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ABSTRACT

Property/casualty reserves are estimates of losses and loss

development and as such will not match the ultimate re-

sults. Sources of error include model error (the methodol-

ogy used does not accurately reflect the development pro-

cess), parameter error (incorrect model parameters), and

process error (future development is random). This paper

provides a comprehensive and practical methodology for

quantifying risk that includes all three sources. The key

feature is that variability is captured by examining histor-

ical changes in ultimate values rather than examining the

underlying claim distribution. We present the conceptual

framework as well as practical examples.
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1. The variability problem

1.1. The challenge of reserving

The property/casualty business model relies on

the accurate measurement of risk. Of relevance to

this paper is the measurement of reserving risk.

Accurate actuarial loss reserving is one of the

regulatory requirements in measuring solvency.

Consequently, one of the most important tasks

for an actuary is to estimate the proper amount of

reserves to be set aside to meet future liabilities

of current in-force business.

Because the stated reserve is an estimate and

not the true number, there is error and it is impor-

tant to measure this error. Quantifying the poten-

tial error allows for setting ranges around a best

estimate, allows for measures of risk, and can

assist in the setting of risk-based capital require-

ments. Recent papers such as Hayne (2004) and

Shapland (2007) make the importance of this is-

sue clear.

In this paper we propose a method for measur-

ing the total risk involved in reserve estimates. It

is simple to apply and uses data that is almost al-

ways available from the reserve-setting process.

A key feature is that our measure of reserve vari-

ability does not depend on the method used to

determine the reserves.

1.2. Literature review

There are many papers regarding different loss

reserving techniques, some deterministic, some

stochastic. For a comprehensive review of exist-

ing deterministic methods, the reader is referred

to Wiser (2001) and Brown and Gottlieb (2001).

For an excellent overview of a wide range of

stochastic reserving methods in general insur-

ance, the reader is referred to England and Ver-

rall (2002). Other references of interest include

Bornhuetter and Ferguson (1972), Finger (1976),

and Taylor (2000).

While the traditional chain ladder technique

provides only a point estimate of the total re-

serve, it has become evident recently that actu-

aries also need a measure of variability in loss

reserving estimation. Sound methodologies that

quantify risks related to the balance sheet are im-

portant for attracting and retaining capital in the

firm. Standard and Poor’s ratings as well as in-

vestors are very interested in the value at risk

(VaR) measurements. The NAIC and state reg-

ulators are interested in monitoring the reserve

variability in the form of reserve ranges. Vari-

ability and sometimes the entire distribution of

the loss reserve estimate are important for risk

management purposes. Questions such as what

is the 95th percentile of losses or the cost of loss

portfolio transfer are important in managing and

assessing risk. These questions can be properly

addressed with a thorough analysis of the vari-

ability of the reserve estimate.

Over the last 30 years many researchers have

made significant contributions to the study of the

variability of reserving methods. The CAS work-

ing party paper (2005) presents a comprehensive

review that brings all of the important histori-

cal research together. A representative, but not

exhaustive, list follows. Taylor and Ashe (1983)

introduced the second moment of estimates of

outstanding claims. Hayne (1985) provided an

estimate of statistical variation in development

factor methods when a lognormal distribution is

assumed for these factors. Verrall (1991) derived

unbiased estimates of total outstanding claims as

well as the standard errors of these estimates.

Mack (1993) used a distribution-free formula to

calculate the standard errors of chain ladder re-

serve estimates. England and Verrall (2002) pre-

sented analytic and bootstrap estimates of predic-

tion errors in claims reserving. De Alba (2002)

gave a Bayesian approach to obtain a predic-

tive distribution of the total reserves. Taylor and

McGuire (2004) applied general linear model

techniques to obtain an alternative method in

cases where the chain ladder method performs

poorly. Verrall (2004) implemented Bayesian
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models within the framework of generalized lin-

ear models that led to posterior predictive distri-

butions of quantities of interest.

The CAS working party (2005) ultimately con-

cluded, “there is no clear preferred method within

the actuarial community.” Actuaries need to se-

lect one or several methods that are considered

appropriate for the specific situation. When it

comes to the final decision, judgment still over-

rules.

1.3. The risk measurement problem

The CAS working party report (2005) notes

that the sources of uncertainty in the reserve es-

timate come from three types of risk: process,

parameter, and model. Model risk is the uncer-

tainty in the choice of model. Parameter risk is

the uncertainty in the estimates of the parameters.

Process risk is the uncertainty in the observations

given the model and its parameters.

Shapland (2007, p. 124) highlights the impor-

tance of all the risks:

Returning to the earlier definition of loss
liabilities: : :all three types or risk: : :should be
included as part of the calculated expected
value. Alternatively, some or all of these types
of risk could be included in a “risk margin”
as defined under ASOP No. 36.

These three risks are intertwined and thus hard

to separate. In particular, process and parameter

risk are often calculated as if the model were

correct.

In this paper, the three risks will not be sep-

arately measured nor directly treated.1 Rather,

we capture the total risk from all three sources

underlying the reserve estimate. The reserving

model (or ultimate loss selection if no specific

method is used) will be considered fixed and any

errors measured will be a consequence of that

choice.

1The model presented will capture the parameter and model risk

in the actuary’s estimate but will not measure the parameter uncer-

tainty due to its own estimate.

From a risk management perspective, this is

appropriate. Now that the reserves have been es-

tablished, what is the potential error that may re-

sult, given the current reserve review?

1.4. A summary of our approach

Most approaches to risk measurement rely on

the statistical properties of the data as reflected

by the model selected for calculating the reserve.

Those approaches attempt to capture the under-

lying distribution of losses. In this setting, pa-

rameter estimation error can be estimated using

statistical measures such as Fisher information.

We choose to look at the reserves (as reflected in

the estimated ultimate losses) themselves as they

evolve over time. This provides a way to reflect

all the sources of error. Each reserve set in the

past is an estimate of its distribution and thus its

errors can be estimated from the historical errors

made in the estimations. Because the ultimates

will converge to the true value, the errors made

along the way reflect all sources of error.

Our methodology will be introduced within a

stable context. In particular, initially we assume

that the distribution underlying the loss develop-

ment process is constant over time and that we

are working with indicated reserves developed

under a consistent methodology. However, it is

important to note that, under these assumptions,

the ranges produced do not include the possibil-

ity of a change in the distribution, such as infla-

tion moving to a new level not in the available

history or sharp increases in the deductibles or

retentions written over or ceded. After working

through this situation we will discuss modifica-

tions that can allow our model to be applied in

more general settings.

Note that we model indicated reserves instead

of held reserves. This is because indicated re-

serves do not have management or other ad hoc

adjustments. Therefore, indicated reserves are

more stable and thus easier to model. What is

interesting about held reserves is where they fall

within the probability distribution of the un-
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known true reserve. This can provide an indi-

cation of the degree to which held reserves are

conservative or aggressive.

Because the method presented here is free of

the choice of the reserving method used, it is not

necessary to even have a specific method. The

only requirement is a history of ultimate loss se-

lections. Thus we rely on the actual error history

of the reserving department.

We make a theoretical and pragmatic case for

the lognormal distribution for the errors in ag-

gregate reserves, line or total. The focus on the

aggregate distribution also removes the need to

choose individual size of loss distributions.

Each of the following sections will take one

step through the development of the risk mea-

sure. An example will be followed throughout to

illustrate the formulas.

2. Reserving process and data

The reserve review process generates reserves

based on raw data analysis. The indicated ulti-

mate losses are selected by line using perhaps

several methods as well as judgment. These line

ultimates are then added to yield the total indi-

cated reserve.

Management adjustments called margins may

be applied to the total reserve. These margins

may then be allocated by line and by accident

year to the indicated ultimate losses and reported

in Schedule P Part 2. As noted earlier, our method

does not work with these reserves.

There are three issues of interest relating to

measuring reserve *variability:

(1) The distribution of the true (but unknown)

ultimate losses by line and in aggregate. This

shows the volatility and the bias in the actuar-

ial selections.

(2) The held reserves that are reported in

Schedule P Part 2 as a percentile on the distribu-

tion of reserves.

(3) A procedure to allocate the margin by line

and accident year such that ultimate losses for all

years are at a constant percentile.

It is instructive to understand several aspects

of indicated reserves.

² Indicated reserves are the actuary’s best esti-
mates based on the data and exclude manage-

ment adjustments. Therefore, errors are due

only to actuarial selections, methods, or ran-

domness in the data.

² Data triangles used for reserve reviews can be
quarterly or annual. Generally, most compa-

nies like to have consistency in the indicated

reviews because it is easier to update spread-

sheets for each review if they are the same size.

Also, most companies like to track develop-

ment to ultimate and prefer complete triangles

if data is available.

² Reserve reviews are done on a net and or gross
basis and the underlying triangles are based

on the relevant data. They are definitely con-

ducted annually to report Annual Statement re-

serves but many companies do them quarterly.

² Reserving actuaries refer to lines of business
as “segments,” as they can be custom-defined

by the actuary for reserve reviews. These can

be different than the usual lines of business

such as those defined in Schedule P. For con-

sistency of notation in this paper, we will refer

to reserve segments as lines of business. The

methodology will be the same in both cases.

Generally the DCC (Defense and Cost Con-

tainment) reserve review (indicated reserves) is

done using data where they are either a part of

the loss triangle (loss+DCC) or are treated sepa-

rately (DCC only). In the first case we treat DCC

as part of the losses, and in the latter case as an-

other data segment (if broken out separately). In

this paper, loss shall mean whatever appears in

the analysis being evaluated.

The variability for ULAE reserves is outside

the scope of the paper and will not be discussed.

For most companies ULAE reserves are a rela-

tively small part of the total reserves.
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2.1. Scope of model

The approach presented in this paper is generic

and applies to any type of triangle, such as

² Paid or incurred
² Count or Severity
² Accident year, policy year, or report year
² Quarterly or annual.

Each of these triangles eventually leads to the

appropriate ultimate losses. Depending on the

choices made above and the selected reserve

methodology, the distribution of errors will dif-

fer. For example, if only the paid loss develop-

ment method is used and we track its history of

ultimate losses over time, then the resulting re-

serve distribution will pertain to the paid loss de-

velopment method. If several methods are used

and the actuary finally selects reserves based on

several indications (typically this is the case),

then the triangle history of final selected ulti-

mate losses will provide the distribution of the

selected reserves.

An interesting point is that the method can

even be applied to the raw data. This is equivalent

to treating the data as the selected ultimate loss.

In this case, the resulting distribution will pertain

to the data itself (paid or incurred losses, etc.).

This essentially creates a new reserving method.

However, the purpose of this paper is not to pro-

mote a new way of calculating reserves, but to

develop a method for determining the distribu-

tion of the indicated reserves resulting from ac-

tuarial selections.

2.2. Reasonable estimates

A standard assumption that is in line with Ac-

tuarial Standards of Practice (ASOP) on reserves

is that the reserve ranges are set around reason-

able estimates. This is partly achieved by using

indicated ultimate reserves instead of held re-

serves, as these do not have management adjust-

ments.

Cases where the indicated ultimate losses are

unreasonable are outside the scope of this paper.

This does not necessarily mean that the model

will not apply, but rather that the authors have not

given consideration for such cases in this paper.

3. A model for errors
3.1. Measuring the error from the data

The notation will be illustrated with an exam-

ple that will be carried through the paper. Sup-

pose for a particular line we believe that losses

are fully developed after 10 years. There have

been 12 reserve reviews completed and in each

year an ultimate loss has been estimated. For no-

tation, let

Uki –the estimated ultimate loss as of calendar

year k for accident year i.

The results for an example block of business

are in Table 1. Note that the available data has i

and k range from 1 through 12 but, for example,

the accident year 1 losses were fully developed

by calendar year 10.

For example, the value 42,894 is the indicated

ultimate loss estimated at the end of calendar

year 10 for losses incurred in accident year 6.

We are interested in the errors made in the esti-

mates of the ultimate losses. Some of those errors

can be determined from Table 1. We will use the

logarithm of the ratio for the errors, for reasons

to be explained later.

For example, the ultimate value for accident

year 3 was estimated at the end of calendar year

11 (development year 8) to be 85,626. A year

later, the actual value of 85,650 was known. The

error is ln(85,650=85,626) = 0:00028. We can-

not calculate the error for later accident years

because they have not yet been fully developed.

The errors we care about are eki = ln(U
i+9
i =Uki )

where i+9> k. The numerator is the fully de-

veloped ultimate loss and the denominator is the

estimate as of calendar year k. For our example

we are currently at k = 12 and so are concerned
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Table 1. Indicated ultimate losses from 12 calendar-year (CY) valuations

AY(i)=CY(k) 1 2 3 4 5 6 7 8 9 10 11 12

1 148,741 103,058 100,010 98,001 96,280 95,579 95,176 95,161 95,150 95,113
2 186,087 120,444 113,083 109,097 108,443 107,934 107,836 107,814 107,907 107,860
3 139,092 94,318 89,032 86,552 85,584 85,532 85,557 85,655 85,626 85,650
4 58,441 52,585 52,136 51,375 51,501 51,799 51,870 51,914 51,933
5 22,738 30,670 32,948 33,986 34,363 34,329 34,467 34,642
6 24,134 37,035 42,981 42,688 42,894 43,052 43,533
7 26,695 51,849 57,143 57,817 58,200 58,647
8 57,397 67,688 74,995 75,793 76,736
9 94,537 94,281 98,453 98,055

10 93,784 104,539 100,257
11 116,443 124,781
12 172,224

Table 2. Year-to-year error values, ej¤
i

AY(i)nDY(d) 1 2 3 4 5 6 7 8 9

1 ¡0:36691 ¡0:03003 ¡0:02029 ¡0:01772 ¡0:00731 ¡0:00423 ¡0:00016 ¡0:00012 ¡0:00039
2 ¡0:43503 ¡0:06306 ¡0:03589 ¡0:00601 ¡0:00471 ¡0:00090 ¡0:00021 0.00086 ¡0:00044
3 ¡0:38846 ¡0:05768 ¡0:02825 ¡0:01125 ¡0:00061 0.00029 0.00114 ¡0:00034 0.00028
4 ¡0:10559 ¡0:00858 ¡0:01470 0.00245 0.00577 0.00137 0.00085 0.00037
5 0.29925 0.07165 0.03102 0.01103 ¡0:00099 0.00401 0.00506
6 0.42824 0.14889 ¡0:00684 0.00481 0.00368 0.01111
7 0.66386 0.09722 0.01173 0.00660 0.00765
8 0.16492 0.10251 0.01058 0.01237
9 ¡0:00271 0.04330 ¡0:00405

10 0.10857 ¡0:04182
11 0.06916

with the errors made in estimates from accident

year 4 onward.

In order to gather more information about er-

rors, begin with an error that is not immediately

useful. Consider e
j¤
i = ln(U

j+1
i =Uji ) where avail-

able. This represents the error realized as the es-

timated ultimate value is updated one calendar

year later. Here is one pragmatic reason for us-

ing logarithms–the errors are additive. In fact,

eki = ln(U
i+9
i =Uki )

= ln

Ã
Uk+1i

Uki

Uk+2i

Uk+1i

¢ ¢ ¢U
i+9
i

Ui+8i

!

=
i+8¡kX
g=0

ln(Uk+g+1i =Uk+gi )

=
i+8X
j=k

ej¤i :

In this notation, the development year of the

denominator value is d = j¡ i+1. The advan-
tage of this approach is that the available data in

our example provides many estimated values, as

presented in Table 2.

There is another interpretation of these errors.

Regardless of the reserving method, a factor rep-

resenting the ultimate development can be in-

ferred. Suppose we are looking at accident year

i and calendar year j. The factor is uji =U
j
i =L

j
i

where Lji is the paid loss for that accident year

at the end of year j. One year later the factor

is uj+1i =Uj+1i =Lj+1i . These represent age to ul-

timate for two different development years. The

ratio uji =u
j+1
i represents how losses were expect-

ed to develop, while Lj+1i =Lji is how they actu-

ally developed. The ratio of actual to expected

is Uj+1i =Uji , which is the error measurement we

have been using.
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Now that the key data values have been calcu-

lated, it is time to construct a model.

The model
We propose that the error random variables

have the normal distribution, and in particular,

ej¤i »N(¹¤j¡i+1,¾¤2j¡i+1):
Note that the mean and variance are constant

for a given development year. The rest of this

section is devoted to justifying these assump-

tions. It should be noted that justifying the as-

sumptions through data analysis is not sufficient.

If this method is to be useful regardless of the

loss reserving method used, the justification must

be based on our beliefs about the loss develop-

ment and reserving processes and not any partic-

ular models or empirical evidence. No indepen-

dence assumptions are made and the covariance

measurement will be presented formally as part

of the model.

3.2.1. Normal distribution
After the ultimate loss is estimated at a par-

ticular time, what factors will cause it to change

when it is re-estimated one year later? Day by

day during that year a variety of events may take

place:2

² Economic forces such as inflation and changes
in the legal environment will alter the amounts

paid on open claims or those newly reported.

² The rate at which claims develop may change.
² Purely random events may affect individual

open claims.

² The actuary’s opinion on IBNR may change,
depending on the adequacy of case reserves.

These factors will tend to act proportionally on

the current estimate of the ultimate loss. Because

there are many such factors happening many

2At this point in the paper we focus on lognormality as a conse-

quence of unchanging development processes. We relax this as-

sumption later in the paper.

times in the course of a year, it is reasonable

to assume we are looking at the product of a va-

riety of random variables, most with values near

1. The Central Limit Theorem indicates that the

result is a lognormal distribution and thus mea-

suring the error in the logarithm will produce

values with a normal distribution. We recognize

that this reasoning is not accepted by all actuaries

but we feel it is a reasonable starting point.

3.2.2. Normal approximation
The above arguments relating to the central

limit theorem apply to a fictitious accident year

with infinite claims. This accident year need not

be evaluated infinitely many times but the

changes at each valuation should be driven by

infinite reasons underlying infinite claims.

In practice, a finite subset of this hypotheti-

cal accident year is available. The reasons caus-

ing the change in the ultimate loss are finite and

not infinite and thus the distribution is approxi-

mately normal.3 The approximation can be im-

proved by increasing the number of reasons driv-

ing the change in ultimate losses. This can be

done in the following ways:

² Increase the valuation time (for example, once
a year rather than four times a year).

² Increase the claim count (large volume line).

The claim count required for a good normal

approximation in turn depends on the skewness

of the underlying size of loss distribution. As a

practical matter, the model will work well even

for a modest claim count.

Reserve valuations conducted less frequently

(for example, once a year rather than four times

a year) will allow greater “reasons” for changes

and thus help with the normal approximation.

The tradeoff is the loss of accuracy in ultimate

loss estimation and consequential bias. Also note

3Technically, the distribution remains approximately normal even

for the infinite claim accident year, but the distribution is closer to

normal than in the finite case.
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that both the parameters of the distribution and

its shape (to which extent it is lognormal) will

change depending on the frequency of reserve

review.

A subtle point concerns the later development

intervals. In these intervals, the changes are usu-

ally driven by a handful of claims (few reasons)

and thus violate the normality assumption. How-

ever, at those valuations the aggregate errors are

often close to zero with small volatility (con-

stants) and thus departure from normality has lit-

tle impact on the total distribution for the entire

accident year.

3.2.3. Mean
At first it may seem that the mean should be

zero. There are two reasons that is not so. First,

consider the expected revised ultimate loss given

the current estimate:

E(Uj+1i =Uji ) = e
¹¤
j¡i+1+¾

¤2
j¡i+1=2:

For the reserve estimate to be unbiased, it

is necessary that ¹¤j¡i+1 =¡0:5¾¤2j¡i+1 and not
zero.

In addition, it is possible that the reserving

method is biased. This may be a property of the

method selected and may even be a deliberate

attempt by the reserving actuary to adjust the re-

serves based on knowledge that is outside the

data.

Having the mean be constant from one acci-

dent year to the next is a consequence of the

assumptions that were made at the beginning.

That is, there is no distributional change in the

underlying development process or reserving

method.

Having the mean depend on the development

year seems reasonable. As the development year

increases, any systematic bias is likely to be re-

duced in the expectation that the ultimate value

will not be much different from the current value.

In addition, we expect the variance of the errors

to decrease, and if the ultimate loss estimates are

unbiased, the means will then also decrease (in

absolute value).

3.2.4. Complete triangle of errors
For at least one accident year we need the

losses to be fully developed. Even better would

be to have a few fully developed years so there

would be more data available for computing co-

variances and variances. There is a tradeoff: older

fully developed accident years that are not part

of the in-force book may be less predictive and

may not reflect the current prevailing business

environment.

The opposite concern is when there are not

enough accident years available to obtain fully

developed losses. This can happen for relatively

new companies or lines of business. Note that

tail errors generally result from estimation errors

of pending court cases or simply absence of data

due to a new line. Since we are dealing with a

year in aggregate, these errors are usually close

to zero and therefore contribute less to the vari-

ance than earlier development intervals.

4. Parameter estimation
Return to the continuing example and recall

Table 2. The numbers in this table are percentage

changes (errors) of the estimated ultimate losses

and have been assumed to have been drawn from

six normal distributions. The upper half of the

triangle is fixed and known and our goal is to

obtain the normal means and variances for the

yet-to-be observed errors in the lower right part

of the table.

4.1. Estimation of the mean

We choose to calculate an initial estimate of

the mean by calculating the sample mean,

¹̂¤d =
P12¡d
i=1 e(i+d¡1)¤i

12¡ d ,

where d is the development year, the sum is taken

over all accident years for which errors are
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Table 3. Estimated means by development year

DY(d) 1 2 3 4 5 6 7 8 9

mu-hat 0.0396 0.0262 ¡0:0063 0.0003 0.0005 0.0019 0.0013 0.0002 ¡0:0002
mu-hat

(Selected)
0.0396 0.0262 ¡0:0063 0.0003 0.0005 0.0019 0.0013 0.0002 ¡0:0002

Table 4. Standard deviations by development year

DY(d) 1 2 3 4 5 6 7 8 9

sd-hat 0.3502 0.0762 0.0213 0.0108 0.0055 0.0052 0.0022 0.0005 0.0004

available.4 The sample mean is also the maxi-

mum likelihood estimate of the true mean and

works best if the data is stable. If the dataset is

not stable, then other estimates such as those in-

volving time series analysis can be used.

The results for our example are in Table 3.

However, there are reasons why the sample

mean may not be the appropriate choice. The re-

sults may be biased due to model risk. The es-

timate of the mean affects the estimate of the

expected ultimate loss.

For example, if ¹ <¡¾2=2 then the estimated
ultimate loss will be less than the indicated ulti-

mate showing redundancy in resulting reserves.

The opposite is true if the inequality is reversed.

Thus any value of mean that is different than

¡¾2=2 should be justified.
The estimation of the mean can effectively re-

sult in taking a position that the actuarial estimate

is biased. This is not trivial and there should be

careful analysis before making that assertion. We

discuss the mean selection in greater detail under

distribution reviews later in the paper.

4.2. Estimation of the variance

The variance parameter measures the risk his-

torically faced by the book in force. The vari-

ance estimate is the usual unbiased estimate. The

4An alternative is to use a weighted average where the weights

are the indicated ultimate values for that accident year. This allows

more weight to be placed on those accident years in which there is

more data.

equation is

¾̂¤2d =
P12¡d
i=1 [e

(i+d¡1)¤
i ¡ ¹̂d]2
11¡ d :

Note that the estimated mean must be the sam-

ple mean and the above is not the maximum like-

lihood estimate.

For our data the estimated standard deviations

by development year are given in Table 4. As ex-

pected, for the most part, the standard deviations

decrease by lag.

4.3. Correlations

For a given accident year, the errors for one

development year may be correlated with those

from other development years.

Any such correlations can be estimated. A for-

mula for the covariance is

¾̂¤d,d0 =
P12¡d
i [e(i+d¡1)¤i ¡ ¹̂d][e(i+d

0¡1)¤
i ¡ ¹̂d0]

11¡ d
where d > d0 represent two different development
years and each sample mean is based only on the

first 10¡ d observations.
The matrix of covariances is given in Table 5.

The total variance for any given accident year

can now be calculated from Table 5. For exam-

ple, the variance for accident year 12 will be the

sum of the values in the table (shown as 0.46129

in Table 6).

The correlation matrix underlying the above

covariances should be tested for statistical sig-

nificance. This is outside the scope of this paper.
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Table 5. Covariances

d 1 2 3 4 5 6 7 8 9

1 0.12261 0.02379 0.00664 0.00356 0.00178 0.00175 0.00062 0.00000 0.00000
2 0.02379 0.00581 0.00122 0.00070 0.00027 0.00040 0.00011 0.00000 0.00000
3 0.00664 0.00122 0.00045 0.00020 0.00005 0.00006 0.00005 0.00000 0.00000
4 0.00356 0.00070 0.00020 0.00012 0.00004 0.00004 0.00002 0.00000 0.00000
5 0.00178 0.00027 0.00005 0.00004 0.00003 0.00002 0.00000 0.00000 0.00000
6 0.00175 0.00040 0.00006 0.00004 0.00002 0.00003 0.00001 0.00000 0.00000
7 0.00062 0.00011 0.00005 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

5. The error distribution for a
given accident year
Now that we have a model for the errors from

one calendar year to the next, we need to return

to the total error. Recall that

eki =
i+8X
j=k

ej¤i :

From the assumptions made previously, this error

has a normal distribution and its mean depends

only on the latest development year, k¡ i+1.
eki »N(¹k¡i+1,¾2k¡i+1)

¹k¡i+1 =
i+8X
j=k

¹¤j¡i+1

¾2k¡i+1 =
i+8X
j=k

¾¤2j¡i+1 +2
i+8X
j=k+1

jX
j0=k

¾¤j¡i+1,j0¡i+1:

These quantities can be estimated by adding the

respective mean, variance, and covariance esti-

mates.

For our example, we now have estimates of

the distribution of the error in the ultimate loss

as estimated from the data available at the end of

calendar year 12. They are given in Table 6.

6. The error distribution for all
accident years combined
While we have been using logarithms to mea-

sure the error, when all is done we are interested

in the ultimate losses themselves. To make the

formulas easier to follow, rather than allow ar-

Table 6. Means and standard deviations
by accident year (AY)

AY mean sd

4 ¡0:000181 0.000401
5 0.000013 0.000303
6 0.001352 0.002243
7 0.003294 0.006727
8 0.003791 0.010914
9 0.004077 0.021106

10 ¡0:002222 0.040233
11 0.024019 0.113210
12 0.063590 0.460129

bitrary values, we will follow the example and

assume we are at the end of calendar year 12

and losses are fully developed after 10 years. In

particular, we care about

U =U134 + ¢ ¢ ¢+U2112 :
Recall from the notation that the terms on the

right-hand side represent the fully developed

losses at a time in the future when the ultimate

results are known. Rewrite this expression as

U =U124 exp(e124 )+ ¢ ¢ ¢+U1212 exp(e1212)

= V
12X
i=4

ri exp(e
12
i )

ri =
U12i

U124 + ¢ ¢ ¢+U1212
V =U124 + ¢ ¢ ¢+U1212 :

Here V is the estimated ultimate loss as of cal-

endar year 12 for all open years and the weights

are the relative proportions in each accident year.

This indicates that the ultimate loss is a weighted
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average of lognormal random variables. This can

be painful to work with (though not hard to sim-

ulate). Because the error random variables are

usually close to zero and will vary about their

mean, consider the following Taylor series ap-

proximations.

X = ln
U

V
= ln

24 12X
i=4

ri exp(e
12
i )

35
¼ ln

24 12X
i=4

ri(1+ e
12
i )

35
= ln

0@1+ 12X
i=4

rie
12
i

1A
¼

12X
i=4

rie
12
i :

The approximate log-ratio has a normal distribu-

tion and thus U has an approximate lognormal

distribution. The moments of the normal distri-

bution are:

E

μ
ln
U

V

¶
= E

0@ 12X
i=4

rie
12
i

1A
=

12X
i=4

ri¹13¡i

= ¹:

Var

μ
ln
U

V

¶
¼Var

0@ 12X
i=4

rie
12
i

1A
=

12X
i=4

r2i ¾
2
13¡i

= ¾2:

For the example, V = 760,808, ¹= 0:01927,

¾2 = 0:01123, and then the expected ultimate loss

is 779,978 and the standard deviation is 82,892.

7. Extension to multiple lines of
business
Suppose there are two lines of business. Each

can be analyzed separately using the method pre-

viously outlined. However, it is likely that the

results for the lines are not independent. One ap-

proach would be to model the correlation struc-

ture between error values from the two lines. The

problem with that approach is that there may

not be corresponding cells to match and also the

number of parameters may become prohibitive.5

An alternative is to combine the data from the

two lines into a single triangle and analyze it us-

ing the methods of this paper. When finished,

there will be a distribution for each line sepa-

rately and for the combined lines. Usually, only

the total reserve is of importance and thus only

the combined results are needed. The individual

line results will be useful for internal analyses

and also if it is desired to allocate the reserves

back to the lines. This method assumes that the

relative sizes of the lines has been consistent over

time. Adjustments to the historical triangles can

be made if this is not the case, as discussed later.

To illustrate this idea, we add a second line of

business. The same analysis gives: V = 244,537,

¹=¡0:30759, ¾2 = 0:008933, and then the ex-
pected ultimate loss is 180,593 and the standard

deviation is 17,107.

Combining the two lines creates a single table

with the totals from each. An analysis of these

tables produces V = 1,005,376, ¹=¡0:02674,
¾2 = 0:009582, and then the expected ultimate

loss is 983,520 and the standard deviation is

96,506.

8. Allocation of ultimate losses

An illustrative allocation model is presented

here but other models are also possible. From

the previous examples there is an interesting sit-

uation. If the two lines were independent, the

standard deviation of the total would beq
82,8922 +17,1072 = 84,638

5Combining distributions also requires the multivariate normality

assumption. This is hard to test but is often made in practice.
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which is less than the standard deviation from

the combined lines, which was 96,506. There is

thus an implied positive correlation between the

lines and when setting reserves and then allo-

cating them to the lines, something needs to be

done.

Suppose we set reserves with a margin for con-

servatism based on the results of the previous

section. For example, suppose we set ultimate

losses to be at the 95th percentile. That is,

1,005,376exp
³
¡0:02674+1:645

p
0:009582

´
= 1,149,833

where the mean and standard deviation are for

the corresponding normal distribution.

We also want to set ultimate losses for each

line of business such that they add to 1,149,833.

However, this cannot be achieved by setting each

line at its 95th percentile. One possible approach

is to set each line at the same percentile, using

the percentile that makes the sum work out. It

turns out that if each line is set at the 96.28th

percentile, the ultimate estimates will be 937,025

and 212,808.

9. Model extension to practical
settings

To this point we have assumed constant distri-

butions and reserving methods. In practice these

are not always present, so some extensions are

discussed here.

9.1. Distribution reviews

Once the reserving actuary has completed the

reserve review the distribution review should fol-

low. The actuary will remember the considera-

tions for selecting the ultimate losses. These in-

clude data considerations, coverage changes, mix

changes, etc. All of these can now be factored in

the bias (mean parameter) estimation of resulting

reserve distribution.

The distribution review allows the actuary to

consider the possibility of estimation bias in the

current reserve estimate. For example, if the his-

torical errors of the selected ultimate losses for a

line are positive and the actuary has not changed

the selection approach, then the current estimate

will likely have a positive error (too low an esti-

mate).

The reserve diagnostics are particularly impor-

tant in evaluating such errors, as the past is not

always indicative of the future. For example, a

sign of case reserve weakening should lead to a

higher IBNR, all else being equal.

These mechanisms of monitoring errors allow

early warning signs for future potential reserve

deficiencies.

Finally, note that changes in conditions do not

invalidate the lognormal property. However,

changes in conditions will change the lognormal

parameters, thereby increasing the degree of dif-

ficulty for projection accuracy.

9.2. Changing internal/external
conditions

While the distribution reviews and the result-

ing mean parameter will account for changes in

reserve adequacy, the volatility parameter reflects

historical data and is therefore slow to respond

to changes in the errors. Thus, if the reserving

methods change abruptly or the reserving actu-

ary is replaced, the volatility will change slowly

as the data emerges. Such cases can be handled

in the following two ways:

² In many cases it is wise to let data lead the way
as it may be preemptive to conclude about the

volatility of the new process. This is especially

relevant in light of the fact that processes them-

selves usually change slowly over time (such

as experience of reserving actuary, etc.).

² In some cases, the change is driven by an
abrupt decision, such as outsourcing the re-

serve review to a consultant or change in treaty

limits. In that case, the historical error data will
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have to be restated with the new process. This

involves recalculation of the past reserve esti-

mates adjusted for the new data and using the

new methodology.

To be explicit, the volatility measurement in the

model relies on two main assumptions:

(1) The data is consistent in terms of reserve

model/process and retentions.

(2) Future volatility in ultimate loss selections

can be measured from historical data. Note that

we are asking the future volatility in loss selec-
tions to be similar to the past and not the consis-
tency in interest rates, etc.

9.3. Booked reserve

The model was used on indicated reserve data

for consistency reasons since management ad-

justments can often lead to consistency issues.

If the held reserve data is relatively consistent,

then the model will perform well with that data

(Schedule P Part 2), as well.

9.4. Lognormal assumption

We present here two discussions:

Discussion 1: “The ultimate losses are hypothe-
sized to be log-normally distributed and therefore
the sums of such lognormal distributions are not
exactly lognormal.”
We first note that at an accident year level

we do not add lognormal random variables. In

other words, we study the given data that has

been obtained from an underlying reserve review

process and not artificially created by an addi-

tion process. These two things are not the

same, as the belief in the underlying process is

the key to describing the correct modeling distri-

bution.

In instances where we add lognormal random

variables (such as Section 6) we show mathe-

matically that if the cumulative accident year er-

ror ei is relatively small, then the sums of log-

normal random variables will be approximately

lognormal. Note also that the weighted average
is approximately lognormal, so adding a non-

lognormal accident year ultimate loss random

variable with a small weight with a lognormal

random variable with a large weight will still pro-

duce a lognormal random variable. The weight is

based on selected ultimate loss.

Discussion 2: Why not use any other distribution
besides the lognormal?
Beside the theoretical argument given for

the use of lognormal, we suggest performing

an empirical test on the data. In the end, the

model does not depend on the lognormal assump-

tion and any other distribution can be used, but

we believe that it is the best distribution that

describes the underlying reserve process. Addi-

tionally, the lognormal has the advantage that

the mathematical calculations are tractable. With

other distributions the calculations are much

harder.

The Q-Q plot is a simple way to test for nor-

mality, the error triangle can be standardized us-

ing the mean and variance of each column of

errors and the graph inspected for N(0,1).

9.5. Changes in volume

In Section 7 we added the ultimate loss data

from different lines and applied the model to the

total dataset. This approach assumes relative con-

sistency in volume by line.

9.5.1. Analytical approach
An alternative is to measure the total distribu-

tion from the parts. Suppose we know the indi-

vidual line lognormal distributions. Let

Vm =Total (for all accident years) selected ulti-

mate loss for line m.

We showed earlier that for a given line,

em = ln
Um
Vm
»N(¹m,¾2m):
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We now combine individual lines,

U =
i=MX
m=1

Um =
m=MX
m=1

Vm expem = V
m=MX
m=1

wm expem

wm =
VmPm=M
m=1 Vm

; V =
m=MX
m=1

Vm

ln
U

V
= ln

m=MX
m=1

wm expem ¼ ln
m=MX
m=1

wm(1+ em)

= ln

Ã
1+

m=MX
m=1

wmem

!
¼
m=MX
m=1

wmem

ln
U

V
»N

Ã
m=MX
m=1

wm¹m,
m=MX
m=1

k=MX
k=1

wmwkcov(em,ek)

!
:

The above used Taylor series approximation of

the “exp” and “ln” operator. To measure the co-

variance term in the above expression, we need

additional notation. Let

j =Development interval:

Due to the lognormal assumption of the total

ultimate loss distribution, we can view the line

error as the sum of errors by development inter-

val,

em =
X
j = 1j=Jemj:

Thus,

cov(em,ek) = cov

0@j=JX
j=1

emj ,
l=JX
l=1

ekl

1A
=

j=JX
j=1

l=JX
l=1

cov(emj ,ekl):

9.5.2. Simulation approach
The analytical approach uses the first-order

Taylor series approximation to ensure that the

total reserve distribution for all lines combined

is lognormal. This means that we have used the

Taylor approximation twice–at a line level and

then at the total reserve level. To avoid approxi-

mating twice, we can simulate the line distribu-

tions using the covariance shown below:

cov(Um,Un)

= cov

0@m=MX
m=1

Vm expem,
k=MX
k=1

Vk expek

1A
= cov

0@m=MX
m=1

Vm(1+ em),
k=MX
k=1

Vk(1+ ek)

1A
= cov

0@V+ m=MX
m=1

Vmem,V+
k=MX
k=1

Vkek

1A
=
m=MX
m=1

k=MX
k=1

VmVkcov(em,ek):

The above used the Taylor approximation of the

“exp” operator.

10. Applications

We now present a few applications of the pre-

vious results.

10.1. Loss estimation method

The chain ladder estimate is not biased under

loss development factor independence assump-

tion of Mack (1993). If the development factors

are correlated, then the model provides a way

to incorporate covariance of loss development

factors into the chain ladder estimate. Using the

technique presented in this paper (including the

variance covariance matrix of a triangle) the ex-

pected ultimate loss for an accident year is

E(U) = Uo exp

Ã
¹+

¾2

2

!
,

where U =Ultimate loss, Uo = Incurred or paid

loss, ¾2 = sum of variance covariance matrix (the

number of terms depend on the age of the acci-

dent year).

10.2. Claim commutations

Claim commutations involve transfer of re-

serves from a ceding carrier to an acquiring car-

rier. The risk to the acquiring company is that the
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indicated reserves may not be sufficient to pay all

claims. One complication is that the agreed-to re-

serve value may not be the same as that used in

the determination of the reserve distribution. Let

H be this arbitrary reserve value. For pricing it

would be useful to have C, the expected reserve

cost above H (given that the actual loss is above

H). The formula for C is

C =

Z 1

H
(x¡H)fR(x)dx

where R is the random true reserve. Let P be

the amount paid and, as before, U is the random,

true, ultimate loss. Then R = U¡P and so

C =

Z 1

H
(x¡H)fR(x)dx

=

Z 1

H
(x¡H)fU(x+P)dx

=

Z 1

P+H
(y¡P¡H)fU(y)dy

= E(U)¡E(U^P+H)
= exp[¹+ ln(V)+¾2=2]

£
"
1¡©

Ã
ln(H+P)¡¹¡ ln(V)¡¾2

¾

!#

¡ (H+P)
·
1¡©

μ
ln(H+P)¡¹¡ ln(V)

¾

¶¸
:

The second line is a change of variable using

R = U¡P.
The same concept applies in situations where

one company acquires or merges with another

company or a reinsurer acquires the reserve of

the ceding carrier (loss portfolio transfer).

Another way to determine the charge is to cal-

culate the stress reserve value for a given per-

centile. This can be done easily since we know

the reserve distribution. The difference between

this and the held reserve is the reserving capital

or the commutation charge.

In these cases, C or the full capital is likely

conservative and a certain fraction may be more

appropriate as a charge.

10.3. Insurance market segmentation

The expected excess cost formula gives an in-

sight into reinsurance economics. The assuming

carrier will pool the assumed reserves into exist-

ing homogenous reserve segments. If the pooling

decreases the total risk, captured in the estimated

¾2 for the line, the assuming carrier’s expected

excess cost will be lower than ceding carrier’s.

This assumes that the reserve adequacy of the

reserve segment is estimated identically by both

parties.

The above argument explains insurance mar-

ket segmentation. Companies grow their business

in a given line and continue to acquire business

from smaller companies in the same line because

they face different total risks. Unlike other busi-

nesses, the volatility of losses underlying esti-

mates drives decisions to acquire and grow an

existing business segment. This is also the rea-

son why low-risk (short-tailed, fast-developing)

lines are seldom ceded to other companies.

10.4. Net and gross reserve
distributions

It is possible to quantify the reserve distribu-

tion net of reinsurance and/or recoveries using

the method explained in the paper because we

are following the net reserve reviews and simply

measuring the uncertainty in the estimates.

One caveat when dealing with net distributions

is that the true mean can be harder to estimate,

especially if treaties have changed recently. As

stated earlier, quarterly error triangles are more

helpful in such cases because they are more re-

sponsive to changes. In other cases, the current

actuary’s estimate can be taken to be unbiased

until further history is developed under the new

treaty.

If reinsurance has a relatively small impact on

total reserves, a change in treaty provisions will

not change the resulting net error distribution sig-

nificantly. For example, quota share reinsurance

on a loss occurring basis on a line with large
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claim count per accident year will not necessar-

ily lead to a lower variability of the net aggre-

gate error distribution. The reserving actuary will

see proportionally lower losses for new accident

years but this may not impact the net error dis-

tribution.

Another example is casualty excess of loss

coverage that attaches at a high layer. If the

ground up claim count is large enough, the

change of reinsurance treaty many have very lit-

tle impact on the net error distribution as few

losses out of the total will be ceded in that layer.

In some cases, especially for low-frequency

and high-severity lines such as personal umbrella

excess of loss coverage, the impact of a change

in treaty can be significant and the error history

will not be relevant to the current treaty. This will

require the actuary to conduct net historical re-

serve reviews based on the new treaty. This can

be time consuming but should be done if the line

forms a significant part of the total reserve.

Net distributions result in net reserve ranges

and net reserving capital. These are relevant from

a solvency, regulatory, and company rating stand-

point.

10.5. Regulatory and rating agency
applications

Regulators and rating agencies are interested

in quantifying reserve ranges, percentiles, and re-

serving capital in order to monitor the solvency

of the company. The regulator in particular is in-

terested in measuring the performance of the held
reserve, shown in Schedule P.

Once the distribution of the reserves is known,

we can state the percentile of the held reserves.

Note that the management bias will now make a

difference, as it will position the held reserves to

the right or left of the mean.

We can also calculate the reserving risk capital

as the difference between a selected cutoff value

(say 95th percentile) of the indicated reserves

and the held reserves. The resulting reserving

risk capital can be used to modify the RBC re-

serving risk charge. Note that the NAIC tests

of reserve development to surplus ratios suggest

comparing dollar ultimate loss errors to company

surplus. This is very similar to our approach of

measuring reserve uncertainty. Thus, the reserv-

ing risk charge measured using the method out-

lined in this paper would be consistent with the

current annual statement and NAIC practices.

11. Conclusion
This paper presents a shift in paradigm from

loss distributions of the underlying losses to dis-

tributions of the company’s estimates. This rep-

resents a new way of measuring reserving risk.

By being able to quantify risk both by line and

for the company, effective management of cap-

ital, reinsurance, and other company functions

becomes feasible.

We provide a framework for assessing reserve

review accuracy as well as measuring the dis-

tribution of the current reserve review. This is

done using a “distribution review” immediately

after a reserve review using the same segments

and models currently used by the reserving de-

partment.

Given the current complex reserving environ-

ment where reserving is both an art and a sci-

ence, there is no statistical formula to set re-

serves or its distribution. Rather we present a

rigorous framework that involves the same con-

siderations and process as the underlying reserve

review itself.
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