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Rating Endorsements Using 
Generalized Linear Models

By Edward W. Frees and Gee Lee

ABSTRACT

Insurance policies often contain optional insurance coverages 

known as endorsements. Because these additional coverages are 

typically inexpensive relative to primary coverages and data 

can be sparse (coverages are optional), rating of endorsements 

is often done in an ad hoc manner after a primary analysis has 

been conducted. This paper describes a study of the Wisconsin 

Local Government Property Insurance Fund where it is desir-

able to have a formal mechanism for rating endorsements. Our 

goal is to provide prediction algorithms that are transparent and 

that promote equity among policyholders by determining rates 

that reflect the appropriate level and amount of uncertainty of 

each risk. To accommodate potentially conflicting goals of data 

complexity and algorithmic transparency, we utilize shrinkage 

techniques to moderate the effects of endorsements with penal-

ized likelihoods. We find that the rating algorithms using shrink-

age techniques have a predictive accuracy that are comparable 

to unbiased generalized linear model techniques and provide 

relativities for endorsements that are consistent with sound eco-

nomic, risk management, and actuarial practice.
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when it is not known whether or not a claim is due to 
an endorsement. Third, we explore the use of shrink-
age estimation in ratemaking, and demonstrate that 
little predictive ability is lost when the base rating 
variables are left stable.

1.1. Fund description

The Wisconsin Office of the Insurance Commis-
sioner administers the Local Government Property 
Insurance Fund (LGPIF). The LGPIF was established 
to provide property insurance for local government 
entities, including counties, cities, towns, villages, 
school districts, and library boards. The fund insures 
local government property, such as government build-
ings, schools, libraries, and motor vehicles. The fund 
covers all property losses except those resulting from 
flood, earthquake, wear and tear, extremes in tempera-
ture, mold, war, nuclear reactions, and embezzlement 
or theft by an employee.

The fund covers over a thousand local govern-
ment entities who pay approximately $25 million in 
premiums each year and receive insurance coverage 
of about $75 billion. State government buildings are 
not covered; the LGPIF is for local government enti-
ties that have separate budgetary responsibilities and 
who need insurance to moderate the budget effects of 
uncertain insurable events. Claims for state govern-
ment buildings are charged to another state fund that 
essentially self-insures its properties.

The fund offers three major groups of insurance 
coverage: building and contents (BC), inland marine 
(construction equipment), and motor vehicles. For 
this paper, we focus on BC, as this was the primary 
motivation for developing the fund; coverage for local 
government property has been made available by the 
State of Wisconsin since 1911. However, even within 
this primary coverage, there are many optional cover-
ages offered, including business interruption and fine 
arts endorsements.

In effect, the LGPIF acts as a stand-alone insur-
ance company, charging premiums to each local gov-
ernment entity (policyholder) and paying claims 
when appropriate. Although the LGPIF is not permit-

1. Introduction

It is common for insurance policies to contain 
optional insurance coverages, often referred to as 
endorsements or riders. These options may include 
alternative deductibles and coverage limits and they 
may also provide extensions to the type of peril (e.g., 
stolen jewelry in homeowners insurance) covered. 
Rate manuals provide guidance for the surcharge asso-
ciated with these optional coverages. For example, 
Werner and Modlin (2010) describe processes of incor-
porating endorsement surcharges into rates. For the 
actuary who uses generalized linear model (GLM) 
techniques and is charged with developing an associ-
ated set of rates, how does one determine surcharges 
associated with endorsements?

There are several reasonable approaches for address-
ing this question. One approach is that endorsements 
form a relatively small fraction of the premium base and 
so only informal, ad hoc approaches are needed. Actu-
aries, of course, typically have substantial amounts of 
experience when ratemaking and this experience can 
be a guide to setting rates for such a relatively small 
part of the business. Another approach is to use infor-
mation from an external agency for this set of rela-
tivities, even if GLM techniques are being using in 
conjunction with company data for the primary set of 
rates. A third approach, especially for large compa-
nies, is to treat endorsements as merely another type 
of coverage and use GLM techniques to determine 
this set of prices. This approach requires a substantial 
amount of data as well as claims that are identified 
by type of endorsement.

This paper is motivated by a rating study in which  
none of these approaches are appropriate. Our work  
makes three contributions. First, we consider the 
Wisconsin Local Government Property Insurance 
Fund and describe a process for determining intuitively 
appealing rates, for a political environment, based on 
GLM techniques. Second, we provide a detailed case 
study, so that other analysts may replicate parts of 
our approach. Through our use of GLM techniques, 
we provide relativities not only for our primary  
rating variables, but also for endorsements in a case 
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Pitaktong 2014). Analysts have vague knowledge and 
impressions about the size and magnitude of these 
coefficients, stemming from business practice, eco-
nomic theory, and an understanding of general risk 
management practice. For example, if x is a binary 
variable representing the adoption of an alarm sys-
tem (an “alarm credit”), then the analyst expects the 
associated coefficient to be negative in the neighbor-
hood of 0 to -10%. That is, if a policyholder man-
ages risk appropriately by introducing alarms, then 
resulting rates should be at least as low as without 
the adoption of an alarm system. Estimated alarm 
credit regression coefficients that are positive are not 
acceptable for rating purposes.

Compared to the traditional methods of simply 
including endorsements after the primary analysis 
has been done, our approach has two main advan-
tages. First, we can use the data to suggest ways of 
introducing relativities for endorsements in a disci-
plined manner. Second, because we use GLM tech-
niques, our approach is naturally multivariate and the 
introduction of endorsements accounts for the pres-
ence of other rating variables. Further, as we will see, 
the shrinkage methods used in this paper have the 
flexibility to also be used in other situations where 
the analyst wishes to moderate the effect of unreli-
able data.

The plan for the rest of the paper follows. We begin 
in Section 2 by giving more information about the 
data from the LGPIF as used in this study. Section 3 
describes the shrinkage estimation techniques. Sec-
tions 4 and 5 describe the results of the model fit-
ting from in-sample and out-of-sample perspectives, 
respectively. Section 6 provides concluding remarks, 
and alternative analyses are in the Appendix Section 7.

2. Data

2.1. Fund claims and rating variables

Building and contents is the fundamental coverage 
underpinning the LGPIF and is the focus of this paper. 
The claims may be a damage to the base property, 
content, or other properties covered by endorsements 

ted to deny coverage for local government entities, 
these entities may go onto the open market to secure 
coverage. Thus, the LGPIF acts as a “residual” mar-
ket to a certain extent, meaning that other sources of 
market data may not reflect its experience.

1.2. Determining effective relativities

Although it is government insurance, because the  
LGPIF essentially acts as a stand-alone insurance 
company, many of its goals are similar to those of a 
private insurer. An analysis of LGPIF claims serves as 
important input for determining rates that the LGPIF 
charges its policyholders; these rates should reflect 
the appropriate level and amount of uncertainty of an 
insurance coverage. Particularly for a public entity 
such as the LGPIF, the ratemaking process should 
be transparent and seek to promote equity among 
policyholders.

Because the LGPIF has a moderate amount of 
exposure, as will be seen, there is little difficulty in 
using commonly accepted generalized linear mod-
eling (GLM) techniques to determine rates that are 
unbiased and transparent for the primary building and 
contents coverage. However, the usual approaches 
for handling endorsements were deemed less than 
satisfactory for three reasons. First, as of this writing 
(2014–2015), the LGPIF is undergoing a major rate 
restructuring; due to the political environment, seem-
ingly ad hoc adjustments, even if small, are deemed 
inappropriate. Second, information from external 
agencies is expensive and not particularly relevant; 
the LGPIF is a government entity and acts as a resid-
ual market, meaning that there is limited information 
on comparable risk pools. (See the Association of 
Government Risk Pools, http://www.agrip.org/, for 
one set of possible comparables.) Third, LGPIF data 
for optional coverages is limited, implying that the 
usual GLM techniques are not suitable for rating the 
optional coverages, such as endorsements.

To rate endorsements, this paper explores the use 
of GLM techniques with restrictions on the coeffi-
cients through shrinkage using well-known penal-
ized likelihood methods (cf., Brockett, Chuang, and 
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Specifically, we use years 2006–2010 inclusive (the 
training sample) to develop our rating factors. Then 
we apply these factors and 2011 rating variables to 
predict 2011 claims (the validation sample). Thus, 
henceforth our summary statistics refer to the 2006–
2010 training data. Appendix 7.4 provides an alter-
native cross-sectional cross-validation.

For the training sample, Table 2 summarizes the 
distribution of our two continuous outcomes, fre-
quency and claims amount. It is not surprising that 
the two distributions are right-skewed and correlated 
with one another. In addition, the table summarizes 
our continuous rating variables, (building and con-
tents) coverage, and deductible amount. The table 
also suggests that these variables have right-skewed 
distributions. Moreover, they will turn out to be use-
ful for predicting claims, as suggested by the positive 
correlations in Table 2 for coverage and deductible. 
We use a non-parametric (also known as “Spearman”)  
correlation due to the skewness of the data and the 
presence of zeros.

Table 3 describes the rating variables considered 
in this paper. To handle the skewness, we will hence-
forth focus on logarithmic transformations of cover-

purchased by the policyholder. Hence, the observed 
claim amounts may vary according to specific terms 
of the endorsements, selected and purchased by the 
policyholder. The observed amounts reflect the total 
end result of each claim; however, the specific contri-
bution by the endorsement is unobserved. Summary 
statistics of the data show that the average claim var-
ies widely, especially with a high 2010 value due to a 
single large claim. The total number of policyholders 
is steadily declining and, conversely, the coverage is 
steadily increasing. Throughout this section, we sum-
marize the distribution of average severity for poli-
cyholders; that is, for each policyholder, we examine 
total severity divided by the number of claims, i.e., the 
pure premium or loss cost. In our modeling sections, 
we appropriately weight by numbers of claims.

Table 1 shows policies beginning in 2006 because 
there was a shift in claim coding in 2005 so that com-
parisons with earlier years are not helpful. To miti-
gate the effect of open claims, we consider policy 
years prior to 2012. This means we have six years of 
data, years 2006, . . . , 2011, inclusive. We use a com-
mon strategy in predictive modeling where we split 
our data into a “training” and a “validation” sample. 

Table 1. Building and contents claims summary

Year Average Frequency Average Severity Average Coverage Number of Policyholders

2006 0.951  9,695 32,498,186 1,154

2007 1.167  6,544 35,275,949 1,138

2008 0.974  5,311 37,267,485 1,125

2009 1.219  4,572 40,355,382 1,112

2010 1.241 20,452 41,242,070 1,110

2011 1.036  7,869 42,503,989 1,094

Table 2. Summary of claim frequency and severity, deductibles, and coverages

Spearman Correlation

Minimum Median Average Maximum Frequency Claim*

Claim Frequency 0 0 1.109 263 — -0.065

Claim Severity 0 0 9,292 12,922,21 -0.065 —

Deductible 500 1,000 3,365 100,00 0.041 0.324

Coverage (000’s) 8.937 11,354 37,281 2,444,797 0.406 0.243

*The claim correlations are based on 1,679 observations with at least one claim using the average claim (amount divided by 
frequency).
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of examining variables individually. For example, 
when looking at the experience for all entities, we 
see that policyholders with no alarm credit have on 
average lower frequency and severity than policy-
holders with the highest (15%, with 24/7 monitoring 
by a fire station or security company) alarm credit. 
In particular, when we look at the entity type School, 
the frequency is 0.422 and the severity 25,257 for no 
alarm credit, whereas for the highest alarm level it is 
2.008 and 85,140. This may simply imply that enti-
ties with more claims are the ones that are likely to 
have an alarm system. Summary tables do not exam-
ine multivariate effects; for example, Table 4 ignores 
the effect of size (as we measure through coverage 
amounts) that affect claims.

2.2. Endorsements

As described in Section 2.1, we do not actually 
observe claims from an endorsement. For example, 

age and deductibles. To get a sense of the relationship 
between the noncontinuous rating variables and 
claims, Table 4 relates the claims outcomes to these 
categorical variables. Table 4 suggests substantial 
variation in the claim frequency and average sever-
ity of the claims by entity type. It also demonstrates 
higher frequency and severity for the Fire5 variable 
and the reverse for the NoClaimCredit variable. The 
relationship for the Fire5 variable is counterintuitive 
in that one would expect lower claim amounts for 
those policyholders in areas with better public pro-
tection (when the protection code is five or less). 
Naturally, there are other variables that influence 
this relationship. We will see that these background 
variables are accounted for in the subsequent multi-
variate regression analysis, which yields an intuitive, 
appealing (negative) sign for the Fire5 variable.

The Appendix (Table 20) shows the claims expe-
rience by alarm credit. It underscores the difficulty 

Table 3. Description of base rating variables

Variable Description

EntityType Categorical variable that is one of six types: (Village, City, County, Misc, School, or Town)

LnCoverage Total building and content coverage, in logarithmic millions of dollars

LnDeduct Deductible, in logarithmic dollars

NoClaimCredit Binary variable to indicate no claims in the past two years

Fire5 Binary variable to indicate the fire class is below 5. (The range of fire class is 0:10)

Table 4. Claims summary by entity type, fire class, and no claim credit

Variable Number of Policies Claim Frequency Average Severity

EntityType

Village 1,341 0.452 10,645

City 793 1.941 16,924

County 328 4.899 15,453

Misc 609 0.186  43,036

School 1,597 1.434 64,346

Town 971 0.103 19,831

Fire5=0 2,508 0.502 13,935

Fire5=1 3,131 1.596 41,421

NoClaimCredit=0 3,786 1.501 31,365

NoClaimCredit=1 1,853 0.310 30,499

Total 5,639 1.109 31,206
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Table 5 describes endorsements, or optional cover-
ages, that are available to LGPIF policyholders. Table 6  
summarizes the claims experience by endorsement. 
Policyholders with the Zoo Animals endorsement 
experience an average annual claim frequency of 
73.9. Presumably, policyholders paying for this 
extra protection would enjoy higher property claims 
and so should be charged additional premiums. The 

if a policyholder purchases a Golf Course Grounds 
endorsement and has a claim that is from this addi-
tional coverage, we are not able to observe this con-
nection with our data. We do observe the additional 
claim, whether the policyholder has the endorsement, 
and the amount of coverage under the endorsement. 
In this sense, endorsements can be treated as another 
rating variable in our algorithms.

Table 5. Description of endorsements

Variable Description

Business Interruption Reimburses an insured for business interruption (lost profits and continuing fixed expenses).

Accounts Receivable Adds coverage for money owed by its debtors during business interruption due to a covered loss.

Pier and Wharf Loss of watercraft, by the pressure of ice or water on piers and wharves

Fine Arts Adds coverage (agreed value) on fine arts, either per item or per exhibit

Golf Course Grounds Adds coverage to golf course type property such as greens, tees, fairways, etc.

Special Use Animal Adds coverage for police enforcement animals, such as dogs and horses

Zoo Animals Adds coverage for zoo animals. Animal mortality is specifically excluded.

Vacancy Permit Allows claims from covered losses arising from vacant property

Monies and Securities Adds coverage for monies and securities for loss by theft, disappearance, or destruction  
(A: loss inside premise, B: loss outside premise).

Monies and Securities 
(limited term)

Adds limited term coverage for monies and securities

Other Endorsements Other additional endorsements, including ordinance & law, and extra expenses

Table 6. Summary of claim frequency and severity by endorsement

Endorsements
Number of 

Observations
Claim 

Frequency
Average 
Severity

Average 
Endorsement 

Coverage

Spearman Correlation of 
Coverage with

Frequency Severity*

Business Interruption 225 6.427 48,612 2,679,595 0.392 0.249

Accounts Receivable 172 5.285 29,743 853,966 0.188 0.097

Pier and Wharf 312 2.510 24,649 245,445 0.067 0.083

Fine Arts 67 13.493 37,896 12,160,956 0.297 0.187

Golf Course Grounds 28 18.000 20,866 237,500 0.749 0.166

Zoo Animals 10 73.900 18,554 1,102,790 0.877 0.462

Special Use Animal 256 5.547 13,127 21,903 0.168 0.073

Vacancy Permit 225 4.902 21,232 1,779,212 0.053 0.316

Monies and Securities 
(A,B)

2,137 2.000 29,999 58,928 0.255 0.137

Monies and Securities 
(limited term)

556 1.739 19,811 416,587 0.143 0.091

Other Endorsements 53 4.906 28,245 4,763,019 -0.003 0.334

Total (All Policies) 5,639 1.109 17,287

*The severity correlations are based on observations with at least one claim using the average severity (amount divided by frequency).
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of these two modeling approaches. This section des-
cribes estimation techniques employed and model  
specifications.

3.1. Shrinkage estimation

3.1.1. Linear model shrinkage
To introduce shrinkage estimation, we first pro-

vide a review in the context of the linear model; see,  
for example, Hastie, Tibshirani, and Friedman (2009) 
for further information. For notation, assume that yi 
is the dependent variable and that xi1, . . . , xik is the 
set of covariates (including coefficients for rating 
variables and endorsements). Then, the set of shrink-
age estimators of a = (b0, . . . , bk)′ is determined by 
minimizing
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Values of l control the complexity of the model; 
smaller values mean less shrinkage. At one extreme, 
a value of l = 0 reduces to ordinary least squares. 
At the other extreme, as l approaches infinity, 
a approaches (or, is “shrunk towards”) 0, so the 
data becomes less relevant (has smaller weight) in 
determining values of a. Note that in equation (3.1) 
the intercept b0 is typically not included, as this 
would make the procedure dependent on the origin 
of y; to illustrate, subtracting 250 (for example, for 
a deductible) from each value of y would substan-
tially alter results.

Equivalent to equation (3.1), one could also deter-
mine a by minimizing the sum of squares
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but subject to a constraint of the form Σk
j=1b

2
j < c. This 

formulation is desirable in that one can directly see 
how the b coefficients are being “shrunk” towards 
zero (as c becomes small). Thus, shrinkage estimation 
is a desirable intermediate device between (i) leaving 
a coefficient in the equation and (ii) removing it com-
pletely. Through shrinkage, we can include a rating 

most frequently subscribed endorsement is the Mon-
ies & Securities, which covers monetary losses by 
theft, disappearance, or destruction. The average cov-
erage and number of observations are over five years 
(2006–2010), the in-sample period. For example, the 
Zoo Animals coverage consists of 10 observations 
over five years and these were from the Henry Vilas 
Zoo in Dane County and the Milwaukee County Zoo 
in Milwaukee County.

Table 6 shows that a policyholder with any type 
of endorsement has a higher claims frequency com-
pared to the total of all policyholders. Similarly, for 
most endorsements, policyholders have a higher 
average severity, with Pier and Wharf, Monies and 
Securities (limited term), and Other Endorsements 
being the exceptions. The effect of higher severity 
seems to be particularly large for certain endorse-
ments, such as Zoo Animals, Golf Course Grounds, 
and Fine Arts.

To help establish the relationship between endorse-
ments and claims outcomes, Table 6 also shows the 
average endorsement coverage (the average is over 
policyholders with some positive coverage). The table 
summarizes the Spearman correlation of the amount 
of endorsement coverage versus the frequency and 
severity of claims observed. It is not surprising that all 
of these correlations are positive, indicating that more 
coverage means both a higher frequency and sever-
ity of claims. In keeping with our frequency-severity 
approach to modeling, note that the claims severity 
correlations are calculated for observations with at 
least one claim.

3. Claims modeling

As described in Section 1, this paper uses gener-
alized linear models, and following industry norms,  
employs logarithmic link functions that result  
in multiplicative relativities. We investigated both 
the frequency-severity approach as well as the 
Tweedie (“pure premium”) approach. Both models 
have strengths and weaknesses and, for our data  
set, predict claims on our holdout sample roughly 
equally well. See Frees (2014) for a comparison 
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For the application in this paper, we have
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a1 = coefficients for base rating variables
a2 = coefficients for endorsements

The shrinkage approach can be understood as a spe-
cial case of constrained estimation, where the coeffi-
cient a is restricted to be within a neighborhood of r.  
By varying the shape of the constraint region, it is 
possible to obtain various properties of the resulting 
coefficient. We provide more details in Appendix Sec-
tion 14 for the interested reader.

3.2. Offsets and endorsements

Variables described in Tables 3 and 5 were used to 
calibrate generalized linear models with logarithmic 
links and estimation methods outlined in Section 3.1. 
We also used the following offset variable
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ln 0.85 15.

offset AC AC
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= +
+

Here, AC05 represents a binary variable to indicate 
the presence of a 5% alarm system, and similarly for 
AC10 and AC15. This seems a sound practice and so 
we retain this offset variable in our analysis.

When the LGPIF began capturing alarm system 
data, premium “credits” in the amount of 5% were 
given to those with AC05=1, and similarly for the other 
two categories. Alarm systems at the 5% level mean 
that automatic smoke alarms exist in some of the 
main rooms, those at the 10% level mean they exist 
in all of the main rooms. At the 15% level, facilities 
are monitored on a 24 hours per day, 7 days per week 
basis by a police, fire, or security company. The poli-
cyholder is eligible for a premium credit of an amount 
determined by the specified percentage, depending on 
the alarm credit amount. This section describes how 
alarm credit is used as an offset in our model. Table 20,  
in the Appendix, shows a summary of the claims with 
respect to different alarm credit categories.

variable but shrink its coefficient and hence reduce its 
effect on the predicted values.

After centering the y’s and x’s, we can also write 
the shrinkage estimators in the form

ˆ . (3.2)1a X X I X yshrink ( )= ′ + λ ′−

This equation has two appealing interpretations. First, 
even in the case when some of the rating variables are 
collinear so that X′X is no longer invertible, the matrix 
X′X + lI is invertible. Equation (3.2) was first known 
as a type of “ridge regression” to handle problems of 
collinearity.

Second, assuming normality of the outcomes 
and the regression coefficients, one can show that 
âshrink represents the posterior mean of a. Through this 
Bayesian context, one can think about the coefficients 
a having a distribution (centered about 0) and the 
analyst is allowed to incorporate his or her belief 
about the precision of the coefficient through a prior 
distribution.

3.1.2. Generalized linear model shrinkage
More generally, coefficients may be shrunk towards 

selected (possibly non-zero) values and we need not 
shrink all of them. In keeping with common statisti-
cal notation, we will make the term Ra - r2 small, 
where Ra represents sets of linear combinations of 
regression parameters (R is known) and r represents 
a vector of selected values.

For generalized linear models, the idea behind 
shrinkage estimation is to make a logarithmic like-
lihood large subject to requiring Ra - r2 to be 
small. This naturally leads to the notion of a penal-
ized likelihood of the form,

log ,2

1

a aR rl f yi
i

n
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=

where f(·) is a density or mass function. For example, 
for a Poisson distribution with mean µi = exp(x′ia), 
we have fi(yi) = µi
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holder electing the endorsement coverage would pay 
less premiums than otherwise). In particular, LnAcc 
RecCovRat, LnPierWharfCovRat, and LnMoney 
SecCovRat were insignificant and negative, when 
included in the frequency model. One way to rate 
these variables is to include them in the severity model  
as covariates. An alternative is to include a binary 
variable to indicate having the endorsement, instead 
of using the log coverage ratios. Hence, we elect to 
use three indicator variables, AccRec, PierWharf, 
and MoneySec, in the frequency model.

In our model, another offset was used for Vacancy-
Permit. In part, this was because interpretable coef-
ficients could not be obtained for this endorsement 
variable from the given data, even when included as 
an indicator and shrinkage applied. Moreover, we 
had available prior information on the impact of this 
endorsement from historical precedence where the 
rate for VacancyPermit had been 0.4 times building 
rate. Therefore,

offset
Coverage

Coverage
VP

VP

B

= × +





0.4 ln 1

was added as an additional offset in the model.

3.3. Advantages of the shrinkage 
approach

The shrinkage approach provides a framework for  
controlling the coefficients of the endorsements, 
restricting them to be small, yet meaningful, values. 
Using a standard GLM, data-driven approach for  
rating endorsements can result in coefficients that can-
not be interpreted in a meaningful way. For instance, 
the data may indicate that purchasing ZooAnimals 
coverage amounts to a seven-fold increase in premium. 
Applying shrinkage only to endorsements allows the 
base rating variables to remain at an actuarially fair 
level, while unreasonable behaviors of the endorse-
ment coefficients are contained.

This approach is simple and flexible, and prevents 
the endorsement premiums from becoming unfair for 
those who hold only particular endorsements. For 
example, charging too much for ZooAnimals may 

Table 6 suggests that not only the presence of an 
endorsement but also its coverage amount may influ-
ence claims outcomes. To capture this, suppose that 
yB represents claims from a base coverage with mean 
µB = exp(x′a). Let yE be the claims from an endorse-
ment that we assume has mean µE. Then, the observed 
response y has the following mean structure
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We can readily accommodate this in a GLM struc-
ture using an interaction term of the presence of an 
endorsement with the variable xE. We use
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where CoverageE and CoverageB represent amount of 
coverage for the endorsement and base (building and 
contents), respectively. With this specification, we have
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using the approximation (1 + z)b ≈ 1 + bz. With this, 
we may think of the appropriate cost of the endorse-
ment µE as a factor times the endorsement coverage, 
rescaled by the overall cost per unit coverage. The 
factor, bE, is estimated from the data.

For our data, some of the estimated coefficients 
associated with endorsement variables were insig-
nificant and negative, making them unacceptable for  
rating purposes (this would mean that the policy-
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play negative coefficients, as anticipated. It is notable 
that Fire5 also shows a negative coefficient, in con-
trast to the relationship suggested by the summary 
statistics in Table 4. This result is sensible, given that 
a low fire class represents higher public protection. 
Also, as anticipated, the coefficients for the endorse-
ments are all positive and significant. The model is 
estimated with l increasing from 0 (no shrinkage) 
to 1,000 (shrinkage). As l increases, we observe the 
coefficients shrink towards zero.

Table 8 provides fitting results for claims sever-
ity, using the gamma model. Specifically, we used 
a logarithmic link function with the average claim 
as the dependent variable and the number of claims 
as the weight; cf. Frees (2014) for further discus-
sions of this specification. As is common in severity  
modeling, there were fewer variables that were statis-
tically significant when compared to the frequency 
model and so the model specification is much sim-
pler. The coefficient for LnCoverage is negative; 
however, the coefficient in the frequency model is 
positive, and hence the overall effect is positive and 
interpretable. As shown in Table 4, cities and coun-
ties tend to have smaller average severities, and pre-
sumably the effect is due to such entities.

4.2. Parameter interpretation

The parameter estimates provided in Section 4.1 
necessarily reflect the complexity of the system. To 
help interpret them, in this section we focus on a “typ-
ical” policyholder whose coverage is at the median of 
the distribution.

For our dataset, the median (50th percentile) BC 
coverage was $11.35 million, corresponding to 2.43 
(= ln11.353,57 million) as shown in Table 9. Recall 
that LnCoverage is the total building and content 
coverage, in logarithmic millions of dollars.

Using this median coverage, Table 10 provides rel-
ativities for the rating factors. Table 10 shows that the 
entity “School” pays less, and that “City,” “County,” 
“Misc,” and “Town” pay more, all relative to the  
reference category “Village.” As we apply shrinkage 
to the endorsements, the relativity estimate for each 

result in unfair premiums for Milwaukee and Dane 
County, as these two policyholders are the ones who 
happen to have a public zoo endorsement coverage. 
In addition, the method allows for a sound risk man-
agement practice in a political setting, as the tuning 
parameter l may be selected to accommodate the 
expectations of the environment in which the relativ-
ities are to be used. When the expectations regarding 
contributions from the endorsements are high, then 
the tuning parameter may be released to allow for an 
elevated premium level for the endorsements, while 
they could be shrunk to a small but still meaningful 
level when the contributions must remain low. In this 
process, the base rating variables remain stable, and 
hence ensure a steady outsample performance.

4. Results from the claims modeling

This section presents results using the frequency-
severity approach as it provides more intuitive expres-
sions for our parameter estimates. For comparison, 
we include the Tweedie model results in the Appen-
dix Section 7.2 using the shrinkage approach with 
ridge penalty.

4.1. Frequency-severity modeling  
using shrinkage estimation

Table 7 provides fitting results for claims frequency, 
using the Poisson model. We incorporated base vari-
ables described in Table 3, and selected interaction 
terms and the offset variables described in Section 3.2. 
Estimation was conducted using shrinkage techniques 
in Section 3.1 but shrinking only the endorsement 
terms, not the base rating variables. For example, in 
Table 7, the covariate LnBusInterCovRat represents 
the business interruption endorsement variable given 
in equation (3.3). Parameter estimates for various val-
ues of the shrinkage parameter l are given. Note that 
even though our shrinkage focuses on the endorse-
ment variables, parameter estimates for other vari-
ables are affected due to the multivariate nature of 
the regression model.

Table 7 shows that Deductible and the interaction 
term between NoClaimCredit and lnCoverage dis-
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Schools. So, if this example were focused on schools, 
then we would use a higher coverage amount to 
reflect the typical school coverage.

Table 10 also shows the relativity estimates for 
the three endorsement indicators. Note that AccRec, 
PierWharf, and MoneySec are used as indicators, 
while other endorsements are used as log cover-
age ratios in the frequency model. Because we have 

entity type is smoothed, reflecting the change in the 
relativity estimates for the endorsements.

Note that the relativity of School is very small in 
comparison to other entity types; recall that relativi-
ties, like regression coefficients, summarize marginal 
changes in variables and may not capture all relevant 
data features. In this case, although 2.43 (ln11.353,57) 
is the median, it is only at the 11th percentile for 

Table 7. Poisson frequency model using shrinkage estimation

l = 0 l = 5 l = 500 l = 1,000

Estimate
Standard 

Error Estimate
Standard 

Error Estimate
Standard 

Error Estimate
Standard 

Error

Base Rating Variables

(Intercept) -1.593 0.127 -1.581 0.127 -1.687 0.127 -1.705 0.127

LnCoverage 0.675 0.046 0.678 0.046 0.712 0.046 0.719 0.046

LnDeduct -0.061 0.011 -0.063 0.011 -0.046 0.010 -0.042 0.010

TypeCity 0.044 0.144 0.046 0.144 0.105 0.143 0.113 0.143

TypeCounty -0.445 0.199 -0.565 0.194 -1.468 0.171 -1.632 0.165

TypeMisc -0.173 0.173 -0.142 0.171 -0.083 0.171 -0.076 0.171

TypeSchool -5.915 0.173 -5.913 0.173 -5.906 0.174 -5.916 0.174

TypeTown -0.466 0.160 -0.464 0.160 -0.434 0.162 -0.427 0.162

Fire5=1 -0.179 0.037 -0.182 0.037 -0.182 0.037 -0.182 0.037

NoClaimCredit=1 -0.005 0.105 -0.003 0.105 -0.006 0.105 -0.005 0.105

Interaction Terms

LnCoverage* TypeCity 0.040 0.049 0.039 0.049 0.022 0.050 0.019 0.050

LnCoverage*TypeCounty 0.130 0.056 0.158 0.055 0.355 0.051 0.390 0.050

LnCoverage*TypeMisc -0.251 0.059 -0.258 0.059 -0.281 0.059 -0.287 0.059

LnCoverage*TypeSchool 1.245 0.051 1.245 0.051 1.215 0.052 1.212 0.052

LnCoverage*TypeTown 0.158 0.092 0.156 0.092 0.154 0.093 0.152 0.093

LnCoverage*NoClaimCredit -0.185 0.026 -0.185 0.026 -0.184 0.026 -0.185 0.026

Endorsements

LnBusInterCovRat 0.236 0.047 0.234 0.046 0.072 0.027 0.041 0.020

LnSpecialAnimalCovRat 0.055 0.705 0.009 0.289 0.001 0.032 0.001 0.022

LnZooAnimalCovRat 1.977 0.765 0.259 0.292 0.007 0.032 0.004 0.022

LnFineArtsCovRat 0.298 0.057 0.332 0.053 0.107 0.027 0.064 0.021

LnGolfCourseCovRat 0.915 0.359 0.225 0.274 0.003 0.032 0.001 0.022

LnOtherCovRat 0.300 0.046 0.293 0.045 0.078 0.027 0.044 0.021

Endorsement Indicators

AccRec 0.427 0.059 0.421 0.057 0.118 0.028 0.068 0.021

PierWharf 0.407 0.043 0.411 0.042 0.125 0.026 0.073 0.020

MoneySec 0.181 0.031 0.178 0.030 0.113 0.022 0.079 0.018

-2 Log L -7,393 -7,380 -7,179 -7,190
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fold (7.220) increase in premium without shrink-
age, while the effect is significantly mitigated after 
shrinkage is applied (1.296 with l = 5 and as small 
as 1.004 with l = 1,000). The effect of having Golf-
CourseCov results in a nearly three-fold (2.497) 
increase in premium without shrinkage, while the 
effect is mitigated to 1.252 with l = 5 and as small as 
1.001 with l = 1,000.

A rating engine may be recommended using 
the relativities shown in Table 10. The final rec-
ommendation to the property fund consists of 
tabulated rating factors, which can be applied to 
the base premium in a multiplicative manner. The 
endorsement factors are then applied additively. 

Table 8. Gamma severity model for average claim

Estimate Standard Error

Base Rating Variables

(Intercept) 9.385 0.122

LnCoverage -0.130 0.026

TypeCity 0.474 0.139

TypeCounty 1.107 0.159

TypeMisc 1.656 0.274

TypeSchool 1.038 0.146

TypeTown 0.293 0.290

f (dispersion) 7.119

Table 9. Coverage quantiles

Percent 10% 25% 50% 75% 90% 95%

LnCoverage -0.704 0.785 2.430 3.606 4.487 4.943

Table 10. Relativities for base rating variables and endorsements

l = 0 l = 5 l = 500 l = 1,000

Base Rating Variables

LnCoverage 1.726 1.730 1.789 1.804

LnDeduct 0.941 0.939 0.955 0.959

TypeCity 1.848 1.846 1.881 1.883

TypeCounty 2.658 2.525 1.651 1.527

TypeMisc 2.395 2.431 2.436 2.419

TypeSchool 0.157 0.157 0.147 0.145

TypeTown 1.235 1.231 1.262 1.264

Fire5=1 0.836 0.833 0.833 0.834

NoClaimCredit=1 0.635 0.637 0.636 0.635

Endorsements

LnBusInterCovRat 1.266 1.263 1.075 1.042

LnAddInsCovRat 1.350 1.340 1.081 1.045

LnSpecialAnimalCovRat 1.056 1.009 1.001 1.001

LnZooAnimalCovRat 7.220 1.296 1.007 1.004

LnFineArtsCovRat 1.347 1.394 1.113 1.066

LnGolfCourseCovRat 2.497 1.252 1.003 1.001

Endorsement Indicators

AccRec 1.532 1.523 1.125 1.071

PierWharf 1.502 1.508 1.134 1.075

MoneySec 1.199 1.195 1.120 1.082

not applied shrinkage to the severity model, as l is 
increased, the severity model remains the same. The 
final relativity estimate is obtained by multiplying the 
exponentiated estimates from the frequency model 
and the severity model. The reader may observe 
that having, say, ZooAnimalCov results in a seven-
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Table 11 reports correlations among scores and 
claims. For both the frequency-severity and the 
Tweedie model, there were very strong correlations 
between the scores from the usual unbiased meth-
ods without shrinkage (corresponding to l = 0) 
and shrinkage-based scores (corresponding to l = 
1,000). Note, from Table 11, the outsample correlation  
for l = 1,000 differs only by a little. Because of 
this strong relationship for these two extreme val-
ues of l, we do not include scores for intermediate 
values of l. Moreover, this means that at least for 
this data set, little predictive ability is lost by using 
shrinkage methods to give much more intuitively 
appealing relativities.

We note the strong correlation, nearly 94.29%, 
between the external agency Premium and the 
Tweedie model scores, as shown in Figure 1. This 
suggests that our analysis is able to reproduce 
(expensive) external agency scores effectively. Table 
11 demonstrates that all three scoring approaches, 
the frequency-severity, the Tweedie, and the exter-
nal agency premium score, fare about the same in 
predicting out of sample claims. The frequency-
severity model does the best, while the Tweedie 
model shows the highest correlation with the exter-
nal agency scores. Note that our frequency-severity 
scores outperform the external agency scores by a 
small amount.

To get a better sense of the meaning of these corre-
lations, Figure 2 shows the relationship between our 
frequency-severity (two-part model, or TPM) score 
and held out claims. The left-hand panel shows the 
relationship in terms of dollars and the right-hand 
panel gives the same data but using logarithmic 

Hence, the premium is calculated by the following 
rating formula:

Premium = BasePremium NoClaimFactor

AlarmCreditFactor

DeductibleFactor

EndorsementRates .

( ) ( )

( )

( )

( )

×

×

×

+

The base premium is tabulated for the six different 
entities (including the base entity, Village), and two 
different fire classes. This base premium is adjusted 
for alarm credit, and a no-claims discount factor is 
applied depending on the policyholder’s experience. 
The deductible factor is selected and multiplied from a 
tabulated table of eleven deductible categories. Finally, 
the endorsement factors are added. Note that we could 
have also included endorsements multiplicatively based 
on the discussion in Section 3.2. We chose to use addi-
tive terms to be consistent with prior LGPIF practice.

5. Out-of-sample performance

The models described in Section 3 with fitted param-
eter values in Section 4 provide the basis for developing 
a rating algorithm. With this information, we can gen-
erate predictions based on 2011 (out-of-sample) rating 
variables. To assess the viability of these predictions, 
we compare them to 2011 out-of-sample claims. We 
also have available a Premium variable that was gener-
ated by an external agency (based on a very expensive 
process). For another comparison, we also generated 
scores for the Tweedie model based on the parameter 
results in the Appendix. This section compares our pre-
dictions with held-out claims and this premium score.

Table 11. Spearman correlations among scores and out of sample claims

Freq-Sev Model Tweedie

Premiumsl = 0 l = 1,000 l = 0 l = 1,000

Frequency-Severity Model, l = 1,000 0.9938

Tweedie Model, l = 0 0.7594 0.7601

Tweedie Model, l = 1,000 0.7452 0.7512 0.9825

Out of Sample Premiums 0.7487 0.7527 0.9429 0.9474

Out of Sample Claims 0.4330 0.4330 0.4201 0.4154 0.4218
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Figure 1. Comparison of frequency-severity model scores and Tweedie model scores to external 
agency premium scores. The Spearman correlation coefficients are 74.87% and 94.29%
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Figure 2. Comparison of frequency-severity scores to out of sample claims for 2011. The Spearman 
correlation coefficient is 43.30%
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Table 12 summarizes these results. By inspecting 
the Gini indices, we observe only minute differences 
in the explanatory ability after applying the shrink-
age technique. The Gini index is 70.05% using only 
the base rating variables, 69.66% with the endorse-
ments, and 69.96% using shrinkage estimation. In the 
same way, the Pure Premium (Tweedie) scores show 
a 69.74% for the base score, 69.23% with endorse-
ments in the model, and 69.77% using shrinkage 
estimation. For comparison, the Gini index of the 
external agency premiums turned out to be 72.69%.

In order to test the significance of the differ-
ences among these scores, we use Theorem 5 of 
Frees, Meyers and Cummings (2011) which provides 
standard errors for the difference of two Gini indi-
ces. Table 13 shows that the differences among the 
scores are insignificant. For example, the difference 
between the frequency-severity score with l = 1,000 
and the external agency premiums is 0.027; however, 
the difference is within twice the standard error of 
the difference statistic. Further, Corollary 3 in Frees, 
Meyers and Cummings (2011) established the asymp-
totic normality of the distribution of the difference 

scaling. For this figure, each plotting symbol corre-
sponds to a policyholder and the overall Spearman 
correlation is a strong 43.30%.

We believe that our work is fairly typical of analy-
ses of insurance company data. For statistical signifi-
cance and interpretability of the coefficient estimates 
for the endorsements, we prefer the frequency-severity  
approach presented in Section 4.1. However, the 
Tweedie approach presented in the Appendix uses 
fewer parameters, and fares evenly when compared 
to the external agency premium scores. We think 
both approaches are sensible and the choice will ulti-
mately depend on the actuary who is analyzing and 
making inferences from the data.

Appendix 7.4 shows an alternative robustness 
check, using a randomly selected cross-sectional 
sample of policyholders for out of sample validation. 
We further check the predictive ability of our claim 
scores using the Gini index. This is a newer measure 
developed in Frees, Meyers, and Cummings (2011). 
For our application, the Gini index is twice the aver-
age covariance between the predicted outcome and 
the rank of the predictor.

Table 12. Gini indices of predictive claim scores

Frequency-Severity Tweedie Model

Premiums(l = 0) (l = 1000) (l = 0) (l = 1000)

Gini Index 69.66% 69.96% 69.23% 69.77% 72.69%

Table 13. Difference in Gini indices among scores. The external agency premiums have a higher Gini index; 
however, differences are statistically insignificant

Freq-Sev 
(l = 0)

Freq-Sev 
(l = 1,000)

Tweedie 
(Base)

Tweedie 
(l = 0)

Tweedie 
(l = 1,000) Premiums

Freq-Sev (Base) -0.001
(0.068)

0.002
(0.065)

-0.001
(0.066)

-0.006
(0.064)

-0.000
(0.067)

0.029
(0.057)

Freq-Sev (l = 0) 0.003
(0.068)

0.001
(0.069)

-0.004
(0.072)

0.001
(0.069)

0.030
(0.062)

Freq-Sev (l = 1,000) -0.002
(0.068)

-0.007
(0.069)

-0.002
(0.068)

0.027
(0.059)

Tweedie (Base) -0.005
(0.070)

0.000
(0.039)

0.030
(0.060)

Tweedie (l = 0) 0.005
(0.071)

0.035 
(0.062)

Tweedie (l = 1,000) 0.029 
(0.059)
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7. Appendices

7.1. Appendix: Estimation details

In this appendix, we briefly introduce recent devel-
opments in shrinkage estimation so that the reader 
can have an intuitive understanding of the various 
methods available. In the following section, we show 
results from an alternative model specification using 
the pure premium approach. We will use this speci-
fication to explain why we have chosen the two-part 
model as our suggested model, and equip the reader 
with an idea of the pros and cons of each method.

GLM estimation
As described in Dean (2014), estimation of gener-

alized linear models is based on a likelihood function 
of the form

, .
1

l
y b

a
c yi i i

i
i

n

∑ ( )
( )

( )= θ − θ
φ

+ φ



=

statistic so that we can rely upon the usual normal- 
based rules for assessing statistical significance.

6. Concluding remarks

There are three main contributions of this paper. 
First, we have presented a detailed analysis of a gov-
ernment entity, the Wisconsin Local Government 
Property Insurance Fund. There is little in the litera-
ture on government property and casualty actuarial 
applications and we hope that this application will 
interest readers. Moreover, the LGPIF is similar to 
small commercial property insurance, making our work  
of interest to a broad readership.

Second, we have given a detailed analysis in the 
manner of a case study so that other analysts may 
replicate parts of our approach. Specifically, through 
our use of GLM techniques, we provide relativities 
not only for our primary rating variables but also for 
endorsements. We provided an approach for han-
dling these optional coverages when it is not known 
whether or not a claim is due to an endorsement.

Third, we have explored the use of shrinkage esti-
mation in ratemaking. Although applications can be 
general, we find them particularly appealing in the 
case of endorsements. For our data set, we found 
that little predictive ability was lost by using shrink-
age methods and they gave much more intuitively 
appealing relativities. Particularly in a political envi-
ronment such as that enjoyed by government insur-
ance, it is helpful to have relativities that can be 
calibrated in a disciplined manner and are consistent 
with sound economic, risk management, and actu-
arial practice.
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where
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Here, hi = x′ia is the usual systematic component.

Inequality restricted optimization
In contrast to the traditional equality restrictions 

in equation (7.1), one may impose inequality restric-
tions. In this subsection, we provide an overview of 
how this alternative optimization problem is imple-
mented in statistical packages. This provides an intu-
ition behind the shrinkage estimation used in Section 3.  
One approach for the inequality restricted problem

aR r≤

has been published by Fahrmeir and Klinger (1994) 
in the GLM context. With high speed computers 
available nowadays, the inequality restricted prob-
lem may be simpler to solve by directly optimizing 
the likelihood function.

We may formulate the inequality restricted problem  
as an optimization problem of the form

maximize ,

subject to , 0, 1, . . . ,

a

a

( )

( )

φ

φ ≤ =

l

f j mj

for coefficients a and dispersion f, and m constraints.  
Nowadays, high speed computers provide routines for 
solving this problem easily. These packages would 
usually transform the constrained problem into an 
unconstrained problem, so that we have

maximize , ,
1

a al I f j
j

m
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=
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which blows to infinity when the argument is positive. 
Because the indicator function is difficult to optimize,  

This form of the likelihood function allows one to 
write a generalized routine for fitting a family of dis-
tributions by specifying a family object within statis-
tical software.

Table 14 shows the distributions used in this 
paper. In a typical application, each response is 
recorded with a set of explanatory variables Xit, 
so that the linear predictor based on a logarithmic 
link is given by the exponential µit = exp(x′ita). By 
parameterizing the mean and the dispersion in the 
log likelihood function, the problem of estimating 
the coefficient a boils down to solving a nonlinear 
optimization problem. The typical method to solve 
this problem in the GLM context is by Fisher scor-
ing, which is essentially a type of Newton-Raphson 
iteration

.1
2 1a a l l[ ]= + ∇ ∇( ) ( )τ+ τ

−

Standard statistical packages for generalized linear 
models implement this iteration scheme.

For the equality restricted problem, we wish to 
impose a constraint of the form

. (7.1)=R ra

For estimation under this constraint, one may use 
the approach in Nyquist (1991), where the equality 
restricted problem is solved by a modified version of 
Fisher scoring iterations. For covariate matrix X and 
weight matrix W, this formula is

[ ],

1
1

1 1 1
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Table 14. Exponential family distributions summary

Family a(f) b(q) c(y, f)

Poisson 1 eq -ln(y !)
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Maximizing the penalized likelihood is hence 
identical to maximizing the likelihood, and the log 
barrier function. Maximization of I( fj) is accom-
plished by fj approaching zero, and thus the coeffi-
cients [a2]j approaching zero. The second panel of 
Figure 4 in the following section illustrates this for 
m = 2, in relation with the alternative more general 
elastic net penalty.

Elastic nets

The elastic net has become a popular method among 
actuarial analysts recently. This method adds a penalty 
term to the likelihood function, which corresponds to a 
weighted average of two constraint regions, as shown 
in Figure 4.

The elastic net maximizes the following objective 
function

∑ ∑( ) ( )β − λ − α β + α β



= =

l i
i

m

i
i

m

1 (7.2)2

1 1

statistical packages usually approximate it with a 
smooth log barrier function of the following form

1
logI u

s
u( ) ( )≈ − −

which tends to infinity as s → ∞, cf. Hastie, Tibshirani,  
and Friedman (2009). The log barrier function is 
depicted in Figure 3. The method is often called the 
interior point method, as the iteration begins from an 
initial value within the constraint region, and continues 
iterating in a direction optimizing the objective func-
tion, without exiting from the interior of the constraint 
region, as s is increased in each step of the iteration.

For the LGPIF application, the number of con-
straints m is the number of endorsements. Hence, 
the constraint functions fj are
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Figure 3. Depiction of the log barrier function
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Figure 4. Illustration of the effect of LASSO and Ridge Penalties, for smaller 
and smaller constraint regions around the origin
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The analyst may alternatively use the LASSO 
penalty, which is the special case when a = 1. The 
LASSO penalty is motivated by creating an angu-
lar constraint region around the origin, as in the left 
panel of Figure 4. The advantage of the LASSO 
penalty is that it induces sparsity in the coefficients, 
which makes it a favorable choice for variable selec-
tion problems. Figure 5 shows the estimation result 

The special case of a = 0 corresponds to the classical 
ridge regression and is the method used in this paper. 
The closed form equation in Section 3.1 is simply the 
Lagrangian form of the constrained optimization prob-
lem, where l is the Lagrangian multiplier. As described 
in Hastie, Tibshirani, and Friedman (2009), there is a 
one-to one correspondence between the arc length of 
the constraint region, and the tuning parameter l.
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Figure 5. Coefficient estimates for the Poisson frequency model, for various tuning parameters  
using Elastic Net penalty. The top left panel shows the ridge penalty, and the bottom panel shows  
the LASSO penalty
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that the coefficient estimates for LnSpecialAnimal-
CovRat, LnOtherCovRat, AccRec and PierWharf 
are negative without shrinkage, and are therefore 
difficult to interpret. When shrinkage is applied 
some of the coefficients turn positive, however 
LnOtherCovRat and MoneySec remain negative. 
We experimented with various combinations of 
covariates, and could not achieve interpretable 
coefficients. Because of this limitation, in the main 
body of the report, we focus on the frequency-
severity approach. The additional flexibility of this 
model allowed us to achieve interpretable coeffi-
cients, and resulting relativities, that are critical for 
our application.

7.3. Appendix: Endorsements  
by entity type

The endorsements in the dataset exhibit interac-
tions with the entity type. These interactions are 
worth documenting, hence we provide summary 
tables here.

Table 16 shows the claim frequencies and mean 
claim for the Monies and Securities categorical vari-
able. Tables 17, 18, 19 show interaction of various 
other endorsements with the entity type. Table 20 
shows the claim frequencies and severity means for 
entities receiving different alarm credit amounts.

Tables 16, 17, 18, and 19 give an idea of the varying 
effects of the endorsements over entity types. These 
tables reveal interesting interactions. For example, 
Table 16 describes, by entity type, frequency and 
severity for four categories of monies and securi-
ties endorsements: (i) an “A, B” type, (ii) a “limited 
term” type, (iii) both types, and (iv) neither types. In 
Table 6, we show experience for the 2,137 policy-
holder-year observations that have the “A, B” type 
(with or without limited term) and the 556 observa-
tions that have limited term (with or without the “A, 
B” type). The endorsement amount of each type is 
used in the shrinkage analysis, to assess proper rela-
tivities. Table 17 shows that the high frequency and 
severity of Golf Course Grounds are mainly due to 
counties.

of the endorsements for the LGPIF using different 
values of a, including the special case when a = 1, 
where the reader may observe that all of the coef-
ficients except for MoneySec have shrunk to zero as 
l reaches 200, and MoneySec also shrunk to zero by 
the time l reaches 300. For the LGPIF, we recom-
mended the ridge penalty, as our goal is to provide 
an interpretable rate for all endorsements, without 
inducing sparsity.

The elastic net allows the analyst to shrink the 
coefficients toward zero, by constraining the coeffi-
cient to smaller and smaller constraint regions, as the 
tuning parameter l is increased. The method allows 
the analyst to select a weight a to control the shrink-
age behavior of coefficients. Figure 5 shows the dif-
ferent convergence behavior, resulting from different 
weighting parameters.

7.2. Appendix: Pure premium method

In this section, we provide coefficient estimates 
for the pure premium method. In the pure premium 
method, the likelihood function written for all claims 
uses the Tweedie distribution, which has mass at 
zero. This likelihood is optimized for the coefficients 
a and dispersion f. Because the endorsements are 
allowed to influence the severity of the claims as 
well as the frequency, we observe substantially dif-
ferent results.

Table 15 shows the estimates and standard errors. 
When fitting this model, we include the coefficient 
estimates using the same offset variables as those 
used in the frequency-severity model. This permits 
a fair comparison of models for the out of sample 
comparison described in Section 5. In this section, 
we see that the claim scores for the pure premium 
model were generated using the coefficient estimates 
in Table 15 and these scores show a strong correla-
tion with externally available premiums, using fewer 
parameters than the frequency-severity approach. 
This feature is the main strength of the pure premium 
approach.

The main limitation of the pure premium approach 
is the interpretation of coefficients. Table 15 shows  
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Table 15. Tweedie model with and without shrinkage

l = 0 l = 1,000

Estimate Standard Error Estimate Standard Error

Base Rating Variables 

(Intercept) 5.945 0.317 5.781 0.315

LnCoverage 0.867 0.099 0.888 0.098

LnDeduct 0.089 0.038 0.106 0.038

TypeCity 1.070 0.380 1.053 0.382

TypeCounty 0.937 0.701 -0.251 0.507

TypeMisc -0.376 0.286 -0.324 0.283

TypeSchool -0.968 0.336 -0.843 0.333

TypeTown 0.250 0.258 0.473 0.252

Fire5=1 0.263 0.093 0.207 0.092

NoClaimCredit=1 0.374 0.180 0.562 0.176

Interaction Terms

LnCoverage* TypeCity -0.281 0.128 -0.254 0.128

LnCoverage* TypeCounty -0.242 0.182 0.057 0.138

LnCoverage* TypeMisc -0.090 0.117 -0.076 0.115

LnCoverage* TypeSchool 0.265 0.117 0.217 0.116

LnCoverage* TypeTown -0.406 0.165 -0.451 0.164

LnCoverage* NoClaimCredit -0.259 0.053 -0.318 0.052

Endorsements

LnBusInterCovRat 0.110 0.156 0.003 0.022

LnSpecialAnimalCovRat -0.621 1.927 0.000 0.022

LnZooAnimalCovRat 8.568 6.896 0.000 0.022

LnFineArtsCovRat 0.472 0.317 0.004 0.022

LnGolfCourseCovRat 1.295 0.842 0.001 0.022

LnOtherCovRat -0.643 0.238 -0.005 0.022

Endorsement Indicators

AccRec -0.042 0.225 0.000 0.022

PierWharf 0.809 0.153 0.018 0.022

MoneySec -0.136 0.085 -0.009 0.022

f (dispersion) 165.022 3.438 166.727 3.472

-2 Log L 44,196 44,244

holders, and the remaining 20% of the policyholders 
used as the holdout sample. Here, the training sample 
consists of 988 policyholders (5377 observations), 
and the holdout sample 248 policyholders (1356 
observations).

7.4. Appendix: Cross-sectional  
out-of-sample validation

Figure 6 shows a robustness check of our model 
for seasonal variations, using a randomly selected 
training sample, consisting of 80% of the policy-
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Table 16. Claims summary by monies and securities category

No MS nor MS Limited MS Only

Entity 
Type

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0.391 7,780 844 0.546 14,540 366

City 1.652 16,770 423 2.145 10,657 207

County 3.646 10,248 79 7.258 16,870 155

Misc 0.187 43,999 514 0.179 38,060 95

School 0.529 67,245 891 2.685 71,798 568

Town 0.102 23,769 706 0.089 13,027 235

Total 0.566 32,754 3,457 2.049 34,478 1,626

MS Limited Only Both MS and MS Limited

Entity 
Type

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0.263 2,195 19 0.634 15,141 112

City 0.800 7,658 10 2.536 23,844 153

County 2.200 3,953  5 2.056 18,416  89

Misc — — — — — —

School 0.200 8,366  5 2.203 23,329 133

Town — —  6 0.292 2,794  24

Total 0.556 4,699 45 1.843 20,628 511

Table 17. Summary by golf course, pier & wharf, vacancy permit

Entity 
Type

Category 
No/Yes

Golf Course Pier & Wharf Vacancy Permit

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0 0.452 10,668 1,339 0.438 10,929 1,265 0.444 10,979 1,282

Village 1 0.500 2,285 2 0.684 6,976 76 0.627 5,480 59

City 0 1.938 16,740 785 1.647 18,488 654 1.799 15,330 703

City 1 2.250 27,464 8 3.324 11,067 139 3.044 28,336 90

County 0 3.568 15,292 315 4.985 16,323 272 2.867 16,001 293

County 1 37.154 18,906 13 4.482 11,461 56 21.914 11,511 35

Misc 0 0.184 43,423 604 0.184 24,307 602 0.186 43,036 609

Misc 1 0.400 14,827 5 0.286 717,267 7 — — —

School 0 1.434 64,346 1,597 1.434 64,346 1,597 1.453 64,860 1,559

School 1 — — — — — — 0.632 44,485 38

Town 0 0.103 19,831 971 0.090 6,300 937 0.102 20,080 968

Town 1 — — — 0.471 116,053 34 0.333 1,899 3

Total 0 1.025 31,331 5,611 1.027 31,930 5,327 0.952 31,946 5,414

Total 1 18.000 20,866 28 2.510 24,649 312 4.902 21,232 225
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Table 18. Summary by fine arts, business interruption, other endorsements

Entity 
Type

Category 
No/Yes

Fine Arts Business Interruption Other Endorsements

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0 0.451 10,694 1,336 0.440 10,473 1,294 0.451 10,666 1,338

Village 1 0.800 1,816 5 0.787 14,131 47 1.000 3,249 3

City 0 1.860 15,752 763 1.555 16,533 741 1.953 16,978 786

City 1 4.000 38,526 30 7.442 22,233 52 0.571 9,573 7

County 0 2.699 15,414 309 2.289 16,179 270 4.942 14,867 325

County 1 40.684 15,980 19 17.052 12,382 58 0.333 159,109 3

Misc 0 0.184 39,912 602 0.180 19,450 562 0.186 43,036 607

Misc 1 0.286 155,513 7 0.255 237,624 47 — — 2

School 0 1.436 64,067 1,591 1.439 61,637 1,577 1.306 65,086 1,561

School 1 0.833 136,028 6 1.050 217,002 20 7.000 22,705 36

Town 0 0.103 19,831 971 0.103 19,831 970 0.103 19,831 969

Town 1 — — — — — 1 — — 2

Total 0 0.960 31,026 5,572 0.888 29,998 5,414 1.073 31,231 5,586

Total 1 13.493 37,896 67 6.427 48,612 225 4.906 28,245 53

Table 19. Summary by Fire5, and no claim credit

Entity
Type

Category
No/Yes

Fire Class < 5 No Claim Credit

Claim
Frequency

Avg.
Severity

Num.
Policies

Claim
Frequency

Avg.
Severity

Num.
Policies

Village 0 0.387 10,436 809 0.541 10,564 901

Village 1 0.551 10,928 532 0.270 10,901 440

City 0 1.342 8,001 295 2.023 15,792 644

City 1 2.295 21,636 498 1.584 24,191 149

County 0 2.300 13,931 110 5.123 15,076 310

County 1 6.211 16,187 218 1.056 23,507 18

Misc 0 0.167 6,954 228 0.253 44,676 336

Misc 1 0.197 61,445 381 0.103 39,619 273

School 0 0.420 20,678 514 1.956 68,512 1,103

School 1 1.915 80,131 1,083 0.267 46,802 494

Town 0 0.076 38,653 552 0.122 4,288 492

Town 1 0.138 4,303 419 0.084 39,745 479

Total 0 0.502 13,935 2,508 1.501 31,365 3,786

Total 1 1.596 41,421 3,131 0.310 30,499 1,853
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Table 20. Claims summary by entity type and alarm credit category

Entity 
Type

No Alarm Credit Alarm Credit 5%

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0.326 11,078 829 0.278 8,086 54

City 0.893 7,576 244 2.077 4,150 13

County 2.140 16,013 50 — — 1

Misc 0.117 15,122 386 0.278 13,064 18

School 0.422 25,523 294 0.410 14,575 122

Town 0.083 25,257 808 0.194 3,937 31

Total 0.318 15,118 2,611 0.431 10,762 239

Alarm Credit 10% Alarm Credit 15%

Entity 
Type

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Claim 
Frequency

Avg. 
Severity

Num. 
Policies

Village 0.500 8,792 50 0.725 10,544 408

City 1.258 8,625 31 2.485 20,470 505

County 2.125 11,688 8 5.513 15,476 269

Misc 0.077 3,923 26 0.341 87,021 179

School 0.488 11,597 168 2.008 85,140 1,013

Town 0.091 2,338 44 0.261 9,490 88

Total 0.517 10,194 327 2.093 41,458 2,462

Figure 6. For a randomly selected training sample, the frequency-severity model 
showed 95.59% with the premiums, and 45.62% Spearman correlation with the holdout 
sample claims. For the Tweedie model, the Spearman correlation coefficient is 94.10% 
with the premiums, and 43.86% with the holdout sample claims 
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