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ABSTRACT

This paper advocates use of the generalized logarithmic mean 

as the midpoint of property catastrophe reinsurance layers when 

fitting rates on line with power curves. It demonstrates that the 

method is easy to implement and overcomes issues encountered 

when working with usual candidates for the midpoint, such as 

the arithmetic, geometric, or logarithmic mean. The paper shows 

how to deal with paid reinstatements in a simplified framework 

and also introduces a new midpoint that is consistent with a 

negative exponential fit of the rates on line.
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by all insurance companies writing property business 
because it provides cost-effective capital relief. In 
other words, the margin ceded to the reinsurers is 
smaller than the cost of holding capital, and therefore 
it makes sense to purchase that type of reinsurance. 
We will use a European catastrophe excess of loss 
program (Table 2.1) throughout the paper.

The rate on line (ROL) is simply the up-front 
premium divided by the limit of the layer. In prac-
tice, the various layers of the program have a limited 
number of reinstatements (most of the time one), and 
furthermore, the reinstatements are usually payable 
at 100%. We will briefly discuss in Section 3 how to 
deal with this feature.

Reinsurers tend to use commercial models to price 
natural catastrophe perils. Further, they all have their 
own pricing models in order to factor their administra-
tion and capital costs into the commercial premium. 
Often reinsurance brokers and underwriters try to “fit” 
observed ROLs in order to extrapolate premiums to 
other layers and/or to predict premiums based on the 
evolution of the exposure and the brokers’ anticipation 
of pricing trends.

The aim of this paper is to justify a method com-
monly used by reinsurance actuaries that is based on 
power curves. We will show that when the midpoint 
for the reinsurance layers is well chosen, the method 
delivers consistent results.

3.  Dealing with paid reinstatements

Most of the time, the reinsurance layers will have 
their yearly liability limited to two or more times the 
limit (denoted by C) of the layer. In principle, the cedent 
will purchase a sufficient number of limits, meaning 

1.  Introduction

In a recent paper, Morel (2013) discussed the use 
of power curves and midpoints of the reinsurance 
layers to price catastrophe excess of loss contracts. 
Morel (2013) pinpointed some flaws inherent in using 
power curves and in using the arithmetic mean or the 
geometric mean as the midpoint of the reinsurance 
layers. To solve these issues, Morel (2013) advocated 
replacing the power curve with spline functions. The 
present paper will highlight other important flaws in 
the power curve method and suggest a simpler pro-
cedure using power curves whose natural midpoint 
is the generalized logarithmic mean. The paper is 
organized as follows. Section 2 introduces the prob-
lem and the numerical example that will be worked 
throughout the paper. Section 3 sketches how to 
deal with paid reinstatements. Section 4 introduces 
the European Pareto distribution. Section 5 shows that 
the power curves method implicitly assumes that the 
prices behave according to a European Pareto distri-
bution. Section 6 introduces some possible midpoints 
and shows related issues. Section 7 explains why we 
will not follow the spline functions route introduced 
by Morel (2013). Section 8 shows that the natural 
midpoint when using power curves is the generalized 
logarithmic mean. Section 9 introduces an alternative 
method based on the negative exponential distribution 
and its associated midpoint. The numerical example is 
further analyzed in Section 10. Section 11 concludes.

2.  The rate on line method

Property catastrophe reinsurance offers insurance 
companies protection against losses due to natural 
catastrophes. This type of reinsurance is purchased 

Table 2.1.  Original program

Layer Limit xs Attachment Point ROL Premium Reinstatements

1 90,000,000 xs 110,000,000 12.00% 10,800,000 2 at 100%

2 300,000,000 xs 200,000,000 4.50% 13,500,000 1 at 100%

3 300,000,000 xs 500,000,000 2.20% 6,600,000 1 at 100%

4 250,000,000 xs 800,000,000 1.20% 3,000,000 1 at 100%

Total program 940,000,000 xs 110,000,000 3.61% 33,900,000

ROL = rate on line.
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where the LOL is equal to the expected value of the 
stochastic LOL.

Therefore the rebate that can be given for paid 
reinstatements against free reinstatements is equal 
to LOL. In other words, if the layer has one (or more) 
reinstatements at 100%, then the equivalent ROL with 
free reinstatements (denoted FROL) is approximated 
by ROL × (1 + LOL). The LOL is not readily available, 
but if one makes an assumption about the loading 
charged by reinsurers, it is possible to deduce LOL 
and, thereby, the corresponding up-front ROL when 
reinstatements are free (FROL). Let us assume that 
FROL is obtained by adding to the LOL 5% of the 
standard deviation of the stochastic LOL, which is 
approximated by LOL LOL( )× −1 , and loading 
by 100/90. These parameters denote very soft condi-
tions. The equation to solve numerically is

LOL LOL LOL

ROL LOL FROL

( )

( )

+ × −

= × + =

5% 1

0.9

1 .

Table 3.1 provides LOL and FROL for our numerical 
example.

Given the data in Table 3.1, the user has the choice 
between fitting

1.	 FROL—that is, the equivalent rate on line with 
free reinstatements;

2.	 LOL—that is, the loss on line; or

3.	 ROL—that is, the up-front rate on line (when  
reinstatements are paid). In principle, this would not 
be recommended because this method ignores the 
fact that the rebate due to the paid reinstatements is 

that this feature will have a marginal influence on the 
price that can be assumed to be theoretically valid for 
an unlimited number of reinstatements, even though 
reinsurers would not provide an unlimited yearly 
capacity for property catastrophe business.

Furthermore, reinstating the limits generally is not 
free. An additional premium called the reinstatement 
premium must be paid. We will assume the most 
general case, in which the reinstatement premium 
is equal to 100% of the initial premium multiplied 
by the reinsured loss divided by the limit, as shown 
in Formula (3.1). We say that the reinstatements are 
payable at 100% pro rata capita. Reinstating the limit 
is not an option. So a loss to the layer will lead to a 
reinstatement premium (if there remain any limits to 
reinstate). Paid reinstatements in a layer imply that 
the up-front cost of the layer is smaller than it would 
be with free reinstatement(s). Working with paid 
reinstatements versus free reinstatements leads to a 
rebate on the initial reinsurance premium.

Let us define S as the stochastic loss in the layer 

and SLOL = 
S

C
 the stochastic loss on line (LOL). 

If ROL is the up-front ROL, Walhin (2001) shows 
that the expected additional ROL due to the paid 
reinstatements is given by

min , max 0, 1 ,

(3.1)

1
ROL

c

C
E C S i Ci

i

k∑ [ ]( )( )( )× − −=

where k is the number of reinstatements and ci is the 
price of the ith reinstatement.

Here we assume that all reinstatements are paid 
at 100% and that the number of reinstatements is 
large enough that we can approximate k → ∞. Thus, 
Formula (3.1) simplifies into

Table 3.1.  ROL, LOL, and FROL

Layer Limit xs Attachment Point ROL LOL FROL

1 90,000,000 xs 110,000,000 12.00% 10.40% 13.25%

2 300,000,000 xs 200,000,000 4.50% 3.29% 4.65%

3 300,000,000 xs 500,000,000 2.20% 1.42% 2.23%

4 250,000,000 xs 800,000,000 1.20% 0.68% 1.21%
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Pareto distribution. The yearly liability of the reinsurer 
(with an unlimited number of reinstatements) can be 
written as

min , max 0, . . .

min , max 0, .

1

( )( )

( )( )= − +

+ −

S cP X P

cP X PN A

The pure reinsurance premium (PRP(P, C)) for a 
layer C xs P is given by

, min , max 0,

1
1 1 if 1

ln 1 if 1.

1
1( )

( )( ) ( )

( )

( )

= −

= − α
+ − α ≠

+ α =









−α α
−α

PRP P C EN E C X P

EN
P A

c

EN A c

A

A

A

The LOL (LOL(P, C)) is therefore

LOL P C
PRP P C

C

EN
A

P

c

c

EN
A

P

c

c

A

A

( )

( ) ( )

( )
( )

( )

=

=

+ −
− α

α ≠

+ α =










α

α

−α

,
,

1 1

1
if 1

ln 1
if 1.

1

It is also worth noting that the pure reinsurance pre-
mium of an unlimited layer ∞ xs P is given by

PRP P
A

P( )∞ =
α −

α >
α

−α,
1

if 1 (4.1)1

and exists only if α > 1.

5.  The midpoint method  
for fitting ROLs

As Morel (2013) explained, a possible solution to 
the problem introduced in Section 2 is to fit a power 
curve through midpoints of the original program 
layers. Morel (2013) claimed that there is no litera-
ture on the subject. However, Verlaak, Beirlant, and 
Hürlimann (2005) had already justified the use of 
power curves in a Pareto framework.

embedded in the value of ROL. See Table 10.6 and 
related comments in Section 10 for more details.

Let us emphasize that the above calculations 
are oversimplified. In practice, underwriters would 
use their modeled stochastic LOL to compute LOL 
and the expected additional reinstatement premiums 
precisely. Furthermore, they would apply the profit-
ability model of the reinsurer to price the layers and 
arrive at FROL or ROL. In this paper, we proceed 
as if we do not have these pieces of information at 
our disposal. Instead, we want to make quick calcu-
lations to compare the pricing of various layers. That 
is what the ROL method aims to do.

4.  The European Pareto distribution 
and the pure reinsurance premium

The European Pareto distribution dates back to 
Pareto (1895), who studied the distribution of the 
revenues in a given population. Hagstroem (1925) 
advocated its use in reinsurance. We will say that 
X follows a Pareto distribution (X ∼ Pa(A,α)) if the 
cumulative distribution function of X is given by

F x P X x
x

A
x A[ ]( ) = ≤ = − 





>
−α

1 , .

The Pareto distribution is used by reinsurance actu-
aries because of its many nice mathematical proper-
ties (see Philbrick [1985] or Walhin [2003] for a 
discussion). Among others, the Pareto distribution 
is a particular case of the generalized Pareto distri-
bution (GPD), introduced by Pickands (1975). The 
GPD can be shown to be the limiting case for the  
distribution of excesses above large thresholds, which 
is exactly the problem reinsurance actuaries try  
to solve.

Let us assume a layer C xs P. We will use the 

notation c = 
C

P
. Let NA be the number of losses in 

excess of A with A ≤ P. Let X1, X2, . . . be the large 
losses. We will assume that they are mutually inde-
pendent and identically distributed according to a 
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x

B

MP P C A

B

B

λ = λ 



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= λ 



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





= λ 



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( )

−α

−α

−α

− α

,

,

showing that opting for any threshold lower than the 
lowest attachment point of the reinsurance program 
will lead to the same α.

As briefly explained by Verlaak, Beirlant, and 
Hürlimann (2005), Formula (5.1) justifies the use of 
a power function to fit the observed ROLs. Its param-
eters are easily adjusted by linear regression after  
log transformation. Assume that we have observed 
n layers (Pi, Ci) with ROLi, i = 1, . . . , n. We have

ROL ROL P C y

y
MP P C

A
i n

i i i A i

i
i i

( )

( )

= = λ

= =

−α, with

,
, 1, . . . , .

Taking the natural logarithm on both sides of the 
equality yields

ROL y i ni A i( ) ( )( ) = λ − α =ln ln ln , 1, . . . , ,

and the parameters (lA, α) can easily be estimated 
by linear regression. This method therefore does not 
require any numerical procedure, making it comfort-
able for reinsurance brokers and underwriters to use 
for quick calculations.

It remains to choose the midpoint, which we will 
do in Section 6.

6.  Candidates for the midpoint  
and various issues

Morel (2013) used two midpoints: the arithmetic 
mean (ARI) and the geometric mean (GEO). The 
geometric mean has the nice feature of correspond-
ing exactly to the case α = 2 in the Pareto setting. 
A third interesting case could be the logarithmic mean 

Let us assume that ROL is based on a frequency 
distribution with mean l and a severity distribution X, 
with survival function P[X > x] = S(x), x ≥ 0. We then 
have that

ROL P C
C

S x dx
P

P C

∫( ) ( )= λ +
, .

Because S(x) is a decreasing function, we immedi-
ately find that

S P C ROL P C S P( )( ) ( )λ + ≤ ≤ λ, .

Let us also note that lx = lS(x). We then have

ROL P CP C P( )λ ≤ ≤ λ+ , .

Therefore there exists a point x = MP(P, C) such that

ROL P CP C MP P C P( )λ ≤ λ ≈ ≤ λ( )+ , .,

If lMP(P,C) can be calculated easily, then an approxi-
mation for ROL(P, C) is provided based on a certain 
midpoint MP(P, C) of the layer C xs P.

Fitting a power curve of the type

ROL P C a MP P Ci i MP P C i i
b

i i
[ ]( ) ( )≈ λ =( )

−, ,,

seems natural and will lead to estimating the param-
eters by linear regression. In fact, assuming a power 
curve corresponds to the case in which the severity 
of the process is Pareto distributed. Indeed, we have

MP P C

A
MP P C A

( )λ = λ 



( )

−α
,

, (5.1),

where the midpoints are normalized by the param-
eter A and the l parameter depends on the chosen 
value of A.

A can be arbitrarily chosen but must be less than 
the smallest attachment point of the program (other-
wise not all the losses hitting the program would be 
modeled). Further, if we assume B < A, we have
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The power curves and associated fits for these three 
midpoints are given in Tables 6.1 and 6.2, respec-
tively. A has been chosen as equal to 50,000,000.

We observe that the fits based on the three pro-
posed midpoints are of relatively good quality. 
The best fit is obtained with the logarithmic mean, 
which is not surprising because the fitted α is  
around 1.25—that is, not far from 1 (which cor
responds to the LOG case). Let us now discuss 
various issues linked to the arbitrary choice of one 
of these midpoints.

Issue 1. Morel (2013) claimed that the quality 
of the fit is not excellent and in particular that the 
total premium is not matched. We believe that this is 
unavoidable when using parsimonious mathematical 
models. One could argue that the fit could be enhanced 
by using weights when fitting the parameters of the 
linear regression. Natural weights are the premiums. 
Tables 6.3 and 6.4 provide the fits through weighted 
linear regression.

There remains a difference between the observed 
total premium and the fitted total premium. The 
user could, for example, correct the l parameter to 
force the total approximated ROL to match the total 
observed ROL.

(LOG), corresponding exactly to the case α = 1 in the 
Pareto setting. We have

ARI P C
P P C

P
c

GEO P C P P C P c

LOG P C
P C P

P C P
P

c

c

( )

( )

( )

( )

( )

( )
( ) ( )( )

= + + = +





= + = +

= + −
+ −

=
+

,
2

2

2
,

, 1 ,

,
ln ln ln 1

.

With the above midpoints, the approximated ROL 
(here we use ROL, but the reasoning is also valid for 
LOL and FROL) becomes

ROL P C
P

A

c

ROL P C
P

A
c

ROL P C
P

A

c

c

ARI
A

GEO
A

LOG
A

( )

( )

( )

( )

( )

= λ +





= λ +

= λ +





−α

−α

−α

−α

−α
−α

−α

−α

α

, 1
2

,

, 1 , and

,
ln 1

.

2

and we immediately obtain the reinsurance premium as

, 1
2

,

, 1 , and

,
ln 1

.

1

1
2

1

( )

( )

( )

( )

( )

= λ +
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
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
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A
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c

RP P C
P

A
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RP P C
P

A
c

c

c

ARI
A

GEO
A
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A

Table 6.1.  Original program: Adjusted ROLs with linear regression

Layer ROL ARI ROLARI GEO ROLGEO LOG ROLLOG

1 12.00% 3.1 12.33% 2.97 11.92% 3.01 12.07%

2 4.50% 7.0 4.41% 6.32 4.70% 6.55 4.60%

3 2.20% 13.0 2.02% 12.65 2.00% 12.77 2.01%

4 1.20% 18.5 1.30% 18.33 1.27% 18.39 1.28%

Total program 3.61% 3.58% 3.62% 3.60%

Error −0.76% 0.34% −0.04%

Table 6.2.  Original program: 
Fitted parameters through 
linear regression

α l

ARI 1.2613 0.5138

GEO 1.2299 0.4542

LOG 1.2410 0.4738
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Attritional losses will require different modeling 
than large losses.

Issue 4. We also have that the price for adjacent 
layers is not additive, which is obviously nonsense:

RP P C RP P C C

RP P C C

RP P C RP P C C

RP P C C

RP P C RP P C C

RP P C C

ARI
i i

ARI
i i j

ARI
i i j

GEO
i i

GEO
i i j

GEO
i i j

LOG
i i

LOG
i i j

LOG
i i j

( )

( )

( )

( )

( )

( )

( )

( )

( )

+ +

≠ +

+ +

≠ + α ≠

+ +

≠ + α ≠

, ,

, ,

, ,

, , 2,

, ,

, , 1.

Issue 5. Other issues not mentioned by Morel 
(2013) are

RP P C
C

GEO ( ) → ∞ α <
→∞

lim , , 2, (6.1)

RP P C
C

ARI ( ) → ∞ α <
→∞

lim , , 1, (6.2)

RP P C
C

LOG ( ) → ∞ α ≤
→∞

lim , , 1, (6.3)

RP P C
C

GEO ( ) → α >
→∞

lim , 0, 2, (6.4)

RP P C
C

ARI ( ) → α >
→∞

lim , 0, 1, (6.5)

RP P C
C

LOG ( ) → α >
→∞

lim , 0, 1, (6.6)

RP P C
A

PC

GEO
A( ) → λ α =

→∞
lim , , 2, and (6.7)

2

Issue 2. Morel (2013) also claimed that different 
layers may have the same ROL. We do not believe 
that this is an issue. The theory perfectly allows for 
various layers to have the same ROL. See Table 10.4 
in the numerical illustration of Section 10.

Issue 3. Morel (2013) also claimed that due to the 
unboundedness of the power curve, a layer attaching 
at an infinitely small level would have an infinite pre-
mium. That is in fact not true in all cases. In particular, 
we have

RP P C A C

RP P C

RP P C

P

ARI
A

P

GEO

P

LOG

( )

( )

( )

( )→ λ

→ ∞

→ ∞

→

α −α

→

→

lim , 2 ,

lim , , and

lim , .

0

1

0

0

So we observe that the limit does exist if the 
midpoint is the arithmetic mean. Anyway, we believe 
that extrapolating to layers with infinitely small 
deductibles does not make sense and does not need 
to be captured by the model. It is indeed most 
likely that the exposure at such low levels cannot 
be extrapolated from the exposure at higher levels. 

Table 6.4.  Original program: 
Fitted parameters through 
weighted linear regression

α l

ARI 1.2310 0.4894

GEO 1.2146 0.4407

LOG 1.2209 0.4573

Table 6.3.  Original program: Adjusted ROLs with weighted linear regression

Layer ROL Weight ARI ROLARI GEO ROLGEO LOG ROLLOG

1 12.00% 10,800,000 3.10 12.15% 2.97 11.77% 3.01 11.90%

2 4.50% 13,500,000 7.00 4.46% 6.32 4.69% 6.55 4.61%

3 2.20% 6,600,000 13.00 2.08% 12.65 2.02% 12.77 2.04%

4 1.20% 3,000,000 18.50 1.35% 18.33 1.29% 18.69 1.31%

Total program 3.61% 3.61% 3.61% 3.61%

Error 0.10% 0.13% 0.10%
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8.  The generalized logarithmic 
mean of order r

A two-variable continuous function f : R+
2 → R+ is 

called a mean on R+ if min(x, y) ≤ f (x, y) ≤ max(x, y), 
x, y ∈ R+ holds.

A way to build a mean is to resort to the Cauchy 
mean value theorem (Cauchy 1882). Let the functions 
f (z) and g(z) be continuous on an interval [x, y], dif-
ferentiable on (x, y), and g′(z) ≠ 0 for all z ∈ (x, y). 
Then there exists a point z = x such that

.
( )
( )

( )
( )

( )
( )

−
−

= ′ ξ
′ ξ

f x f y

g x g y

f

g

Let us choose f (x) = xr and g(x) = x. We obtain

.1−
−

= ξ −x y

x y
r

r r
r

Solving in x, we find

x y

r x y

r r r

( )
ξ = −

−






−
.

1
1

x is called the generalized logarithmic mean of  
x and y.

Because we are interested in midpoints of layers 
[P, P + C], which we denote by MP(P, C), we will 
adopt the notation MP(x, y − x) with y ≥ x. In this 
context, we can write more precisely the generalized 
logarithmic mean as

,

, 0, 1,

, ,

0,

,
ln ln

,

1,

, .

1

1

1

L x y x

x y

r x y
r r x y

IDENTRIC x y x e
x

y

r x y
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r
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r

x
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RP P C A
C

ARI
A( ) → λ α =

→∞
lim , 2 , 1. (6.8)

Limit (6.1) makes no sense for the cases 1 < α < 2.  
Indeed, premiums for unlimited reinsurance layers 
remain finite when (loaded) claims are Pareto dis-
tributed with α > 1 (see Formula [4.1]). Limits (6.2) 
and (6.3) make sense because the α parameter is 
smaller than 1 and the expectation of a Pareto ran-
dom variable does not exist in this case. Limits (6.4), 
(6.5), and (6.6) make no sense. Unlimited reinsurance 
layers must lead to nonzero premiums. Finite and 
nonzero limits are obtained only for the very par-
ticular cases in (6.7) and (6.8), confirming again the 
danger of the method when dealing with layers having 
a huge limit.

7.  The spline solution

Morel (2013) suggested overcoming most of the 
issues by integrating spline functions over the vari-
ous layers instead of working with power curves 
and midpoints. In fact, Morel (2013) implicitly used 
the formula

RP P C S x dxA P

P C

∫( ) ( )= λ
+

, ,

where S(x) is the survival function of the underlying 
claims or premium process. Morel (2013) suggested 
fitting spline functions, and he thereby overcame 
issues 1 through 5. However, that solution comes 
at the cost of introducing heavy assumptions about 
maximum ROL in the bottom of the program as well 
as minimum ROL at the top of the program. The user 
can easily deal with these concepts outside the model 
by using expert judgment. More important, the sur-
vival function is a decreasing function and the spline 
functions are not everywhere decreasing, leading to 
possible negative prices for certain layers. Eventu-
ally all this is based on a model that is heavily over
parameterized. Morel (2013) used 19 parameters to 
fit five layers.

We propose in the next section a method that will 
overcome most issues and remain parsimonious in 
terms of number of parameters.
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=
λ

− α
+ − α ≠

λ + α =




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



−α
−α

−α −α
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L P C

A
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c
c

A

P

c

c

A

A

A

It therefore becomes logical to make the fit with 
midpoints being calculated according to the gen-
eralized logarithmic mean of order 1 − α with the 
estimated α parameter. A very limited number of 
iterations will be required to obtain the fit based on 
the generalized logarithmic mean, as exemplified in 
Table 8.1.

Table 8.2 provides the adjusted ROL with the 
generalized logarithmic mean as midpoint.

When comparing these results with the ones in 
Table 6.3, we cannot claim that the fit is visually 
better than with the other midpoints. But that is not 
the goal of using the generalized logarithmic mean. 
We will see in Section 10 that the issues encountered 

The generalized logarithmic mean of order r was 
introduced by Galvani (1927). It is sometimes called 
extended logarithmic mean and often presented as a 
particular case of the Stolarsky mean with two param-
eters introduced by Stolarsky (1975).

Stolarsky (1975) showed that when x ≠ y, Lr(x, y − x) 
is strictly increasing with r. We have the following 
particular cases:

L P C P
r

r ( ) =
→−∞
lim ,

L P C
GEO P C

ARI P C

( )( ) ( )
( )

= 



− ,

,

,
2

4 1 3

L P C GEO P C( ) ( )=− , ,1

L P C LOG P C( ) ( )=, ,0

L P C QUAD P C

ARI P C GEO P C( )

( ) ( )

( ) ( )

=

= +

, ,

1

2
, ,

1 2

, ,1L P C IDENTRIC P C( ) ( )=

L P C ARI P C( ) ( )=, ,2

L P C P C
r

r ( ) = +
→∞

lim ,

The generalized logarithmic mean has been exten-
sively researched by mathematicians to prove various 
inequalities. See, for example, Wang, Wang, and Chu 
(2012) and Qiu, Wang, and Chu (2011). It also has 
applications in convex function theory, economics, 
and physics. See, for example, Guo and Qi (2001), 
Pittenger (1985), Kahlig and Matkowski (1996),  
and Pòlya and Szergö (1951). In this paper we will 
make a link with excess of loss layers priced with a 
European Pareto distribution.

Now let us make the following change of variable 
α = 1 − r. The generalized logarithmic mean of order 
1 − α is the midpoint that provides an exact formula 
for the ROL when α > 0:

Table 8.1.  Iterations to obtain the power curve fit  
with the corresponding L1-`

Iteration α in L1–α

α Power  
curve fit

lA Power  
curve fit

1 2 1.21 0.44

2 1.21 1.2196 0.4537

3 1.2196 1.219619 0.453622

4 1.219619 1.21961926 0.45362245

5 1.21961926 1.2196192651 0.4536224457

6 1.2196192651 1.2196192650 0.4536224457

Table 8.2.  Original program: Adjusted ROLs with  
weighted linear regression

Layer ROL Weight L1–α ROLL_1–α

1 12.00% 10,800,000 3.00 11.87%

2 4.50% 13,500,000 6.50 4.63%

3 2.20% 6,600,000 12.74 2.04%

4 1.20% 3,000,000 18.37 1.30%

Total program 3.61% 3.61%

Error 0.11%
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The approximated value of ROL is given by

ROL P C S MP P C

MP P C

( )

( )

( ) ( )

( )

≈ λ

= λ − θ

, ,

exp , .

The midpoint (let us call it EXP(P,C)) matching the 
exact value of the ROL will be the solution of the 
equation

exp exp

exp , ,

[ ]

( )

( ) ( )

( )

( )λθ − θ − − + θ

= λ − θ

C
P P C

MP P C

and we find

EXP P C P
C

C( )( ) ( )= − θ θ − − θ





, ln 1 exp .

This midpoint corresponds to the case f(x) = exp(– x/q) 
and g(x) = x in the Cauchy mean value theorem.

Table 9.1 shows the iterations to find the parameters.
Table 9.2 provides the adjusted ROL with the EXP 

midpoint.
We can visually perceive that the fit is of lower 

quality than the power curve fit.

in Section 6 disappear when using the generalized 
logarithmic mean, which is why we advocate the 
generalized logarithmic mean in a parsimonious math-
ematical model.

It is also worth noting that Bobtcheff (2003) 
used the generalized logarithmic mean to fit property 
catastrophe market curves by using nonlinear regres-
sion. In her master’s thesis, Bobtcheff (2003) used 
the rather intuitive terminology Pareto layer mean to 
define the midpoint of the layer.

9.  Negative exponential setting

In Section 5, we assumed that the ROLs behave 
according to a power curve. Another straightforward 
parametric assumption would be to assume a negative 
exponential behavior:

ROL a bMP P Ci i i( )( )= −exp , .

This case exactly corresponds to a severity being 
distributed according to a negative exponential dis-
tribution with a survival function:

S x x x( )( ) = − θ >exp , 0.

Let us now find the midpoint that matches the exact 
value of ROL in the negative exponential setting. The 
exact ROL is given by

, exp

exp exp .

ROL P C
C

x dx

C
P P C

P

P C

∫

[ ]

( ) ( )

( ) ( )( )

= λ − θ

= λθ − θ − − + θ

+

Table 9.1.  Iterations to obtain the negative 
exponential curve fit with the corresponding  
EXP midpoint

Iteration q midpoint q Power curve fit

1 100,000,000 321,753,981

2 321,753,981 325,935,165

3 325,935,165 325,963,443

4 325,963,443 325,963,632

5 325,963,632 325,963,634

6 325,963,634 325,963,634

Table 9.2.  Original program: Adjusted ROLs with weighted linear regression

Layer ROL Weight EXP ROLEXP

1 12.00% 10,080,000 153,965,265 9.80%

2 4.50% 13,500,000 338,575,780 5.56%

3 2.20% 6,600,000 638,575,780 2.22%

4 1.20% 3,000,000 917,049,667 0.94%

Total program 3.61% 3.67%

Error 1.81%
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will reduce the parameter A by 10%. This is easily 
justified by the fact that the parameter A is a scale 
parameter for the Pareto distribution. Results are 
shown in Table 10.3.

We can make the following observations:

1.	 For the new program in four layers, the sum of the 
price of the four layers is equal to the price of the 
equivalent program in one layer with the general-
ized logarithmic mean. However, that is not the 
case with the arithmetic and geometric means, as 
shown in layers 4 and 6.

2.	 The price of layer 6 is inconsistent with the arith-
metic mean, being lower than the price for a lower 
limit with the same attachment point.

3.	 Layer 7 illustrates Formulas 6.1 and 6.5. For the 
geometric mean, the premium tends to infinity, 
which is unexpected with an α parameter larger 
than 1. On the other hand, the premium for the 
arithmetic mean case converges to 0, which is 
nonsense.

The above exercise demonstrates again that we 
should work with the generalized logarithmic mean. 

10.  Numerical application continued

In this section we will obtain the adjustment for 
FROL because we believe it is more appropriate to 
work on fixed premiums. Tables 10.1 and 10.2 pro-
vide the adjusted FROLs with the generalized loga-
rithmic, arithmetic, and geometric means. A has been 
taken to be equal to 50,000,000.

Assume that we have the following information 
for the next reinsurance renewal:

1. The tariff will drop by 5%

2. The exposure will drop by 10%

We will now extrapolate the price for various layers 
at the next renewal. We know that the exposure will 
drop by 10%. In order to take this into account, we 

Table 10.1.  European program: Adjusted FROLs with weighted linear regression

Layer FROL Weight L1–α FROLL1–α GEO FROLGEO ARI FROLARI

1 13.25% 11,922,852 3.00 12.99% 2.97 12.88% 3.10 13.31%

2 4.65% 13,944,321 6.48 4.85% 6.32 4.92% 7.00 4.66%

3 2.23% 6,693,532 12.73 2.05% 12.65 2.04% 13.00 2.10%

4 1.21% 3,020,325 18.37 1.29% 18.33 1.27% 18.50 1.33%

Total program 3.79% 3.79% 3.79% 3.79%

Error 0.12% 0.16% 0.08%

Table 10.2.  European program: 
Fitted parameters through 
weighted linear regression

α l

L1–α 1.2759 0.5273

GEO 1.2712 0.5131

ARI 1.2874 0.5711

Table 10.3.  New program: Various layers

Layer Limit xs Attachment Point RPL1–α RPGEO RPARI

1 105,000,000 xs 95,000,000 12,994,383 12,981,505 13,005,383

2 250,000,000 xs 200,000,000 11,425,396 11,500,579 11,198,546

3 250,000,000 xs 450,000,000 5,229,471 5,186,779 5,372,198

4 250,000,000 xs 700,000,000 3,259,400 3,225,753 3,375,189

Sum 1 to 4 855,000,000 xs 95,000,000 32,908,649 32,894,616 32,951,316

5 855,000,000 xs 95,000,000 32,908,649 39,262,692 20,783,190

6 2,000,000,000 xs 95,000,000 40,177,173 55,556,225 18,753,540

7 1015 xs 3,000,000,000 26,571,265 1,759,725,129 250,162
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We will finish the numerical application by show-
ing the final results when FROL is adjusted (which 
we did above) and also when LOL or ROL is adjusted. 
Table 10.6 provides the results.

We observe that the results with the FROL and 
LOL adjustments are rather similar. However, there 
are material deviations when we compare with the 
results obtained with the ROL adjustment. The latter 
method ignores the paid reinstatements and implies 
errors, in particular for layers with a high ROL, and 
therefore a larger impact of the paid reinstatement. 
Layers 1 and 6 are good examples. Thus, although the 
ROL method has the advantage that no assumption 
is needed to deduce LOL and/or FROL, we advocate 
first deducing LOL and/or FROL and then working 
the adjustment on these variables, because they are 
not impacted by the paid reinstatements.

11.  Conclusion

This paper has analyzed how to make a quick 
analysis of the pricing of property catastrophe excess 
of loss layers. The method is not too complex and 
can easily be implemented in a spreadsheet. If a 

We will concentrate on this case for the rest of the 
numerical application.

Let us also show (Table 10.4) that two different 
layers may have the same midpoint and the same ROL 
(here FROL).

Thus, obviously, there are as many layers as you 
like with the same midpoint and ROL.

We still have to find the ROL for the various layers, 
and that requires applying the paid reinstatements as 
well as the known 5% price off. This is easily done 
by reducing FROL by 5% and using the adapted equa-
tion to compute LOL and ROL:

5% 1
0.95

0.9

1 .

( )( )

( )

+ −

= + =

�

�

LOL LOL LOL

ROL LOL FROL

Table 10.5 provides FROL, LOL, and ROL.

Table 10.4.  New program: Layers with the same midpoint  
and FROL

Layer Limit xs
Attachment 

point L1–α FROLL1–α

8 15,000,000 xs 95,000,000 2.27 18.50%

9 25,818,000 xs 90,000,000 2.27 18.50%

Table 10.5.  ROL, LOL, and FROL, based on the FROL adjustment

Layer Limit xs Attachment point FROL LOL ROL

1 105,000,000 xs 95,000,000 11.76% 9.66% 10.72%

2 250,000,000 xs 200,000,000 4.34% 3.23% 4.21%

3 250,000,000 xs 450,000,000 1.99% 1.31% 1.96%

4 250,000,000 xs 700,000,000 1.24% 0.74% 1.23%

5 855,000,000 xs 95,000,000 3.66% 2.66% 3.56%

6 15,000,000 xs 95,000,000 17.57% 14.87% 15.30%

Table 10.6.  Final ROL based on FROL, LOL, and ROL adjustments

ROL based on adjustment with

Layer Limit xs Attachment Point FROL LOL ROL

1 105,000,000 xs   95,000,000 10.72% 10.80% 11.33%

2 250,000,000 xs 200,000,000 4.21% 4.15% 4.37%

3 250,000,000 xs 450,000,000 1.96% 1.96% 2.07%

4 250,000,000 xs 700,000,000 1.23% 1.26% 1.32%

5 855,000,000 xs   95,000,000 3.56% 3.65% 3.66%

6 15,000,000 xs   95,000,000 15.30% 15.61% 16.66%
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power curve is chosen to fit the ROL in a function 
of a midpoint of the layers, we have argued that it 
is worth using its corresponding midpoint, which is 
the generalized logarithmic mean. Calculations are 
marginally more complex than with the usually used 
arithmetic, geometric, or logarithmic means but will 
lead to consistent results. We have also shown how 
to take into account paid reinstatements in a simple 
way. The method can easily be used to compare the 
pricing of layers from one year to another, but also to 
build benchmark curves when using data from vari-
ous insurance companies.
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