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Projection for Claims Triangles by 
Affine Age-to-Age Development

by Thomas Müller

ABSTRACT

Actuaries have always had the impression that the chain-ladder 

reserving method applied to real data has some kind of “upward” 

bias. This bias will be explained by the newly reported claims 

(true IBNR) and taken into account with an additive part in the 

age-to-age development. The multiplicative part in the develop-

ment is understood to be restricted to the changes in the already 

reported claims (IBNER, “incurred but not enough reserved”). 

Based on regression theory the reserve as well as error formu-

lae are generalized from the purely multiplicative chain-ladder 

model to our considerably more stable “affine” models.
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dent years, as is the case in the example of Brosius 
(1993). In this case, the multiplicative chain-ladder 
model yields, for these accident years, the amount 
of zero as estimation for all development years. 
Positive reserve estimation demands some reported 
claims; therefore, the estimated reserve may dramati-
cally change as soon as some claims are reported. In 
the Brosius case, the prediction error for the chain-
ladder model even becomes infinitely large: indeed, 
the multiplicative model cannot cope with the age-
to-age development of zero claims amounts into any 
positive claims amounts, and the usual formulae for 
the prediction error are not defined in this case. How-
ever, for a series of preceding-year claims amounts 
converging to zero with a given positive next-year 
claims amount, the corresponding prediction errors 
will be arbitrarily large. This can be interpreted as an 
infinite prediction error for the chain-ladder model.

Compared to multiplicative methods, additive 
methods are commonly much more stable and may 
also be applied in the case of triangles with a rather 
unsmooth, inhomogeneous pattern such as the Brosius 
example. As mentioned above, this is essentially 
due to the fact that the premium volume for the dif-
ferent accident years is much more stable than the 
reported claims amounts. With the proposed affine 
method, which considers a multiplicative as well 
as an additive relation, one gains the advantages of 
both model types: affine models are more stable than 
the chain-ladder models and may therefore also be 
applied to more fragmented triangle patterns. More-
over, some highly developed theoretical tools such as 
the famous Mack formulae for the prediction error of 
chain-ladder reserve estimates may be generalized to 
the proposed affine model. And, above all, the affine 
age-to-age development corresponds rather well with 
the reality of the data collected. Finally, the additive 
part of the affine models enables us to explain the 
aforementioned upward bias of the chain-ladder pro-
jection. By ignoring this bias and by using purely 
multiplicative methods, one overestimates the lever-
age of the reported claims on the estimated claims 
reserve instead of considering a supplementary addi-
tive component depending on a constant, the devel-

1. Multiplicative and additive 
reserving methods

Halliwell (2007) noticed that the age-to-age 
development on incurred real data mostly yields a 
regression line with a positive intercept, which he 
comprehends as a “bias” of the chain-ladder projec-
tion. In this paper, we propose that this positive inter-
cept is caused by newly reported claims, i.e., claims 
which were not reported in the previous year, the  
so-called IBNYR claims (incurred but not yet reported). 
These newly reported claims amounts, also denoted as 
“true IBNR,” are usually considered together with the 
changes in the amounts of the already reported claims, 
denoted as IBNER (incurred but not enough reported 
claims). It seems obvious that the amounts of newly 
reported claims depend on the volume of the busi-
ness, e.g., the premium, rather than on the previously 
reported claims. The volume of the considered busi-
ness is usually rather stable, at least compared with 
the reported claims. Assuming this volume to be con-
stant, the observed positive intercept may well be con-
sidered an estimate of the average amount of newly 
reported claims, because within the database, i.e., the 
loss triangles of incurred claims, the newly reported 
claims amounts are, as already mentioned, commonly 
summed up with the newly estimated amounts of 
the previously reported claims. Therefore, an affine 
model, i.e., a model with an additive as well as a 
multiplicative part for the age-to-age development, 
better corresponds to the real circumstances of this 
development than, for instance, the purely multiplica-
tive chain-ladder model.

In general, one distinguishes between additive or 
multiplicative reserving models: additive models refer 
the estimated claims development to the volume of 
the considered business, which in practice mostly is 
considered to be proportional to the premium volume, 
whereas multiplicative methods refer to the reported 
claims amounts.

Multiplicative methods usually are much more 
unstable, in particular if claims are reported rather late, 
such that for some smaller portfolios there may in 
fact be no reported claims at all for the latest acci-
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ume function, e.g., the written premium, in the cor-
responding accident year 1 to n - j,
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We assume the volume function vj to be given and 
we consider two different types of age-to-age devel-
opments. In the first case, the development only 
depends on the incurred claims of the previous year, 
whereas in the second case it simultaneously depends 
on both previous-year claims and the volume function. 
For the description of the latter case, we introduce 
the matrices
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Let the age-to-age development be defined by a 
deterministic part f j
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Depending on the different assumptions for the 
relevant parameters, we will consider three different 
types of models for the age-to-age development:

First, we have X′j+1 = Xj
* z f j

* + ej, the affine model, 
with the two development parameters of f j

*, where 
the additive parameter cj defines a development  
proportional to the volume of accident year j. The 
parameter fj describes a development proportional to 
the previous-year claims and is therefore conceived 
as a multiplicative component of the age-to-age  
development.

opment of premiums, or any other appropriate notion 
of exposure.

In this paper, we propose various Gauss-Markov 
predictors for the reserves, including the chain-ladder 
model. Our models may be understood as generaliza-
tions of the chain-ladder model, rendering reserve esti-
mation more stable in practice, especially for recent 
accident years with little or no experience. We develop 
these predictors as well as their standard error within 
one single framework known from multivariate statis-
tics and obtain the prediction error derived by Mack 
(1993) for the chain-ladder model. Although, as in 
the well-known purely multiplicative chain-ladder 
method, no a priori assumptions such as a presumed 
claim ratio are required, these affine methods are con-
siderably more stable with regard to fluctuations in 
recent accident years.

Venter and Zehnwirth (1998) and Barnett and 
Zehnwirth (2000) proposed similar affine methods 
to the ones discussed in this paper. They realized the 
importance of the additive component in compari-
son with pure chain-ladder projections by analyzing 
real incurred data taken from several business sec-
tors. Ludwig and Schmidt (2010) suggested several 
Gauss-Markov predictors, with their so-called “com-
bined model” integrating additive and multiplicative 
components as we do here with our affine model. For 
this reason some technical aspects may seem similar 
to Ludwig and Schmidt (2010). However, there is a 
fundamental difference between these approaches. The 
combined models described in Ludwig and Schmidt 
(2010) do not specifically include the chain-ladder 
method, because their multiplicative age-to-age devel-
opment always depends on the claims in the first year 
and not—as in the chain-ladder as well as in our 
models—on the actual previous year.

2. Model structure

2.1. Age-to-age development

Let the vectors Xj and X′j+1 denote the incurred 
claims of development year j and j + 1, respectively, 
for the accident years 1 to n - j, and let vj be a vol-
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In addition, we assume two different types of 
diagonals:

–  the constant diagonal with Wii = 1, meaning that 
W = In-j, i.e., the unit matrix of size n - j, and

–  the diagonal proportional to the previous-year 
claims Wii = Xi,j, i.e., the claims of development 
year j, for accident years 1 ≤ i ≤ j.

The diagonality of the matrix W means that the 
claims developments of different development years 
are independent.

The variance of the conditional random variable of 
the claims in development year j given the previous-
year amount will then lead to

Var [X′j+1Xj] = s 2
j , if W has a constant diagonal and

Var [X′j+1Xj] = s 2
j z Xj, if W has a diagonal propor-

tional to the previous-year claims.

The different assumptions about the covariance 
matrix correspond to different risk-measure models 
and result in different estimations even beyond the 
non-random age-to-age development parameters. With 
the diagonal of W being constant, all variations of 
the subsequent year will be valued equally. Alterna-
tively, if the diagonal is proportional to previous-year 
claims amounts, variations in the subsequent year are 
more probable for higher previous-year claims, and 
these data have therefore less weight than the data 
for smaller claims amounts. This is justified by risk-
theoretical reflections. Higher previous-year claims 
are expected to vary more in their subsequent year 
development than smaller ones. By assuming that the 
variance is proportional to the previous-year amount 
itself and not to the square of it, one even takes a 
diversification effect into account. This diversification 
is based on the assumption that higher claims amounts 
for a given accident year are expected to be composed 
of a higher number of single claims. Assuming the 
single claims composing the claims amounts to be 
equally distributed for all accident years, the number 
of single claims is expected to be proportional to 
the claims amounts. In most common models for the 
distribution of the number of claims, such as in the 

Within the theory of general linear models, f j
* is 

called design matrix. In the affine model, the design  
matrix has two parameters, the multiplicative fj and 
the additive cj.

In addition, we also consider the cases with only 
one parameter:

X′j+1 = Xj z fj + ej, the multiplicative model, and
X′j+1 = Vj z cj + ej, the additive model, hereinafter 

referred to as “incremental loss ratio method.”

Since the expected values of the random part are 
supposed to be 0, the non-random part defines the 
age-to-age development of the conditional expected 
value of claims:

E[X′j+1Xj] = E[X*
j ] z f j

* affine model
E[X′j+1Xj] = E[Xj] z fj multiplicative model
E[X′j+1Xj] = vj z cj incremental loss ratio method

2.2. The random part of the  
age-to-age development

The random part ej defines the covariance matrix, 
which is composed of a scalar component and a 
matrix W specifying the structure,

W
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Thus, this paper discusses two rather different 
topics:

• First, the age-to-age development based on the 
widely used techniques of multivariate statistics. 
These methods are very useful to gain all kinds of 
insights into some given data; they rely on a power-
ful mathematical theory and may be expressed in 
a concise way using matrix calculus. Up to and 
including Section 6, only this one-year case will 
be considered.

• Second, we need to link these age-to-age develop-
ments to the required multi-year development. The 
kind of reflection used here is much less common 
than the multivariate statistics discussed under the 
first topic. As mentioned before, these considera-
tions essentially only prove that this linking may 
be done in a rather obvious way. Nevertheless, 
some subtle reflections based among others on the 
law of total expectations as introduced by Mack 
(1993) are needed. Sections 7 and 8 study this con-
clusion from the one-year to the multi-year case.

3. Consideration of the  
different models

We will not treat all six possible models in detail 
in this paper. As an additive development we will 
only consider the case where the constant variance 
assumption holds, i.e., Wii = 1, and as a multiplicative 
development the chain-ladder case with the propor-
tional assumption, i.e., Wii = Xi,j. Instead we will look 
more closely at the affine models. In doing so, we 
will also consider affine models with constant vol-
ume, e.g., V ≡ 1 for all accident years. This model is 
particularly interesting in case no volume function is 
available within the data. In such a case, we strongly 
recommend comparing the affine models with a con-
stant volume assumption to the results of a purely 
multiplicative method, as chain ladder is, especially if 
no volume function is available. If the results of these 
two models differ significantly, the multiplicative 
method—that is, the chain-ladder method—might 
not be appropriate for the given triangles. Table 1 
shows the main assumptions in the different models.

Poisson distribution, the variance is proportional to 
the expected value itself. This justifies the assumption 
that the variance in the age-to-age development is pro-
portional to the previous-year claims.

2.3. The “memorylessness”  
assumption for the age-to-age 
development process

We assume that the age-to-age development pro-
cess is “memoryless” in the following sense: the 
probability distribution of the claims development at 
age j + 1, Xk,j+1, only depends on the claims amounts 
at the preceding age j, Xk,j, and does not depend on 
former claims developments Xk,i at age i, i < j. Within 
the additive and affine models, Xk,j+1 may of course 
also depend on the volume Vk.

Typical examples of such “memorylessness” are 
Markov processes, which for instance may be applied 
to construct life contingencies. We need this assump-
tion in order to be able to link in a feasible way the 
insights into the single-year developments with the 
required multi-year development and thus to com-
plete the triangle for the entire period. The memory-
lessness assumption ensures that the expected value 
and the prediction error of the ultimate claims devel-
opment Xk,n behave as we would expect them to do:

• The expected value of Xk,n corresponds to the iter-
ated application of the estimated affine age-to-age 
development from Xk,n-k+1, the latest of the known 
claims amounts Xk,j, j ≤ n - k + 1.

• The prediction error M̂SEP of the estimated  
reserve corresponds to the sum of the prediction  
errors M̂SEPj of the estimated claims amounts of  
the development year j + 1, given the claims amounts 
at development year j, multiplied by f̂ 2

j:n, where  
f̂ j:n = ∏n-1 

k=j+1 f̂k denotes the product of the remain-
ing estimated multiplicative projection factors 
from year j + 1 up to year n. Thus the prediction 
error for the entire development corresponds to 
the sum of the prediction errors of the age-to-age 
developments, scaled up to the level of the claims 
amounts of the final development year.
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claims development. WSQ may be expressed by 
matrix calculation, taking into account the weights 
by the inverse matrix of W. Thus the components 
with high diagonal entries Wii = Xi,j will have less 
impact on parameter estimation than those with low 
diagonal entries:

i i

X X W X X

X f X W X f X

j j
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j j

j j j
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j j j
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We now determine f̂ *
j  such that WSQ becomes 

minimal. Hence the two partial derivatives of WSQ 
with respect to the two parameters must be set equal 
to zero. Since WSQ is a quadratic expression, the 
derivatives have a linear and a constant term, which, 
in matrix terms, leads to the following equation:

i i i iX W X f X W Xj

t

j j j

t

j
* * ˆ* * .1 1

1( ) ( )= ′− −
+

This results in the weighted least squares estimators
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where the matrices in question are presumed to be 
invertible, as is assumed for the remainder of this 
paper, even if not specifically mentioned. The relations 
used in this article are mostly well known in multi-
variate statistics and have been described in textbooks 

4. The weighted least squares 
estimators of the parameters f̂*j

Usually, one distinguishes between two cases. 
In either case, W is a diagonal matrix, i.e., all off-
diagonal entries of W are 0. In the special case cor-
responding to our constant-risk-measure assumption, 
all diagonal elements are equal to 1, whereas in the 
general case, there is no such restriction.

First of all, the special case is treated within regres-
sion analysis and the parameters are estimated by the 
least squares estimator. Then the theorem of Gauss-
Markov shows that these estimators are the best lin-
ear unbiased estimators (BLUE). The special case 
presuming the diagonal entries of W to be constant 
is called the homoscedasticity model, as opposed 
to the more general heteroskedastic model with dif-
ferent diagonal entries. The diagonal entries of the 
heteroskedastic model can be understood as differ-
ent weights. Therefore, one takes into account these 
different weights Wii

-1 = Xi,j
-1 within the least squares 

estimators and evaluates a weighted least square 
estimator. Hence the general heteroskedastic case 
may be reduced to the special case, meaning that in 
the general case the theorem of Gauss-Markov still 
holds. This is why the weighted least squares estima-
tor is also the best linear unbiased estimator.

Let us introduce the notation X̂′j+1 = X*
j z f̂ *

j for the 
estimated claims amounts of the subsequent year. 
We seek f̂ *

j  minimizing the weighted squared differ-
ences WSQ between the estimated and the observed 

Table 1. Main assumptions in the different models

Model

# of Parameters in the  
Design Matrix 

2, multiplicative and 
additive (affine), or  
only one of them

Volume Function 
i.e., the reference for  
the additive parameter

Risk Assumption/ 
Risk Measure 

i.e., the diagonal Wii of  
the diagonal matrix W

generalized chain ladder 2, affine model general proportional to X, Wii = Xi,j

generalized chain ladder with  
constant volume

2, affine model special (constant e.g., V ≡ 1) proportional to X, Wii = Xi,j

chain ladder 1, only multiplicative one none proportional to X, Wii = Xi,j

generalized linear regression 2, affine model general constant, Wii = 1

linear regression with intercept 2, affine model special (constant e.g., V ≡ 1) constant, Wii = 1

incremental loss ratio method 1, only additive one general constant, Wii = 1
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age claims development. This development starts 
with the sum ∑

n

k=n-j+1X̂k, j of the estimated previous-
year claims for all accident years which have not 
yet been developed and therefore have to be esti-
mated. This sum corresponds to the sum of the 
rows beyond the diagonal and includes the diagonal 
itself, i.e., X̂n-j+1, j = Xn-j+1, j because these claims are 
already included in the data.
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thus defining Z V Xj j j, ˆ and ˆ .  The notation V̂j  with 
the hat may be misinterpreted: we do not estimate 
new volumes here; this notation merely suggests that 
we take the average over the remaining accident 
years for the claims in X̂ j .

The so-called parameter error
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may be estimated using the theory of generalized lin-
ear models. This estimator is calculable as a product 
of the matrices in question, that is,
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The process variance describes the randomness 
of the process itself, and here we look directly at the 
effect of this process randomness on the development 
of the sum of claims of the accident years not yet 
given in the claims triangle. Therefore, we capture the 

(Fahrmeir, Hammerle and Tutz 1996, for instance, or 
Halliwell 2007).

A table with the specific formulae for the weighted 
least squares estimators for the parameters in the dif-
ferent models, as well as the derivation of these for-
mulae, can be found in Appendix A.

5. The error of the weighted least 
squares estimator

In Sections 5 and 6, as in the two previous sec-
tions, we only consider one single development year, 
i.e., the development from year j to year j + 1. We 
suppose the claims up to the development year j to be 
known and therefore consider the conditional prob-
abilities given the history

H X i l n l jj i l, .1,,{ }= + ≤ + ≤

The volumes Vj are not relevant for the history 
considered, since they are not regarded as stochastic 
variables in this model. Since in these sections we 
always study conditional probabilities given the his-
tory Hj, this may be omitted to improve readability, 
especially for the matrix formulae.

To simplify the notation even further, we set  
A = ((X*
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We are now interested in the impact of the param-
eter estimation error on the estimation of the age-to-
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for the estimator ŝ j
2 of the process randomness is 

described in Appendix D.

6. A simple calculation method 
provided by standard spreadsheet 
applications

Estimates based on linear regression are much more 
common and accessible in computational tools such 
as spreadsheets. Hence practical calculations may be 
facilitated if it is possible to link the computations in 
the chain-ladder models to those in the linear regres-
sion models. In fact, this can be achieved by a simple 
transformation of the data, which we here regard as 
coordinates. Thus the previous-year claims amounts 
and the volume function represent the independent 
variables and are interpreted as x-coordinates, whereas 
the next-year claims amounts represent the dependent 
variables viewed as y-coordinates. More specifically, 
the data in the generalized chain-ladder model,
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independent variables

X

V X

V X

V X X

V X X

j
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n j n j, j
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considered as x-coordinates in the linear regression 
model. By analogy, in the traditional chain-ladder 
model without an additive component, we get

X

X

X

X

X

j

,j

n j, j

,j

n j, j

.
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effect of the process randomness of the development 
from year j to j + 1 on the reserve

, 11 , 11

2
E X E Xj k jk n j

n
k jk n j

n∑ ∑( )= −  
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
+= − + += − +Var Process
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ˆ ˆ
ˆ

,
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for proportional risk measure

2 i

i

j

j X
j j

j

= σ





Var Process

since the above sum is composed of the claims of 
j accident years which are supposed to be indepen-
dent as the covariance matrix is diagonal. The history  

Hj up to development year j defines the estimates j z X̂ j .
Putting both together, we obtain the mean squared 

error of the predicted sum of claims for the develop-
ment from year j to year j + 1, given the history Hj 
defining again the required estimates j z X̂ j :

MSEP E X Xj k jk n j

n
k jk n j

n

j

ˆ
, 11 , 11
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
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
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
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



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


−
−

Note that the last factor t̂n-1 is generally not defined 
in the models with two parameters. In the numerical 
examples below, we therefore set t̂n-1 = t̂2

n-2/t̂n-3.
A table with the specific formulae for the pre-

diction error within the different models, as well as 
the derivation of these formulae, can be found in 
Appendix B. The well-known calculation method 
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Panning (2005) proposed to introduce additional 
“dummy” variables: primarily you augment the depen-
dent variable with a zero such that you have the same 
number of rows as there are independent variables, 
including the last row with the x-coordinates you wish 
to estimate. Thereafter you introduce a “dummy” col-
umn with all entries zero except the last one, which 
will be set to -1. This leads to the following matrices 
and vectors, respectively, for our main models:

For both the generalized and the traditional chain-
ladder models, the dependent variables then are

X

X X X

X X X

X X

X X

j

j j j

n j j n j j n j, j

j j

n j j n j j

,1

1,
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1, 1 1,
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+
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which are now considered as y-coordinates in the lin-
ear regression model.

The weighted squared differences WSQ in the gen-
eralized chain-ladder (CL) model equal the WSQ in 
the linear regression (LR) model based on the trans-
formed coordinates. Therefore, the estimation prob-
lems in the chain-ladder models may be reduced to 
a linear regression problem and solved accordingly 
by the multiple tools available:

X X W CL

X f X W CL X f X

j j

j j j
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j j j
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Transformed x-coordinates, to be used in the linear regression tool: Transformed y-coordinates, to be 
used in the linear regression tool:

chain ladder

0

0

ˆ 1

1X

X

j X

,j

n j, j

�

� �

�

�
i −































=
−

 

0

0

ˆ 1

1
1 2

1 2

1 2

X

X

j X

,j

n j, j

j

� �

i( ) −





























−

  

�

i

i

X X X

X X X

,j ,j ,j

n j,j n j,j n j,j

0

1
1 2

1 1 1

1 2
1





























+

− − + −



Variance Advancing the Science of Risk

130 CASUALTY ACTUARIAL SOCIETY VOLUME 10/ISSUE 1

This procedure therefore enables us to compute 
the prediction error for the chain-ladder models in a 
particularly simple way.

For the linear regression models, there is only one 
more small step to do: here the “LINEST” function 
applied to only one “dummy” variable does not take 
into account the entire process variance for the j acci-
dent years to be predicted. Thus this corresponds to a 
prediction error based on

MSEP
j

j

n j

V X V X V X X V

X V V X

instead of provided by
j

j

j j j j j j j j

j j j j

ˆ

ˆ

ˆ 2 ˆ ˆ ˆ

1 “LINEST”2

2
2

2
2

2

2 2 2

i i i i i

i i

( ) ( )( )
( )

( )
σ

=

+
−

− +

−

(see Appendix B). As the “LINEST” function in 
Microsoft Excel also lists the process error in the 
second column of the third row, M̂SEPj can easily be 
calculated with the two terms (M̂SEPj - ( j - 1)ŝ j

2)1/2 
and ŝj. These terms are returned by the “LINEST” 
function, used—as in the chain-ladder cases—as an 
array function with the following output:

c f X

Err c Err f MSEP j

j j k jk n j

n

Par
j

Par
j j j

j

ˆ ˆ ˆ

ˆ ˆ ˆ 1 ˆ

* ˆ *

.

(GLR)

, 11

1 2 1 2 2 1 2

∑

( ) ( )( ) ( )− − σ

σ





















+= − +

The reasons that there is no need for the correction 
term ŝj in the chain-ladder models using the array 

Panning (2005) introduced a “dummy” column for 
each accident year k = n - j + 1 up to n, thus estimat-
ing each accident year separately. Here, we are only 
interested in the prediction error of the sum of the 
claims amounts at age j + 1 to catch the entire predic-
tion error M̂SEPj of the development from age j to 
age j + 1. The “LINEST” function in Microsoft Excel 
recommended by Panning (2005) calculates the lin-
ear regression coefficients as well as their standard 
error, and therefore this function particularly lends 
itself to computing the prediction error M̂SEPj. 
Please note that the “LINEST” function arranges the 
columns in reverse order (cf. the remarks in Panning 
(2005) on this subject). Placing the regression coeffi-
cients on the first row and their standard error on the 
second row leads to the matrix

c f
X

j X

Err c Err f MSEP j X

j j
k j

j

k n j

n
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j
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j j j

ˆ ˆ
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+
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in the generalized chain-ladder model, and for the 
chain-ladder models without an additive component 
we have

f X j X
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j k j jk n j
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Transformed x-coordinates, to be used in the linear regression tool: Transformed y-coordinates, to be 
used in the linear regression tool:

generalized chain ladder
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as above for the chain-ladder 
model



Projection for Claims Triangles by Affine Age-to-Age Development

VOLUME 10/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 131

where fa:b = ∏b-1 

k=a+1 fk or the corresponding estimators  
f̂a:b = ∏b-1  

k=a+1 f̂k, respectively, denote the projection 
factor from development year a + 1 to development 
year b. Equation (*) is valid by the theorem of Gauss-
Markov, stating that the weighted least squares esti-
mators f̂j and ĉj are unbiased estimators, i.e., E[ f̂jXk,j] 
= fj and E[ĉjXk,j] = cj.

Setting j + 1 = n in equation (**), we obtain an esti-
mate for the ultimate claims development X̂k,n from 
the latest available claims data for accident year k,  
thus the diagonal element Xk,n+1-k is

iX f X V f ck n n k n k n k k n k s ns

k
n k s

ˆ ˆ ˆ ˆ ., : , 1 :1

1∑= +− + − − +=
−

− +

This formula shows the importance of the additive 
part ĉj for the affine models. These additive terms, in 
particular those for the more recent accident years, 
i.e., those for higher values of k, may have an impor-
tant impact on the estimate of the ultimate claim 
development. The reason for this is that the addi-
tive parts have to be considered for each of the k - 1 
remaining development years, since the formula for 
X̂k,n involves the sum of k - 1 additive terms in the 
estimate of the ultimate X̂k,n. Our numerical examples 
at the end of this paper will underline the potential 
importance of these additive parts for claims trian-
gles based on real data.

8. The completion of the claims 
triangle: The prediction error  
of the reserves

In this section we combine the prediction errors 
for the age-to-age development in order to obtain 
the prediction error for the entire projection. The 
reserve itself depends on all these subsequent esti-
mations, whereas the development from year j to 
year j + 1 only depends on the sum of the estimated 
previous-year claims 

—
X̂ j = (1/j) z Σn

k=n-j+1 X̂k,j, as 
defined in Section 5.

We have already computed the mean squared error 
of prediction MSEPj for the development from year 
j to year j + 1 of the sum of the claims given the 

function returned by the “LINEST” function are 
explained in Appendix C.

7. The completion of the claims 
triangle: Expected claims 
development

The usual task when projecting claims triangles is 
to complete these triangles to a square. Therefore we 
predict the development of the latest of the known 
claims amounts, Xk,n-k+1 for the development from 
year n - k + 1 to year n by recursively defined esti-
mators for j = n - k + 1, . . . , n - 1, with the notation 
X̂k,n-k+1 = Xk,n-k+1 for the initial term.

Model X̂k,j+1 =

Affine models: generalized chain ladder and  
generalized linear regression

f̂ j z X̂ k,j + ĉ j z Vk

1-parameter models: multiplicative models, e.g., 
chain ladder

f̂ j z X̂ k,j

Additive models, e.g., incremental loss ratio method ĉ j z Vk

The recursively defined X̂k,n provides an unbi-
ased estimator for the projected claims development 
for the accident year k, 1 ≤ k < n, based on the data 
given by the claims triangle D = {Xi,j, i + j ≤ n + 1}. 
Thus, we have E[X̂k,j+1D] = E[Xk,j+1D], which can 
be proved—as Mack (1993) did for the chain-ladder 
model—using the law of total expectations:
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and for the generalized chain-ladder model (GCL) 
with an additive component depending on a volume, 
we have

i

i i

i i i

i

i i

MSEP GCL f

j X j

V X V V X

X V X

n j V X X V

j j n
j

n

j

j j j j j

j j j

j j j j
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ˆ
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ˆ
.
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2

2

2
2
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( )
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−

+


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


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− −



















=

−

Mack (1993) derived the formula for the mean 
squared error of prediction in the chain-ladder case, 
M̂SEP(CL), and thus stimulated extended research 
into the reliability of reserve calculation based on 
claims triangles. His approach was different in so 
far as all accident years were considered separately 
and not together as we do here. Therefore Mack’s 
prediction error for the entire reserve is composed 
of the prediction errors for the different accident 
years. Because these prediction errors rely on the 
same parameter estimation, Mack has to take these 
dependencies into account. Thus, the structures of 
the equivalent formulae are different due to the dif-
ferent approach in handling the estimation error. In 
the development by Mack, our term for the esti-
mation error of ( j z X̂j)

2 appears twice, once as the 
sum of the squares corresponding to the estimation 
error for the different accident years, and again as 
a mixed product considering the dependencies for 
the different accident years. Therefore, as noted 
below, the squared sum of our case splits into two 
terms in the Mack formulae and the mixed term 
appears when calculating the prediction error for 
the entire reserve from those of the individual acci-
dent years:

j X X

X X X

j k jk n j

n

k jk n j

n
k j l jl k

n

k n j

n

ˆ ˆ
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,
2
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i i

∑

∑ ∑∑
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−

estimation X̂j, i.e., the sum of the predicted previous-
year claims. This amounts to

iMSEPj j j,
2= + = σ τVar ErrProcess

j
Param

j

with estimator

iMSEPj jj j j

j

ˆ ˆ ˆ , where ˆ

and ˆ depend on the chosen model.

2= σ τ τ
σ

To obtain the error of the predicted reserve from the 
age-to-age development errors, we have to take into 
account the multiplicative development from year  
j + 1 to year n, because the estimation of the reserve is 
based on the estimated projection up to the ultimate 
development year n. Therefore the prediction error 
for the development year j has to be multiplied by the 
square of the previously defined projection factor fj:n 
= ∏n-1 

k=j+1 fk. Due to our memorylessness assumption, 
neither the parameter error nor the variances of the 
process are correlated for the different development 
years. Therefore, the age-to-age development errors 
M̂SEPj, multiplied by the square of the estimated pro-
jection factor to scale them up to the level of the final 
development year, may simply be summed up to get 
the prediction error of the reserves:

i
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−

The derivation of MSEP as the sum of the scaled-
up age-to-age prediction errors can be found in 
Appendix E.

Thus, we get a similarly constructed estimator,
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In case of the chain-ladder model, this results in
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rather well to the reality of the way in which claims 
are handled within the triangles. The third triangle 
was published by Brosius (1993) and reconsidered 
by Halliwell (2007).

9.1. The example of Mack (1993)

There is no volume function quoted in Mack’s 
paper. We therefore assumed the volume to be con-
stant for all accident years. The projection does not 
depend on the constant itself. By the choice of “1” 
for the volume in Table 2, the estimated additive 
development parameter may be directly interpreted 
as the estimated amount of newly reported claims of 
the corresponding development year. This example 
also shows that assuming a constant volume func-
tion in those cases where no such function is avail-
able within the data may lead to a more stable and 
more reliable projection result. Table 3 shows the 

9. Numerical examples

In this section, we apply three of our methods—the 
two considered affine methods (that is, the general-
ized chain-ladder and the generalized linear regres-
sion), and the traditional chain-ladder method—to 
three given claims triangles. One of these triangles 
corresponds to the less regular example used by Mack 
(1993) to illustrate his newly discovered determina-
tion of the prediction error in the chain-ladder case. 
The second one was published by Schnieper (1991) 
in a case where he explicitly gathered the data of the 
newly reported claims in the corresponding accident 
year. Within our affine methods, these amounts are 
estimated by the additive component of the age-to-
age development. Applied to real claims data, our 
affine model usually yields positive additive param-
eters, and only exceptionally does it produce nega-
tive parameters. This shows that the affine model fits 

Table 2. Data of claims triangle of Mack (1993)

Accident 
Year Volume

Development Year j

1 2 3 4 5 6 7 8 9

1 1 58 128 477 1,028 1,360 1,647 1,819 1,907 1,950

2 1 24 142 984 2,143 2,962 3,684 4,049 4,116

3 1 33 275 1,523 3,203 4,446 5,159 5,343

4 1 21 530 2,900 4,999 6,460 6,854

5 1 40 763 2,921 4,990 5,649

6 1 91 952 4,211 5,866

7 1 62 868 1,955

8 1 25 284

9 1 13

Note: Figures are rounded, and our calculations are also based on these rounded figures.

Table 3. Estimated parameters of the age-to-age development for the triangle of Mack (1993)

j: Development from Year j to Year j + 1

Model Parameter f̂ j* 1 2 3 4 5 6 7 8

generalized linear regression additive c


j 124 501 865 396 478 209 105.0 0
multiplicative f



j 8.34 3.13 1.31 1.15 1.01 1.01 0.99 1.02

generalized chain ladder additive c


j 156 335 526 221 299 154 105 0
multiplicative f



j 7.61 3.45 1.47 1.21 1.06 1.02 0.99 1.02

chain ladder multiplicative f


j 11.14 4.09 1.71 1.28 1.14 1.07 1.03 1.02
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9.2. The example of Schnieper (1991)

Schnieper (1991) proposed to explicitly sepa-
rate the incurred data into newly reported claims 
(true IBNR) and changes in the amounts of reported 
claims (IBNER). He assumed the expected values of 
the true IBNR claims to depend on a volume func-
tion and changes in IBNER claims on the incurred 
claims of the previous year, as in the chain-ladder 
case. The example in Schnieper (1991) shows that 
these additional data may have a considerable impact 
on the estimation of the reserve, although these data 
are not regularly collected. Assuming an affine age-
to-age development of incurred claims, we propose 
an estimate of these two components based solely 
on the incurred claims available in the usual claims 
triangle. The additive part provides an estimate for 

estimated additive and multiplicative parameters for 
the triangle of Mack (1993).

Looking in particular at the ninth accident year 
in Table 4, huge differences in the estimated IBNR 
are found between the traditional chain-ladder model 
and the two affine models. We suggest that the chain-
ladder method is not appropriate for the given data, 
because this method neglects the IBNYR-estimation 
and therefore seems not suitable, especially for the 
most recent accident year with a particularly small 
claims amount of just 13 (cf. Table 2).

In Table 5, M̂SEPj
1/2 z f̂ j:n estimates the standard 

error of the development from age j to age j + 1 scaled 
up to the level of the final-year claims amounts,  
and M̂SEP1/2 = (Σn-1

 
j=1 M̂SEPj z f̂

2
j:n)1/2, the entire stan-

dard error of the estimated reserve.

Table 4. Estimated reserves and their standard errors for the triangle of Mack (1993)

Accident Year

IBNR Reserves as Projected from  
the Claims Triangle: 

Model

Generalized  
Linear Regression

Generalized 
Chain Ladder Chain Ladder

1 0 0 0

2 93 93 93

3 177 177 265

4 470 524 834

5 1,009 1,142 1,568

6 2,368 2,752 3,696

7 3,359 3,372 3,487

8 4,146 3,796 2,952

9 4,162 3,871 1,636

Total reserve 15,784 15,727 14,530

Estimated standard error = M̂SEP1/2 3,862 3,526 3,731

Error % = estimated standard error/total reserve 24% 22% 26%

Table 5. Estimated standard error for the triangle of Mack

M̂SEPj
1/2 z f̂ j:n 

j: Development from Year j to Year j + 1

Model M̂SEP1/2 1 2 3 4 5 6 7 8

generalized linear regression 3,862 1,626 1,626 1,180 1,180 991 991 1,196 1,196

generalized chain ladder 3,526 1,444 1,582 1,117 1,219 1,234 1,104 1,105 1,071

chain ladder 3,731 1,788 1,901 1,567 1,220 1,313 868 622 550
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closely and, perhaps, to collect more data, as was 
done in this case with the additional data of the newly 
reported claims shown in Table 8. Estimated reserves 
are shown in Table 9, and estimated standard errors 
in Table 10.

9.3. The example of Brosius (1993), 
reconsidered by Halliwell (2007)

The data of Brosius in Table 11 are based on a small 
book of business and consist of a claims trapezoid 
of seven accident and five development years. The 
data were completed to a triangle in order to apply 
the formulae mentioned above. Again, the volume is 
normalized to attain a size near to “1” via dividing 
by 10,000 in order to scale the parameters ĉj up to 
the order of magnitude of the newly reported claims. 
Table 12 shows the estimated parameters.

The risk metric in the chain-ladder model, as well 
as in the generalized chain-ladder model, entails an 
infinite probability for the age-to-age development 

the newly reported claims, the so-called true IBNR 
claims, and the multiplicative part gives an estimate 
for the changes in the reported claims (IBNER).

In his paper, Schnieper (1991) regards the pre-
miums per accident year of the entire portfolio as a 
volume function. To facilitate interpretation, we nor-
malize the volume via dividing the values in Table 6 
by 15,000 to attain a size near to “1.”

One may interpret the product of the volume Vj 
and the additive development parameter ĉj as an esti-
mation of the newly reported claims. In fact, with a 
volume function near to “1”, the parameters ĉj may 
already be regarded as a rough estimate of the newly 
reported claims.

Looking at Table 7, the negative values of the 
additive parameter for the development of year 3 to 
year 4 do not fit in with our interpretation that the 
said parameter models the newly reported claims. 
Nevertheless, the observation of such negative addi-
tive parameters should motivate us to look more 

Table 6. Data of claims triangle of Schnieper (1991), based on a practical third-party-liability 
excess-of-loss pricing problem from motor insurance

Accident 
Year

Development Year j

Volume 1 2 3 4 5 6 7

1 10,224/15,000 7.5 28.9 52.6 84.5 80.1 76.9 79.5

2 12,752/15,000 1.6 14.8 32.1 39.6 55.0 60.0

3 14,875/15,000 13.8 42.4 36.3 53.3 96.5

4 17,365/15,000 2.9 14.0 32.5 46.9

5 19,410/15,000 2.9 9.8 52.7

6 17,617/15,000 1.9 29.4

7 18,129/15,000 19.1

Table 7. Estimated parameters of the age-to-age development for the triangle of Schnieper (1991)

j: Development from Year j to Year j + 1

Model Parameter f


j* 1 2 3 4 5 6

generalized linear regression additive c


j 10.1 31.7 -10.3 57.0 18.8 0.0
multiplicative f



j 2.42 0.39 1.71 0.51 0.80 1.03

generalized chain ladder additive c


j 12.3 32.8 -9.5 52.0 18.8 0.0
multiplicative f



j 2.09 0.39 1.69 0.57 0.80 1.03

chain ladder multiplicative f


j 4.55 1.88 1.46 1.31 1.01 1.03

from additional data of newly reported 
claims (cf. Schnieper 1991)

additive 
multiplicative

c


j 

f


j

15.9
1.36

21.0
0.93

17.3
1.05

17.7
1.05

7.4
0.93

7.5
0.97
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Table 8. Newly reported claims per development year: N triangle of genuine IBNR claims for the triangle  
of Schnieper (1991)

Accident 
Year 
k

Collected Data “N ”, cf. Schnieper (1991)  
Development Year j

IBNYR-Estimation: c


j -1 z Vk in the  
Generalized Chain-Ladder Model

2 3 4 5 6 7 2 3 4 5 6 7

1 18.3 28.5 23.4 18.4 0.7 5.1 6.9 21.6 -7.0 38.9 12.8 0.0

2 12.6 18.2 16.1 14.0 10.6 8.6 27.0 -8.7 48.5 16.0

3 22.7 4.0 12.4 12.1 10.0 31.5 -10.2 56.5

4 9.7 16.4 11.6 11.7 36.7 -11.9

5 6.9 37.1 13.1 41.1

6 27.5 11.9

Table 9. Estimated reserves and their standard errors for the triangle of Schnieper (1991)

Accident Year

IBNR Reserves as Projected from the Claims Triangle: Model

From Additional 
Data (Schnieper 

1991)

Generalized 
Linear 

Regression
Generalized 

Chain Ladder
Chain 

Ladder

1 0 0 0 0

2 4 2 2 2

3 5 3 3 5

4 33 50 47 17

5 60 66 64 53

6 77 79 78 81

7 104 100 99 307

Total reserve 284 300 294 464

Estimated standard error = M̂SEP1/2 122, see [L] 74 93 302

Error % = estimated standard error/ 
total reserve

43% 25% 32% 65%

Table 10. Estimated standard errors for the triangle of Schnieper (1991)

M̂SEP j
1/2 z f̂ j:n

Model M̂SEP1/2

j: Development from Year j to Year j + 1

1 2 3 4 5 6

generalized linear regression  74 2 23 6 61 32 13

generalized chain ladder  93 11 32 8 66 48 27

chain ladder 302 162 201 36 145 49 14
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the generalized chain-ladder model the reserve for-
mulae are no longer applicable, since claim cells of 
value zero produce zeroes in the denominator. With 
only one such zero-cell, the reserve could be defined 
in the generalized chain-ladder model by comput-
ing the development parameters for a sequence con-
verging to zero in this zero-cell. The sequence of the 
development parameters will then be convergent too, 
meaning that the additive term is fully defined by the 
development of this zero-cell. However, in the pres-
ent case in Table 11 with two zero-cells for a given 
development year, the additive term depends on the 
two specific sequences chosen for these two particu-
lar cells, thus even considering the value of a limit 
will give no precise amount for the reserve. Table 14 
shows the estimated standard errors for the triangle 
of Brosius (1993).

10. Conclusion

In this paper, we proposed some new affine models 
for claims reserving and compared them to the well-
known multiplicative chain-ladder model, given three 
sets of real claims data taken from the literature. In 

from a claim cell zero to a positive claim cell. This 
results in an infinite estimated standard error in the 
chain-ladder case in Table 13 and indicates that the 
chain-ladder model is not suitable for such inhomo-
geneous claims triangles. At least, the reserve itself 
is calculable in the chain-ladder model, whereas in 

Table 11. Data of claims triangle of Brosius (1993)

Accident 
Year Volume

Development Year j

1 2 3 4 5 6 7

1 4,260/10,000 102 104 209 650 847 847 847

2 5,563/10,000 0 543 1,309 2,443 3,033 3,033

3 7,777/10,000 412 2,310 3,083 3,358 4,099

4 8,871/10,000 219 763 1,637 1,423

5 10,645/10,000 969 4,090 3,801

6 11,986/10,000 0 3,467

7 12,873/10,000 932

Table 12. Estimated parameters of the age-to-age development for the triangle of Brosius (1993)

Model Parameter f̂ j*

j: Development from Year j to Year j + 1

1 2 3 4 5 6

generalized linear regression additive c


j 1,920 1,304 463 173 0 0
multiplicative f



j 1.75 0.67 0.99 1.19 1 1

generalized chain ladder additive c


j not defined 640 972 172 0 0
multiplicative f



j not defined 0.98 0.85 1.19 1 1

chain ladder multiplicative f


j 6.63 1.29 1.26 1.24 1 1

Table 13. Estimated reserves and their standard errors  
for the triangle of Brosius (1993)

Accident Year

IBNR Reserves as 
Projected from the 

Claims Triangle: Model

Generalized 
Linear 

Regression
Chain 

Ladder

1 0 0

2 0 0

3 0 0

4 421 337

5 1,456 2,133

6 1,973 3,491

7 5,207 11,461

Total reserve 9,058 17,422

Estimated standard error = M̂SEP1/2 3,845 ∞

Error % = Estimated standard error/ 
total reserve

42% ∞
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example 4.a mentioned by Mack (1993) in his famous 
paper establishing the stochastic view in non-life 
reserving does not seem to be suitable for the purely 
multiplicative chain-ladder model without additive 
parameter, as applied by Mack (1993). At least, that 
is what is suggested by the significant additive parts 
revealed—and all with positive values!—when apply-
ing our affine models to the given data. Hence, not 
only is in this case the prediction error questionable, 
but also the much more important reserve estimation 
itself, in particular for more recent accident years. Thus 
it comes as no surprise that practicing actuaries are usu-
ally rather cautious towards new methods, particularly 
if they are regarded as highly elaborate and academic. 
For this reason, we will follow with great interest 
whether and how our proposed methods will find their 
way into generally accepted actuarial practice.

Acknowledgments

The author wishes to thank Richard Gorvett for his 
keen interest in this subject and his valuable advice, 
Mario Wüthrich for his valuable suggestions, and 
Andreas Graf for his advice on the English language.

Appendix A. The weighted least 
squares estimators for the 
parameters in the different models

Since the weighted least squares estimator f̂ *
j  for 

the age-to-age development is determined, as men-
tioned in Section 4, by a product of matrices f̂ *

j = 
((X*

j )t z W-1 z X*
j )-1 z (X*

j )t z W-1 z X′j+1, we need to cal-
culate the two matrices involved for all the models 
under consideration (Table A.1).

our view, the results show that the proposed affine 
models better correspond to the given claims data 
than the traditional chain-ladder model.

Does that mean that we have found the ultimate 
way to compute the exact amount of the predicted 
reserves and the corresponding prediction error? Not 
quite. As the numerical examples show, the proposed 
new models do indeed help to better detect pat-
terns of claims reporting and thus to analyze what is 
going on in one’s business as a whole or in a specific 
branch. In particular for long-tail branches such as 
general liability or professional liability insurance, 
where claims might be reported years after they 
were incurred, the new models are more appropri-
ate because their additive part takes into account 
these late reported claims and estimates the average 
amount to be incorporated in the claims projection, 
based on the claims data recorded in the past. The 
prediction error then provides a measure for the sta-
bility of the model assumptions in the past years of 
experience. Also, a fairly high prediction error may 
be caused by an unrealistic model that is founded on 
inappropriate parameters or data, and could thus pro-
vide us with a stimulus to improve the model—e.g., 
by using the proposed affine model instead of regular 
chain-ladder—or the data basis in order to be more in 
touch with reality.

When applying rigorous and apparently objective 
mathematical methods in an economic setting, one 
should always keep in mind how much the corre-
sponding results depend on the choice of models and 
of the parameters involved. And with the mathemati-
cal methods becoming more and more developed and 
sophisticated, the danger of possible misapplication 
and implicit trust in such methods rises. For instance, 

Table 14. Estimated standard errors for the triangle of Brosius (1993)

M̂SEP j
1/2 z f̂ j:n

Model M̂SEP1/2

j: Development from Year j to Year j + 1

1 2 3 4 5 6

generalized linear regression 3,845 1,079 1,123 3,509 216 18 2

generalized chain ladder not defined not defined

chain ladder ∞ ∞ 4,903 6,755 426  0 0
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In each case, the product of the two auxiliary terms 
in Table A.1 gives the parameter estimators for the 
corresponding model. For the two-parameter mod-
els, as shown in Table A.2, this results in a vector, 
the first row of which gives the estimated additive 
parameter and the second row gives the multiplica-
tive one. For the one-parameter models, the estima-
tor describes either the multiplicative or the additive 
development parameter, depending on the model. 
For a better understanding of the formulae, we also 
list in Table A.2 the estimated claims for develop-
ment year j + 1 given the mean of the experienced 
claims 

—
Xj in year j and the mean of the volumes of 

the previous accident years 
—
Vj. For most of the mod-

els, this corresponds to the mean of the experienced 
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Table A.1. Explicit formulae of the fundamental auxiliary terms for the different models
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only depends on the sum of assumed previous-year 
claims j z X̂ j , applied in the quadratic form. Table B.1 
shows the explicit formulae for the crucial term tj in 
the prediction error

iMSEPj j j j
2= + = τ σVar ErrProcess

j
Param

of the projection f j
V

X
j

j

j

ˆ*
ˆ

ˆ
i=
























 to year j + 1, 

given the sum j z X̂ j  of predicted claims beyond the 

diagonal of the claims triangle. This sum j z X̂ j  is the 
relevant figure for the computation of the reserve. 
In order to have a better understanding of the for-
mula, we compute the prediction error in Table B.1  
in the case of equal means of experienced and  
predicted previous-year claims, and of equal means 
of the volume of both the accident years experi-
enced and of the accident years to be predicted, 
for the development from year j to j + 1. Then, in 
this particular setting, the prediction error for this 

claims 
—
X′j+1, which is exactly what one would expect 

in this situation.

Appendix B. The prediction error 
within the different models

The formulae for the prediction error in the differ-
ent models are based on the covariance matrix ((X*j )t  
W-1 X*j )-1, depending on the experienced claims of 
development year j, applied as a quadratic form to 
the sum of the volumes j z V̂j  = ∑

n

k=n-j+1 Vj for the 
accident years to be developed and to the sum of 
predicted claims beyond the diagonal in the claims 
triangle, including the diagonal itself, j z X̂ j  = Xn-j+1, j + 
∑

n

k=n-j+2 X̂k,j = ∑
n

k=n-j+1 X̂k,j.
For these claims or predicted claims, respectively, 

no development from year j to year j + 1 has been expe-
rienced and thus has to be predicted. The predicted 
entire reserve for all accident years only depends on 
the sum of the predicted claims. Due to our linear-
model assumption, the parameter estimation error thus 

Table A.2. Weighted least squares estimators for the year-to-year development parameters, calculated 
from the auxiliary terms shown in Table A.1

Model

Estimators of Additive and Multiplicative 
Development Parameters
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In the chain-ladder models (GCL) and (CL), there is 
no need for such a correction term involving ŝj, because 
multiplying the prediction error for the linear regres-
sion by ( )ˆj X ji —where the process variance consid-
ers only one additional row, i.e., the term 1 instead 
of j—and then replacing the transformed coordinates 

mean of experienced claims only depends on the 
risk measure.

Appendix C. The dispensability  
of the correction term r̂j in the 
chain-ladder models using the 
“LINEST” function in Microsoft Excel

The terms returned by the array function “LINEST” 
for the generalized chain-ladder, the chain-ladder 
and the generalized linear regression models are 
(cf. Section 6):
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Table B.1. The crucial factor ŝ j in the expression M̂SEPj = ŝ j z r̂2
j, the prediction error in year j + 1 
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where the risk measure coefficient r is set to r = 0 
for the constant risk measure Wii = 1, and to r = 1 
for the proportional risk measure Wii = Xi,j as in the 
chain-ladder models.

X̂k,j+1 is given by the estimated development of Xk,j 
in year j + 1, which in the two-parameter models is 
determined by

�iX f X

X

X

j j j

j

n j j
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ˆ
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and analogously in the one-parameter models. Hence, 
ŝj

2 estimates the square of the deviations of the pre-
dicted claims from the experienced claims, weighted 
by the inverse of the risk measure in the correspond-
ing model. The number of observations is reduced by 
the number of parameters, thus only dividing by the 
number of overdetermined observations.

In the affine models the process variances cannot 
be estimated for the last two development years n - 2  
and n - 1, because here the two corresponding 
development parameters are determined or even 
under determined, respectively, by the observations. 
Usually, these variances are estimated by resorting 
to the estimates for previous years, and by assuming 
certain regularities in their development over time. 
Here, we use the estimator mentioned in the article 
by Mack (1993):

ˆ min ˆ ˆ , ˆ , ˆ

for 1 and 2.
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2
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Within the usual one-parameter approach such as 
the chain-ladder method, only the last term, ŝn-1, can-
not be derived from the observation. Therefore, only 
the case t = 1 is found in the literature.

Moreover, in the affine case, even the two devel-
opment parameters are undetermined for the last 
development year, i.e., the development from year 
n-1 to year n. Therefore, we suggest neglecting the 
additive parameter for this last year, thus reducing, 

denoted by the tilde (~) with the original ones yields 
the appropriate formula in the chain-ladder model:
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This transformation makes use of the identities
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Appendix D. Estimation of the 
factor r̂ j

2 for the random part of 
the age-to-age development

If we use the direct calculation method presented 
in Section 6, we also avoid having to explicitly calcu-
late the well-known estimator ŝ2

j  as described below. 
We therefore distinguish four cases, depending on 
the number of parameters, # parameter, which may 
be one or two, and on the risk metric. The general 
case is described by
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Dealing with (a), the mixed terms drop out, which 
is essentially due to the assumption that the age-to-
age process is memoryless. This means that the esti-
mators f̂n-1 and ĉn-1 based on the development from 
year n - 1 to year n are independent from the claims 
development up to year n - 1, i.e., from X̂k,n-1 and 
Xk,n-1, and therefore
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because ĉn-1 as well as f̂ n-1 are unbiased estimators, 
i.e., E[ĉn-1] = cn-1 and E[f̂ n-1] = fn-1.

Dealing with (b), we observe that MSEPn-1 cor-
responds to MSEP given the history Hn-1, i.e., given 
the claims development up to age n - 1. Thus the 
derivation of MSEP outlined above equally holds 
for MSEPn-1, if the history Hn-1 is assumed., because 
given the history Hn-1, the second term of the devel-
opment of MSEP in the equation noted by (*) drops 
out, which leads to the relationship MSEPn-1 = 
E[(( f̂ n-1 - fn-1)∑

n

k=2 X̂k,n-1 + ∑n

k=2 (ĉn-1 - cn-1)Vk)
2] used 

in the development (b), with the notation C = ∑n

k=2 
(ĉn-1 - cn-1)Vk as introduced before.
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