more flexibility since ad hoc
estimators can be considered as well (which is
very common in practice; see, e.g., the concluding
remarks in Wiithrich and Merz 2008, p. 390).

* Assumption (B) was inspired by the “Linear Sto-
chastic Reserving Method” assumption in Dahms
(2012); note that no independence assumption
between accident years is stated.

* The above-mentioned underlying parameters are the
ones that need to be estimated when generating
the ultimate estimates lA],J

* Note that considering reserving methodologies for
which the unconditional unbiased property related
to the ultimate estimates is fulfilled (e.g., in case

my model assumptions imply
E[U]=E[U,;. |= E[E[U,.|%}7]]
- E[gJ"ﬁi,j:l: g;+E[U'].

As a consequence, the parameters (g;) are equal to 1,
and therefore they do not need to be estimated (see
the remarks in Section 3.1).

In this respect, please note that in practice, the above
unconditional unbiased property is mostly approxi-
mately fulfilled but not exactly fulfilled, even when
considering well-established reserving methodologies
like the traditional Bornhuetter-Ferguson (BF; see
Wiithrich and Merz 2008; Mack 2008; Saluz, Gisler,
and Wiithrich 2011) method (see equation 2.15
in Wiithrich and Merz 2008) or the Generalized
Linear Models (see remark 6.15 in Wiithrich and
Merz 2008). Therefore, the parameters (g;) in my
model are generally close to 1 but are not necessary
equal to 1.

3.1. Parameter estimation

The parameters (g;) and (G/?) can be estimated by
the following 6(Uy{U,, . . .
unbiased estimators:

» U,;})-conditionally

gj::ﬁ, jelo,...,I -1}, (3.1

jefo,....1-2}. (3.2)

For 62, I use the conventional estimator obtained by
extrapolation (see Mack 1993), given by

~d
of no underlying parameter&model uncertainty), 62, = min{&ﬂ, 62 ,, %} (3.3)
1.e., for which it holds true Gr-3
E[U,]|=E[U']. i.je{o0.....1}. Proof. See Appendix A.1. O
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Remarks:

* In case the unconditional unbiased property related
to the ultimate estimates is fulfilled, the parameters
(g do not need to be estimated, and I set

g,=1, je{o,....1-1}.

Moreover, the parameter estimator for 6, needs to

be slightly modified to
A 2
A 1 & A i,j+1
=20, -1],
N J g J( U, )
jelo,...,1-2}.

¢ The estimated parameters (g,) and (6_?) related to
my numerical example are shown in Table 3.

* Note that my theory easily can be extended for
considering the case wherein the accident years
are not necessarily fully developed at the end of
development period /. In this case tail parameters
8, and 6?2 are required (e.g., obtained by additional
extrapolation), and the sums in my results (1.1)
and (1.2) must be extended by the additional terms
where i =0 orj=0.

3.2. Some basic results

In this section I provide some basic results that
can be derived from Model Assumptions 1.

These will play a central role in Sections 4 and 5
when deriving the estimators for the prediction
uncertainties.

The following relationships hold true:

E[Ui,l—H—l 9’ ] = 01‘,1—1‘ <&y 121, (3.4)
N N -1
E[Ui,l gb[]: Ui,I*i . H gj’ i 2 1, (3.5)
j=I-i

R -1
g’ ] =Uiin* H g, 122 (3.6)

j=l—i+1

E[U,

Furthermore, since l}i,,ﬂ. is Y’-measurable, it also
holds true that
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Var ([ji,I—Hl

')

= E[Var(l}u—m

I—i+i
D)

']

+Var(E[U,_m| 915 ]

')

= E[Gﬁ—i . Ui,l—i‘@l ] + Var(g[—i . 0i,1—i|gb1)
=0/ E[ﬁu—i‘gbl ] + glz—i : Var(l}i,l—i‘gbl)
%/—J

=0

A

=0;,;+Uy,,, i21. (3.7)

Remark:

Please note that in the following sections, 1 will
make use of the following notation:

E [-] (respectively ‘7a\r(-)) will denote the estimator
for E[-] (respectively Var(-)) which is obtained by
final replacement of the unknown parameters (g;),
(07) with their parameter estimators (g)), (6?) after
having performed ordinary computations.

3.3. Three examples

To clarify Model Assumptions 1, part (A), in this
section I provide three examples of methodologies
for generating ultimate estimates. The first one is the
standard CL methodology; the second one is a modi-
fication of CL methodology, which better reflects
what is generally done in actuarial practice, when
parameters are adjusted according to expert judgment.
The third is a credibility mixture between CL and BF.

3.3.1. Standard CL methodology

I denote with C;; the cumulative payments for
accident year i € {0, . .., I} up to development
periodje {0,...,I} and with &,, ke {0, ..., 2[},
the total information available to the insurance
company at the end of calendar year k, which in this
case is given by

F = ({Cll/ }i+j£k)'

Under the standard CL framework, the underlying
parameters are given by a collection of factors (f))

VOLUME 12/ISSUE 2
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and the quantities E[U'|%,, ] and Ui’j, respectively, are
given by

. 1-1
E[Ul|9;i+j]zci,j'1_‘[ﬁ7 i’je{o’---’l}’ (38)
1=

I—

0":Cl’,j' f§i+j), i,jE{O,---,I}’ (3'9)

ij
J

—_

where the estimated CL factors at the end of calendar
year k are given by

A~ min(Z,k—j—1) 4 =
= hI oy ,
fis k—j<l1
ke{0,...,2I}, (3.10)
and f,, . . ., f,, are known a priori expected CL
factors.
Remarks:

* The above choice of the estimated CL factors can
be justified by Mack’s distribution-free model
assumptions (see Mack 1993).

* Note that in practice, the standard CL methodology
is not often rigorously applied, since the estimated
CL factors are often modified and/or smoothed
according to actuarial judgment. This fact can be
interpreted as one does not perfectly believe in
Mack’s (1993) distribution-free model.

* Note that assuming my Model Assumptions 1 with
respect to the standard CL methodology (as defined
above) implies that the cumulative payments pro-
cess (C;)) fulfills conditions that do not comply with
Mack’s (1993) distribution-free model assump-
tions. As a consequence, one can expect that the
uncertainty estimators derived from my model do
not necessary coincide with Mack’s (1993) and
Merz and Wiithrich’s (2008) formulas.

The implied conditions related to the cumulative
payments process (C, ) are similar but more complex
than in Mack’s (1993) distribution-free model.

VOLUME 12/ISSUE 2

3.3.2. Modified CL methodology

In this section I define a modified CL methodology
that better reflects common actuarial practice.

I consider the underlying filtration given by

F = G({Ct}j’ €ij }H—jsk)’

where the variables g;; are intended to model an
adjustment to the standard CL estimator in order
to take into account additional information not
included in the information generated by the claims
payments.

The underlying parameters are given by a collec-
tion of factors (f)), and the quantities E[U'|% ;] and

A

U

i’

respectively, are given by

) 1-1
E[U[ O}iJrj]:Si,j-Ci,j-Hﬁ, i,je{(),...,]},
1=j
(3.11)
~ -1 -
U,=¢,;-C,;- [1/, i,jef0,....,1}, (3.12)

I=j

where (f,i) are appropriate F.,;-measurable esti-
mators for (f)).

Remarks:

e The above estimated CL factors ( f () at the end
of calendar year k could, for instance, coincide
with the—in this case ad hoc—standard CL esti-
mators ( f ),

* Compared to the standard CL methodology, the
modified CL methodology better reflects the usual
actuarial behavior observed in practice, where the
standard CL ultimate estimators/factors are possibly
adjusted by hand, using expert opinion to take into
account additional information such as change
of legal practice, high inflation, and job market
information.

3.3.3. Credibility mixture
between CL and BF

In this section I define a credibility mixture meth-
odology between CL and BF following the setup of

CASUALTY ACTUARIAL SOCIETY 257



Variance Advancing the Science of Risk

Section 4.2 in Wiithrich and Merz (2008). I consider
the underlying filtration given by

Fi = G({Ci!j }Hjsk A }isk)’
where ({1,) are unbiased estimators for y, = E[C, ],
which are independent from the claims payments
variables.
The underlying parameters are given by a collection
of factors (f)), (L), (c;;) and the quantity Ql is given by

A

-, .
Uy =¢éyCy TTA™ +(1-6)
I=j

CL component

1 .
. Ci,'+ 1—77,\” Mi N i,je{o,...,[}.
[’ ( IIEﬁ’J ]

BF component

(3.13)

where ¢,; is an appropriate estimator for c¢;;, for

instance, the one obtained by minimizing the ai)pro—

priate unconditional MSEP for known parameters ()

(see remarks 4.12 in Wiithrich and Merz (2008)).
Moreover, the quantity E[U'|%,, ] can be given by

i+

A -1
E[Ul|@,-+j]: ¢;i+Cije Hfl +(1 _Cllj)
1=

1
* Cij+ I_T il
[’ [ MﬁJ“J

i,jef0,....1}. (3.14)

Remark:

The above ultimate estimates (Um.) are motivated
by the underlying stochastic model given by assump-
tion 4.11 in Wiithrich and Merz (2008), but note that
within that model the standard CL estimators ( f )
are ad hoc parameter estimators and that one cannot
explicitly prove (3.14) to hold true.

3.4. Concluding remark

Finishing this section I would like to recall and
highlight again that my methodology has been appo-
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sitely designed for modeling the situation where a
fully well-defined stochastic model supporting the
reserving methodology is missing (e.g., due to mixing
of reserving methods or when underlying parameter
estimators are adjusted by hand, as is usually done
in practice).

In this case I am free to assume my Model
Assumptions 1 to describe the evolution of the ulti-
mate estimates.

Therefore, if a stochastic reserving model sup-
porting a reserving methodology can be fully well
defined, as for the standard CL methodology where
the underlying parameter estimators can be perfectly
motivated and model validation delivers good results,
then I believe it would be better to use (if known) the
uncertainty estimators derived within the underlying
model itself and not follow my theory.

However, since

* underlying stochastic reserving models often do
rely on restrictive assumptions,

* the unbiasedness property of the parameter esti-
mators cannot always be exactly proved, and

* the prediction uncertainty estimators are sometimes
derived using approximations, in this case one
should not forget to allow also for a (model) risk
loading.

As a consequence, since the latter is generally
not easily quantified, I consider my theory and the
related formulas to be in any case a very valuable
alternative.

4. One-year prediction uncertainty

In this section, I concentrate on the one-year
reserve risk. My goal is to derive the estimator (1.1)
for MSEP of the one-year prediction uncertainty. As
usual in claim reserving, I first focus on the result
for a single accident year and then, in a second step,
derive an estimator for the aggregated view.

Let us first define the observed claims develop-
ment result C/ﬁ{. (I+1) as follows:

CDR; (I +1):= E[U|%, ]-E[U|F,], i>1.

VOLUME 12/ISSUE 2
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4.1. Single accident year

For a single accident year i = 1, MSEP of the
one-year prediction uncertainty is given by

msepC’D\R,(M)\@, (0)

= E[(E[U,.]- E[U')%,]-0) |5, |
= [([ji,l—iﬂ - l}i,l—i )2‘9;1 ] 4.1

4.1.1. One-year uncertainty estimator

Making use of the relationships derived in Sec-
tion 3.2, I can derive the following estimator (see
Appendix B.1 for more details):

Estimator 1 (one-year reserve risk estimator for
single accident year). Under Model Assumptions 1
I have the following estimator for the one-year pre-
diction uncertainty for a single accident year:

Igsgpcﬁzi(mw,(o) = 6?—;‘ : lji,[—i +(8&r-i— 1)2 : 01’2,1—1' )
i>1. (4.2)

Remarks:

¢ Note that since
E[(l}i,l—iﬂ - lji,[—i )2‘ P’ ]
= E[E[(Ui,l—i-H - Ui,[—i)z‘gl ]‘@1 ], i1,

my one-year reserve risk estimator fulfills the
following unbiasedness property:

msepcﬁz[(nl)@,(o) = E[msepC/D\R,(IH)I%(O)|@I ]’
i>1. (4.3)

* The one-year reserve risk estimators for single
accident year related to my numerical example are
shown in Table 6.

4.1.2. Artificial split of the one-year
prediction uncertainty between process
variance and parameter&model uncertainty
Note that MSEP of the one-year prediction
uncertainty can be split into three components

VOLUME 12/ISSUE 2

Table 6. One-year prediction uncertainty for single
accident year: Numerical example

12

i Ui MSePCHR 1:1),(0) MSePEDR,(1+1))7, (0)
0 223,558 0 0
1 224,036 0 0
2 223,697 0 0
3 214,445 1,977 44
4 221,628 8,941 95
5 294,673 8,995 95
6 269,763 114,752 339
7 271,810 45,029 212
8 247,245 2,214,687 1,488
9 267,747 3,170,237 1,781
10 245,398 9,631,068 3,103
11 259,549 31,380,299 5,602
12 262,936 87,858,844 9,373

(process variance, parameter&model uncertainty,
and mixed term) as follows (see Appendix B.2 for
more details):

MSCPepR, (1417, (0)
= E[ (E[U9.]- £[v'9,]-0) |3 ]

=Var(E[U'|%., | %)

process variance

E[([}LI—HI -E [Ui|9;1+l ]2)‘9;1 ]
+
+E[ (Ui,l—i -E [Ui 9:1]2)‘@1]

parameter&model uncertainty: first term

| (01',14 - E[ U’ @1])
—2E| i
'(Ui,l—i+l - E[Ui|o‘fp’+1])

parameter&model uncertainty: second term

(ﬁi,l—iﬂ - E[Ui %Hl])
+2E ‘ ' F | 4.4)
- (E[U'[F]- E[U'|F])

mixed term

In Appendices B.3, B.4, and B.5, I will additionally
derive an estimator for each of the above terms.
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As just shown, I cannot clearly split the one-year
prediction uncertainty between process variance and
parameter&model uncertainty due to the presence of
the mixed term.

Nevertheless, I can at least provide the following
artificial split of the one-year prediction uncertainty
estimator:

— N A N 2 5
msepc’D\R,(Hl)@,(O): G?—i'Ui,l—i + (g—1) 'Ui,zl—i )

“estimated process
variance”’

“estimated parameter&model
uncertainty

i1,
since conditional on the true underlying model
and for known parameters (i.e., no underlying
parameter&model uncertainty) the estimated param-
eters gj,j e {0,...,1—1} are forced to be equal
to 1, and in consequence the above estimated
parameter&model uncertainty term vanishes.

4.2. Aggregated accident years

In this section, I take care of the aggregated
accident year view. For aggregated accident years,
MSEP of the one-year prediction uncertainty is

given by
msepz,’:oCT)T(,-(Hl)l%(o)
- E[[i(é[zf F,.]- E[U'|5, ])—o]z 9*]
=0 —.CDR (1+1)
- e[ B[V - E[015, ]9 ]

(E{U 5] E1015: )
+2 Y E T |
Isi<j<l -(E[Uj|9'71+1]_é[Uj|9?1])

(4.5)

For the above first term X,_ E[(E[U|%,,] —
E[U|F,1)*|%,], 1 already know an appropriate
estimator since it refers to the one-year prediction
uncertainty for single accident years. Therefore it
remains only to estimate the second term, which
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I will call the one-year covariance term. This is done
in the next subsection.

4.2.1. One-year uncertainty estimator
(for aggregated accident years)
I first state the following lemma:

Lemma 1. Under Model Assumptions 1 and for
i <j it holds true that

C0V<Ui,1—i+17 Uj,l—jJrl‘@I ) = 0 (46)
Proof. See Appendix B.6. O

Using Lemma 1, I obtain the following estimator
for the one-year covariance term (see Appendix B.7
for more details):

2 Y E[0ua-0)U0s50-055)|" ]

I<i<j<I

=2 2 (gl—i'gl—j_gl—i_él—j"'1)'Ui,1—i'l]j,1—j'

I<i<j<I

4.7

Remark:

The one-year covariance term estimator related to
my numerical example is given by

A

2 Y E[0u a0 )05 50-U5 ) 9" ]

1<i<j<I
=10,167,783.
As a consequence I can derive estimator (1.1).
Estimator 2 (one-year reserve risk estimator
for aggregated accident years). Under Model
Assumptions 1 I have the following estimator for

the one-year prediction uncertainty for aggregated
accident years:

mMSeps;  cbr, 141y (0)
I A N ~
= Z[éﬁ—l Uit (81— 1)2 . Ufl—i]
i=1

+2 2 (g'l—i‘ gl—j_ gl—i_ él—j"'l)'[}i,l—i'l}j,l—j-

I<i<j<I
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Table 7. One-year prediction uncertainties: Numerical example

One-Year and Total Run-Off Reserve Risk Estimators Based on Historical Ultimate Estimates

—1/2

i U, MSePeHR, 1+1)/,(0) MSePEDR(1.+1))7, (0)
0 223,558 0 0

1 224,036 0 0

2 223,697 0 0

3 214,445 1,977 44

4 221,628 8,941 95

5 294,673 8,995 95

6 269,763 114,752 339

7 271,810 45,029 212

8 247,245 2,214,687 1,488

9 267,747 3,170,237 1,781

10 245,398 9,631,068 3,103

11 259,549 31,380,299 5,602

12 262,936 87,858,844 9,373
covariance term 10,167,783

L0, MSsepy B 1+ (0) @12/{2:06@,(“1)@,(0)

Total 3,226,487 144,602,611 12,025

Remarks:

* It is straightforward that the above estimator does
fulfill the following unbiasedness property:

msepZ’ &R+, (0) = E[mSCPZ’,OCDR I+D)|F, (())|§Z)’ ]
4.8)

* The one-year reserve risk estimator for aggregated
accident years related to my numerical example is
shown in Table 7.

5. Total run-off prediction
uncertainty

In this section I concentrate on the total run-off
reserve risk. My goal is to derive the estimator (1.2)
for MSEP of the total run-off prediction uncertainty.
As usual I first focus on the result for a single acci-
dent year and then, in a second step, derive an esti-
mator for the aggregated view.

5.1. Single accident year

For a single accident year i > 1, MSEP of the total
run-off prediction uncertainty is given by

VOLUME 12/ISSUE 2

MSEPyig, (E[Ul|@1])

= [ (v-E[v1F, )7 ]
= E[(U'-E[U'|%, )9 ]
I-ElU1F])]7 |
o OO |

(E[U'F,]-E[UF])

=0

f@

+E[(E[Ui F,

= £[(0.,- £[0.]7. |7 ]

process variance

+ E[([}“,i - E[ﬁi,l F,

ETI SEAY

parameter&model uncertainty

Remark: Note that the total run-off prediction
uncertainty can be clearly split (unlike the one-year
prediction uncertainty) between process variance
and parameter&model uncertainty term.
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In the next subsections I derive an estimator
for both the above terms: process variance and
parameter&model uncertainty. I will again make use
of the relationships derived in Section 3.2.

5.1.1. Process variance estimator
I estimate the process variance term

£ (0~ £[ 0.7 7]

by
%' ])

(ke (B, R
:[Z gj)'ck' ng :|'Ui,1i9 i1,
k=T=i\ j=I-i =K+

(5.2)

E[(0.,-E[0,

o]

and I refer to Appendix C.1 for the rigorous derivation
of this result.

Remark:

The process variance estimator for single accident
year related to the numerical example is shown in
Table 8.

Table 8. Process variance estimator for single accident year:
Numerical example

5.1.2. Parameter&model uncertainty
estimator
I estimate the parameter&model uncertainty term

E| (U E[ 0.,

F, ])2\9»*,]

by

EA[(I}LH _E[l}u‘@l ])2‘@]]: (1_ ﬁgj)z 0314,

j=I-i

i>1, (5.3

and I refer to Appendix C.2 for the rigorous derivation
of this result.

Remark:

The parameter&model uncertainty estimator for
single accident year related to the numerical example
is shown in Table 9.

5.1.3. Total run-off prediction uncertainty

Combining the above results leads to the follow-
ing estimator for total run-off risk for a single acci-
dent year:

Table 9. Parameter&model uncertainty estimator for
single accident year: Numerical example

i 0, EW0, - EW0 Jam2@]  ELO,- EL0, |99 72 i 0, EW0,. - EW0 )21219T  EL0,, - EL0,Jo)21e 2
0 223558 0 0 0 223,558 0 0
1 224,036 0 0 1 224,036 0 0
2 223,697 0 0 2 223,697 0 0
3 214,445 1,911 44 3 214,445 65 8
4 221,628 9,969 100 4 221,628 1,532 39
5 294,673 21,586 147 5 294,673 6,068 78
6 269,763 131,237 362 6 269,763 16,670 129
7 271,810 174,441 418 7 271810 33,804 184
8 247,245 2,217,465 1,489 8 247,245 53,386 231
9 267,747 5,555,024 2,357 9 267,747 121,736 349
10 245,398 14,368,781 3,791 10 245,398 69,642 264
11 259,549 46,095,893 6,789 11 259,549 1,102,668 1,050
12 262,936 111,575,746 10,563 12 262,936 36,246,911 6,021
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Estimator 3 (total run-off reserve risk esti-
mator for single accident year). Under Model
Assumptions 1 I have the following estimator for
the total run-off prediction uncertainty for a single
accident year:

—

msepui‘% (E[U

ig;l])

-1 k-1 . “n 1-1 > ~
{8 (fe) o {f )
k=I—-i \_j=I-i j=k+i

estimated process variance

-1 2 ,
+|1- 8 Ui, 121 (5.4)
j=I-i
estimated parameter&model
uncertainty
Remarks:

* Note that (like for the artificial one-year reserve
risk split) the estimated process variance term is

a linear function in U, , whereas the estimated

i1-i>
parameter&model uncertainty term is a quadratic
function in lA/l i

e It can be shown that the above estimator does

fulfill the following unbiasedness property:

5oy s, (B[

%)= E[msep,, (E[U5 ]} ]
i>1. (5.5

* The total run-off reserve risk estimator for single
accident year related to the numerical example is
shown in Table 10.

5.2. Aggregated accident years

I now take care of the aggregated accident year
view. For aggregated accident years MSEP of the
total run-off prediction uncertainty is given by

1ebd)
d)

mse ;
pZ{:()U !

= E[(iOU —E[gUi

VOLUME 12/ISSUE 2

Table 10. Total run-off prediction uncertainty by
accident year: Numerical example

i 0,, msep i, (EIUIF)) msep y, (EIUI])V2
0 223,558 0 0
1 224,036 0 0
2 223,697 0 0
3 214,445 1,977 44
4 221,628 11,502 107
5 294,673 27,654 166
6 269,763 147,907 385
7 271,810 208,245 456
8 247,245 2,270,850 1,507
9 267,747 5,676,760 2,383
10 245,398 14,438,423 3,800
11 259,549 47,198,561 6,870
12 262,936 147,822,657 12,158

+2 2 E[(l},[ - Ui,l—i)(UjJ - Ujv”j)‘gl ]

I<i<j<I

(5.6)

For the above first term . E[(U' — E[UNF ])*| F,),
I already know an appropriate estimator since it
refers to the total run-off prediction uncertainty for
single accident years. Therefore it remains to esti-
mate the second term, which I will call the total
run-off covariance term. This is done in the next
subsection.
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5.2.1. Total run-off uncertainty estimator
(for aggregated accident years)
I first state the following lemma:

Lemma 2 Under Model Assumptions [ and for
i <j it holds true that

COV((}[J, Uj’1|@1)=0. (5.7)
Proof. See Appendix C.3. o

Using Lemma 2, I obtain the following estimator for
the total run-off covariance term (see Appendix C.4
for more details):

Uir-1)@']

2 2 E[((}u_ﬁi,l—i)(ljﬂ

1<i<j<I
-1 -1 R R
=2 1= 1 & |- Ui Uy
1<i<j<I k= I—l k=I-j

(5.8)

Remark:

The total run-off covariance term estimator related
to the numerical example is given by

2 Y E[(0,-U0,.)0,-U

1<i<j<I

Uy )|a' ]
— 14,082,024

As a consequence I can derive estimator (1.2).

Estimator 4 (total run-off reserve risk estima-
tor for aggregated accident years). Under Model
Assumptions 1 I have the following estimator for the
total run-off prediction uncertainty for aggregated
accident years

A 1 .
msepzzl]UJl( [ZU’ %1

i=0

I1- k-1 5 I-1 - N
1))
k=I-i \_j=I-i Jj=k+1
=2

i=1 1-1 2 n
+(1_ g]) .Ul?]*i
7 .
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Remarks:

¢ [t can be shown that the above estimator does ful-
fill the following unbiasedness property:

dl

N 1
= El:msepE,,OU,g ( [ZU
i=0

A 1 .
msepy; s, (E [ YU

i=0

Do) oo

* The total run-off reserve risk estimator for aggre-
gated accident years related to the numerical exam-
ple is shown in Table 11.

6. Comparison with the Mack
and Merz-Wiithrich formulas

In this section I compare my formulas with the
Mack (total run-off view, 1993) and Merz-Wiithrich
(one-year view, 2008) formulas, which are often used
as benchmarks in the insurance industry. Since the
Mack and the Merz-Wiithrich formulas are based on
the standard CL methodology supported by Mack’s
distribution-free model, 1 also consider this setup
throughout this section.

Let us recall that I denote with C;; the cumulative
, I} up to
, I} and with &,
21}, the total information available to

payments for accident year i € {0, . ..
development period j € {0, . . .
ke {0,...,
the insurance company at the end of calendar year &,
which is given by

Fi=0 ({Ci,.i }i+jSk )

Under the standard CL framework I define the ulti-

mate estimates Uy, = E[U'| F,,] as

A -1,
U,;=C,-T1£", i jef{0,....1},
1=
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Table 11. Total run-off prediction uncertainties: Numerical example

i 0,, msepy, (E[U1F)) msep ., (EIUIF )2
0 223,558 0 0

1 224,036 0 0

2 223,697 0 0

3 214,445 1,977 44

4 221,628 11,502 107

5 294,673 27,654 166

6 269,763 147,907 385

7 271,810 208,245 456

8 247,245 2,270,850 1,507

9 267,747 5,676,760 2,383

10 245,398 14,438,423 3,800

11 259,549 47,198,561 6,870

12 262,936 147,822,657 12,158
covariance term 14,082,024

Sl msemu(E[TU1F ) e g (E[ XU )

Total 3,226,487 231,886,560 15,228

where the estimated CL factors at the end of calendar
year k are given by

min(Z,k—j—1)
21 =0 Cl Jj+l

e k—j=1
o=l TR e,
fis k—j<l1
kef{0,...,21},
and f,, . . ., f,, are known a priori expected CL
factors.

6.1. Approximation results under
additional conditions

Keeping in mind the remarks in Section 3.3.1, in
this section I would like to establish under which
conditions Mack’s (1993) and Merz-Wiithrich’s (2008)
formulas can be approximated by my formulas.

In other words, the goal of this section is to show
that, even if my Model Assumptions 1 do not com-
bine with Mack’s (1993) model assumptions, under
appropriate conditions my formulas deliver results

VOLUME 12/ISSUE 2

similar to Mack’s (1993) and Merz-Wiithrich’s (2008)
formulas.

First recall that within Mack’s (1993) distribution-
free CL model, the variance parameters are esti-
mated by

)
<
~
M\
O
<
/_\
:
i
==
~—
)

jefo,....1-2}. (6.1)

Moreover, for 52, T use the estimator proposed by
Mack (1993), given by

Ad
Si—2
Sll—mm 51 3aS1 257 (-

S1-3

(6.2)

I will be able to prove the following result:

Approximation Result 1. Assume Mack’s (1993)
distribution-free CL model as well as

1) no parameter estimation uncertainty;
fo ~F ik
2) fj ~f;" v]’ k’ and
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~2
Si-1
3) GIleIl — >

(fi1)

where f,, . . . , f,, are known, a priori expected CL
factors and f{* is defined as above.

Then the following approximations hold true

dl

A l .
= msepz’lzou,v‘% (E[Z U’ @[
i=0

msep%‘}“ku 1 ( [ YU
i=0

)

MW S e
MSePy, sx 1oy, (0) = MSEPI, b (11, (0)- (6.4)

Proof. From the additional assumptions 1) and 2)
I have

g 1) 2111 z/+1 H] JHE l
D YFaetn | A

jefo,....1-1}. (6.5)

Y. c
i=0 tJ+l
> C

=1,
1]

As a consequence, for the one-year risk it holds
true that

msePZ{zoc’ﬁé,(mn%(O)

(

Zl@,.

M-s
L
<

Il
M~

A Cl[ lHl I— ,J_Cl

u
M~

=300 5 [L]

1

where in the above computation I did use the

approximation
., (65) 1 I-j-1 | [} . :
sz = X Z U,‘,j ’l\.jJr 1
I-j-15 Ui,

— — 2
=15 %\ e,
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(7)™

Therefore the first approximation is proved, since
the Merz-Wiithrich (2008, 2014) formula under no
parameter estimation uncertainty reduces to

Lo~ 2 §F, 1
mseP%Z,ﬁmms@(O):E(U"J*") (f:”) [a]

For the total run-off risk, it holds true that

R tom il

- 5 (1) 25 [emr )

where in the last step of the above computation I did
use again the approximation

. z(hﬁ)&# jefo,....1-1}.

Therefore, the second approximation is proved
since Mack’s (1993) formula under no parameter
estimation uncertainty reduces to
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Mack
mSCpE{UUI%(

S0, )5 - 1
= i I—i — = ~ . O
(f)[c ]

Remarks:

e The assumptions I have taken to be able to
prove the above-stated approximations are rather
restrictive.

* In the above proof, due to the fact that Mack’s
(1993) distribution-free CL model does fulfill the
unconditional unbiased property, I should have
done the comparison even better using the param-
eter estimators given by

g,=1, jelo,...,1-1},

A 2
A 1 & A (Ui .
6=— Y U,| -1, jefo,....1-2}
I-j iz Ui,

In that respect, note that the stated approximations
would be well fulfilled anyway.

In the next section, for didactic purposes based on
a toy numerical example, I will relax assumptions 1)
and 3), i.e., only assume the stability conditions
f ® = fj, Vj, k to hold true, and compare again the
result obtained by applying my formulas with the
result obtained by applying Mack’s (1993) and Merz
and Wiithrich’s (2008) formulas.

6.2. Toy numerical example

I will consider the claims payments data (C;)
shown in Table 12.

The related estimated CL factors ( f;‘”) can be eval-
uated to be equal to the values

j 0 1 2 3
fo 3097 1653 1310  1.006

and the CL variance parameter estimators

1! Ciii ~a )
a2, i,j+1 4
§l=——— > C ;| ===V,

i ;
I-j-15 Ci,j
jelo,..., -2}
3:4
A2 a2 2 -2
§y-1 = min {513, Si-2> 73 }
S1-3

can be evaluated to be equal to the values

j 0 1 2 3
§2 7.340 26.173 11.962 5.467

]

In the next subsection, I will consider three choices
of a priori expected CL factors and compute for each
choice the prediction uncertainties.

6.2.1. Choice 1

I choose the a priori expected factors (f/) equal
to the estimated CL factors (f"). Then I obtain the
series of estimated CL factors shown in Table 13.

The related triangle of ultimate estimates ((Z,j) is
given in Table 14.

According to estimators (3.1), (3.2) and (3.3) the
estimated parameters () and (6_/?) in my model are
therefore given in Table 15.

Table 13. Series of estimated CL factors: Toy example,
first choice of the a priori expected factors (f)

Table 12. Claims payments (C;)): Toy example | 0 1 2 3

i/j 0 1 2 3 4 f, 3.097 1.653 1.310 1.006
0 2,357 7,432 12,444 16,639 16,738 f',-o’ 3.097 1.653 1.310 1.006
1 8,345 26,046 43,651 56,832 f'j“ 3.153 1.653 1.310 1.006
2 5,492 16,799 26,999 f2 3.128 1.674 1.310 1.006
3 7,688 23,695 f'ﬁ’ 3.105 1.676 1.337 1.006
4 4,566 f';” 3.097 1.653 1.310 1.006
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Table 14. Ultimate estimates (0,-',-)_: Toy example, first choice
of the a priori expected factors (f))

Table 18. Ultimate estimates (0,-,,-): Toy example,_
second choice of the a priori expected factors (f))

i/j 0 1 2 3 4 i/i 0 1 2 3 4

0 15,897 16,184 16,396 16,738 16,738 0 16,309 16,589 16,339 16,805 16,738
1 57,298 57,460 58,713 57,170 1 58,734 57,261 58,950 57,170

2 37,901 37,861 35,573 2 37,770 38,013 35,573

3 53,794 51,597 3 54,011 51,597

4 30,796 4 30,796

Table 15. Estimated parameters (g) and (63): Toy example,
first choice of the a priori expected factors (f)

Table 19. Estimated parameters (g)) and (63): Toy example,
second choice of the a priori expected factors (f)

j 0 1 2 3 j 0 1 2 3
g 0.9891 0.9926 0.9840 1.0000 g 0.9798 0.9910 0.9826 0.9960
G2 25.3279 81.1887 28.5140 10.0143 62 27.7894 100.6560 44.1363 19.3532

J

J

Table 16. One-year and total run-off prediction uncertainties:
Toy example, first choice of the a priori expected factors (f))

Table 20. One-year and total run-off prediction uncertainties:
Toy example, second choice of the a priori expected factors (f))

One-year risk Total run-off risk
—— 12

1 Tl
msens, (-7 (0) Mseby i (E[ 2,V )

One-year risk Total run-off risk
— 12

12 (!
MSepy; 1+ (0) msepZLou‘|%(E[Z;:OU'|%])

My model 2,864 4,490
Underlying 3,629 4,114
CL model

My model 3,530 5,808
Underlying 3,629 4,114
CL model

Finally, the estimated prediction uncertainties can
be computed to the results shown in Table 16.

This choice of the a priori expected factors is rather
artificial. In the next subsection, I will do a more
realistic choice.

6.2.2. Choice 2
I choose the a priori expected factors (fj) to be in
line with the estimated CL factors (f @). Then I obtain
the series of estimated CL factors shown in Table 17.
The related triangle of ultimate estimates (Ui ) is
given in Table 18.

Table 17. Series of estimated CL factors: Toy example,
second choice of the a priori expected factors (f)

The estimated parameters (g,) and (6}) in my
model are therefore given in Table 19.

Finally, the estimated prediction uncertainties can
be computed to the results shown in Table 20.

6.2.3. Choice 3

I choose the a priori expected factors (fj) to be
less similar to the estimated CL factors (f V) than
in choice 2. Then I obtain the following series of
estimated CL factors in Table 21.

The related triangle of ultimate estimates (lA]l.’j) is
given in Table 22.

Table 21. Series of estimated CL factors: Toy example,
third choice of the a priori expected factors (f))

j 0 1 2 3 j 0 1 2 3
f, 3.100 1.700 1.300 1.010 f; 3.000 1.750 1.250 1.000
fo 3.100 1.700 1.300 1.010 flo 3.000 1.750 1.250 1.000
fw 3.153 1.700 1.300 1.010 fw 3.153 1.750 1.250 1.000
f 3.128 1.674 1.300 1.010 fe 3.128 1.674 1.250 1.000
fo 3.105 1.676 1.337 1.010 fo 3.105 1.676 1.337 1.000
fo 3.097 1.653 1.310 1.006 f 3.097 1.653 1.310 1.006
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Table 22. Ultimate estimates (0,-,,-):_ Toy example, third choice
of the a priori expected factors (f))

i/j 0 1 2 3 4

0 15,468 16,258 15,555 16,639 16,738
1 57,560 54,514 58,366 57,170

2 35,957 37,637 35,573

3 53,476 51,597

4 30,796

Table 23. Estimated parameters (g)) and (6%): Toy example,
third choice of the a priori expected factors (f))

j 0 1 2 3

g 0.9849 1.0100 0.9985 1.0059
G2 102.9613 202.4903 99.8821 49.2687

)]

Table 24. One-year and total run-off prediction uncertainties:
Toy example, third choice of the a priori expected factors (f))

One-year risk Total run-off risk
—— 12 — 12 Py R
mSeps, ,coR(+1j(0) MSEPs s, (E[ZI:OU'@])

My model 4,484 6,487
Underlying 3,629 4114
CL model

The estimated parameters (g;) and (6_,?) in my model
are therefore given in Table 23.

Finally, the estimated prediction uncertainties can
be computed to the results shown in Table 24.

Looking at the above results, I observe that if the
a priori expected CL factors do not differ too much
from the estimated CL factors, then the magnitude
order of the estimated prediction uncertainties under
the two model assumptions is similar.

Moreover, since within Mack’s (1993) model
the unconditional unbiased property is fulfilled, for
comparison purposes I should better evaluate my
formulas using the modified parameter estimators

as explained in Section 3.1. When doing this, I note
that the results are even more aligned, as shown in
Table 25.

Remark:

Coming back to my main numerical example, [ have
to note that the ultimate estimates triangle considered
has been derived starting from the claims payments
data (C;) given in Table 5 by applying, constantly
over time, the standard CL methodology, i.e., using the
series of estimated CL factors shown in Table 26.

Therefore, based on the claims payments triangle
I can evaluate both the Mack (1993) and the Merz-
Wiithrich (2008) formulas and compare them with
my results in Table 27.

7. Conclusion

In actuarial practice, a large number of reserving
methodologies are applied. Unfortunately not all these
reserving methodologies are supported by a fully
well-defined stochastic reserving model, and for some
methodologies that are supported by such a stochastic
model, the reserve risk uncertainties estimators may
be unknown.

In all of these cases, it is currently not possible to
properly estimate the reserve risk uncertainties.

In my paper, I did provide a solution to overcome
this problem since I derived estimators that depend
on only the historical triangle of ultimate estimates
and can therefore be evaluated even if the reserving
methodology is, from a pure stochastic point of view,
not fully well defined.

I therefore believe that my formulas could be partic-
ularly useful to estimate the reserve risk uncertainties

Table 25. Comparison of prediction uncertainties: Toy example, third choice of the a priori

expected factors (f)

One-year risk
— 12
msepy!  cori(r+1)j7, (0)

Total run-off risk
—— 12 SR
mseDZLoU‘\%(E[Z,’ZOU'V’])

My model 4,484 6,487
My model with (¢,=1) and adjusted (6?) 3,554 4,811
Underlying CL model 3,629 4114
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Table 26. Series of estimated CL factors: Numerical example

j 0 1 2 3 4 5 6 7 8 9 10 11

f, 1.4000 1.0400 1.0100 1.0050 1.0050 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
f‘f" 1.4000 1.0400 1.0100 1.0050 1.0050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
f(}' 1.4000 1.0400 1.0100 1.0050 1.0050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
f‘f' 1.4000 1.0325 1.0100 1.0050 1.0050 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
f‘f' 1.4000 1.0299 1.0059 1.0050 1.0050 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
f(j" 1.4000 1.0275 1.0058 1.0014 1.0050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
f‘f' 1.3949 1.0264 1.0121 1.0058 1.0111 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
f‘f' 14036 1.0255 1.0111 1.0091 1.0082 1.0001 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
f(f' 14086 1.0246 1.0106 1.0075 1.0059 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000  1.0000
f‘js' 1.4190 1.0245 1.0093 1.0078 1.0044 1.0001 1.0001 0.9996 1.0000 1.0000  1.0000  1.0000
f‘?' 1.4248 1.0241 1.0094 1.0078 1.0061 1.0000 0.9998 0.9997 0.9997 1.0000 1.0000  1.0000
f(}o’ 14339 1.0245 1.0091 1.0067 1.0065 1.0003 0.9998 0.9998 1.0000 0.9998 1.0000  1.0000
f‘}“ 14366 1.0312 1.0117 1.0062 1.0056 1.0003 1.0003 0.9998 1.0002 0.9999 1.0000  1.0000
fuz 14375 1.0309 1.0119 1.0060 1.0049 1.0003 1.0003 0.9998 1.0001 0.9999 1.0000  1.0000

(both one-year and total run-off) of a given insurance
portfolio in case

* the prediction uncertainties related to the stochastic
model supporting the applied reserving methodol-
ogy are not yet known; or
* we have a probabilistic lack of consistency in the
stochastic model supporting the applied reserving
methodology that could be due, for instance (as is
often usual in practice), to
— different basic reserving methodologies applied
to different accident years (e.g., BF methodology
for less-mature accident years and CL method-
ology for more-mature accident years) or

— mixtures of basic methodologies applied to
specific accident years; or

* we do not know exactly according to which reserv-
ing methodology the ultimate estimates have been

generated (e.g., if the reserving analysis is done on a
more granular level, then the reserve risk uncertain-
ties need to be quantified for solvency purposes).

Finally, I also believe that if, for a given insurance
portfolio, a well-defined reserving methodology is
applied (for which a fully consistent and validated
supporting model exists and the prediction uncer-
tainties estimators within that model are known and
fulfill good properties), then the corresponding esti-
mators (without forgetting to allow also for a model
risk loading) should be preferred to those presented
in this paper.

Nevertheless, based on numerical examples, I did
show that in the standard CL framework and under
reasonable stability conditions, my high-level for-
mulas deliver results similar to the Mack (1993) and
Merz-Wiithrich (2008) formulas.

Table 27. Comparison of prediction uncertainties: Numerical example

One-year risk

12

MSEPx!_ COR(1+1)|% ©)

Total run-off risk
12

N | .
MSeDs; s, (E[ZI:O VED ])

My model 12,025 15,228
My model with (¢, = 1) and adjusted (62) 11,080 13,687
Underlying CL model 11,203 (Merz-Wiithrich) 13,457 (Mack)
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Appendices

Appendix A.1. Unbiasedness of the estimators g; and 67

In this section, I prove in detail the conditional unbiasedness of the estimators g; and 7.
It holds true that

l I1-j-1
=S 2{“) E|E[U,n
i=0 l/' !

I—-j-1
= E
2;0’ ‘U, zo [

]

(U{a.,o,...,a,j})]

i=0

G(g{l}i,o,...,l}i,j})]=gj, jE{O,---,I—l},

ij ij i=0
1 Lt BN l}i,' 1 n 1 It A A 2 A
e ”Vdr{ 0, G(H){U”’ ’U”}))+ - U"-"E[(g’_g’) ‘G(Q{U"” ’U”})]
1 ==, (.. I ~
- E 2 Ul i /i’]+1 - g ( Ul 9“"Ul )
I—j—l [ Z;; ,J( Ui,j g/)(g/ gj) Y IL:JO{ Y /}
1 I-j-1 02 1 I-j-1

1 I A 21;0]71 A1]+1 ! > s
_I_.]_l( =0 Ul]) E 2 21:_({_1(}1/ _gj (g] gj) G(Q{Uto’“‘,U”})
1 1 I-j-1 1 A ~
_I 1( -J) 5‘1 1(2%) E[(gj_g])z G(U{Ui,o,-..,Uu})]
el - i=0 i=0
1 ) 1 I-j-1 R 1 ~ A
= I—j—l(l_])cf_l—j—l g; Ui, Var(g] G(H}{Uio,...,U,]}))
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(1 .)02 l—zji—ll} v l—zj:—l (j,-,,‘ l}i,jﬂ G(LIJ{U 0 })
= —_ . — ii® ar 77. ~ A~ 0s° > 2
I_J_l / ! _]_1 i=0 ! i=0 211=(§ lUi’j Ui,j i=0 ’ !
1 1 I—j-1  I-j-1 U? d " I R

= —j)o’ - U+ = Var| — c( Uy,...,U, )

] — _1( J)O; I—]—l g J g(; (z:é_l lj)2 Ulj IL:JO{ 0 J}
_ 1 . 2 _ 2

I—j—l(l_]) 77 _IGJ—GJ-, jel{o,...,1-2}

Appendix B.1. One-year uncertainty estimator for single accident year

I estimate the one-year uncertainty for single accident year E [(Ui, il — l?, )

F,] by

E[(Uu—m - Ui,l—i )2|le ] = l::[[jf]—ﬂ—l

@' ] - 2E[ﬁi,l—i+l Uu—i

@' |+ E[U}

']
E[U,..|9" |E[U,_|9"]
a4 B[Oy o T)-2| ’

+ C/O\V(lji,I—Hl’ lji,[—i

= (‘75;’ (Uz’,l—iﬂ

')

+ (@(Ui,l—i

=0

')+ E[0,_|' ]2)

= (6?71' ° l}i,lfi + ﬁf]*i ° glzfi)_ 2 ° [l}l?li ° glfi + 5(;}(01',[7141’ Ui,lfi‘gb] )}J’_ l}flﬂ'

=0

AD ~ N 2 ) .
zcl—i’Ui,I—i+(g1—i_1) Ui, i21.

Appendix B.2. Split of the one-year prediction uncertainty

For a single accident year i > 1, MSEP of the one-year prediction uncertainty can be split into three components
(process variance, parameter&model uncertainty, and mixed term) as follows:

msep ey, 1y, (0) = EL(E[U1F,] - E[U1F,]-0) ] ]
= E[(E[UF,.,]- E[U1F,.,]+ E[U\F, - E[UF, |+ E[U1F,.,]- E[U| %, ])'| 7, ]
= E[(E[U19,..]- E[E[U'19,.. )%, 1)1 %, 1+ E[(0,y- - E[U1 9, )|, ]
+E[(E[U191- 0, )|%, 1+ 2(E[U1%,1- 0., ) E[(0,y0 - E[U1F,,])|F, ]

A

+2(E[U1F]- 0, ) E[(E[U1F,,]- E[U| %)), ]

=0

+2E[(U,)in - E[U1F L)) E[U1F,, - E[U1F])| % ]
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= Var(E [Uil Fra ]|GJPI )+ E[<0i,[—i+l -E [Ui| Fr ])2‘ I ]"‘ E[(Ui,l—i -E [Uiloj"l ])2‘ F ]
process variance parameter&model uncertainty: first term
—2E[(Ui - E[UF )0, - E[U1F,.0])| 5, ]
parameter&model uncertainty: second term
+2E[(Uys0 - E[U19, ])(E[U1F,,,]- E[U'19 ])| 7, ].
mixed term
Appendix B.3. One-year process variance estimator
I estimate the process variance Var(E[U"|@,+l]| %, by
Var(E[U19"]|9") = Var(E[U,,|9"" ]| 9")
AR -1 ,
= Uirsin H g|P )
j=I=i+1
= 2 . ,
:( H gj) 'Va"(Uu—m ) )
j=T—i+1
-1 2 R
:( H g}) .G?*i.Ui,lle i=1.
j=T=i+1
Appendix B.4. One-year parameter&model uncertainty estimator
I estimate the first term of the parameter&model uncertainty
A~ . 2 ~ . 2
E[(Uuﬂ'ﬂ - E[Ul|9;1+1]) ‘ %1 ]+ E[(Ui,H - E[Ul|%1 ]) ‘ %1 ]
E[((jj,l_“-l - E[Ul| gbl+l ])2‘@1 ] + EA‘[(L},*J_I‘ - E[Ul| gbl ])2|QD1]
~ ~ ~ I-1 2 , R I-1 2 ,
E[(Uu—m_ Ui-in H gj) P :| [( iI-i H 8~ U ) P :|
j=l—-i+l1 Jj=1-i
-1 o = 2 Ay
b E[Uu i+1 ]"’(ng_lJ Ui
j=T—i+1 j=T-i
-1 2 A ) -1
8i |- (Var(Ui,l—H-l @1)"‘ E[Ui,l—iH‘gDI] )+( 8i— ) 1[ i
Jj=1-i+1 Jj=1-i
- 2 s n . ~ 1= 2 A
1- H 8 '(Gl—i'Ui,I—i+g11' 111) (H ) tl—i
j=I—-i+1 J=1-i
1—1A2A2 R . 1—1A2A2 -1 A
I- 8 'GI—i°Ui,I—i+(g1—i_ng) Ui+ ( ng) :In i21.
j=I-i+1 J=1-i J=1-i
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I estimate the second term of the parameter&model uncertainty

—2E[(0,- EIUNF )0,y - E[U1F,4])| F ]

—2E[(0,.- El019' )0, - ElU19™'])| 2" ]

A ~ ~ I-1 ~ R 1-1
=-2FE |:(Ui,1—i U .gj )(UUHI =Uiin H gj)

j=l—i+1

/|

Appendix B.5 One-year mixed term estimator

Ofl+1])(E[Ui|Of1+]] - E[U’

I estimate the mixed term 2E[(lA]l. —E[U %,])PJP,] by

I-i+1
2E[(Uy - E[U19™))(E[U19™ ] - E[U19'])| 2" ]

(- . -1 . -1 e
= 2E|:(Ui,1—i+1 = Ui H gj)(Ui,I—iH H gj_Ui,I—i H gj)

j=I-i+1 j=I-i+1 j=I-i

/]
/]

-1 T ~ . -1 . -1
=2|1- H éj 'E|:Ui,1i+1(Ui,1i+1_ll_[_lgj_Ui,1i lj[_gj)
= Jj=1-i+ j=1-i

1-1 1-1 N 1-1 . R -1 . A A
=2 1- H é/ H gj E[U121—1+1 @[]_2(1_ H g/) Ul]—i.(H g/) E[Ui,l—i+l‘gb1]
Jj=I-i+l1 Jj=I-i+l1 j=I-i+1 Jj=1-i

I-1 -1 R A . -1 1 . R
=2|1- H éj H g’j '(Gﬁl'Ui,[i+g12i’Ui?1i)_2(1_ gj)'( gj)'gl—i'Ufl—i
i A ¥i i+1 i

~

=2(1- H 8 H 8 '6%4'[]1',14, i21.

Appendix B.6. Proof of Lemma 1

Please note that Ul . 1s 9'-measurable, and for i < j, I also have that U

/11 18 D] -measurable. Therefore, for
i <Jj, it holds true that

A

COV(ULFHI ) Ui,lfj-#l‘gb[) = E[COV(Uum s Ujijn

9" _; -measurable

')

@114 )‘@1 :| + Cov (E[Ui,l—i+l|gbll—i ], E [0/;17]41‘@114]

:E[O|@1]+C0V(81—i‘ U[,I—i ’0j,1—j+1
——

%' -measurable

QD’):O+O:O.
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Appendix B.7. Estimator for the one-year covariance term

Using Lemma 1, I estimate the term

E[(E[U'|F..]-E[U'

F ) E[U|F 0 ]- E[U)F])|F, ], i<,

by

A A A

E[(U“_m - U,',I_,' )(Uj,l—j+l 11 J )‘gbl]

= B[00, |3 |- E[U.1

%' ]Ujl i Ui,l—il::[[jj,l—jﬂ‘gbl ] + Iji,l—iljj,l—j

=E[U,.

@' E[O;1- 0|9 |- E[U4oia| 9" |0 1= 0B U0 9" )+ 0,0

JI=J JI=J

=g+ U;ie 8r-j° Uj,l—j —&i-i* Ui,l—in,l—j U+ 8r-j° Uj,[—j + Ui,l—in,l—j

A A A A A

:gl—i'gl—j'Ui,[—in,l—j_gl—i'Ui,l—in,l—j_él—j'Ui,l Ujl ,+Ull tU][j

= ((SA’H . gl—j —81-i— gl—j—i_ 1)' ﬁi,l—i' l’jj,l—j’ i<j.

Appendix C.1. Total run-off process variance estimator for single accident year

It holds true that

%' ))|a' )= var(,,

)

@S |+ Var(E[U,,

E[(0,, - E[0,

= E[Var(l)i,, QDII__]l”]‘ QD')
= E[G?—l . Ui,l—l‘ %' ]+ ‘7&7’(81—1 . 0;‘,1—1‘ gb1)

= 6171 : Ui,l—i ° lgj +glz—l : @(ﬁi,l—l|@1)

-2 1-3
A2 o~ A A2 AD A A A2 7 () I
=0,-U; e I I git+8&- (01—2 Ui I I 8 t8ra Var(Ui,l—Z‘ @D ))
j=l-i

jol-i

A -2 1-3 , ,

=07 U;e Hg gl 1 (512 Uu,' Hg 811 812 Var( i,1—2‘9b )
Jel-i ==

-] - -1 .
= [2( g]) (Hé]z')]'Uui, i1,
k=1-i \_j=I-i Jj=k-1

where the last step follows by iteration of the same procedure applied in the prior steps until I reach the triangle
diagonal.
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Appendix C.2. Total run-off parameter&model uncertainty estimator
for single accident year

It holds true that

E[(0,,- - E[0.,

Appendix C.3. Proof of Lemma 2

For i <j, it holds that lZ , is @~ "-measurable, and therefore I have the following:

cov(a,,,ﬁj,,\@f):E[cov( 0, .0, @f,—w) a1, E[0,] 27 |9

@'~/ -measurable

9! :l + Cov(E[(j,-,,

= E[0|9' ]+ Cov(U,,, g, U,,,|9")
=81 'COV(ﬁi,],ﬁjylfl‘gbl)z R 0’

where the last step follows by iteration of the same procedure applied in the prior steps (until I reach the triangle
diagonal).

Appendix C.4. Estimator for total run-off covariance term
Using Lemma 2, I estimate the term
E[(0, -0, )0, -0,.)|%F ]. i<j.
by
E[(0 =001 )01 =00 ) ']

A

=E[0,U,

D |- E[0,0,,,|9' |- E[0,1,0,,|9' |+ E[0,1,0,1-) ' ]

= E[ﬁu

o' E[U,

@' 1-0,.,-E[0,

g’ ]— U,»J,i . EA[I}M‘@[ ] + lji,[—iljj,lfj

=E[U,

@' (£

gl - Uj,H)— Uit (E[ﬁﬂ‘@l ] - L}J‘,H)
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