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ABSTRACT

This paper applies a bivariate lognormal distribution to
price a property policy with property damage and busi-
ness interruption cover subject to an attachment point, sep-
arate deductibles, and a combined limit. Curve-fitting tasks
for univariate probability distributions are compared with
the tasks required for multivariate probability distributions.
This is followed by a brief discussion of the data used,
data-related issues, and adjustments. Selection of a para-
metric multivariate size of loss distribution, estimation of
the parameters of the selected distribution, and goodness
of fit are discussed in reference to the bivariate lognormal
distribution. Finally, an algorithm is provided for estimat-
ing the average loss cost based on a bivariate lognormal
distribution by taking into consideration the loss-sensitive
features of the policy.
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1. Introduction
The traditional approach to pricing a property

cover–the approach used by underwriters–
relies upon using tables of rates and scales. Scales
are used to provide credit for the deductible
amounts. Apart from the papers of Salzmann [8]
and Ludwig [6], there is relatively little published
material on the subject of property rating by CAS
actuaries. The aforementioned papers discussed
the construction of scales and use of the scales
for the purposes of rating simple property covers.
Casualty actuaries rely on the use of a frequency
and severity approach as the basis for pricing in-
surance products, and are normally less engaged
in pricing property covers. There is no paper in
the Proceedings of the Casualty Actuarial Society
(PCAS) that specifically guides actuaries in pric-
ing multiple property covers with loss-sensitive
features. Hence the reason for writing this paper
is to address this need, using a frequency and
severity approach.
For policies providing multiple cover, the loss

may arise from distinct sources. For example,
given a policy providing a property damage (PD)
cover as well as a time element (TE) or business
interruption cover, losses may arise from dam-
age to a property location and/or loss of income
due to business interruption. The claim payment
by the insurer is tempered by the loss-sensitive
features of the policy. The loss-sensitive provi-
sions considered here are due to the interaction
of separate deductibles, an attachment point, and
a single limit upon insured losses.
The expected loss cost or pure premium is

based on determining separately the frequency
and the severity. These two elements are multi-
plied to determine the pure premium. By loading
the pure premium for expenses and profit, the
technical premium for a policy is determined.
This paper concentrates mainly on the severity
component of the pure premium–loss per claim
–referred to as the average loss cost (ALC).
ALC is calculated using a suitable size of loss

distribution (SOLD) as well as the specification
of a claim payment function (CPF). A CPF serves
to constrain loss payments according to loss-sen-
sitive features of the policy such as the deductible
and the limit. Here the term ALC is used synony-
mously with the expected value of the CPF.
The following outline describes Sections 2

through 7 of this paper: In Section 2, curve fit-
ting for the univariate and multivariate probabil-
ity distributions are briefly compared. In Sec-
tion 3, data and data related issues are discussed.
Section 4 addresses the selection, estimation, and
fit of a bivariate distribution to the sample losses.
Section 5 is a discussion of the complexity of the
CPF for a multiple cover policy. In Section 6,
an algorithm is given for estimating the ALC
based on a bivariate lognormal distribution. Fi-
nally, Section 7 provides some concluding state-
ments.

2. Comparison of univariate and
multivariate curve-fitting tasks

An important aspect of pricing an insurance
cover is the consideration of a suitable SOLD.
Tasks related to the determination of a SOLD
are selection, estimation, fit, and implementation.
In this section, curve-fitting tasks for univariate
distributions are briefly compared to those for
multivariate distributions.
Losses emanating from one source may be

modeled by univariate probability distributions.
In these cases, curve fitting is accomplished un-
der a univariate setting. However, when there are
multiple distinct sources of loss, as for instance
in losses arising from a multiple cover policy,
then the multivariate probability distributions are
better suited to represent the SOLD. In these lat-
ter cases, curve fitting is done under a multivari-
ate setting.
A multivariate approach is required in order

to properly price policies with loss-sensitive fea-
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tures. As an example, consider the following:
Let Y1, a random variable, denote a PD loss

arising from a property cover during an expo-
sure period, and let random variable Y2 denote
an individual TE loss from a property cover; then
random variables or distributions of interest are:

(a) a univariate distribution for Y1,
(b) a univariate distribution for Y2,
(c) a univariate distribution for the sum

Y1 +Y2, and
(d) a bivariate distribution for

Y =

Ã
Y1

Y2

!
:

Having information about the bivariate distri-
bution Y, a 2£ 1 column vector–case (d) above
–enables one to determine the marginal distri-
butions, i.e., the cases (a) and (b) above, as well
as the sum (transformation) case (c). Having in-
formation about the three univariate distributions
–cases (a), (b), and (c)–may not suffice to price
multiple covers with an attachment point, sepa-
rate deductibles, and a combined limit. This sit-
uation is better understood when one examines
the CPF as described in Section 5. Hence, bivari-
ate distributions, case (d) above, play a vital role
in pricing multiple covers.
Curve fitting methodology with regard to a

SOLD normally involves the following tasks:

(a) selection of suitable parametric probability
distributions to represent loss or losses,
(b) estimation of the parameters of the selected

distributions based on historical loss experience,
(c) evaluation of the goodness of fit, and
(d) computation of the statistics related to the

fitted distribution function such as the mean, the
standard deviation, and the ALC.

A brief comparison of the above tasks for uni-
variate probability distributions to those required
for multivariate distributions is made below.

Regarding (a), there have been many univari-

ate parametric distributions referenced in the ac-

tuarial publications as potential candidates for
the SOLD. The list includes lognormal, Pareto,
and Weibull. By comparison, the use of multi-
variate SOLD in the PCAS is less common. Mul-
tivariate normal is a popular distribution with
statisticians. In finance, multivariate normal has
been used to represent the joint distribution of
stock returns as well as a model for pricing com-
pound options; see Jarrow and Turnbull [3]. Mul-
tivariate normal can be applied in the insurance
field after suitable transformation of loss compo-
nents.
Regarding (b), the estimation of parameters,

the maximum likelihood method may be utilized.
However, in the case of multivariate distributions,
the number of parameters to be estimated is much
larger. For example, in the case of the lognormal
family of distributions, the parameters needed
are:

Number of Parameters
Distribution to be Estimated

Univariate Lognormal 2
Bivariate Lognormal 5
Multivariate Lognormal with 4 loss components 14

Apart from the need to estimate many more pa-
rameters, there is the issue of the required sample
size. This is referred to as the “curse of dimen-
sionality” problem. The sample size needed to fit
a multivariate function grows exponentially with
the number of variables, i.e., higher-dimension
spaces are inherently sparse. Larose [5] provides
an example: “The empirical rule tells us that in
one dimension, about 68% of normally distrib-
uted variates lie between 1 and ¡1, whereas
for a 10-dimensional multivariate normal distri-
bution, only 0.02% of the data lie within the anal-
ogous hypersphere.”
Regarding fit, (c), in univariate situations there

are well-known procedures such as the Kolmo-
gorov-Smirnov test for evaluating the fit. Many
of these univariate fit procedures do not have
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corresponding multivariate counterparts. Hence,
more innovative schemes are needed to assess the
goodness of fit.
Finally, with regard to (d), the computation of

ALC, in univariate cases, can be expressed in
terms of standard available functions in many in-
stances. For example, when the SOLD is a uni-
variate lognormal, the computation of the ALC,
a single limit integral, can be expressed in terms
of an exponential function and a cumulative dis-
tribution function (cdf) of univariate normal (see
Section 5). However, as will be shown in Sec-
tion 6, when the SOLD is a bivariate lognormal
distribution, then the computation of the corre-
sponding ALC, a double integral, is a more dif-
ficult task requiring a tailor-made solution.
To summarize, curve fitting in a multivariate

setting is more complex. There are more param-
eters to be estimated, and one needs larger sam-
ple sizes. Innovative procedures are needed for
evaluating the fit and computing derived statistics
based on multivariate probability distributions.

3. Data and data related issues

Any actuarial study should be based on well-
defined objectives. Having established the objec-
tives of the study, the next step usually involves
an analysis of suitable data to shed light on the
problem at hand. In order to estimate frequency
and severity components of pure premium, claim
and policy data are needed. Common concerns
regarding the data are the volume of data, avail-
ability of relevant attributes, and the quality of
data.
The analysis performed upon the data is de-

pendent on the knowledge of the team involved
in areas such as statistical modeling, actuarial sci-
ence and insurance.
The data referenced in this paper was collected

for a specific property project. For competitive
reasons, the data used in that property project
were altered in order to be used for illustrative
purposes in this paper. Therefore, the estimated

parameter values cannot be used as actual param-
eters or as benchmarks.
Before embarking on a curve fitting process,

some preprocessing (cleaning) of the data is usu-
ally warranted. The tasks to be undertaken de-
pend on the nature of the available data as well
as the scope of the project. Thus, these prepara-
tory tasks vary considerably depending upon the
prevailing circumstances.
The operations performed on the data used in

this paper were as follows: (a) exclusion of cer-
tain claims due to either incompleteness of the
data, or being out of the scope of the project, (b)
adjustment of the data, and (c) summarization of
the data in order to gain an overview of the data.
The exclusion of certain claims was based on

the following criteria:

(a) The incurred loss amount was negative.
(b) The claim belonged to a class that will not

be underwritten in the future by the company.
(c) The claim arose from blanket written risks

where a single limit may be applicable to build-
ings at different locations (in these instances, it is
not possible to associate a PD loss amount with
its corresponding building value amount, due to
incompleteness of information gathered).
(d) The claim was due to a catastrophe cover,

a CAT loss, CAT losses were modeled separately.
(e) The claim was a boiler machinery (BM)

claim, which was also analyzed separately.

Regarding the adjustment of the data, the data
were collected on a ground-up basis. Hence,
losses were measured from the first dollar and
grossed up in those cases where the company had
less than a 100% share (not fully participating in
the risk). For the purpose of curve fitting, the PD
and TE losses were trended so they would be on a
current level basis. Most losses considered were
closed (paid), especially for the older accident
years. The evaluation date was also subsequent to
the latest accident year considered. Hence there
were relatively few open claims left in the data
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Table 1. Summary of total unadjusted ground up losses. Line
of business: Property, non-CAT, non-BM losses

PDnTE + NA

+ S(+,+) 1.827 B, 1.251 B S(+,NA) 1.774 B
NA S(NA,+) 0.065 B S(NA,NA)

PD: Property Damage
TE: Time Element (Business Interruption)

set. The property claims studied tended to set-
tle quickly (average time to close was about 13
months). The remaining open claims were not
developed individually to an ultimate basis.
To gain an overview of the data used, the data

was organized as tables. Tables 1 and 2 were con-
structed to provide some insight with regard to
frequency and severity. The dollar amount of the
losses pertains to loss figures prior to adjustment
for trend.
A few remarks with regard to these two tables

are in order. Table 1 is a two-way table used to
summarize information with regard to severity.
It consists of four cells referred to as S(+,+),
S(+,NA), S(NA,+), and S(NA,NA).
The cell S(+,+) arose from individual claims,

where both the PD loss amount and the TE loss
amount were strictly positive. The total loss fig-
ures were 1.827 billion dollars for the PD losses
and 1.251 billion dollars for the TE losses over
the period used in the study.
The losses contributing to the cell S(+,NA)

had a PD loss amount component that was
strictly positive in each instance. However, the
TE field accompanying the PD loss was popu-
lated by either a blank or a zero. For this cell, it
was not possible to identify correctly the reasons
for having a blank or zero value. Thus, it was not
possible to identify correctly if the PD loss came
from a PD and TE cover policy with no accom-
panying TE loss, or if the PD loss arose from a
PD-only cover policy. Losses contributing to the
cell S(+,NA) were labeled as PD-only losses and
the NA associated with the TE implies “not ap-
plicable.” The total for these PD-only losses was
1.774 billion dollars.

The cell S(NA,+) is analogous to cell S(+,NA)
with the role of PD and TE switched. A TE loss
contributing to this cell was strictly positive with
the accompanying PD field having either a blank
or a zero value. The total value of these TE-only
losses was 0.065 billion dollars.
The cell S(NA,NA) is a void cell, indicating

neither a PD nor a TE loss situation.
Table 1 is a helpful overview of the severity

(ALC). One can estimate ALC from the sample
data as the ratio of total losses divided by number
of losses. In this case, Table 1 provides informa-
tion with regard to the numerator of this ratio. It
is understood that zero losses are excluded from
both the numerator and the denominator of the
ratio used to estimate the ALC. In this paper,
ALC is computed based on the knowledge of a
fitted probability distribution, a SOLD, derived
from individual trended incurred loss amounts
as explained below. The figures in Table 1 are
meaningful only for comparing different loss cat-
egories and should not be viewed in any absolute
sense.
For policies providing PD-only cover, the

severity curve needed should be based on the in-
dividual PD losses appearing in the cells S(+,+)
and S(+,NA). The PD losses contributing to
these two cells were not necessarily identically
distributed. A PD loss in the cell S(+,+) tended,
on average, to be larger than a PD loss from
cell S(+,NA). In order to price a PD-only cover,
one should use all the available PD losses. In
this case, a univariate probability distribution is
needed. Similarly, for policies providing TE-only
cover, one should use the individual TE losses
contributing to the cells S(+,+) and S(NA,+).
Once again, the curve fitting is done in a uni-
variate setting.
To price a multiple cover policy–PD and TE

–one needs to make use of all the loss data,
i.e., the individual losses contributing to cells
S(+,+), S(+,NA), and S(NA,+). In this paper,
the focus is on the application of the multivariate
techniques to estimate a suitable bivariate dis-
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Table 2. Summary of total unadjusted claim count. Line of
business: Property, non-CAT, non-BM losses

PDnTE + NA

+ F(+,+) 1,672 F(+,NA) 12,257
NA F(NA,+) 165 F(NA,NA)

PD: Property Damage
TE: Time Element (Business Interruption)

tribution based on losses arising from the cell
S(+,+) only.
The claim count data were summarized by

the Table 2. The four cells F(+,+), F(+,NA),
F(NA,+), and F(NA,NA) of Table 2 are defined
in a similar fashion as the four cells in Table 1.
The cell F(+,+) shows the number of claims
for which both the PD loss and the accompa-
nying TE loss were strictly positive. The total
number of claims was 1,672 over the period un-
der study. F(+,NA) presents claim counts related
to the PD-only losses, which were 12,257. The
F(NA,+), with a figure of 165, corresponds to
the TE-only claim counts. Once again, the cell
F(NA,NA) represents a “not applicable” or a
void cell.
Table 2 may be helpful to give an overview

of the frequency. One can estimate the frequency
from sample data as the ratio of Number of
Claims divided by an appropriate exposure
amount. In this instance, Table 2 provides infor-
mation with regard to the numerator of this ra-
tio. Alternatively, the frequency can be modeled
based on the mean of a Poisson or negative bi-
nomial random variable divided by a suitable ex-
posure amount. The estimation of the frequency
component of the pure premium is not within the
scope of this paper.

4. Multivariate methodology:
selection, estimation, and fit

In this section, issues related to selecting, es-
timating the parameters, and fitting a bivariate
probability distribution to the data are discussed.
An important point worth emphasizing at the

outset is with regard to the perspective on statis-

tical inference. In this paper the approach to in-
ference is exploratory as opposed to being con-
firmatory. Hence, there is more emphasis on the
use of graphical tools to provide informal sup-
port for the reasonableness of the stated position,
rather than to provide a proof for the stated po-
sition. Other common uses of exploratory tools
are to highlight anomalies or outliers in the data.
The exploratory tools presented here should be
of interest to practicing actuaries. For the sake
of completeness, the more technical materials are
presented in the appendices.
With regard to curve fitting, the distribution

selected to model the losses is a choice that can-
not be proven correct. The underlying distribu-
tion that produces losses cannot be known with-
out doubt, and the best that can be done is to
show that the selected distribution is reasonable.
Let

Y =

Ã
Y1

Y2

!
,

a 2£ 1 vector, denote a random vector that pre-
sents the loss data, where Y1 denotes a PD loss,
and Y2 denotes a TE loss. The loss vector
Y may also be written as a row vector by writing
Y0 = (Y1,Y2) where the prime (shown as a super-
script) denotes the operation of transposing a
column to a row.
The Y realizations considered here were pairs

of strictly positive losses related to the cell
S(+,+) in Table 1. The losses were adjusted for
trend for the purpose of curve fitting. The fo-
cus of this paper is solely with regard to fitting
a bivariate distribution to losses arising from cell
S(+,+). For cells S(+,NA) and S(NA,+), uni-
variate probability distributions can be fitted to
those losses. But the subject is not discussed fur-
ther in this paper.

If no prior knowledge is available with regard

to suitable distributions for the components of

Y, i.e., Y1 and Y2, then it may be a good idea to

start by trying to fit a few standard distributions

to these components prior to selecting a distribu-
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Figure 1. Plots to support the normal assumption for X1

Table 3. A comparison of univariate fit statistics

Trended PD Loss Trended TE Loss

Distribution KS AD Distribution KS AD

Lognormal 0.0242 1.25 Lognormal 0.0222 1.47
Gamma 0.2560 229.87 Gamma 0.2560 243.06
Extreme Value 0.3355 355.57 Weibull 0.3375 221.90
Pareto 0.3913 424.87 Extreme Value 0.3551 372.24

tion for Y. The software Crystal Ball, an add-on
of Microsoft Excel, can be used to fit a number
of standard univariate distributions to the data.
Table 3 provides a summary of the goodness-of-
fit statistics for the trended PD losses and the
trended TE losses arising from claims contribut-
ing to cell S(+,+). Among the four fitted distri-
butions, the lognormal provided the best fit based
on the Kolmogorov-Smirnov (KS) criteria. The
Anderson-Darling (AD) statistics have also been
provided as an alternative to KS criteria for as-
sessing the goodness of fit. These statistics are
further discussed in Appendix 1.

Table 3 suggests considering the lognormal
distributions for Y1 and Y2. In order to check
the validity of the lognormal distributions, it is
more convenient to work with the transformed
version of these variates. Transform Y1 and Y2 ac-
cording to X1 = log(Y1) and X2 = log(Y2). If the
data suggests that it is reasonable to assume that
X1 and X2 are normally distributed, then, based
on the above transformation, it is reasonable to
state that Y1 and Y2 are lognormally distributed.
Clues to the shape of the underlying distribu-

tion for X1 may be obtained by plotting a his-
togram and a kernel density of X1. In addition,
a QQ-Plot can be utilized to examine if the data
supports informally whether X1 is distributed ac-
cording to a hypothesized probability distri-
bution. Appendix 2 provides more information
about these tools.
Figure 1 displays the histogram, kernel den-

sity, and QQ-Plot for X1, based on the log of
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Figure 2. Plots to support the normal assumption for X2

the trended PD losses contributing to the cell
S(+,+). The left panel and the middle panel ex-
hibit an approximately bell-shaped curve for the
distribution of X1. The kernel density provides a
smoothed version of the histogram, as the shape
of histograms tend to be affected by the speci-
fication of the number of bins and their spacing
on the horizontal axis. The right panel of Figure
1, the QQ-Plot, compares the expected (accord-
ing to normal) and actual quantiles. The majority
of the points lie about a straight line. Hence, the
plots in Figure 1 suggest that it is reasonable to
assume that X1 may be represented as normal.
Figure 2 is similar to Figure 1, but applies to

X2. It is based on the log of the trended TE losses
contributing to the cell S(+,+). Once again the
plots in Figure 2 suggest that it is reasonable to
assume that X2 may be normally distributed.
Figures 1 and 2 support informally the reason-

ableness of the assumption that X1 and X2 are
normally distributed; hence it is natural to con-
sider a bivariate normal, X, to represent (X1,X2).
The bivariate probability distributions consid-

ered in this paper are:

1) bivariate lognormal distribution Y,
2) bivariate normal distribution X, and
3) standardized bivariate normal Z.

These three distributions are related to each other
according toÃ

Y1

Y2

!
=

Ã
exp(X1)

exp(X2)

!
=

Ã
exp(¹1 +¾1Z1)

exp(¹2 +¾2Z2)

!

where ¹is and ¾is are parameters of a bivariate
normal X as defined below.
The distributions of Y and Z may be derived

from X. Hence, the focus will be on the bivariate
normal distribution X.
The bivariate normal distribution X has param-

eters (¹,§) where

¹=

Ã
¹1

¹2

!

is the mean vector, and

§ =

Ã
¾21 ½¾1¾2

½¾1¾2 ¾22

!
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is the variance-covariance matrix. The interpre-
tation of the five parameters of X–(¹1, ¹2, ¾1,
¾2, and ½)–in terms of the moments of the com-
ponents of X are as follows:

¹1 = E(X1), ¹2 = E(X2),

¾21 = Var(X1), ¾22 = Var(X2), and

½=
Cov(X1,X2)

¾1¾2

where ½ denotes the correlation between X1
and X2.
The bivariate lognormal Y is derived from X

by exponentiation of the X1 and X2 components
of X. It has the same parameters (¹,§) as X.
The standardized bivariate normal Z is derived

from X by standardizing the components of X,
i.e., by replacing Xis by Zi = (Xi¡¹i)=¾i, i =
1,2. It has a single parameter ½.
If the data supports the notion that it is rea-

sonable to assume a bivariate normal distribution
for X, then it follows that it is also reasonable to
assume that Y has a bivariate lognormal distribu-
tion.
In order to examine if the data supports the

assumption of the bivariate normality for X, it
is necessary to compute certain statistics of in-
terest from the data as described below. These
statistics depend upon the estimate of the param-
eters (¹,§), i.e., upon the maximum likelihood
estimates (¹̂, §̂). The maximum likelihood esti-
mates of the five parameters (¹̂1, ¹̂2, ¾̂1, ¾̂2, ½̂) of
a bivariate normal X are

¹̂=

Ã
¹̂1

¹̂2

!
, ¹̂1 = x̄1 =

1
n

nX
i=1

x1,i,

¹̂2 = x̄2 =
1
n

nX
i=1

x2,i,

§̂ =
(n¡ 1)
n

S, S =

Ã
s11 s12

s21 s22

!

s11 =
1

n¡ 1
nX
i=1

(x1,i¡ x̄1)2,

s22 =
1

n¡ 1
nX
i=1

(x2,i¡ x̄2)2,

s12 = s21 =
1

n¡ 1
nX
i=1

(x1,i¡ x̄1)(x2,i¡ x̄2),

¾̂1 =

s
(n¡ 1)
n

s11, ¾̂2 =

s
(n¡ 1)
n

s22,

½̂=
s12p
s11s22

,

where

x1,i = log(ith trended PD loss), 1· i · n,
and

x2,i = log(ith trended TE loss), 1· i · n:
The matrix S above is the unbiased estimator for
the §, while §̂ is the maximum likelihood esti-
mator for §, which is a biased estimator.
Based on the trended losses contributing to the

cell S(+,+) only, the maximum likelihood esti-
mate of the five parameters were

¹̂1 = 11:830, ¹̂2 = 11:057,

¾̂1 = 2:086, ¾̂2 = 2:399, and ½̂= 0:646:

The informal support of the bivariate normal-
ity of X lies in the use of two graphs: Figure
3 (Ellipse) and Figure 4 (QQ-Plot), see below.
The theory underlying the constructions of these
two figures rests upon a result, referred here to
as Theorem 1 (see below), from the subject of
multivariate statistical analysis (see Johnson and
Wichern [4]).

THEOREM 1 If the random vector X has a bivari-
ate normal distribution with parameters (¹,§),
then the random variable Q, a quadratic form,

Q = (X1¡¹1,X2¡¹2)0§¡1
Ã
X1¡¹1
X2¡¹2

!
(1)

is distributed as a chi-square distribution with 2
degrees of freedom.

Based on Theorem 1, provided that X is as-
sumed to be distributed as a bivariate normal,
then the following probability statement can be
made: The chance that

Q · Â22(0:95) (2)
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Table 4. Ellipse coverage probabilities: probability of
coverage

Expected Actual

95% 94.1% (1,574 out of 1,672 pairs)
90% 89.7%
50% 56.2%

is 95%, where Â22(0:95) denotes the 95th quantile
of a chi-square distribution with two degrees of
freedom.
In order to create Figure 3 based on inequal-

ity (2), two changes must be made. First, the X1
and X2 random variables are replaced by the Z1
and Z2 variables, the standardized version of the
X1 and X2. Second, the parameters (¹,§) are re-
placed by their sample estimates (¹̂, §̂) in order
to compute the values of Z1 and Z2 from the
data. After making these two changes, then the
inequality (2) becomes

Q̂ =
1

1¡ ½̂2 [Z
2
1 ¡ 2½̂Z1Z2 +Z22 ]· Â22(0:95):

(3)

The ellipse in Figure 3 is based on plotting the
observed values of (z1,z2) subject to the inequal-
ity (3).
Table 4 provides additional figures for the 50%

and 90% expected and actual coverage proba-
bilities based on the assumption of the bivariate
normality of X. There is a close agreement be-
tween expected and actual coverage probabilities
in Table 4, especially for the higher probability
levels. Thus, Figure 3 and Table 4 support infor-
mally that it is reasonable to state that X has a
bivariate normal distribution.
If the premise of bivariate normality is not ten-

able, then a search should be made for another
bivariate distribution, or alternatively, use copu-
las in conjunction with marginal distributions of
Y1 and Y2 as deemed appropriate; see Nelson [7]
regarding copulas.
In this paper, a single bivariate lognormal dis-

tribution has been considered to represent the
loss distribution. No distinction has been made

Figure 3. Ellipse with 95% probability coverage

with respect to the risk attributes. Thus, the same
distribution is implied for risks with differing
construction types, protection, or size. The size
may be represented by the location value and/or
the business interruption limit. If it is desirable
to have a family of bivariate lognormal distribu-
tions, differing by risk characteristics, then one
way to accomplish this goal may be by incor-
porating these risk attributes into the parameters
(¹,§). For example, to account for the effect of
the size of the risk, one can replace the parame-
ters (¹,§) by parameters (¹¤,§) according to

¹¤ =
Ã
¹¤1
¹¤2

!
=

Ã
¯0,1 +¯1,1 log(PD Value)

¯0,2 +¯1,2 log(TE Limit)

!
:

Here, the regression-like parameters ¯0,1, ¯1,1,
¯0,2, and ¯1,2 need to be estimated from the data.
A nonlinear estimation procedure, similar to the
GLM approach, may be used to estimate all the
model parameters. However, this topic is not pur-
sued further in this paper.
Another graphical procedure for illustrating in-

formally the reasonableness of the assumption
of the bivariate normality is the use of the QQ-
Plot–Figure 4 below. In order to create this fig-
ure, it is necessary first to introduce the notion of
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Figure 4. QQ plot for bivariate normality

“Squared Generalized Distance” statistics, d2j s,
(see Johnson and Wichern [4]):

d2j = (X1,j ¡ ¹̂1,X2,j ¡ ¹̂2)0S¡1
Ã
X1,j ¡ ¹̂1
X2,j ¡ ¹̂2

!
,

j = 1,2, : : : ,n: (4)

These statistics like the random variable Q, in
Equation (1), are quadratic forms which can be
computed from the data since the parameters
(¹,§) of the bivariate normal have been replaced
by their sample estimates (¹̂,S), see above. As-
suming that X has a bivariate normal distribu-
tion, Theorem 1 implies that the d2j statistics con-
stitute a sample of size n that is approximately
distributed as a chi-square with two degrees of
freedom. The approximate nature of this result
is due to the fact that the parameters (¹,§) have
been replaced by their estimates. The QQ-Plot,
Figure 4, was obtained by plotting the expected
quantiles from a chi-square distribution with two
degrees of freedom on the horizontal axis against
the actual observed quantiles of d2j s as plotted on
the vertical axis. (Refer to Appendix 3 for more
details.)
Figure 4 shows that the majority of points lie

close to a straight line, suggesting the reasonable-
ness of the assumption of the bivariate normality.

5. Specification of claim payment
function

The potential insured loss amounts Y1 (PD loss)
and Y2 (TE loss) are affected by loss-sensitive
provisions of a policy. In this paper, the loss-
sensitive provisions are comprised of a PD de-
ductible D1, a TE deductible D2, an attachment
point A, and a combined limit of L. The inter-
action of losses, Y0 = (Y1,Y2), with loss-sensitive
provisions (D1,D2,A,L) is defined through the
CPF, denoted by g(Y1,Y2), see below.
Before discussing the specification of a CPF

in a multivariate setting, it may be instructive to
review the form of the CPF in a univariate situa-
tion. For a single cover policy with a deductible
D, and limit L, let the random variable X de-
note an insured loss. Then the CPF, designated
by h(X) is

h(X) = minfmax(X ¡D,0),Lg

=min(X,D+L)¡min(X,D): (5)

The expected value of the h(X), E[h(X)], denotes
the severity component of pure premium–the
ALC, and can be stated as

E[h(X)] = LEV(D+L)¡LEV(D) (6)

where LEV(c) is the limited expected value of the
loss amount X subject to a cap c. It is computed
as

LEV(c) =
Z 1

0
min(x,c)dF(x)

where F denotes the cdf of the insured loss X.
In the case of X being distributed as a log-

normal with parameters (¹,¾2), then the LEV(c)
function is

LEV(c) = e¹+1=2¾
2
©

Ã
log(c)¡¹¡¾2

¾

!

+ c
·
1¡©

μ
log(c)¡¹

¾

¶¸
(7)

where © is the cdf of a standard normal.
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Thus, in the lognormal case, it is easy to com-
pute the expected value of the CPF using (6) and
(7). Simply use the exponential function and the
cdf of the standard normal, ©. However, the com-
putation of the ALC for multiple cover policies
is more complicated, as explained below.
For a multiple cover policy with a potential PD

loss amount y1 and a TE loss amount y2, sub-
ject to loss-sensitive features, (D1,D2,A,L), the
CPF as denoted by g(y1,y2) cannot be expressed
by a single formula and has to be defined piece-
meal. What is needed is a breakup of the positive
quadrant, R2+ = [0,1)£ [0,1), into ten regions,
as defined below. Then, the value of g(y1,y2) can
be determined depending upon the region where
the point (y1,y2) will reside.
The ten required regions are defined as

R1 = f(y1,y2) : y1 ·D1, y2 ·D2g
R2 = f(y1,y2) : y1 ·D1, D2 < y2 ·D2 +Ag
R3 = f(y1,y2) : y1 ·D1,

D2 +A < y2 ·D2 +A+Lg
R4 = f(y1,y2) : y1 ·D1, y2 >D2 +A+Lg
R5 = f(y1,y2) :D1 < y1 ·D1 +A, y2 ·D2g
R6 = f(y1,y2) :D1 +A < y1 ·D1 +A+L,

y2 ·D2g
R7 = f(y1,y2) : y1 >D1 +A+L, y2 ·D2g
R8 = f(y1,y2) : y1 >D1, y2 >D2,

y1 + y2 ·D1 +D2 +Ag
R9 = f(y1,y2) : y1 >D1, y2 >D2,

D1 +D2 +A < y1 + y2 ·D1 +D2 +A+Lg
R10 = f(y1,y2) : y1 >D1, y2 >D2,

y1 + y2 >D1 +D2 +A+Lg:

The diagram (Figure 5) depicts these regions.
These regions are used to integrate the function
g(y1,y2) over the positive quadrant, as explained
in Appendix 4. For illustrative purposes, the val-
ues chosen for these loss-sensitive features are
D1 = 1, D2 = 1, A= 4, and L= 4.

Figure 5. Regions of integration

The following will illustrate how g(y1,y2) is
computed according to the region. For region
1, R1 = f(y1,y2) : y1 ·D1, y2 ·D2g, the value
of g(y1,y2) is zero, since both losses are below
their respective deductibles. For region 2, R2 =
f(y1,y2) : y1 ·D1, D2 < y2 ·D2 +Ag, the value
of g(y1,y2) is also zero. In this case y1, the PD
loss, is below its deductible D1. The TE loss,
y2, exceeds its deductible D2, but due to the
imposition of the attachment A, the constraint:
y2¡D2 · A, there is no loss payment to be made.
For region 3, R3 = f(y1,y2) : y1 ·D1, D2 +A
< y2 ·D2 +A+Lg, the CPF is given by g(y1,y2)
= minfmax(y2¡ (D2 +A),0),Lg. Similar expres-
sions for g(y1,y2) may be written in terms of y1,
y2, D1, D2, A and L depending on the region
applied. In a computing environment, expres-
sions for the g(y1,y2) may be written in terms
of if-then-else based on the region.

6. Computation of average loss
cost based on bivariate lognormal

In this section, an algorithm is outlined for
computing the ALC, the severity component of
the pure premium. The following formula, (8),
may be used as the basis of calculating the
pure premium. This formula takes into consider-
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Table 5. Loss-sensitive provisions and related average loss cost

D1 D2 A L ALC

100,000 300,000 1,000,000 5,000,000 558,095
300,000 100,000 1,000,000 5,000,000 553,353
100,000 300,000 0 5,000,000 821,033
300,000 100,000 0 5,000,000 799,109
100,000 300,000 1,000,000 6,000,000 617,968
100,000 300,000 1,000,000 10,000,000 794,020
100,000 100,000 2,000,000 5,000,000 452,736
50,000 50,000 1,000,000 5,000,000 599,483

0 0 0 5,000,000 985,479
50,000 50,000 100,000 5,000,000 860,974

100,000 100,000 500,000 5,000,000 688,031
100,000 100,000 1,000,000 5,000,000 583,402
250,000 250,000 500,000 5,000,000 630,820
100,000 100,000 2,000,000 5,000,000 452,736
100,000 100,000 1,000,000 1,000,000 191,943

ation the way the data was organized in Section 3
by Table 1 and Table 2.

Pure Premium = FreqPDALCPD +FreqTEALCTE

+FreqPD&TEALCPD&TE (8)

where FreqPD, FreqTE, and FreqPD&TE are
frequency values, and ALCPD, ALCTE, and
ALCPD&TE are ALC values.
The ALCPD and ALCTE can be computed us-

ing appropriate univariate SOLD based on trend-
ed loss data fitted to cells S(+,NA) and S(NA,+),
respectively. In this paper, the interest lies only
in explaining how to estimate ALCPD&TE based
on a bivariate lognormal distribution.
In Section 4, the data was fitted to losses aris-

ing from cell S(+,+). A bivariate lognormal dis-
tribution was considered to represent the SOLD,
and its five parameters were estimated from the
data. In Section 5, the form of the CPF, the func-
tion g(y1,y2), was described in terms of the in-
teraction of loss data (y1,y2) with loss-sensitive
features, (D1,D2,A,L). Finally, an expression for
ALC can be provided by defining the ALC as a
double integral

ALCPD&TE(D1,D2,A,L;¹,§)

=
Z Z

g(y1,y2)fY1,Y2(y1,y2)dy1dy2 (9)

where (D1,D2,A,L) is loss-sensitive provisions
of the multiple cover policy,
(¹,§) are the parameters of the bivariate log-

normal distribution replaced by their sample es-
timates,
g(y1,y2) is the CPF as described in Section 5,

and
fY1,Y2

(y1,y2) is the density function of a bivari-
ate lognormal (see Section 4 and Appendix 3).
What is required is an estimate for the above

double integral. Since the computation of (9) is
rather technical, it has been supplied in Appen-
dices 4 and 5.
Table 5 provides estimates of

ALCPD&TE(D1,D2,A,L;¹,§) by considering dif-
fering loss-sensitive provisions. Such a table is
useful in assessing the impact of (D1,D2,A,L)
upon ALCPD&TE(D1,D2,A,L;¹,§).
It should be noted that the figures in Table 5

are based on the value of the estimated parame-
ters, as well as selection of the value of N (N =
100). The variable N implicitly controls the error
incurred in estimating ALC (see Appendix 4 for
the definition and use of the N term). The com-
putation time to estimate ALC in Table 4 was a
matter of a few seconds for the case of N = 100.
For the case of N = 1000 it was less than two
minutes.
The algorithm outlined above estimates ALC,

a double integral, using a numerical procedure
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that approximates the double integral (9) by a
suitable sum as explained in Appendix 4. An al-
ternative numerical procedure to estimate ALC
can be based on simulation. The simulation ap-
proach requires generating random pairs (y1,y2)
according to a bivariate lognormal whose param-
eters (¹,§) have been estimated from the data
(see Section 4). Then, for each simulated pair
(y1,y2), the value of CPF, g(y1,y2), is calculated
based upon the ten regions in which (y1,y2) re-
sides (see Section 5). This procedure is repeated
a number of times and the corresponding gener-
ated g(y1,y2) values are averaged to provide an
alternative estimate for the ALC. An important
step in the simulation procedure is generating
samples from a bivariate lognormal distribution.
Appendix 6 provides an algorithm for doing this
and discusses briefly some advantages as well as
drawbacks of the simulation approach.

7. Conclusions

This paper discussed pricing a property pol-
icy with multiple cover for PD and TE subject to
an attachment point, separate deductibles, and a
combined limit relying on a bivariate lognormal
distribution. Comparisons were made between
univariate and multivariate curve fitting. A
methodology needed to fit a bivariate lognor-
mal to the data was developed. An algorithm was
given for estimating the ALC, a double integral.
Hopefully, this paper will encourage other ac-
tuaries to contribute further to the methodology
needed for pricing multiple cover policies and
the applications of multivariate statistical tech-
niques to the actuarial field.
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Appendix 1. Kolmogorov-Smirnov
and Anderson-Darling goodness-
of-fit statistics

Kolmogorov-Smirnov (KS) or Anderson-Dar-
ling (AD) statistics are used to test if a given
sample of observations conforms to a hypothe-
sized univariate distribution of interest. In Sec-
tion 4, these statistics were calculated for four
standard distributions available in Crystal Ball in
order to rank informally the fitted distributions.
The smaller the value of the KS (or AD) statistic
the better the fit is deemed to be. A description of
how these statistics are calculated from the data
is given below; see the references for further in-
formation.
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Kolmogorov-Smirnov (KS): Let x1,x2, : : : ,xn
denote a random sample from a population with
cumulative distribution function F0, the “hypoth-
esized” cdf.
Let xn1,xn2, : : : ,xnn denote the corresponding

order statistics, and let F̂n denote the empirical
distribution function corresponding to the above
sample. In particular, F̂n is defined by

F̂n(x) =
1
n

nX
1

I(xi · x)

where

I(xi · x) =
Ã
1, if xi · x
0, if xi > x

!
:

The KS statistic Dn is defined as

Dn = sup jF̂n(x)¡F0(x)j

= max
1·i·n

max
½
i

n
¡F0(xni),F0(xni)¡

(i¡ 1)
n

¾
:

Refer to Bickel and Doksum [1] for more details.
Anderson-Darling (AD): AD provides an al-

ternative goodness-of-fit statistic to KS.
Let uni = F0(xni), 1· i · n, then AD is defined

as

AD =
Z 1

¡1
(F̂n(x)¡F0(x))2
F0(x)(1¡F0(x))

dF0(x)

=¡n¡ 1
n

nX
1

[(2i¡ 1) log(uni)

+ (2n+1¡ 2i) log(1¡ uni)]:
For more details, refer to the SAS Institute [9]
documentation on PROC UNIVARIATE.

Appendix 2. Histogram, Kernel
density, and QQ-plot

Figures 1 and 2 display three graphs: histo-
gram, kernel density, and QQ-Plot. These graphs
are useful for evaluating informally the assump-
tion of normality of the transformed losses.
Histogram and kernel density provide insight

with regard to the shape of the underlying den-

sity. The QQ-Plot is used to check informally the
validity of a specified assumed distribution.
The software R was used to plot these graphs.

R is available free through the Internet under the
General Public License. R a useful tool for do-
ing statistical analysis with many nice graphic
capabilities. It may be downloaded from the site
www.r-project.org. The R functions used to plot
these graphs were: hist(), density(), and qqnorm()
respectively.
Histogram: Histograms provide a rough

glimpse of the shape of a density function. The
following description of the histogram is from
Silverman [10].
Given a sample of observations x1,x2, : : : ,xn,

select an origin point x0 and a bin width h. De-
fine the bins to be the intervals [x0 +mh,x0+
(m+1)h), for positive and negative integers m.
The histogram is then defined by

f̂(x) =
1
nh
(Number of xi in same bin as x):

Kernel Density: Kernel density estimators, as
compared to histograms, provide smoother esti-
mates of the density function.
A kernel, K(x), is any nonnegative function

with the following propertyZ 1

¡1
K(x)dx= 1:

Given a kernel K(x) and a positive number h
called a smoothing parameter, then the kernel es-
timator is defined as

f̂(x) =
1
nh

nX
i=1

K

μ
x¡ xi
h

¶
:

See Silverman [10] for more details.
QQ-Plot: Normal Case: Let x1,x2, : : : ,xn be a

sample of observations with corresponding order
statistics denoted by xn1,xn2, : : : ,xnn. To check in-
formally the assumption of the normality of the
data, a QQ-Plot is constructed. Plot the pointsμ

©¡1
μ

i

n+1

¶
,xni

¶
, 1· i · n,
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where ©¡1 denotes the inverse of the cdf of a
standard normal. The Excel function NORMINV
may be used to compute the values of ©¡1.
If the points in the QQ-Plot lie about a straight

line, then there is informal support for the as-
sumption of normality.
For Figure 1, the data used were

xi = log(ith Trended PD loss), 1· i · n, and
for Figure 2, the data applied were
xi = log(ith Trended TE loss), 1· i · n. In both
cases the transformed trended losses arose from
those losses contributing to the cell S(+,+) only.

Appendix 3. Bivariate distributions
and related results

A good reference book on the subject of mul-
tivariate statistical analysis is the text by John-
son and Wichern [4]. The definitions and results
stated here are based mainly on that book.
The bivariate lognormal distribution Y is de-

rived from bivariate normal distribution X by ex-
ponentiation of the X1 and X2 components of X.
That is

Y =

Ã
Y1

Y2

!
=

Ã
exp(X1)

exp(X2)

!
:

It has the same parameters (¹,§) as X.
The standardized bivariate normal distribution

Z is related to the bivariate normal distribution
X according to

Z1 =
(X1¡¹1)
¾1

, Z2 =
(X2¡¹2)
¾2

where ¹1, ¹2, ¾1, and ¾2 are parameters of the
bivariate normal X as defined in Section 4.
The density of a bivariate normal distribution

X is

fX1,X2
(x1,x2) =

1
2¼

1
j§j1=2 exp

μ
¡1
2
Q

¶
where j§j= ¾21¾22(1¡ ½2) is the determinant
of the variance-covariance matrix §, and Q =
(x¡¹)0§¡1(x¡¹) is a quadratic form in x1
and x2.

The standardized bivariate normal Z has den-
sity

fZ1,Z2 (z1,z2) =
1

2¼
p
1¡ ½2

£ exp
·
¡ 1
2(1¡ ½2)

³
z21 ¡ 2½z1z2 + z22

´¸
:

It should be noted that this density has only one
parameter, namely ½, and plays an important role
in the computation of the ALC, as explained in
Appendix 4.
The density of the bivariate lognormal distri-

bution Y is

fY1,Y2(y1,y2) =
1

2¼j§j1=2
1
y1y2

exp
μ
¡1
2
Q

¶
,

where

Q = (log(y1)¡¹1, log(y2)¡¹2)0§¡1
Ã
log(y1)¡¹1
log(y2)¡¹2

!
is a quadratic form, and ¹ and § are the param-
eters of the corresponding bivariate normal dis-
tribution.
Figure 3 (Ellipse) and Figure 4 (QQ-Plot) were

based on Theorem 1. A more complete version
of that theorem is stated here.

THEOREM 1 Let X be distributed as a bivari-
ate normal with parameters (¹,§) where j§j> 0.
Then
(i)

Q = (X1¡¹1,X2¡¹2)0§¡1
Ã
X1¡¹1
X2¡¹2

!
is distributed as the chi-square distribution with 2
degrees of freedom, denoted by Â22,
(ii) The bivariate normal distribution assigns

probability 1¡® to the interior of the ellipse(
x=

Ã
x1

x2

!
: (x1¡¹1,x2¡¹2)0§¡1

Ã
x1¡¹1
x2¡¹2

!

· Â22(1¡®)
)
,

where Â22(1¡®) denotes the (1¡®)th quantile of
Â22.
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The quadratic form, Q of Theorem 1 (i), may
also be re-stated as

Q =
1

1¡ ½2 [Z
2
1 ¡ 2½Z1Z2 +Z22 ]:

This alternative form of Q was used to plot the el-
lipse given in Figure 3 upon replacing the param-
eters ¹ and § by their respective sample estimates
¹̂ and §̂.
Finally, regarding Figure 4, the x values of the

points used to plot the QQ-Plot were the quantiles
of a chi-square with two degrees of freedom eval-
uated at (i¡ 0:5)=n, 1· i · n. The corresponding
y values were based on ordered statistics corre-
sponding to the squared generalized distance sta-
tistics, d2j s.

Appendix 4. An algorithm for
computing average loss cost
based on a bivariate lognormal
distribution

The formula (9) above is reproduced here as
(A4.1)

ALCPD&TE(D1,D2,A,L;¹,§)

=
Z Z

g(y1,y2)fY1,Y2(y1,y2)dy1dy2

(A4.1)

where (D1,D2,A,L) are the loss-sensitive features
of the policy,
(¹,§) are the parameters of the bivariate log-

normal distribution, estimated from the data us-
ing (¹̂, §̂),
g(y1,y2) is the CPF, see Section 5, and
fY1,Y2(y1,y2) is the bivariate density of lognor-

mal (see Appendix 3).
In order to estimate the double integral in

(A5.1), it would be helpful to break up this task
into a number of steps as follows:

(a) Transform the variables (y1,y2) to (z1,z2),
(b) Divide the plane into N2 rectangles (grids)

as defined below,
(c) Compute the value of the CPF at the center

of each rectangle,

(d) Compute the probability that a pair of
losses–a random vector–will fall in the rect-
angle, and finally,
(e) Multiply the value of the CPF from step (c)

by the probability from step (d) and sum these
terms for all N2 rectangles to obtain an estimate
for ALC.

It may be helpful to provide more details with
regard to the above steps.
Step (a). Replace the bivariate normal distri-

bution parameters by their maximum likelihood
estimates (see Section 4). Then use the following
relationshipÃ

y1

y2

!
=

Ã
exp(¹̂1 + ¾̂1z1)

exp(¹̂2 + ¾̂2z2)

!
:

Step (b). For a standard normal, the univari-
ate case, the chance that it takes a value outside
the interval [¡3,3] is small, being 0.0026998. By
being conservative, it can be stated that practi-
cally no values of Zis, i = 1,2 would lie outside
the interval [¡10,10].
In order to evaluate the double integral given

by (A4.1) in (z1,z2), the plane R
2 is partitioned

into N2 rectangles as described below. Suitable
values for N would be 100 or 1000, giving rise
to 10,000 or 1,000,000 rectangles.
The process of creating these N2 rectangles

begins by partitioning the horizontal and the ver-
tical axes into intervals.
On the horizontal axis, partition the interval

[¡10,10] into subintervals using points z1,i,
where

z1,i =¡10+
20
N
i, 1· i ·N:

The same type of partitioning is done on the ver-
tical axis by using points z2,j , where

z2,j =¡10+
20
N
j, 1· j ·N:

The rectangle Iij , 1· i ·N and 1· j ·N
(see Figure 6) has four corner points
given by P = (z1,i¡1,z2,j¡1), Q = (z1,i,z2,j¡1),
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Figure 6. Rectangle Iij

R = (z1,i,z2,j), and S = (z1,i¡1,z2,j). The center of
the rectangle is at the point Cij = (z̄1,i, z̄2,j) where

z̄1,i =
z1,i¡1 + z1,i

2
and

z̄2,j =
z2,j¡1 + z2,j

2
:

Step (c). For each rectangle Iij defined above,
the value of the CPF, g(y1,y2), is evaluated at the
point Cij , the center of the rectangle, using the
formula

g(exp(¹̂1 + ¾̂1z̄1,i),exp(¹̂2 + ¾̂2z̄2,j)): (A4.2)

The value of g(y1,y2), depends upon where the
point Cij resides, according to the ten regions
specified in Section 5 above.
Step (d). It is necessary to compute the prob-

ability that the random vector Z, a standardized
bivariate normal, would lie in the rectangle Iij ,
i.e., P(Iij). This probability can be determined in
terms of the cdf of a standardized bivariate nor-
mal F as

F(z1,z2) = P(Z1 · z1 \Z2 · z2):
Thus,

P(Iij) = F(z1,i,z2,j)¡F(z1,i,z2,j¡1)
¡F(z1,i¡1,z2,j)+F(z1,i¡1,z2,j¡1):

(A4.3)

Equation (A4.3) can be evaluated by estimating
the cdf of a standardized bivariate normal evalu-
ated at the four corner points P, Q, R, and S of
the rectangle (see Figure 6 above). There is no
standard function available in Excel for comput-

ing F(z1,z2). Fortunately, there is an algorithm
provided by Drezner and Wesolowsky [2] for es-
timating F(z1,z2) that can be programmed rela-
tively easily (see Appendix 5 for more details).
Step (e). Finally, the double integral in (A4.1)

is replaced by the sum
10X
k=1

X
Iij"Rk

fg(exp(¹̂1 + ¾̂1z̄1,i),exp(¹̂2 + ¾̂2z̄2,j))gP(Iij):

(A4.4)
A program written in Excel VBA was used to
calculate the sum given by (A4.4).

Appendix 5. Drezner and
Wesolowsky algorithm for
computing the cumulative
distribution function of a
standardized bivariate normal
distribution
Below is an outline of the Drezner and Weso-

lowsky algorithm [2] for the case K = 5, where
K is the number of points used in the Gaussian
quadrature. The interested reader should refer to
the above paper in order to gain additional in-
sights into their algorithm. The Excel VBA pro-
gram referred to in this paper uses their algorithm
as sketched below to calculate ALC.
Let FZ1,Z2(z1,z2;½) be the cdf of a standardized

bivariate normal distribution with the parameter
½. The corresponding density is

fZ1,Z2(z1,z2;½)

=
1

2¼
q
(1¡ ½2)

£ exp
·
¡ 1
2(1¡ ½2)

³
z21 ¡ 2½z1z2 + z22

´¸
:

See Appendix 3.
Let ©(z) denote the cdf of a standard univariate

normal. In Excel it is the function NORMDIST.
The tail probability for a standardized bivariate

normal is denoted by L(z1,z2;½), where

L(z1,z2;½) =
Z 1

z1

Z 1

z2

fZ1,Z2(u,v)dudv:
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Drezner and Wesolowsky state that

FZ1,Z2
(a,b;½) = L(a,b;½)+©(a) +©(b)¡ 1:

(A5.1)

Furthermore, Drezner and Wesolowsky approxi-
mate L(a,b;½) according to

L(a,b;½)

¼ 2¼½
5X
i=1

wifZ1,Z2
(a,b;½xi) +©(¡a)©(¡b)

(A5.2)
where

xi wi

0:04691008 0:018854042

0:23076534 0:038088059

0:5 0:045270394

0:76923466 0:038088059

0:95308992 0:018854042:

Since fZ1,Z2(z1,z2;½) can be easily programmed,
and ©(z) is a standard function (at least in Ex-
cel), then it is not hard to compute (A5.1) pro-
vided that L(a,b;½) can be approximated based
on formula (A5.2).

Appendix 6. Notes on simulation

Simulation can provide an alternative method
for computing ALC. An advantage of the simula-
tion approach is flexibility. One disadvantage of
a simulation is that it may require longer comput-
ing times. Another disadvantage is that it may re-
quire storing the values of the intermediate sim-
ulated losses in order to compute the ALC.
It is easy to generate independent univariate

normal variates. The more challenging require-
ment is to generate correlated normal variates.
Fortunately, this can be accomplished on the ba-
sis of a known result from Linear Algebra called
the Choleski decomposition (refer to Venables

and Ripley [11]). Choleski decomposition states
that a positive definite matrix can be written as
a product of a lower triangular matrix and its
transposition. In particular, one can write

§ = LL0

where § is a variance-covariance of a bivariate
normal distribution, and L is a lower triangular
matrix as defined below.
The necessary steps to simulate a pair of

(y1,y2) values according to a bivariate lognormal
distribution with parameters (¹,§) are:
Step 1. Generate two independent standard

(univariate) normal variates and label them
as V1 and V2. The Excel functions RAND and
NORMINV can help to accomplish this task.
Step 2. Let

V =

Ã
V1

V2

!
based on Step 1.
Define

X = ¹+LV,

where

¹=

Ã
¹1

¹2

!
, L=

Ã
¾1 0

¾2½ ¾2

q
1¡ ½2

!
:

Then, X is distributed as bivariate normal with
parameters (¹,§). If the values of (¹,§) are not
known, then their estimates should be substituted.
Step 3. Let

Y =

Ã
exp(X1)

exp(X2)

!
where

X =

Ã
X1

X2

!

has been computed according to Step 2.
Step 4. Repeat Steps 1, 2, and 3, n times as

necessary.
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