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Pricing in a Competitive Insurance 
Market Driven by Fractional Noise

by Alexandros A. Zimbidis

AbSTRACT

Motivated by the empirical evidence of the long-range depen-

dency found within the Greek motor insurance market, we for-

mulate a particular stochastic pricing model in a continuous 

framework. We assume the structure of a competitive insur-

ance market where the business volume of each company is di-

rectly related to the existing relativity between the company’s 

premium and the market’s average premium. Using a simple 

demand function and modeling the movements of the market 

via a fractional Brownian motion, we derive the optimal pre-

mium control strategy. Finally, we support the importance of 

the specific approach by a short application. It is shown that the 

optimal premium strategy is considerably different under the 

absence or existence of the long-range dependency.
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tion that determines the volume of business under 
the different levels of premium. Such a model had 
been initially proposed by Taylor (1986) in a discrete 
framework and revisited in a continuous framework 
by Emms, Haberman, and Savoulli (2007). The de-
mand functions appearing in those works all contain 
the concept of the “average premium of the market,” 
which is modeled either on a deterministic basis or 
stochastically via the standard Brownian motion.

In this paper, we adopt the pricing framework 
model of a competitive market using the fractional 
Brownian motion as a modeling tool for the move-
ment of the market’s average premium. This is sup-
ported by the empirical evidence of the data gathered 
from the Greek motor insurance market within the 
last decade.

This paper is organized as follows. In Section 2, 
we briefly discuss the concept of the competitive 
insurance markets. Section 3 provides a short back-
ground on fractional Brownian motion. In Section 4, 
we formulate the general model, and in Section 5 we 
solve a special case. Section 6 contains some insights 
into the structure of the Greek motor insurance mar-
ket, identifies the phenomenon of long-range depen-
dency, and provides a short numerical application. In 
Section 7, we add some final comments.

2. Competitive insurance markets

The structure of a competitive insurance market 
can be extremely complicated. Here, we consider 
only the effect of the premium relativities, and how 
these quantities determine the market share of each 
company. We assume that the volume of business is 
determined via the function

 V t f p t p t t( ) ( ( ), ( ), ( )),= �  (1)

where V(t) is the volume of business, p(t) is the pre-
mium rate of the company, p t( )  is the market’s aver-

1. Introduction

The pricing process is a critical matter for any in-
surance company. Traditionally, the specific prob-
lem is tackled within a static framework, that is, the 
pure premium is set equal to the expected claims of 
a certain time period, in addition to a margin charac-
terized as safety loading. A further increase due to 
expense and profit provisions is also added. Hence, 
the following structure holds for the calculation of 
the gross premium (Figure 1).

Under the static approach, the safety loading is de-
termined on a constant basis, which ultimately results 
in an explosive level of surplus. The dynamic setting 
proposed by Lundberg (1903) and Cramer (1930) at 
the beginning of the twentieth century provided the 
necessary theoretical framework for the solution of 
this undesirable problem of the explosive surplus. 
Under this dynamic approach, Borch (1967) con-
sidered a flexible model where the safety loading is 
partially or fully controlled, resulting in a stable state 
for the surplus level. An insurance company may 
simultaneously stabilize its surplus level while also 
following potential underwriting cycles of the total 
claims. Following the approach of Borch (1967), 
Vandebroek and Dhaene (1990), Martin-Löf (1994), 
Norberg (1999), and Zimbidis (2008) have provided 
further insights into the problem of premium control. 
The drawback of this approach is the resulting vari-
able premium that may upset the client’s behavior. 
Premium changes (especially increases) normally 
lead clients to investigate the market and, perhaps, 
change their policy. Of course, the decision for a 
change is more frequent (and easier) in the general 
insurance market where we have annual renewable 
policies.

Therefore, a more sophisticated dynamic model 
(where the premium is partially or fully controlled) 
should also include the concept of a demand func-

Figure 1. Traditional gross premium calculation
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B → C: All the companies (and consequently the 
whole market) drop their prices to regain their mar-
ket share and secure their position.

State C: C is a partially stable state of the sys-
tem. The companies will continue to charge low 
premium rates, insofar as their financial strength 
permits them to.

C → Out: A company is not strong enough to main-
tain the low premium rates and either goes bankrupt 
or (trying unsuccessfully to increase its rates while 
others retain the low ones) goes out of the market.

C → D: A company (probably one of the major 
ones) increases its rates, trying to return to profitable 
levels. The company manages to retain its clients, al-
though the total market suggests lower premium rates.

State D: D is a partially stable–unstable state of 
the system. The market will continue charging low 
premium rates for a while, while a few companies 
charge correct premium rates and make profits.

D → A: All the companies increase their premium 
rates up to profitable levels.

age premium rate, and �( )t  is a vector of different 
parameters (e.g., money spent in the advertisement 
campaign of the company) that affects the market 
share of the company at time t. A more theoretical ap-
proach for market description (states and movements) 
may be found in Figure 2 that provides a simplified 
version of the respective payoff matrix.

State A: A is the stable state of the system. Ev-
ery company, and consequently the whole market, 
retains high constant premium rates within profitable 
levels. The market shares of all companies are also 
more or less constant.

Out → A : A new company enters the market.
A → B: The new company (or one of the previ-

ously existing companies of the market) is trying to 
enhance its market share by cutting its prices. The 
company may achieve this goal and moves the sys-
tem into State B.

State B: B is the unstable state of the system. The 
other companies either slowly or quickly understand 
the loss and plan their reactions.

Figure 2. The payoff matrix of a competitive insurance market
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3.1. The general theoretical framework

In the rest of this paper, all random variables and 
processes are defined on a given complete probabil-
ity space (Ω, F, PH), where Ω is the sample space, 
F is the s-algebra generated as the PH completion of 
the natural filtration of the WH process, and PH is the 
respective probability measure.

The WH = {WH(t); t ≥ 0} process is assumed to 
be a fractional Brownian motion with a Hurst expo-
nent H, where 0.5 ≤ H ≤ 1 and may be regarded as 
the fractional time derivative of the Gausssian white 
noise. The basic properties of such a process are

2.1 Pr[WH(0) = 0] = 1;

2.2  WH(t) is an F - measurable function (random 
variable) for each t  ℜ+ , with E[WH(t)] = 0;

2.3  E[WH(s) ? WH(t)] = 
1

2
[ ]s t s tH H H2 2 2+ − −  

for any s, t  ℜ+ .

The expectation operator E[ ] is applicable using 
the PH probability measure.

Using the properties mentioned here and Kol-
mogorov’s continuity criterion, we can determine 
that fractional Brownian motion has a version with 
continuous sample paths with probability one, but 
these paths are nowhere differentiable. Further, we 
should state that fBm is a Gaussian process, self-
similar with stationary increments exhibiting long-
range dependence.

Obviously, for the special value of the Hurst expo-
nent H = 0.5, the process is reduced to the standard 
Brownian motion. For H ≠ 0.5 the process ΩH is not 
a Markovian, martingale, or even semimartingale  
process. Therefore, the classical stochastic calcu-
lus, the theory of integration, and the other power-
ful tools of standard stochastic analysis are not (yet!) 
available, although there are certain simple integral 
transformations connecting the fractional Brown-
ian motion with standard Brownian motion (Norros, 
Valkeila, and Virtamo 1999).

W t c H t x x dW tH H H
( ) ( ) (( ) ) (( ) ) (= − − −











+ − + −

ℜ
∫

1

2

1

2  )).

  (4)

Generally speaking, a company’s premium de-
crease (compared with the market’s average pre-
mium) will raise the company’s market share and 
vice versa; that is, for a constant value of p t( ) , we 
obtain

 lim ( ( ), ( ), ( ))
( )p t

f p t p t t
→∞

=� 0  (2)

while

 lim ( ( ), ( ), ( )) ,
( )p t

f p t p t t E
→

=
0

�  (3)

where E corresponds to the total market.
Now, the fundamental question is why should 

long-range dependency exist in the process that 
describes the market’s average premium within an 
insurance market? Suppose an insurance company 
makes the first move by decreasing its premium and 
consequently lowering the market average. Then the 
other companies will do the same to retain their cli-
ents, and the average will move down even more. 
So, we should expect to observe a “persistency” phe-
nomenon (and not an anti-persistency phenomenon) 
and therefore a value for the Hurst exponent within 
the interval (½ ,1).

3. Fractional brownian motion—
Theory and evidence

Fractional Brownian motion (fBm) has proved to 
be quite an efficient tool for modeling complicated 
systems in many scientific areas, such as finance, bi-
ology, image processing, and network traffic in the 
last two decades. Kolmogorov (1940) initially intro-
duced such a stochastic motion, while Mandelbrot 
and Van Ness (1968) discussed the physical deriva-
tion of this process. The climatologist Hurst (1951) 
observed the long-range dependency property within 
the data of the yearly water flows of the Nile River. 
In this section, we provide a short note for the re-
spective theoretical framework required for fBm, as 
well as a special final subsection that deals with the 
estimation procedure of the basic index of this pro-
cess. This basic index is named Hurst exponent after 
the climatologist Hurst.
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The  symbol corresponds to the Wick product,

while F W t dW t
T

H H

0
∫ ( ( )) ( )  is the path-wise Riemann-

Stielges integral. This is well defined for H > 0.5, 
given that F is continuously differentiable. More-
over, the following result holds if F9 = F:

 F W t dW t W T
T

H H H

0

0∫ = −( ( )) ( ) ( ( )) ( ).F F  (5)

It is proved that the wick stochastic integral de-
scribed here has the zero-mean property (Duncan, 
Hu, and Pasik-Duncan 2000).

3.3. Stochastic control for linear 
systems driven by fractional noises

We assume the general format of a linear stochas-
tic controlled differential equation,

dx t A t x t B t u t dt( ) ( ( ) ( ) ( ) ( ))= +

+ +( ( ) ( ) ( ) ( )) ( ),C t x t D t u t dW tH  (6)

where x(t) is the state variable, u(t) is the control vari-
able, A(t), B(t), C(t), and D(t) are given essentially 
bounded deterministic (matrix-valued) functions of 
t and WH = {WH(t); t ≥ 0}, is a fractional Brownian 
motion with a Hurst exponent H.

Then, we denote with YH the class of (F
t
H)-

adapted processes u, where u = {u
t
, t ≥ 0}, for which 

the system admits a unique strong solution x
u
. Of 

course, then x
u
 is an (F

t
H)-adapted process. Actu-

ally, for control purposes, we are interested only in 
closed-loop policies. Therefore, we initiate a sub-
class of admissible controls as the class YH

ad
 of those 

u’s in YH which are (F
t,u

H)-adapted processes where 
(F

t,u
H) is the natural filtration of the corresponding 

state process x
u
. Then, the pair (u, x

u
) is called an 

admissible pair. Now we introduce the functional,

Significant research efforts have been made in two 
directions:

(a)  Stochastic integration, that is, to establish an 
analogous theory of stochastic integration re-
taining the desirable properties of the Ito integral 
as the zero mean property (see the references in 
Section 3.2), and

(b)  Stochastic control, that is, to launch a concrete 
general theory for the control and optimization 
of systems driven by fractional Brownian mo-
tion (Kleptsyna, Breton, and Viot 2003; Hu and 
Zhou 2005).

3.2. Stochastic integration for the fbm

The first attempts by Lin (1995) and Dai and 
Heyde (1996) to define an integral with respect to the 
fractional Brownian motion with a Hurst exponent 
H > 0.5 resulted in a stochastic integral which does 
not posses the zero-mean property. Their approach 
was rather standard, defining the stochastic integral 
as the limit of Riemannian sums in L2(Ω; ℜ ) – the 
space of real-valued square integrable functions. As 
the absence of zero-mean property is not convenient 
either for the theoretical development or practical 
(usually financial) applications, new proposals have 
been raised (Duncan, Hu, and Pasik-Duncan 2000; 
Carmona and Coutin 2003). These alternative pro-
posals have been developed using the techniques of 
Malliavin calculus and Wick product.

Hence, given a time interval [0,T], a function F 
continuously differentiable that satisfies an exponen-
tial growth condition and H > 0.5, we can define the 
Wick stochastic integral with respect to fractional 
Brownian motion as follows:

F W t dW t
T

H H

0
∫ ( ( ) ( ))  

= −∫ ∫ −F W t dW t H F W t t dt
T

H H
T

H H

0 0

2 1( ( )) ( ) ( ( )) .9

 J u J x u E x t Q t x t u t R t u t dt( ) : ( , ) ( *( ) ( ) ( ) *( ) ( ) ( ))= = + +0 xx T G x T
T

*( ) ( ) , 
0
∫








  (7)
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where R is the respective range, S is the standard de-
viation, and T is the duration of the sample data. Ad-
ditionally, the Hurst index H is directly related with 
the fractal dimension of these data and the following 
equation holds:

 H = E + 1 – D (14)

where E is the Euclidean dimension (e.g., E = 0 for a 
point, E = 1 for a line, E = 2 for surface) and D is the 
fractal dimension of the sample data.

Regarding the procedure for the estimation of the 
Hurst exponent, we describe the algorithm based on 
the rescaled range.

Consider the data series f
1
, f

2
, . . . f

n
. Then we 

follow the steps described here.

Step 1. Calculate the sample mean and standard 
deviation

   ( ) ( ( ))n
n

      S(n)
ni

n

i

n

= =
−

−



= =
∑ ∑1 1

11

2

1i i

n




1

2

.

where Q(t), R(t) and G are positive definite 
matrices.

Hence, the pair (uopt, x
u
opt) is defined as the optimal 

pair if

 J u J x u u Uopt
ad( ) inf{ ( , ); },= ∈0  (8)

while the J(uopt) is established as the optimal cost for 
the system.

Regarding the theoretical results with respect to 
the derivation of the optimal solution uopt for the sys-
tem described by expressions (6) and (7), we have 
the following basic theorem.

Theorem 3.1. The optimal solution for the system 
of expressions (6) and (7) is determined via the feed-
back formula

 u t K t x topt ( ) ( ) ( )= ⋅  (9)

where K(t) = (K
1
(t), . . . , K

m
(t))* satisfies the equation 

given here

K t R t t B t s Q s K s R s K s*( ) ( ) ( ) ( ) ( )( ( ) *( ) ( ) ( ))⋅ ⋅ + ⋅ + ⋅ ⋅  dds
t

T

∫

  + ⋅ ⋅ ⋅ + ⋅∫∫ D t s s t C s D s K s
S

T

T

( ) ( ) ( , ) ( ( ) ( ) ( ))*(�
0

� � � � � QQ s K s R s K s ds ds( ) *( ) ( ) ( ))+ ⋅ ⋅ �  (10)

 
+ ⋅ + + ⋅ G T B t D t s t C s D s K s ds�( ) ( ) ( ) ( , )( ( ) ( ) ( ))*� � � � � �

00

0 0
T

a e s T∫








 = ∈, . . [ , ]   

while

 ( , ) ( )s t H H s t
H= − − −

2 1
2 2

 (11)

 
�( ) exp ( ( ) ( ) ( )) ( , )( ( ) (t x E A s B s K s ds s s C s D= ⋅ + + +0

2 2 � � ss K s C s D s L s ds ds
ttt

) ( ))( ( ) ( ) ( ))*� � � �+








∫∫∫

000












.  (12)

Proof: Refer to the 2nd special case of Theorem 
(4.1) of Hu and Zhou (2005).

3.4. Estimation of the Hurst exponent

Given the data of a time series, the Hurst exponent 
H may be regarded as a measure of smoothness and 
is defined as

 H
R S

T
=

ln( / )

ln( )
,  (13)

Step 2. Calculate the running sum of the centered 
observations,

�( ) [ ( )] , ,...,� � � �
�

= − =
=
∑ i       n.n
i 1

1 2

Step 3. Calculate the respective range of the data,

R n( )
n n

= −
≤ ≤ ≤ ≤

max ( ) min ( ).
1 1� �

� �� �

Step 4: The Hurst exponent is defined as 

H( )
ln( ( ) / ( ))

ln( )
.0 =

R n S n

n
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expenses) to their employees (suppliers), and divi-
dends to their shareholders. Further, they invest 
their surplus or borrow money to cover a probable 
deficit. Generally, they are forced to charge high 
premiums to avoid ruin that occurs upon large ran-
dom fluctuations, while at the same time they are 
forced to reduce their premiums in favor of their 
clients. These upside premium movements affect 
the volume of business and the respective market 
share of each company. In general, the following 
differential equation describes the time develop-
ment of the reserve fund and the whole situation 
reported earlier.

 dF t t F t dt p t c t dV t( ) ( ) ( ) [ ( ) ( )] ( ),= + −  (15)

where

V(t):  is the volume of business at time t (input 
variable)

p(t):  is the premium rate of the company at time t 
(controlled variable)

F(t): is the reserve value at time t (state variable)
d(t):  is the force of interest earned by the fund at 

time t
c(t):  is the total cost per policy (claims plus ex-

penses and profit margin) at time t.

The volume of business V(t) may have the very 
general format as described in Expression (1). The 
company manager may decide the level of the pre-
mium on a continuous basis for a certain time period 
zero up to time T. Ideally, the manager should target 
a constant premium rate and constant reserve level. 
As this is not viable, the manager targets a smooth 
path for the premium rate plus a final reserve value, 
which is not very different from the initial value. 
Hence, the target is described by the expression

 min [ ( ( ), ( ))].
( )p t

E g p t F T  (16)

The general control problem when the average 
premium of the market p(t)  (that appears in the vol-
ume function V(t)) is driven by a fractional Brownian 
motion that is quite difficult. In Section 5, we solve 
the problem using two special functions for f ( …) 
and g(…).

Step 5: Split the whole data series in two subseries,

    1 2 111 11
, , ......, , ......n n n  and   where  +   

n
n11 2

= 




,

and repeat steps 1–4, estimating the Hurst index that 
corresponds to data series   1 2 11

, , ......, n  defined as 
H(1,1) and Hurst index that corresponds to data se-
ries  n n11 1+ , ......  defined as H(1,2). Then we calcu-
late the mean as

H
H H

( )
( , ) ( , )

.1
1 1 1 2

2
=

+

Step 6. Continue with a second split and obtain the 
following four subseries

   1 121 21 11
, ......, , ......,n n n  +

   n n22 n n  
11 221 1+ +, ......, , ......,

where n
n

21
11

2
= 





 and n n
n n

22 11
11

2
= +

−




.

Repeat steps 1–4 for the four subseries and ob-
tain estimations for the Hurst exponent for each 
subseries,

H(2,1), H(2,2), H(2,3) and H(2,4),

and finally derive their average,

H
H H H H

( )
( , ) ( , ) ( , ) ( , )

.2
2 1 2 2 2 3 2 4

4
=

+ + +

Step 7: Continue splitting the data series up to the 
level where at least eight data points are within the 
region of calculations. The following estimations are 
obtained:

H(0), H(1), H(2), H(3),…, H(l).

Using the l resulting points mentioned earlier for 
the Hurst values and a standard linear regression pro-
cedure, we obtain a straight line in the x-y plane. The 
slope of this line is the final estimation for the Hurst 
exponent.

4. The general pricing model 
within a competitive market

Insurance companies receive premiums while 
they pay claims to policyholders, salaries (other 
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Proof. We apply theorem (3.1) for the special values 
as described in Equation (19),

A(t) = d(t), B(t) = mE, C(t) = 0,

D(t) = sE, G(t) = 0, R(t) = 0 and G = 1. (21)

Then the optimal control is established as a feed-
back mechanism of the reserve value,

ˆ( ) ( ) ( ( ) ),p t K t F t F= ⋅ − 0

where K(t) is determined by the general Equation 
(10), substituting the values determined by relation-
ships (21). Hence, we derive a special integral equa-
tion described as Carleman type,

 �
�

�0
2

T

s t K s ds∫ = −( , ) ( ) .
E

 (22)

The general solution of Equation (22) is

K t a t
d

dt
w w tH

H H H

t

T

( ) ( ). .= − ⋅ ⋅ ⋅ −


− − −∫0 5 2 1 0 5 1

2

⋅ ⋅ − ⋅








− −∫  
d

dw
z w z

E
dz dwH H

w
0 5 0 5

2
0

. .( ) ,
�

�
 (23)

where

a
H

H H HH =
−

⋅ + ⋅ −
G

G G

( )

( . ) ( . )
.

2 2

2 0 5 1 5 3

The relationship (23) may be further simplified. 
By removing the functional structure, the second in-
tegral in expression (23) is easily calculated using 
the Beta function

z w z dzH H
w

0 5 0 5

0

. .( )− −⋅ −∫
= ⋅ − −−w B H HH2 1 1 5 1 5( ) ( . , . ).  (24)

Consequently,

d

dw
z w z dzH H

w
0 5 0 5

0

. .( )− −⋅ −∫
= − ⋅ ⋅ − −−2 1 1 5 1 51 2( ) ( . , . ).H w B H HH

 (25)

Substituting the last result (25) in the complex 
Expression (22), we finally obtain a short compact 
analytic expression for the feedback factor,

5. Solution of a reduced version of 
the pricing model

A reduced version of the general model is obtained 
using the following simple functions for f, g that is

f p t p t t E
p t

p t
( ( ), ( ), ( ))

( )

( )
,� =

g p t F T F T F( ( ), ( )) [ ( ) ] .= − 0
2

Therefore, the optimization problem is described 
as

 min[ ( ) ]
( )p t

F T F− 0
2  (17)

under the restriction of the SDE,

dF t t F t dt E
dp t

p t
p t c t( ) ( ) ( )

( )

( )
[ ( ) ( )].= + −

If we substitute

 ˆ( )
( )

( )
p t

c t

p t
= −1  (18)

and also assume that the market average premium 
p t( )  is driven by a fractional Brownian motion 

that is

dp t dt dW tH( ) ( ),= +� �

we obtain the SDE,

dF t t F t dt Ep t dt dW tH( ) ( ) ( ) ˆ( )[ ( )],= + +� � �

or, equivalently,

dF t t F t Ep t dt( ) [ ( ) ( ) ˆ( )]= +� �

+ ⋅ + [ ( ) ˆ( )] ( ).0 F t Ep t dW tH  (19)

Theorem 5.1. The stochastic optimization prob-
lem described by Equation (17) under the con-
straint of SDE (19) is determined via the feedback 
mechanism

p t( )

=
+ ⋅ ⋅ −

+ ⋅ −

− −

c t

E

t T t

H H

H H

( )

( )
( . ) ( .

. .

1
2 0 5 1 52

0 5 0 5�

�  � � HH
F t F

)
( ( ) )

.
⋅ − 0

(20)
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c) If F(t) → 0 and 
�

� 2

0 5 0 5

2 0 5 1 5E

t T t

H H H

H H

⋅
⋅ −
+ ⋅ −

− −. .( )

( . ) ( . ) � �

<
1

0F
,  then p(t) → .

d) If t → 0 or T then p(t) → c(t).
e) Additionally, if we assume some further typical 

approximations as

t T t

H H H

H H0 5 0 5

2 0 5 1 5
1

. .( )

( . ) ( . )

− −⋅ −
+ ⋅ −

≅
 G G

or exactly equals 1 for H = 0.5, that is, for a standard 
Brownian motion and 

�

�

�

�2
0

0

21

E F
F E≅ ≅ ⋅ or ,

the premium may be approximated via the simple 
expression,

 p t
F

F t
c t( )

( )
( ).≅ 0  (31)

Proof. All the results are directly obtainable from 
Equation (20).

6. Application for the Greek motor 
insurance market

The Greek motor insurance market is quite a 
strange example within the European area. The 
Greek market exhibits a low premium rate for 
MTPL (Motor Third-Party Liability), while the 
road deaths rates are among the highest within Eu-
rope. The tariff system for MTPL has been con-
trolled by the government up to the end of 1996. 
From the beginning of 1997, insurance companies 
may deliberately determine their premium rates. 
In Table 1 we present the values for the market’s 
average MTPL premium in Euros for the period 
1998–2006 for some line of business and the mar-
ket as a whole.

Now we investigate these data and identify some 
kind of long-range dependency. This empirical evi-
dence was the initial motivation for the formulation 
of the competitive market pricing model using the 
fractional Brownian motion as a driving force for the 
market’s average premium rate.

 K t a b
E

t T tH H
H H( ) ( ) ,. .= − ⋅ ⋅ ⋅ ⋅ −− −�

� 2
0 5 0 5  (26)

where

 b H B H HH = ⋅ − ⋅ − −2 1 1 5 1 5( ) ( . , . ).  (27)

Using the general relationship between the Beta 
and Gamma functions,

 B a b
a b

a b
( , )

( ) ( )

( )
,=

⋅
+

G G

G
 (28)

the recursive relationship for the values of the 
Gamma function, G(a + 1) = a ? G(a), and, substitut-
ing Expression (26) in relationship (20), we obtain 
the rule for the optimal functional via a typical feed-
back mechanism,

ˆ( ) ( ) ( ( ) ),. .p t a b
E

t T t F t FH H
H H= − ⋅ ⋅ ⋅ ⋅ − ⋅ −− −�

� 2
0 5 0 5

0

(29)

or, equivalently,

ˆ( )
( . ) ( . )

p t
H H H E

= −
+ ⋅ −

⋅
1

0 5 1 5 2 2� �

�

�

⋅ ⋅ − ⋅ −− − t T t F t FH H0 5 0 5
0

. .( ) ( ( ) ).  (30)

Keeping in mind that ˆ( )
( )

( )
,p t

c t

p t
= −1  we may eas-

ily conclude for p(t) that

p t( )

=
+ ⋅ ⋅ −

+ ⋅ −

− −

c t

E

t T t

H H

H H

( )

( )
( . ) ( .

. .

1
2 0 5 1 52

0 5 0 5�

�  � � HH
F t F

)
( ( ) )

.
⋅ − 0

This completes the proof.
We further investigate the behavior of the optimal 

solution for some special limiting cases. We thus ob-
tain the following theorem.

Theorem 5.2. The limiting behavior of Equation 
(20) appears quite reasonable and not unexpected. 
This is described as

a) If F(t) →  then p(t) → 0.
b) If F(t) → F

0
 then p(t) → c(t).
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capital of the company, F E0

2

≅ ⋅
�

�
 and assuming

different values for the solvency ratio

 
F t

F
or or or or

( )
. . . . . ,

0

0 6 0 8 1 0 1 2 1 4=          (32)

we calculate the extra loading u(t) that is defined 
from the equation

 p(t) + [1 = u(t)] c(t). (33)

The loading is charged (increasing or decreasing 
the premium accordingly) to the clients to balance 
the deficit/surplus of the reserve fund. We simulate 
the system using two different values for the Hurst 
exponent. First, we assume H = 0.5, (i.e., there is no 
long-range dependency within the movements of the 
market’s average premium rate), while for the sec-
ond run we assume that H = 0.6 (i.e., as the empirical 
data suggest there is some kind of long-range depen-
dency within the market). The results are presented 
in Table 3 and Figure 3. As we observe, the loading 
is constant for any time t = 1, 2, . . . , 19 when there is 
no long-range dependency in the market, while the 
loading is a variable quantity when the long-range 
dependency truly exists.

Actually, we apply the algorithm described in Sec-
tion 3.4 for the calculation of the Hurst exponent for 
each line of business in Table 1, using those limited 
data points (only nine). We can see that the Hurst 
index is similar for each line of business, and always 
greater than the critical value H = 0.5 and near 0.6, 
supporting the evidence for long-range dependency. 
The results are presented in Table 2.

Now we proceed with a short application for the 
Greek motor insurance market using a control time 
horizon of T = 20 the approximation for the share

Table 1. Statistical service of the association of Greek insurance companies

Classification
(C = Category)

Annual Average Gross Premium

1998 1999 2000 2001 2002 2003 2004 2005 2006

Cars C1   189   203   216   230   245   263   277   271   271

Cars C2   413   416   439   460   501   534   522   495   505

Cars C3   270   294   306   309   325   351   352   340   381

Taxi Cabs   492   535   558   554   605   594   648   661   682

Lorries C1   243   260   271   282   301   325   332   323   321

Lorries C2   369   396   416   408   471   517   514   471   468

Lorries C3   119   127   132   136   145   161   163   163   160

Buses C1 1.891 2.097 2.198 2.818 2.642 2.645 3.038 3.286 3.404

Buses C2   724   835   871   889   981 1.267 1.317 1.366 1.451

Buses C3 1.033 1.065 1.168 1.226 1.282 1.556 1.498 1.432 1.595

Motor Bikes C1    63    65    66    68    76    79    82    81    80

Motor Bikes C2    66    64    62    57    72    95    98    94    78

Motor Bikes C3    29    30    31    31    35    38    40    40    40

 Total Market   170   182   192   203   217   235   247   242   242

Table 2. Estimation of the Hurst exponent

Classification
(C = Category)

Hurst
Exponent

Classification
(C = Category)

Hurst
Exponent

Cars C1 0.61 Buses C1 0.56

Cars C2 0.62 Buses C2 0.63

Cars C3 0.58 Buses C3 0.61

Taxi Cabs 0.59 Motor Bikes C1 0.64

Lorries C1 0.61 Motor Bikes C2 0.61

Lorries C2 0.61 Motor Bikes C3 0.63

Lorries C3 0.61

Total Market 0.61
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margin for the same solvency ratio but for H = 0.5. 
That is also the case for all the values of H = 0.7, 0.8, 
0.9, 1.0. That means the control law overreacts for 
simple Brownian motion, while it remains more re-
laxed (as regards the correction of the solvency ratio 

Now let us try some intuitive glances on its 
development.

For solvency ratio 60% and H = 0.6 the value of 
the safety margin is starting at 32%, considerably 
lower than 67%, which is the value of the safety 

Table 3. Calculation of the extra loading u(t)

H = 0.5 Solvency Ratio = F(t) / F(0)

60% 80% 100% 120% 140%

t

 1 –19 67% 25% 0% –17% –29%

H = 0.6 Solvency Ratio = F(t) / F(0) H = 0.6 Solvency Ratio = F(t) / F(0)

60% 80% 100% 120% 140% 60% 80% 100% 120% 140%

t 10 26% 12% 0%  –9% –17%

 1 32% 14% 0% –11% –20% 11 26% 12% 0%  –9% –17%

 2 30% 13% 0% –10% –19% 12 26% 12% 0%  –9% –17%

 3 28% 12% 0% –10% –18% 13 26% 12% 0%  –9% –17%

 4 28% 12% 0% –10% –18% 14 27% 12% 0% –10% –17%

 5 27% 12% 0% –10% –18% 15 27% 12% 0% –10% –18%

 6 27% 12% 0% –10% –17% 16 28% 12% 0% –10% –18%

 7 26% 12% 0%  –9% –17% 17 28% 12% 0% –10% –18%

 8 26% 12% 0%  –9% –17% 18 30% 13% 0% –10% –19%

 9 26% 12% 0%  –9% –17% 19 32% 14% 0% –11% –20%

Figure 3. Time development of the extra loading u(t)
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Finally, we state that there is plenty of room for 
future research and especially for the solution of this 
model using other more sophisticated demand func-
tions. Of course, the respective analysis will be much 
harder as the stochastic optimization tools avail-
able for the fractional Brownian motion are quite 
restricted.
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margin until the middle of the control period. After 
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margin returns to its initial values.

7. Conclusions

This paper investigates the insurance pricing pro-
cess within the context of a competitive market, 
where the business volume is directly connected to 
the relationship of the company’s premium and the 
market’s average premium. The basic contribution 
is the introduction of fractional Brownian motion as 
the modeling tool for the driving force of the mar-
ket’s behavior. The concept of fractional Brownian 
motion is supported by the empirical evidence found 
within the data of the Greek motor insurance market 
for the years 1998–2006.

The final optimal premium strategy described 
by Equation (20) in Theorem (5.1) and the respec-
tive limiting cases in Theorem (5.2) for the differ-
ent quantities involved appear quite reasonable and 
intuitive. The premium reduces when the actual fund 
level exceeds the central value F

0
 and approaches the 

limiting value of zero when the fund value goes to in-
finity. The opposite result holds when the fund level 
approaches zero.

Regarding the numerical application, we can iden-
tify the fact that the optimal premium control strat-
egy differs considerably from the straight line when 
there is some kind of long-range dependency H = 
0.6, while it remains time invariant when the depen-
dency does not exist H = 0.5.

Variance_Zimbidis.indd   66 9/22/11   8:12 AM



Pricing in a Competitive Insurance Market Driven by Fractional Noise

VOLUME 5/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 67

Vandebroek, M., and J. Dhaene, “Optimal Premium Control in a 
Non-Life Insurance Business,” Scandinavian Actuarial Jour-
nal 1990 (1), 1990, pp. 3-13.

Zimbidis, A., “Premium and Reinsurance Control of an Ordi-
nary Insurance System with Liabilities Driven by a Fractional 
Brownian Motion,” Scandinavian Actuarial Journal 2008 (1), 
2008, pp. 16–33.

Norros, I., E. Valkeila, and J. Virtamo, “An Elementary Ap-
proach to a Girsanov Formula and Other Analytical Results 
on Fractional Brownian Motions,” Bernoulli 5, 1999, pp. 
571–587.

Taylor, G. C., “Underwriting Strategy in a Competitive Insur-
ance Environment,” Insurance: Mathematics and Economics 
5, 1986, pp. 59–77.

Variance_Zimbidis.indd   67 9/22/11   8:12 AM


