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Preliminary Selection of  
Risk Factors in P&C Ratemaking
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ABSTRACT

This paper proposes efficient statistical tools to detect which 

risk factors influence insurance losses before fitting a regres-

sion model. The statistical procedures are nonparametric and 

designed according to the format of the variables commonly 

encountered in P&C ratemaking: continuous, integer-valued 

(or discrete) or categorical. The proposed approach improves 

the current practice favoring chi-square independence tests in 

contingency tables, avoiding the arbitrary preliminary banding 

of the variables under consideration. An example with motor 

insurance data illustrates the usefulness of the tools proposed in 

this paper. One of the conclusions of this numerical illustration 

is that zero-modified regression models are necessary to capture 

the impact of risk factors.
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3.	 the number N+ of reported claims when at least 
one claim has been filed against the company, i.e., 
N+ corresponds to N given that N ≥ 1 ⇔ I = 1;

4.	 the yearly total claim amount S;

5.	 the total cost S+ when at least one claim has  
been reported, i.e., S+ corresponds to S given that 
S > 0 ⇔ N ≥ 1;

6.	 the average claim severity S
–
 = S+/N+.

The candidate risk factors Xj may have different 
formats:

1.	 categorical (such as gender);

2.	 integer-valued, or discrete (such as the number of 
vehicles for the household);

3.	 continuous (such as policyholder’s age).

Notice that some Xj may be treated as if they were 
continuous. This is, for instance, the case for policy-
holder’s age. Age last birthday is often recorded in 
the data base and used in ratemaking so that age could 
be considered as an ordered categorical covariate. 
However, as the number of age categories is substan-
tial and as a smooth progression of losses with age 
is expected, age is generally treated as a continuous 
covariate.

The techniques we propose in the remainder of 
this paper depend on the format of the response and 
of the risk factor, and the text is organized accord-
ingly. For each case, we propose nonparametric tests 
for independence that allow the actuary to decide 
whether the two variables are dependent or not. 
In Section 2, we consider the situation where the 
response and the possible risk factor are both discrete 
or categorical. It is therefore natural to work with 
contingency tables. Then, in Section 3, we discuss 
the situation where one of the variables is discrete 
and the other one is continuous. Finally, Section 4 
covers the case where both variables are continuous. 
Numerical illustrations are proposed in Section 5 
to demonstrate the practical relevance of the tools 
developed in Sections 2–4. Section 6 concludes  
the paper.

1.  Introduction

Insurers now have access to many possible clas-
sification variables that are based on information 
provided by policyholders or that are contained in 
external data bases (such as Mosaic, for instance). 
The actuarial analyst must thus be able to make  
a first selection among these pieces of informa-
tion to detect the relevant risk factors at an early 
stage of the study. This is precisely the topic of the  
present paper.

In the preliminary analysis, the actuary first con-
siders the marginal impact of each rating factor. The 
possible effect of the other explanatory variables is 
thus disregarded. The aim at this stage is to make a 
first selection of potential risk factors, and to eliminate 
all the variables that are not linked with at least one 
component of the yearly aggregate cost (frequency or 
severity). This part of the analysis is often referred to 
as a one-way analysis: the effect of each variable on 
insurance losses is studied without taking the effect 
of other variables into account. Multivariate methods 
(such as the GLM/GAM regression approach) that 
adjust for correlations between explanatory variables 
are then applied to a subset of the initial variables 
contained in the data basis. See, e.g., Denuit et al. 
(2007) for an overview of risk classification based on 
GLM and GAM techniques. The actuarial analyst’s 
task is much simplified when the variables that do not 
play any significant role in explaining the insurance 
losses can be eliminated at an early stage, before 
starting the multivariate analysis.

Our aim in this paper is to provide actuaries 
with efficient statistical tools to select among a set  
of possible explanatory variables (or risk factors) 
X1, X2, . . . the components that appear to be cor-
related with a response Y. Here, Y is a loss variable 
that can be

1.	 the number N of reported claims over a given 
period of time;

2.	 the binary indicator I of the event N ≥ 1, i.e., I = 1 
if at least one claim has been reported, and I = 0 
otherwise;
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Several actuarial software packages routinely com-
pute Cramer’s V to measure association between Y 
and X. This statistic is defined according to Cramer 
(1945, Section 21.9) as

min 1, 1
0,1 .
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Dividing c2 by the number n of observations 
makes the statistic independent of the number of 
observations, i.e., multiplying each cell of the con-
tingency table with a positive integer does not alter 
the value of Cramer’s V. Moreover, the maximum  
of c2/n is attained when there is total dependence, 
i.e., each row (or column, depending on the size  
of the table) exhibits only one strictly positive 
integer. This means that the value of X determines 
the value of Y. The maximum of c2/n is equal to the 
smallest dimension minus 1. Thus, dividing c2/n by 
min{p – 1, q – 1} ensures that V assumes its value  
in the unit interval [0, 1]. Taking square-root guaran-
tees that Cramer’s V and Pearson’s linear correlation 
coefficient
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coincide on 2 × 2 tables (i.e., for two binary variables, 
with p = q = 2).

2.3.  Likelihood ratio test statistic

Despite its popularity among actuaries, Pearson’s 
chi-square statistic is not optimal from a statistical 
point of view and the likelihood ratio test statistic 
should be preferred. In contingency tables, the likeli-
hood ratio statistic for the test of independence of 
two discrete variables is given by
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2.  Discrete-discrete case
2.1.  Contingency tables

Consider a discrete response Y with values  
y1, . . . , yp. In most cases, such a Y represents the 
number of claims so that yi = i – 1, with an open 
category yp of the form “more than p – 2 claims.”  
The candidate risk factor X may be discrete or cate
gorical with values x1, . . . , xq.

When dealing with two discrete variables, it is 
convenient to display the observations in a contin-
gency table. Let nij be the number of observed pairs 
(yi, xj), i = 1, . . . , p, j = 1, . . . , q, in the data set of 
size n and define the marginal totals
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2.  From Pearson’s chi-square  
to Cramer’s V

To detect an association between such variables, 
actuaries often use Pearson’s chi-square indepen-
dence test statistic given by
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 is the estimated expected number 

of observed pairs (yi, xj) under the null assumption H0 
of independence between X and Y. Under H0, the test 
statistic c2 is known to be approximately distributed 
according to the chi-square distribution with (p – 1)
(q – 1) degrees of freedom.

Often, in practice, the assessment of correlation 
between risk factors and loss responses is performed 
with the help of Cramer’s V. This measure of associ-
ation is based on contingency tables and assumes its 
values in the unit interval [0, 1], with the extremities 
corresponding to independence and perfect depen-
dence. Being based on data displayed in tabular form, 
Cramer’s V is widely applicable, even to continuous 
variables after a preliminary banding.
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EMT contributed by Menzel  
(2013), which takes as input 
a contingency table and 
outputs the corresponding  
p-value. This approach 

implies that one has to compute the probability of 
occurrence of every possible contingency table, 
which is out of reach with the currently available 
computational power when the variables have many 
possible values, or for large data bases such as those 
commonly encountered in actuarial applications.

3.  Discrete-continuous case
3.1.  Conditional distributions

Let us now assume that X is a categorical or dis-
crete variable with values x1, x2, . . . , xq and that Y 
is continuous. Of course, the procedure described in 
the preceding section also applies to the present situ-
ation, provided Y is made categorical by partitioning 
its domain into disjoint intervals. Continuous vari-
ables can always be discretized (or banded) and hence 
be treated as discrete ones. However, the preliminary 
banding of a continuous variable is subjective (the 
choice of cut-off points is generally made somewhat 
arbitrary by the analyst) and leads to a possible loss 
of information. No optimal cut-off points are avail-
able in general. As shown in Section 5.2, the way Y is 
made categorical can lead to very different p-values 
when using the procedure described in the previous 
section. Thus, the choice of the categories used to 
build contingency tables from continuous data may 
influence the conclusion of the independence tests. 
This is why there is a need for specific tests when at 
least one variable is continuous.

Let us now describe a method to deal with a con-
tinuous response Y. Notice that the same technique 
applies when Y is discrete and X is continuous 
because dependence is a symmetric concept.

Consider the conditional distribution functions  
F1, F2, . . . , Fq defined as

P , 1, . . . , .F y Y y X x j qj j[ ]( ) = ≤ = =

As shown, e.g., in Pawitan  
(2013), Pearson’s c2 is in 
fact an approximation to G2. 
Precisely, if the expected 
frequencies eij are large 
enough in every cell, then the likelihood ratio statis-
tic can be approximated by the c2 statistic, i.e.,
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Whatever the sample size, the exact likelihood ratio 
statistics G2 should thus be preferred over the approxi-
mations V or c2.

Under mild regularity conditions, Wilks’ theorem 
guarantees the convergence of G2 to the chi-square 
distribution with (p – 1)(q – 1) degrees of freedom. 
Quine and Robinson (1985) established that G2 is 
more efficient in the Bahadur sense than Pearson’s 
c2 statistic. The asymptotic Bahadur efficiency of G2 
implies that a much smaller sample size is needed when 
using G2 than when using c2 if a fixed power should 
be achieved at a very small significance level for 
some alternative. See also Harremoes and Tusnady 
(2012). The convergence of the exact distribution 
of the statistic under H0 towards the asymptotic chi-
square distribution is discussed in Dunning (1993). 
As the likelihood ratio test statistic G 2 appears to be 
more efficient than Pearson’s c2, it should be preferred 
to Cramer’s V in actuarial applications.

2.4.  Computational aspects

The likelihood ratio can be easily computed with 
R using the function likelihood.test comprised in 
the package Deducer contributed by Fellows (2012). 
This function, which can take as input a contingency 
table, outputs the resulting value of the likelihood 
ratio statistic G2 as well as the corresponding p-value 
based on the asymptotic chi-square distribution.

Exact p-values for independence tests between 
two discrete variables can be obtained using the 
function multinomial.test comprised in the R package 

Pearson’s chi-square is in fact  
an approximation to the 

likelihood ratio
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where Xj are independent Brownian motions. The 
asymptotic distribution of Wn can then be obtained 
by simulations with the help of the R package  
Sim.DiffProc contributed by Guidoum and Boukhetala 
(2015), for instance. This package contains the func-
tion BB which enables one to simulate a Brownian 
Bridge once a discretization step has been set.

Since the statistic Wn does not depend on the dis-
tribution of the marginals on the one hand, and since 
the random variable F(Y) is uniformly distributed 
over the unit interval (because Y is continuous) on 
the other hand, the exact distribution of Wn can also 
be derived by using the ranks of simulated uniform 
random variables.

Notice that Kiefer (1959) also proposed a  
Kolmogorov–Smirnov type statistic for multiple dis-
tribution. However, the distribution of this test statis-
tic is hard to obtain due to the difficulty in properly 
simulating maxima of Brownian Bridges.

4.  Continuous-continuous case
4.1.  Copula decomposition

Let us now turn to the case where both the candi-
date risk factor X and the response Y are continuous, 
with distribution functions FX and FY, respectively. 
Once again, let us point out that we could apply pre-
vious procedures by making X and/or Y categorical. 
However, as already mentioned, banding continuous 
variables is not optimal and somewhat subjective.

In the continuous-continuous case, copulas are 
known to describe the dependence structure between 
X and Y. We refer to Denuit et al. (2005) or Nelsen 
(2007) for an introduction to copulas. As both random 
variables are continuous, the copula C associated 
to the random vector (X, Y ) is unique and does not 
depend on the marginals of X and Y but only on the 
corresponding ranks FX(X ) and FY(Y ). The copula C 
is just the joint distribution function of the random 
couple (FX(X ), FY(Y )) in this case.

In case both random variables are independent, 
these conditional distribution functions Fj are all 
equal to the unconditional distribution function  
F(y) = P[Y ≤ y]. Therefore, a convenient way to test 
for independence between X and Y consists in testing 
whether the conditional distributions are equal to the 
unconditional distribution, i.e.,
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3.2.  Cramer–von Mises statistic

To test for H0 against H1, we can use the Cramer–
von Mises type statistic for multiple distributions 
proposed by Kiefer (1959).

Assume that we have observed the pair (yi, xi) for 
policyholder i, i = 1, . . . , n, with xi equal to one of 
the values x1, x2, . . . , xq. Let nj be the number of 
observations such that X = xj, j = 1, 2, . . . , q and let 
us denote by I[•] the indicator function, i.e., I[A] = 1  
if condition A is fulfilled and I[A] = 0 otherwise.  
The test statistic proposed by Kiefer (1959) is
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3.3.  Computational aspects

The asymptotic distribution of Wn under H0 is given 
in Kiefer (1959) who established that
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where Bj are independent Brownian bridges, i.e.,
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Therefore, in this setting, we rather use the following 
Cramer–von Mises statistic
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. Genest and Remillard 

(2004) showed that In approximates the statistic Dn 
and provided an explicit expression for In, namely,
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Large values of In then lead to reject the indepen-
dence hypothesis.

4.3.  Computational aspects

The asymptotic distribution of In under indepen-
dence hypothesis is given in Deheuvels (1981).  
We have
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where Zi1,i2
 are independent standard Normal random 

variables. Let us notice that since this statistic is 
distribution-free, the distribution of In under the 
independence hypothesis for a given sample size can 
be obtained by simulation.

4.2.  Cramer–von Mises statistic

In case both random variables are independent, 
the copula C is the independence copula C⊥ given by  
C⊥(u, v) = uv. Hence, relying on the average distance 
between the empirical copula Ĉn and the indepen-
dence copula C⊥ turns out to be convenient in order 
to test whether two continuous variables are indepen-
dent. Recall that the empirical copula Ĉn of (X, Y ) is 
defined as

C u v
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where F̂X and F̂Y are the empirical distribution 
functions of X and Y, respectively. Notice that 
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For convergences purposes, it is often preferable 
to use the scaled empirical distribution function 
defined as

ˆ
1

,F x
i

n
X i( ) =

+( )

where x(i) is the i-th order statistic (i.e., the observa-
tion xj such that Rj

X = i). Indeed, using the scaling 
factor n/(n + 1) avoids problems at the boundary of 
the rectangle [0,1]2. See, e.g., Kojadinovic and Yan 
(2010) for more details.

The test statistic used in this setting is then given by

ˆ , ,
2

0

1

0

1
D n C u v uv dudvn n∫∫ ( )( )= −

which measures how the empirical copula Ĉn(u, v) is 
close to the independence copula uv.

To reduce bias and improve convergence, it is gen-
erally preferable to work with the centered version of 
empirical processes (see Genest and Remillard 2004). 
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  1.  AgePh: policyholder’s age;

  2.  AgeCar: age of the car;

  3. � Fuel: fuel of the car, with two categories gas 
(69.02%) or diesel (30.98%);

  4. � Split: splitting of the premium, with four catego-
ries annually (49.65%), semi-annually (28.12%), 
quarterly (7.72%) or monthly (14.51%);

  5. � Sport: classification of the car as a sports car, with 
two categories sports car (0.92%) or not (99.08%);

  6. � Fleet: whether the car is in a fleet or not, with 
two categories in a fleet (3.18%) or not (96.82%);

  7. � Gender: policyholder’s gender, with two cate
gories female (26.48%) or male (73.52%);

  8. � Use: use of the car, with two categories private 
(95.16%) or professional (4.84%);

  9. � Cover: extent of the coverage, with three catego-
ries from compulsory third-party liability cover 
to comprehensive;

10. � Region: geographical area, based on the first 
digit of the ZIP code.

The variables AgePh and AgeCar can be consid-
ered as continuous or discrete because these ages are 
generally recorded as integer values, only. Here, we 
treat these variables as continuous ones by adding a 
unit uniform noise in order to have unique values. This 
approach has now become standard when dealing with 
integer-valued observations, see, e.g., Denuit and 
Lambert (2005). Table 2 displays descriptive statistics 
for these two variables.

5.  Numerical illustration  
with motor third party liability 
insurance

Let us now illustrate the proposed approach on the 
motor third party liability insurance portfolio of a 
Belgian insurance company.

5.1.  Description of the data set

The portfolio has been observed during one year 
and comprises 162,471 insurance policies. We con-
sider three of the response variables presented in the 
introduction, namely:

1.	 the indicator I = I[N ≥ 1], equal to 0 if there is no 
claim and equal to 1 otherwise;

2.	 the number N+ of reported claims when a least one 
claim has been reported to the company;

3.	 the average cost per claim S
–
 when at least one 

claim has been reported.

Table 1 summarizes the information available in 
the data set for the response variables. In particular, 
we notice that N+ = 5 for only 2 policyholders and 
N+ = 4 for 17 policyholders. Hence, in the following, 
we group the cases N+ ≥ 3 into one category, i.e., we 
work with N*+ = min{N+, 3} instead of N+.

The explanatory variables available in the port
folio are described below, where we put in brackets 
the proportions observed in the data set for each level 
of the variable, when relevant:

Table 1.  Descriptive statistics for N (left panel) and for S– (right panel)

Number of 
claims N Number of policies Total exposure Descriptive statistics for S

–

144 225 127 648.8 # of obs. 18 246

16 512 15 327.2 Mean 1793

1554 1439.3 Std. dev. 17 538

161 149.5 Median 575

17 14.3 Min 0

2 1.4 Max 1 990 
000

percentile 103 391

percentile 143 017

percentile 702 172
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table depicted in Table 4 
(left) which yields a p-value 
of 0.1866. Now, if we chose 
37 instead of 39 as a break 
point for AgePh, the p-value 
becomes 0.015 (see Table 4 
(right) for the contingency 

table) and hence we come up with a different conclu-
sion for the test.

5.3.  Sample size and convergence 
towards asymptotic distributions

Before applying the proposed testing procedures 
on the motor insurance portfolio presented above, 
we first conduct a sensitivity analysis. Our aim is to 
determine the sample size needed to use the asymp-
totic distributions of the test statistics to compute 
the p-values. We also discuss the number of simu-
lations and the discretization step for the Brownian 
bridge. Both aspects will be treated separately for 
the discrete-continous case and for the continuous-
continous case.

5.3.  Discrete-continuous case

As mentioned in Section 3.3, we can simulate the 
exact distribution for a given sample size. Speci
fically, we simulate for various sample sizes the  
distribution of the statistic under the null hypothesis. 
The number of simulations will be fixed at 100,000 
and the total sample size varies from 50 and 2000 
(to be divided in each of the q levels). Figure 1 
displays the empirical distribution function resulting 

Notice that the exposure is to be understood in 
terms of policy-year. However, since the present 
study is restricted to single-vehicle policies, this 
coincides with vehicle-year exposure.

5.2.  Use of banding techniques

It is common practice to 
band continuous variables 
in order to use techniques 
designed for discrete vari-
ables. However, as we show 
hereafter, the way the actuary 
bands a continuous variable can have a significant 
impact on the resulting p-values. Hence the need to 
develop specific tests when at least one variable is 
continuous.

For instance, let us first consider the banded vari-
able AgeCar with break points 0,6,10 and 20 and let 
us test the independence with the indicator variable 
I = I[N ≥ 1]. Table 3 (left) shows the resulting con-
tingency table which provides a p-value of 0.03217. 
Now, if we had chosen 7 instead of 6 in order to band 
the variable AgeCar, we would have obtained the 
contingency table depicted in Table 3 (right) leading 
to a p-value of 0.2758. So, we see that the choice of 
a break point can lead to different conclusions for 
the independence test.

Another example consists in testing the inde-
pendence between AgePh and S

–
 using banding. If 

we band AgePh at break points 18, 39, 65 and S
–
 at 

break points 0, 25, 2 500, we get the contingency 

Table 2.  Descriptive statistics for AgePh and AgeCar

Mean Std. dev. Median Min/Max

AgePh 46.98 14.81 46 18/95

AgeCar 7.29   3.99   7   0/20

Table 3. Contingency tables between AgeCar (banded) and I

0 1 0 1

[0,6] 66 088 8174 [0,7] 78 350 9799

(6,10] 45 981 5936 (7,10] 33 719 4311

(10,20] 32 156 4136 (10,20] 32 156 4136

Table 4. Contingency tables between S– (banded)  
and AgePh (banded)

(0, 25] (25, 2 500] > 2 500

[18,39] 75 6914 833

(39,65] 83 7529 832

> 65 11 1768 201

(0, 25] (25, 2 500] > 2 500

[18,37] 60 6153 767

(37,65] 98 8290 898

> 65 11 1768 201

The way the actuary bands  
a continuous variable can have  

a significant impact.
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from these simulations, together with the distribution 
function obtained using the asymptotic distribution 
using 100,000 simulations and a discretization step 
10–4 (these values are discussed in the second point 
hereafter). We can see there the rapid convergence 
towards the asymptotic distribution. For the values 
of n encountered in actuarial applications, ranging in 
the thousands, we can safely rely on the asymptotic 
distribution of the proposed test statistics.

Let us now discuss the number of simulations 
and the discretization step for the Brownian bridge 
used in the simulation of the asymptotic distribution. 
We compare the simulated distribution function for 
different numbers of simulations ({1000, 10,000,  
50,000, 100,000}) and different numbers of dis
cretization steps ({10,000, 15,000, 25,000}). The 
sensitivity analysis is conducted for the common 
values for q. Figures 2–4 summarize the results for 
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0.
0

1.
0

0.
5

1.
5

0.0 1.00.5 1.5

nbsim = 50000 , nsteps = 10000

0.
0

1.
0

0.
5

1.
5

0.0 2.01.00.5 1.5

nbsim = 100000 , nsteps = 10000

0.
0

1.
0

0.
5

1.
5

0.0 2.01.00.5 1.5

nbsim = 10000 , nsteps = 15000

0.
0

1.
0

0.
5

1.
5

0.0 1.00.5 1.5

nbsim = 50000 , nsteps = 15000

0.
0

1.
0

0.
5

1.
5

0.0 2.01.00.5 1.5

nbsim = 10000 , nsteps = 25000

0.
0

1.
0

0.
5

1.
5

0.0 1.00.5 2.01.5

nbsim = 50000 , nsteps = 25000

0.
0

1.
0

0.
5

1.
5

0.0 1.00.5 1.5

nbsim = 100000 , nsteps = 15000
0.

0
1.

0
0.

5
1.

5

0.0 1.00.5 1.5

Figure 2.  QQ-plot for the simulated asymptotic distribution for various numbers of simulations and 
discretization steps for the Brownian bridge in the case q = 2. Comparisons with the asymptotic distribution 
obtained from 100,000 simulations and 25,000 discretization steps
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q ∈{2, 3, 4}. The departures that are sometimes 
visible on the right occur in the far tail of the dis-
tribution. This is easily seen from the values of the 
95th and 99th percentile of the distributions, which 
are equal to 0.4642337 and to 0.7457122 for q = 2, 
to 0.7536059 and to 1.0790407 for q = 3, and to 
1.002293 and to 1.355677 for q = 4. Based on these 
results, performing 100,000 simulations with 10,000 
discretization steps appears to be reasonable for 
practical applications.

5.3.2.  Continuous-continuous case

Let us examine the convergence of the exact distri-
bution towards the asymptotic distribution when both 
variables are continuous. To this end, we rely on the 
R package copula and its functions indepTestSim to 
compute the exact distribution for a given sample size 
and indepTest to compute the test statistic on a given 
data set. We also discuss there the number of simula-
tions needed to obtain a stable asymptotic distribution.
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Figure 3. QQ-plot for the simulated asymptotic distribution for various numbers of simulations and 
discretization steps for the Brownian bridge in the case q = 3. Comparisons with the asymptotic distribution 
obtained from 100,000 simulations and 25,000 discretization steps
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nbsim = 10000 , nsteps = 10000
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Figure 4. QQ-plot for the simulated asymptotic distribution for various numbers of simulations and 
discretization steps for the Brownian bridge in the case q = 4. Comparisons with the asymptotic distribution 
obtained from 100,000 simulations and 25,000 discretization steps
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Since the distribution only relies on ranks, we can 
simulate independent uniform random variables to 
assess the exact distribution under H0. Repeating this 
100,000 times allows us to simulate the exact distri-
bution for a given sample size. Let us compute this 
distribution for the following sample sizes: 100, 200, 
1000, 2000. We compare these exact distributions 
with the asymptotic distribution using a QQ-plot as 
depicted on Figure 5.

We also analyze the sensitivity of the asymptotic 
distribution function to the number of simulations. 

Some quantiles for various numbers of simulations 
are given in Table 5. We can see there that as soon 
as the sample size reaches 250, the simulated quan-
tiles stabilize after 10,000 simulations.

5.4.  Results of the independence tests

We now apply the tests described in Sections 2–4: 
as explained in the previous sections, we use the 
likelihood ratio test, the discrete-discrete case, the 
Cramer–von Mises test in the discrete-continuous  
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Figure 5. QQ-plot between the exact distributions for various sample sizes and the asymptotic distribution
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case, and the independence copula test in the  
continuous-continuous case. In Table 6 we display 
the p-values for each test. In the discrete-discrete 
case, we use the function likelihood.test from the  
R package Deducer. In the continuous-discrete case, 
the asymptotic distribution of the statistic Wn under 
the independence hypothesis was obtained using 
100,000 simulations and 10,000 discretization steps 
for the Brownian bridge. This can be done in R using 
the following commands:

library(Sim.DiffProc)
mc<-100000 #Number of simulations
T<-matrix(nrow=mc,ncol=1)
# q = number of possible values for X 
for (k in 1:mc)
{
simbbridge<-BB(N=10000,M=q-1,x0=0,y=0, 
  t0=0,T=1);
T[k, 1]<-sum(rowSums(simbbridge^2))/10000;
}

Once the statistic has been computed on the data 
set, the p-values are found using the quantile func-
tion. In the continuous-continuous case, the asymp-
totic distribution of the statistic In was computed 
using 100,000 simulations. The distribution can be  
simulated using the formula from Section 4.3, and, 
as discussed in Table 5, by restricting the sum over 
the first 100 × 100 terms. Low p-values mean that 

independence is rejected. For the binary variable I, 
independence is rejected for most of the explanatory 
variables at all the usual confidence levels, with the 
exception of Use. Considering the response variable 
N*+, independence with respect to the explanatory 
variables is less often rejected. Hence, we observe 
that most variables could be used to explain whether 
at least one claim has been recorded, while fewer 
variables seem to be relevant to explain the number 
of claims, knowing that at least one claim has been 

Table 5.  Quantiles of the simulated asymptotic distribution of In for  
various sample sizes n obtained with nsim simulations and a truncated sum  
(n2 first terms)

n nsim 0.75 0.9 0.95 0.975

50 1 000 0.03238 0.04611 0.05748 0.06819

100 1 000 0.03303 0.04530 0.05488 0.07202

200 1 000 0.03408 0.04894 0.06234 0.07601

250 1 000 0.03354 0.04703 0.06148 0.07438

50 10 000 0.03221 0.04621 0.05772 0.07062

100 10 000 0.03274 0.04615 0.05775 0.06959

200 10 000 0.03335 0.04786 0.05918 0.07023

250 10 000 0.03294 0.04737 0.05866 0.07057

50 100 000 0.03229 0.04633 0.05755 0.06971

100 100 000 0.03275 0.04697 0.05841 0.07102

200 100 000 0.03273 0.04658 0.05779 0.06948

250 100 000 0.03289 0.04669 0.05817 0.07041

Table 6.  p-values for the independence tests, with the usual 
codes “***” for p-values less than 0.1%, “**” for p-values 
between 0.1% and 1%, “*” for p-values between 1% and 5%, 
and “•” for p-values between 5% and 10%

I N*+ S
–

AgePh < 10–5 *** < 10–5 *** < 10–5 ***

AgeCar < 10–5 *** 0.01723 * < 10–5 ***

Fuel < 10–5 *** 0.89025 0.34087

Split < 10–5 *** < 10–5 *** < 10–5 ***

Cover < 10–5 *** 0.00039 *** < 10–5 ***

Sport 0.00498 ** 0.17052 < 10–5 ***

Fleet 0.00145 ** 0.27646 < 10–5 ***

Gender 0.00002 *** 0.91754 0.01437 *

Region < 10–5 *** 0.00001 *** < 10–5 ***

Use 0.92766 0.03252 * 0.08995 •
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able Fuel was run. A logistic regression was also run 
between I and Fuel. A deviance test to compare both 
models (one with explanatory variable Fuel, and 
one with only an intercept) yielded similar results to 
those reported in Table 6: p-value below 2.2 × 10–16, 
deviance of 136.38.

Even if both approaches agree on these examples, 
we believe that the results of Table 6 are more reli-
able in that they are fully nonparametric. The conclu-
sions drawn from the logistic or gamma regressions 
could be distorted by an inappropriate choice of link 
function and/or distributional assumption.

Notice that the variable Region considered in our 
example has been considerably simplified, with only 
nine levels resulting from grouping according to the 
first digits of the ZIP code. Using the exact geo-
graphical location as reflected by ZIP codes would 
mean distinguishing more than 600 districts in  
Belgium. We must acknowledge that the tests pro-
posed in the present paper cannot deal with such a 
multi-level risk factor. Credibility mechanisms, or 
mixed models, can be used to deal with such factors at 
a later stage of the analysis, as explained for instance 
in Ohlsson and Johansson (2010).

6.  Discussion

In this paper, we have presented an approach to 
assess whether a covariate X influences a response Y. 
This approach enables actuaries to treat in a consistent 
way all the cases arising from the possible formats 
of X and Y (even if the underlying techniques differ 
from one case to another). Indeed, we have provided 
actuaries with nonparametric tests for independence, 
appropriate to each format and that come up with cor-
responding p-values. These independence tests can 
be applied routinely and the results are obtained in 
just a few seconds on a whole set of possible covari-
ates. This is in contrast with other variable selection 
methods, such as random forests, which can take 
more time to be performed, as well as with other 
approaches (such as Lasso) which require careful 
selection of tuning parameters by cross-validation. 

registered. This would suggest to use a zero-modified 
count regression model as it enables to enter different  
scores for the probability mass at zero and for the 
probabilities assigned to positive integers. Never
theless, let us mention that fewer data points are 
available to test the independence of the explanatory 
variables to N*+ compared to I, which may impact 
on the power of the test. Notice that the added uni-
form noise to the variables AgePh and AgeCar does 
not alter the results. P-values remain very similar and 
the conclusion of the tests are unaltered when other 
uniform noises are added.

Because of the large sample size (about 160,000 
policies, among which about 18,000 produced claims) 
we could have expected that the independence tests 
would have been less effective since most variables 
would have a low p-value. The results reported in 
Table 6, however, show that some p-values remain 
high, suggesting that the corresponding explanatory 
variables can be excluded from the analysis, despite 
the large sample size.

Considering the average cost per claim S
–
, we detect 

an effect of all covariates except Fuel that turns out 
to only impact the variable I. The effect of Use is 
moderate, with a p-value in the grey zone 5%–10%.

In this simple example, we see that some explana-
tory variables can be excluded from the very begin-
ning, as they do not appear to be correlated with the 
responses. Reducing the number of explanatory vari-
ables to be considered in the multivariate regression 
analysis helps the actuary to simplify the interpretation 
of the results.

For the sake of comparison, we also run an ordered 
logistic regression using the function polr from 
package MASS in R to explain N*+ with the covariate 
Fuel and a gamma regression to explain the average  
cost of claims S

–
. In both cases, Fuel was found to  

be unsignificant (p-values of 0.7628 and 0.2561), 
so that we reach the same conclusion than those 
obtained with the tests presented in this paper. Notice 
that to obtain the p-value in the ordered logistic 
regression a likelihood ratio test between the model 
with only the intercept and the model with the vari-
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The presented methods, however, do not allow 
us to classify the variables by the strength of their 
dependence to the response because smaller p-values 
do not necessarily reveal stronger dependence. In 
order to measure the degree of association between 
the response Y and a risk factor X for which indepen-
dence has been rejected, one can refer to association 
measures. One possibility is the comparison of the 
variability of the pure premium E[Y |X] with the 
variability of the loss variable Y. Specifically, we start 
from the well-known decomposition of the variance 
formula

Y Y X Y X[ ] [ ][ ] [ ][ ] = +V E V V E .

In case of independence, the last term is equal to 
zero, since E[Y |X ] is constant, while in case of 
perfect association, i.e., when Y = f (X ) for some 
measurable function f, the first term is equal to zero, 
since there is no uncertainty left when knowing X. 
So, the following reduction in variability

Y Y X

Y
[ ][ ][ ]

[ ]
−V V E

V

measures by how much the variability of Y is reduced 
by knowing X. Therefore, we can measure the degree 
of association between X and Y by the ratio

Y X

Y
[ ][ ] [ ]

[ ]
r = ∈V E

V
0,1 . (6.1)

The ratio r is the part of the total variance sup-
ported by the policyholders. See, e.g., De Wit and 
Van Eeghen (1984) for more details. The association 
measure (6.1) is currently under study.
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Of course, the methods described in this paper do 
not replace these multivariate tools but only aim to 
reduce the number of predictors to be considered at 
later stages of the analysis. This can be particularly 
useful when GLMs are used, for instance. The con-
clusions of the independence tests may also guide 
the choice of the model, suggesting a specific score to 
capture the influence of the risk factors on the zero-
claim probability.

The main discovery of our numerical illustrations 
is that some risk factors appear to influence the indi-
cator I but not N*+, and vice versa. This suggests that 
the actuary resorts to zero-modified regression models, 
such as those studied in Boucher et al. (2007).

Notice that we have not discussed interactions. 
When these effects are included in the model by 
means of additional covariates, the proposed testing  
procedures can be applied to these new variables. 
For instance, when both explanatory variables are 
discrete, the presented likelihood ratio test can 
be performed on the variable which consists in the 
Cartesian product of both explanatory discrete vari-
ables. Also, if the variable of interest is discrete and 
only one of the explanatory variable is discrete, then 
the test from Section 3 can be used to assess the 
interaction.

Let us also mention that all the formulas rely on 
values of n, so that observations are not weighted by 
exposure. All independence tests have been developed 
for independent and identically distributed bivariate 
observations so that unequal risk exposures cannot be 
taken into account. As the tests are intended to be used 
in a preliminary stage, to perform a first selection 
of potential risk factors, this does not seem to be an 
issue. In the portfolio under study, most policyholders  
were present for the whole year. As long as the dis-
tribution of exposures does not vary according to the 
levels of the explanatory variables, unequal expo-
sures should not affect the conclusions. In some 
cases where such a situation may occur (for instance, 
very young drivers who often spend less than one year 
in the portfolio after getting their license), this point 
may require further attention.
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