
Prediction Error of the Multivariate
Additive Loss Reserving Method for
Dependent Lines of Business

by Michael Merz and Mario V. Wüthrich

ABSTRACT

Often in non-life insurance, claims reserves are the largest

position on the liability side of the balance sheet. There-

fore, the prediction of adequate claims reserves for a port-

folio consisting of several run-off subportfolios from

dependent lines of business is of great importance for ev-

ery non-life insurance company. In the present paper, we

consider the claims reserving problem in a multivariate

context–that is, we study a special case of the multivariate

additive loss reserving model proposed by Hess, Schmidt,

and Zocher (2006) and Schmidt (2006a). This model al-

lows for a simultaneous study of the individual run-off sub-

portfolios and enables the derivation of an estimator for the

conditional mean square error of prediction (MSEP) for the

predictor of the ultimate claims of the total portfolio. We

illustrate the results using the data given in Braun (2004)

and compare them to the results derived by the multivari-

ate chain-ladder methods of Braun (2004) and Merz and

Wüthrich (2008).
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1. Introduction and motivation

1.1. Claims reserving

Often in non-life insurance, claims reserves are
the largest position on the liability side of the
balance sheet. Therefore, given the available in-
formation about the past, the prediction of an ad-
equate amount of claim liability assumed by the
non-life insurance company, as well as the quan-
tification of the uncertainties in these reserves,
is a major task in actuarial practice and science
[e.g., Taylor (2000); Wüthrich and Merz (2008);
Casualty Actuarial Society (2001); Teugels and
Sundt (2004); England and Verrall (2002)].

1.2. Multivariate claims reserving
methods and their conditional MSEP

In the present paper, we consider the claims
reserving problem for a portfolio consisting of
several correlated run-off subportfolios. This si-
multaneous study of several individual run-off
subportfolios is motivated by the following con-
siderations:

² In practice it is quite natural to subdivide a
non-life run-off portfolio into several corre-
lated subportfolios, such that each subportfolio
satisfies certain homogeneity properties (e.g.,
the chain-ladder assumptions or the assump-
tions of the additive method).

² It addresses the problem of dependence be-
tween the run-off portfolios of different lines
of business (e.g., between auto liability and
general liability business).

² The multivariate approach has the advantage
that by observing one run-off subportfolio we
can learn about the behavior of the other run-
off subportfolios (e.g., subportfolios of small
and large claims).

² It resolves the problem of additivity (i.e., the
estimators of the ultimate claims for the whole
portfolio are obtained by summation over the
estimators of the ultimate claims for the indi-
vidual run-off subportfolios).

However, in the case of correlated run-off
subportfolios, the calculation of the conditional
mean square error of prediction (MSEP) for the
predictor of the ultimate claim size of the total
portfolio is more sophisticated than the calcu-
lation of the conditional MSEP for the predictor
of the ultimate claim size of a single run-off sub-
portfolio.
An alternative idea to the simultaneous study

of several individual run-off subportfolios is to
calculate the reserves and their uncertainties only
for the total aggregated run-off portfolio. How-
ever, one should pay attention to the fact that
if the subportfolios satisfy, for example, the as-
sumptions of the chain-ladder or the assumptions
of the additive method, the aggregated run-off
portfolio does not in general satisfy these as-
sumptions (Ajne 1994; Klemmt 2004). There-
fore, in most cases it is not a promising solution
to study the aggregated portfolio for the claims
reserving problem of several run-off subportfo-
lios.
Holmberg (1994) was probably the first one to

investigate the problem of dependence between
run-off portfolios of different lines of business.
Later Halliwell (1997) and Quarg and Mack
(2004) [see also Merz and Wüthrich (2006)] pro-
posed the first bivariate models which express
the dependence between the paid and incurred
losses of a single run-off subportfolio.
Braun (2004) generalized the well-known uni-

variate chain-ladder model of Mack (1993) to the
bivariate case by incorporating correlations be-
tween two run-off subportfolios. In this setup he
derived an estimate for the conditional MSEP for
the predictor of the ultimate claim size of two
correlated run-off subportfolios. Using a mul-
tivariate time-series model for the chain-ladder
method Merz and Wüthrich (2007) gave an esti-
mator for the conditional MSEP in the case of N
correlated run-off subportfolios. However, both
the Braun (2004) approach and the Merz and
Wüthrich (2007) approach have the disadvan-
tage that the chain-ladder factors are estimated
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in a univariate way. This means the estimation
of the chain-ladder factors is restricted to the
data of the respective individual run-off subport-
folio and therefore does not take into account the
correlation structure between the different run-
off subportfolios. Pröhl and Schmidt (2005) and
Schmidt (2006a) showed that these univariate es-
timates of the chain-ladder factors are not opti-
mal in terms of a classical optimality criterion in
the case of correlated run-off subportfolios and
therefore one should replace the univariate esti-
mators with multivariate estimators of the chain-
ladder factors reflecting the correlation structure.
However, their study did not go beyond best es-
timators; that is, they did not derive an estima-
tor for the conditional MSEP for the predictor
of the ultimate claim size of the total portfolio.
Finally, using a multivariate chain-ladder time-
series model, Merz and Wüthrich (2008) derived
an estimate for the conditional MSEP, in which
the chain-ladder factors are estimated in a mul-
tivariate way. That is, Merz and Wüthrich (2008)
studied the conditional MSEP for the multi-
variate chain-ladder estimates proposed by Pröhl
and Schmidt (2005) and Schmidt (2006a).

1.3. Multivariate additive loss reserving
method

The multivariate additive loss reserving meth-
od proposed by Hess, Schmidt, and Zocher
(2006) and Schmidt (2006a) is based on a multi-
variate linear model which is suitable for cer-
tain portfolios consisting of several correlated
run-off subportfolios. The additive loss reserv-
ing method has the following features:

1. It is a very simple claims reserving method
which can easily be implemented in a spread-
sheet.

2. Unlike the chain-ladder method, the additive
loss reserving method combines past observa-
tions in the upper claims development triangle
with external knowledge from experts or with

a priori information (e.g., premium, number
of contracts, data from similar run-off portfo-
lios, and market statistics).

3. It is applied to incremental data and thus al-
lows for modeling negative incremental
claims in contrast to some other models such
as the (overdispersed) Poisson model [cf.
Wüthrich and Merz (2008)]. This makes the
additive loss reserving method suitable for the
use of incurred data, which often exhibits neg-
ative incremental values in later development
years due to earlier overestimation of case re-
serves.

4. Unlike the chain-ladder method, the predic-
tion for the ultimate claim does not depend
completely on the last observation on the di-
agonal. This means an outlier on the diagonal
will not be projected directly to the ultimate
claim. Therefore, the additive loss reserving
method is more robust to outliers in the last
observations than the chain-ladder method.

Under the assumptions of their multivariate ad-
ditive loss reserving model, Hess, Schmidt, and
Zocher (2006) and Schmidt (2006a) derived a
formula for the Gauss-Markov predictor for the
nonobservable incremental claim sizes which is
optimal in terms of a classical optimality crite-
rion. The components of these predictors are dif-
ferent from the predictors of the univariate addi-
tive loss reserving method if the subportfolios are
correlated (e.g., see Schmidt (2006a; 2006b) for
the univariate additive loss reserving method).
This means that the predictors of the univari-
ate method are not optimal in the case of cor-
related subportfolios. However, Hess, Schmidt,
and Zocher (2006) and Schmidt (2006a) did not
derive an estimator of the conditional MSEP for
the multivariate additive loss reserving method.
Since in actuarial practice and science the condi-
tional MSEP is a very popular measure to quan-
tify the uncertainties in claims reserves, this pa-
per aims to fill that gap. These studies of uncer-
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Figure 1. Claims development triangle number n

tainty are especially crucial in the development
of new solvency guidelines where one exactly
quantifies the risk profile of the different insur-
ance companies.
More precisely, we formulate a stochastic mod-

el for the multivariate additive loss reserving
method to derive an estimator for the conditional
MSEP using the Gauss-Markov predictor pro-
posed by Hess, Schmidt, and Zocher (2006) and
Schmidt (2006a). Furthermore, by means of a de-
tailed example, this estimator is then compared
to the estimator for the conditional MSEP of the
univariate predictor (i.e., if we ignore the correla-
tion structure between individual subportfolios)
as well as to the estimator for the conditional
MSEP of the multivariate chain-ladder methods
considered by Braun (2004) and Merz and
Wüthrich (2008).

2. Notation and multivariate
framework

In the sequel we assume that the data for the
N ¸ 1 run-off subportfolios consist of run-off tri-
angles of observations of the same size. How-
ever, the multivariate additive loss reserving
method can also be applied to other shapes of
data (e.g., run-off trapezoids). In these N trian-

gles the indices

n, 1· n·N, refer to subportfolios
(triangles),

i, 0· i· I, refer to accident years
(rows), and

j, 0· j · J , refer to development
years (columns).

Figure 1 shows the claims data structure for the
N claims development triangles described above.
The incremental claims (i.e., incremental pay-

ments, change of reported claim amount, or num-
ber of reported claims with reporting delay j) of
run-off triangle n for accident year i and devel-
opment year j are denoted by X(n)i,j and cumula-
tive claims (i.e., cumulative payments, claims in-
curred, or total number of reported claims) of ac-
cident year i up to development year j are given
by

C(n)i,j =
jX
k=0

X(n)i,k : (1)

We assume that the last development year is
given by J , that is X(n)i,j = 0 for all j > J , and
the last accident year is given by I. Moreover,
our assumption that we consider run-off trian-
gles implies I = J .
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Usually, at time I, we have observations

D(n)I = fX(n)i,j ; i+ j · Ig, (2)

for all run-off subportfolios n 2 f1, : : : ,Ng. This
means that at time I (calendar year I) we have a
total of observations over all subportfolios

DNI =
N[
n=1

D(n)I , (3)

and we need to predict the random variables in
its complement

DN,cI = fX(n)i,j ; i · I, i+ j > I, 1· n·Ng:
(4)

For the derivation of the conditional MSEP for
several run-off subportfolios, it is convenient to
write the data of the N subportfolios in vector
form. Thus, we define the N-dimensional ran-
dom vectors of incremental and cumulative pay-
ments by

Xi,j = (X
(1)
i,j , : : : ,X

(N)
i,j )

0 and

Ci,j = (C
(1)
i,j , : : : ,C

(N)
i,j )

0 (5)

for i 2 f0, : : : ,Ig and j 2 f1, : : : ,Jg. Moreover, we
define the N-dimensional column vector consist-
ing of ones by

1= (1, : : : ,1)0 2 RN (6)

and denote by

D(a) =

0BB@
a1 0

. . .

0 aN

1CCA (7)

the N £N-diagonal matrix of the vector a=
(a1, : : : ,aN)

0 2 RN .

3. Multivariate additive loss
reserving method

The additive loss reserving method is easy to
apply. It is based on the study of individual in-
cremental loss ratios. We define for i 2 f0, : : : ,Ig
and j 2 f1, : : : ,Jg theN-dimensional vector of in-
dividual incremental loss ratios for accident year

i and development year j by

Mi,j = (M
(1)
i,j , : : : ,M

(N)
i,j )

0 =V¡1i ¢Xi,j , (8)

with a volume measure

Vi =

0BBBBBBBBB@

V(1,1)i V(1,2)i ¢ ¢ ¢ ¢ ¢ ¢ V(1,N)i

V(2,1)i V(2,2)i ¢ ¢ ¢ ¢ ¢ ¢ V(2,N)i

...
...

. . .
...

...
...

. . .
...

V(N,1)i V(N,2)i ¢ ¢ ¢ ¢ ¢ ¢ V(N,N)i

1CCCCCCCCCA
,

(9)

which is a deterministic positive definite sym-
metric N £N-matrix. The component M (n)

i,j of
Mi,j denotes the individual incremental loss ratio
(relative to Vi) for accident year i and develop-
ment year j of subportfolio n.
In the univariate case N = 1 we have

Mi,j = Xi,j=Vi, (10)

where Vi is an appropriate (deterministic) volume
measure. If Xi,j denotes incremental payments
and Vi is the total premium received for accident
year i, then Mi,j tells how the total loss ratio is
paid over time.

3.1. Multivariate additive loss reserving
model

The following multivariate additive loss reserv-
ing model is a special case of the multivariate
claims reserving model studied by Hess, Schmidt,
and Zocher (2006) and Schmidt (2006a).

MODEL ASSUMPTIONS 3.1 (MULTIVARIATE
ADDITIVE MODEL)

² Incremental payments of different accident
years i are independent.

² There exist N £N-dimensional deterministic
positive definite symmetric matrices V0, : : : ,VI
and N-dimensional constants (j = 1, : : : ,J)

mj = (m
(1)
j , : : : ,m

(N)
j )0 and

¾j¡1 = (¾
(1)
j¡1, : : : ,¾

(N)
j¡1)

0 (11)
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with ¾(n)j¡1 > 0 for all n= 1, : : : ,N as well as N-
dimensional random variables

"i,j = ("
(1)
i,j , : : : ,"

(N)
i,j )

0, (12)

such that for all i 2 f0, : : : ,Ig and j 2 f1, : : : ,Jg
we have

Xi,j =Vi ¢mj +V1=2i ¢D("i,j) ¢¾j¡1: (13)
Moreover, the random variables "i,j are inde-
pendent with E["i,j] = 0 and

Cov("i,j ,"i,j)

= E["i,j ¢ "0i,j] =

0BBBBBBBBB@

1 ½(1,2)j¡1 ¢ ¢ ¢ ¢ ¢ ¢ ½(1,N)j¡1

½(2,1)j¡1 1 ¢ ¢ ¢ ¢ ¢ ¢ ½(2,N)j¡1

...
...

. . .
...

...
...

. . .
...

½(N,1)j¡1 ½(N,2)j¡1 ¢ ¢ ¢ ¢ ¢ ¢ 1

1CCCCCCCCCA
,

(14)

where ½(n,m)j¡1 2 (¡1,1) for n,m 2 f1, : : : ,Ng and
n 6=m.
Clearly, in most practical applications Vi is

chosen to be diagonal so as to represent a volume
measure of accident year i, known a priori (e.g.,
premium, number of contracts, expected num-
ber of claims, etc.), or an estimate from exter-
nal knowledge such as experts, similar portfo-
lios, or market statistics (see Example in Section
6). However, we can also take into account that
the volume measure or estimate from external

knowledge for subportfolio m influences the in-
cremental payments for another subportfolio n
in accident year i by choosing V(n,m)i 6= 0. In this
case we obtain a nondiagonal matrix Vi.
In the univariate caseN = 1, the additive model

satisfies

Xi,j=Vi =mj +V
¡1=2
i ¢¾j¡1 ¢ "i,j , (15)

with
E[Xi,j] = Vi ¢mj and

Var(Xi,j) = Vi ¢¾2j¡1:
(16)

Hence this model can also be interpreted as a
GLM model with Gaussian variance function
(i.e., V(x) = 1), volume measure Vi and disper-
sion parameter ¾2j¡1 [cf. McCullagh and Nelder
(1989)].
Under Model Assumptions 3.1 we have

Cov(Xi,j ,Xi,j) = V
1=2
i ¢§j¡1 ¢V1=2i , (17)

where

§j¡1 = E[D("i,j) ¢¾j¡1 ¢¾0j¡1 ¢D("i,j)]
= D(¾j¡1) ¢Cov("i,j ,"i,j) ¢D(¾j¡1)

=

0BBBBBBBBBB@

(¾(1)j¡1)
2 ¾(1)j¡1¾

(2)
j¡1½

(1,2)
j¡1 ¢ ¢ ¢ ¢ ¢ ¢ ¾(1)j¡1¾

(N)
j¡1½

(1,N)
j¡1

¾(2)j¡1¾
(1)
j¡1½

(2,1)
j¡1 (¾(2)j¡1)

2 ¢ ¢ ¢ ¢ ¢ ¢ ¾(2)j¡1¾
(N)
j¡1½

(2,N)
j¡1

...
...

...
...

...
...

¾(N)j¡1¾
(1)
j¡1½

(N,1)
j¡1 ¾(N)j¡1¾

(2)
j¡1½

(N,2)
j¡1 ¢ ¢ ¢ ¢ ¢ ¢ (¾(N)j¡1)

2

1CCCCCCCCCCA
: (18)

By Model Assumptions 3.1 we restrict any as-
sumption regarding the correlation between the
N run-off subportfolios to each of the corres-
ponding development years j (j = 1, : : : ,J) in the
N run-off triangles. Matrix §j¡1 reflects the cor-
relation structure between the incremental claims
of development year j in the N different sub-
portfolios. Often correlations between different
run-off subportfolios are attributed to claims in-
flation. Under this point of view, it may seem
more reasonable to allow for correlation between
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the incremental claims of the same calender year

(diagonals of the claims development triangles).

However, this would contradict the assumption

of independent accident years which is common

to most claims reserving methods, and in fact

also necessary to develop reasonable estimators

from a mathematical point of view.

The Multivariate Additive Model 3.1 is a spe-

cial case of the multivariate claims reserving

model proposed by Hess, Schmidt, and Zocher

(2006) and Schmidt (2006a), in contrast to which

we assume that incremental payments Xi,j are
independent (instead of only uncorrelated) and

generated by the time series (13).

REMARK 3.2

² The incremental claims Xi,j and Xk,l are inde-
pendent for i 6= k or j 6= l.

² The N-dimensional expected incremental loss
ratios (mj)1·j·J can be interpreted as a multi-
variate scaled expected reporting/cashflow pat-

tern over the different development years.

² In (17) we use the notation §j¡1 instead of §j
since it simplifies the comparability with the

derivations and results in Merz and Wüthrich

(2008).

² Since we assume that Vi is a positive defi-
nite symmetric matrix, there is a well-defined

positive definite symmetric matrix V1=2i (called
square root of Vi) satisfying Vi =V

1=2
i ¢V1=2i .

We obtain for the conditional expectation (best

estimate) E[Ci,J j DNI ] of the ultimate claim

Ci,J :

PROPERTY 3.3. Under Model Assumptions 3.1 we

have for all I¡ J +1· i · I

E[Ci,J j DNI ] = E[Ci,J jCi,I¡i]

=Ci,I¡i+Vi ¢
JX

j=I¡i+1
mj :

(19)

PROOF Using the independence of the incre-
mental claims we obtain

E[Ci,J j DNI ] =Ci,I¡i+E
24 JX
j=I¡i+1

Xi,j

¯̄̄̄
¯DNI

35
=Ci,I¡i+

JX
j=I¡i+1

E[Xi,j]

=Ci,I¡i+Vi ¢
JX

j=I¡i+1
mj

= E[Ci,J jCi,I¡i]: (20)

This finishes the proof. Q.E.D.

This result motivates an algorithm for estimat-
ing the expected ultimate claims given the obser-
vation DNI . If the N-dimensional expected incre-
mental loss ratios (mj)1·j·J are known, the ex-
pected outstanding claims liabilities of accident
year i for the N correlated run-off triangles based
on the information DNI are estimated by

E[Ci,J j DNI ]¡Ci,I¡i =Vi ¢
JX

j=I¡i+1
mj : (21)

However, in most practical applications we have
to estimate the ratios mj from the data in the
upper left triangle. Hess, Schmidt, and Zocher
(2006) and Schmidt (2006a) propose the follow-
ing multivariate estimates, for j = 1, : : : ,J

m̂j = (m̂
(1)
j , : : : ,m̂

(N)
j )0

=

0@I¡jX
i=0

V1=2i ¢§¡1j¡1 ¢V1=2i
1A¡1

¢
I¡jX
i=0

(V1=2i ¢§¡1j¡1 ¢V1=2i ) ¢Mi,j : (22)

The variable m̂(n)j denotes the estimated incre-
mental loss ratio for development year j and run-
off triangle n 2 f1, : : : ,Ng based on the informa-
tion DNI . Note that the covariance structure be-
tween the incremental claims in the different run-
off subportfolios is incorporated into the estima-
tion of mj through the matrix §j¡1.
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Hess, Schmidt, and Zocher (2006) and Schmidt
(2006a) showed the following property, which
states that the multivariate incremental loss ra-
tio estimates (22) are optimal estimators of mj
with respect to the criterion of minimal expected
squared loss.

PROPERTY 3.4. Under Model Assumptions 3.1,
the estimator m̂j is an unbiased estimator for mj ,
which minimizes the expected squared loss among
all N-dimensional linear combinations of the un-
biased estimators (Ml,j)0·l·I¡j for mj , i.e.,

E[(mj ¡ m̂j)0 ¢ (mj ¡ m̂j)]

= min
Wl,j2RN£N

E

240@mj ¡ I¡jX
l=0

Wl,j ¢Ml,j

1A0

¢
0@mj ¡ I¡jX

l=0

Wl,j ¢Ml,j

1A35 :
(23)

PROOF See proof of Theorem 4.1 in Schmidt
(2006a). Q.E.D.

Note, in Property 3.4 we assume that the co-
variance matrix §j¡1 is known. However, if we
do not have a reliable estimate for this covari-
ance matrix it is often more appropriate in prac-
tice to use the univariate estimators. Property 3.4
motivates the following estimator for the condi-
tionally expected ultimate claim:

ESTIMATOR 3.5 (Multivariate additive estimator)
The multivariate additive estimator for E[Ci,j jDNI ]
is for i+ j ¸ I given by
dCi,jAD = (dC(1)i,j AD, : : : , dC(N)i,j

AD
)0

= Ê[Ci,j j DNI ] =Ci,I¡i+Vi ¢
jX

l=I¡i+1
m̂l:

(24)

This means that in the multivariate additive meth-
od we predict the normalized cumulative claims
V¡1i ¢Ci,j by the sum of the last observed nor-
malized cumulative claims V¡1i ¢Ci,I¡i and the
weighted estimated ratios m̂I¡i+1, : : : ,m̂j , given
the information DNI . From (24) we obtain for the

incremental payments Xi,j with i+ j > I the pre-
dictors

dXi,jAD = (dX(1)i,j AD, : : : , dX(N)i,j

AD
)0

=Vi ¢ m̂j : (25)

REMARK 3.6

² In the case j = J (note that we assume I = J)
we have m̂J =M0,J .

² Estimator (22) is a weighted average of the
observed individual normalized incremental
claims Mi,j . In the case N = 1 (i.e., only one
run-off subportfolio), the estimators (22) coin-
cide with the univariate estimated incremental
loss ratios

m̂j =
I¡jX
i=0

ViPI¡j
k=0Vk

¢Mi,j (26)

with deterministic weights Vi, which are used
in the univariate additive loss reserving meth-
od, and from Estimator 3.5 we obtain the uni-
variate additive estimator

dCi,JAD = Ci,I¡i+ JX
j=I¡i+1

PI¡j
k=0Xk,jPI¡j
k=0Vk

¢Vi

(27)

[see, for example, Schmidt (2006a; 2006b)].
² If we neglect the covariance structure between
the incremental claims in the different run-off
subportfolios [i.e., in (22) we set §j¡1 = I,
where I denotes the identity matrix], we ob-
tain the following (unbiased) estimator

m̂(0)j =

0@I¡jX
i=0

Vi

1A¡1 ¢ I¡jX
i=0

Vi ¢Mi,j : (28)

Moreover, if the volumes Vi are diagonal ma-
trices, then the components of (28) are given
by

m̂(n)(0)j =
I¡jX
i=0

V(n,n)iPI¡j
k=0V

(n,n)
k

¢M (n)
i,j : (29)

This means that in this case the components
of m̂(0)j are given by the estimators of the uni-
variate additive loss reserving method.

It can easily be seen that m̂j does not depend
on the matrix §j¡1 if j = J or if §j¡1 and V0, : : : ,
VI¡j are diagonal. In this case the N components
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m̂(1)j , : : : ,m̂
(N)
j of (22) coincide with the univariate

estimators (29) for the N run-off subportfolios.
This means that if §0, : : : ,§J¡2 and V0, : : : ,VI are
diagonal matrices, the following estimates coin-
cide: 1) the estimation for the whole portfolio
based on the univariate estimators (26) for every
individual run-off subportfolio, 2) the multivari-
ate prediction based on the estimators (28), and
3) the multivariate prediction based on the mul-
tivariate estimators (22). However, Property 3.4
shows in other cases it is more reasonable to use
the multivariate estimators (22). Moreover, under
Model Assumptions 3.1 it holds:

PROPERTY 3.7. Under Model Assumptions 3.1 we
have
a) m̂j and m̂k are independent for j 6= k;
b) Var(m̂j) =

³PI¡j
l=0 V

1=2
l ¢§¡1j¡1 ¢V1=2l

´¡1
;

c) givenCi,I¡i, the estimator dCi,JAD is an unbiased
estimator for E[Ci,J j DNI ] = E[Ci,J jCi,I¡i],
i.e., E[dCi,JAD jCi,I¡i] = E[Ci,J j DNI ];

d) dCi,JAD is an unbiased estimator for E[Ci,J ],

i.e., E[dCi,JAD] = E[Ci,J ].
PROOF a) Follows from the independence of the
normalized incremental claims Mi,j =V

¡1
i ¢Xi,j

and Mk,l =V
¡1
k ¢Xk,l for j 6= l.

b) Using (17) we obtain

Var(Ml,j) = V
¡1
l ¢Var(Xl,j) ¢V¡1l

=V¡1=2l ¢§j¡1 ¢V¡1=2l : (30)

With the independence of the Ml,j this leads to

Var(m̂j) = Aj ¢Var
0@I¡jX
l=0

(V1=2l ¢§¡1j¡1 ¢V1=2l ) ¢Ml,j

1A ¢Aj
=Aj ¢

24I¡jX
l=0

(V1=2l ¢§¡1j¡1 ¢V1=2l ) ¢Var(Ml,j) ¢ (V1=2l ¢§¡1j¡1 ¢V1=2l )

35 ¢Aj
=Aj ¢

24I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
35 ¢Aj

=Aj , (31)

where

Aj =

0@I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
1A¡1 : (32)

c) We have

E[dCi,JAD jCi,I¡i]
=Ci,I¡i+Vi ¢

JX
l=I¡i+1

E[m̂l]

=Ci,I¡i+Vi ¢
JX

l=I¡i+1
ml = E[Ci,J j DNI ]:

(33)

d) Follows immediately from c). This finishes
the proof. Q.E.D.

Observe that Property 3.7 c) shows that
the Estimator 3.5 is an unbiased estimator for
E[Ci,J j DNI ]. Furthermore, this immediately im-
plies that the estimator for the aggregated ulti-
mate claim of one single accident year

NX
n=1

d
C(n)i,J

AD
= 10 ¢dCi,JAD (34)

is, given Ci,I¡i, an unbiased estimator forPN
n=1E[C

(n)
i,J j DNI ].

4. Conditional MSEP

In this section we consider the uncertainty in
the claims reserves predicted by the estimatorsPN
n=1

d
C(n)i,J

AD
and

PI
i=1
PN
n=1

d
C(n)i,J

AD
, given the ob-
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servations DNI . This means our goal is to derive
an estimate of the conditional MSEP for individ-
ual accident years i 2 f1, : : : ,Ig which is defined
as

msepP
n
C(n)
i,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
!

= E

24Ã NX
n=1

d
C(n)i,J

AD

¡
NX
n=1

C(n)i,J

!2 ¯̄̄̄
¯̄DNI

35
= 10 ¢E[(dCi,JAD¡Ci,J ) ¢ (dCi,JAD¡Ci,J )0 j DNI ] ¢ 1

(35)

as well as an estimate of the conditional MSEP
for aggregated accident years

msepP
i,n C

(n)
i,J jDNI

0@X
i,n

d
C(n)i,J

AD
1A

= E

264
0@X
i,n

d
C(n)i,J

AD
¡
X
i,n

C(n)i,J

1A2
¯̄̄̄
¯̄̄DNI

375 :
(36)

4.1. Conditional MSEP for single
accident years
We choose i 2 f1, : : : ,Ig. Since the estimatorPN
n=1

d
C(n)i,J

AD
is known at time t = I (i.e., it is

based on observations from DNI ), the conditional
MSEP (35) can be decoupled into conditional
process variance and conditional estimation er-
ror, that is

msepP
n
C(n)
i,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
!
= 10 ¢Var(Ci,J j DNI ) ¢ 1| {z }
conditional process variance

+ 10 ¢ (dCi,JAD¡E[Ci,J j DNI ]) ¢ (dCi,JAD¡E[Ci,J j DNI ])0 ¢ 1| {z }
conditional estimation error

: (37)

The conditional process variance originates from
the stochastic movement of Ci,J , whereas the
conditional estimation error reflects the uncer-
tainty in the estimation of the conditional expec-
tation (best estimate) E[Ci,J j DNI ]. In the sequel

we derive estimates for both the conditional pro-
cess variance and the conditional estimation error
for N correlated run-off triangles.

4.1.1. Conditional process variance
In this subsection we derive an estimate for the

conditional process variance of a single accident
year 10 ¢Var(Ci,J j DNI ) ¢ 1. We obtain the follow-
ing result:

PROPERTY 4.1. (Process variance for a single ac-
cident year) Under Model Assumptions 3.1 the
conditional process variance for the ultimate claim
Ci,J of accident year i 2 f1, : : : ,Ig is given by

10 ¢Var(Ci,J j DNI ) ¢ 1

= 10 ¢V1=2i ¢
0@ JX
j=I¡i+1

§j¡1

1A ¢V1=2i ¢ 1:

(38)

PROOF Using the independence of the incre-
mental claim payments Xi,j we have

10 ¢Var(Ci,J j DNI ) ¢ 1= 10 ¢Var
0@ JX
j=I¡i+1

Xi,j

1A ¢ 1
= 10 ¢

0@ JX
j=I¡i+1

Var(Xi,j)

1A ¢ 1
= 10 ¢V1=2i ¢

0@ JX
j=I¡i+1

§j¡1

1A ¢V1=2i ¢ 1 (39)

for i > I¡ J . This completes the proof. Q.E.D.

If we replace the parameter §j¡1 in (38) by its
estimate (cf. Section 5), we obtain an estimator of
the conditional process variance for accident year
i. Moreover, from (39) we obtain the recursive
formula for the conditional process variance of
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accident year i

10 ¢Var(Ci,j j DNI ) ¢ 1= 10 ¢ (Var(Ci,j¡1 j DNI )
+V1=2i ¢§j¡1 ¢V1=2i ) ¢ 1, (40)

for j = I¡ i+1, : : : ,J with Var(Ci,I¡i j DNI ) = 0.

4.1.2. Conditional estimation error
Now we estimate the uncertainty in the esti-

mation of E[Ci,J j DNI ] by the estimator dCi,JAD.
This means we derive an estimator for the second
term on the right-hand side of (37). We estimate
the conditional estimation error by its expected
value

10 ¢E[(dCi,JAD¡E[Ci,J j DNI ])
¢ (dCi,JAD¡E[Ci,J j DNI ])0] ¢ 1: (41)

We obtain the following result:

PROPERTY 4.2. (Estimator of the estimation er-
ror for a single accident year) Under Model
Assumptions 3.1 the estimator (41) of the condi-

tional estimation error for
PN
n=1

d
C(n)i,J

AD
with i 2

f1, : : : ,Ig is given by
10 ¢E[Var(dCi,JAD jCi,I¡i)] ¢ 1

= 10 ¢Vi ¢
24 JX
j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
!¡135

¢Vi ¢ 1: (42)

PROOF Using Properties 3.7 a)—b) we obtain

10 ¢E[(dCi,JAD¡E[Ci,J j DNI ]) ¢ (dCi,JAD¡E[Ci,J j DNI ])0] ¢ 1
= 10 ¢E

240@ JX
j=I¡i+1

Vi ¢ (m̂j ¡mj)
1A ¢

0@ JX
j=I¡i+1

Vi ¢ (m̂j ¡mj)
1A035 ¢ 1

= 10 ¢Vi ¢
0@ JX
j=I¡i+1

Var(m̂j)

1A ¢Vi ¢ 1 (43)

= 10 ¢Vi ¢
264 JX
j=I¡i+1

0@I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
1A¡1

375 ¢Vi ¢ 1: (44)

On the other hand, using Property 3.7 c), we
have

10 ¢E[(dCi,JAD¡E[Ci,J j DNI ])
¢ (dCi,JAD¡E[Ci,J j DNI ])0] ¢ 1
= 10 ¢E[Var(dCi,JAD jCi,I¡i)] ¢ 1: (45)

This finishes the proof. Q.E.D.

Note, we can rewrite (42) in the recursive form

10 ¢E[Var(dCi,jAD jCi,I¡i)] ¢ 1
= 10 ¢E[Var( dCi,j¡1AD jCi,I¡i)] ¢ 1
+ 10 ¢Vi ¢

Ã
I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
!¡1

¢Vi ¢ 1

(46)

for j = I¡ i+1, : : : ,J with Var( dCi,I¡iAD jCi,I¡i)
= 0.
Finally, replacing the parameters §j¡1 in (38)

and (42) by their estimates (see Section 5), we
obtain the following estimator of the conditional
MSEP for a single accident year:

RESULT 4.3. (Conditional MSEP for a single ac-
cident year) Under Model Assumptions 3.1 we
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have the estimator for the conditional MSEP of
the ultimate claim for a single accident year i 2
fI¡ J +1, : : : ,Ig

dmsepP
n
C(n)
i,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
!

= 10 ¢V1=2i ¢
JX

j=I¡i+1
§̂j¡1 ¢V1=2i ¢ 1

+ 10 ¢Vi ¢
24 JX
j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢ §̂¡1j¡1 ¢V1=2l
!¡135

¢Vi ¢ 1, (47)

where the estimated covariance matrix §̂j¡1 is
given in (59), below.

For N = 1 formula (47) reduces to the esti-

mator of the conditional MSEP for a single port-

folio in the univariate additive loss reserving

method

dmsepCi,J jDI (dCi,JAD)
= Vi ¢

JX
j=I¡i+1

¾̂2j¡1 +V
2
i ¢

JX
j=I¡i+1

¾̂2j¡1PI¡j
l=0Vl

,

(48)

where Vi is a known one-dimensional volume

measure for accident year i [cf. Mack (2002)].

4.2. Conditional MSEP for aggregated
accident years

In the following we consider the conditional

MSEP for aggregated accident years. Our goal is

to derive an estimate for (36). From Model As-

sumptions 3.1 we know that the ultimate claims

Ci,J and Ck,J of two accident years i and k with

1· i < k · I are independent. However, since the
estimators dCi,JAD and dCk,JAD use the same obser-
vations DNI for estimating the parametersmj , dif-
ferent accident years are no longer independent.

We start with the consideration of two accident

years i < k

msepP
n
C(n)
i,J
+
P

n
C(n)
k,J
jDN
I

Ã
NX
n=1

dC(n)i,J AD + NX
n=1

dC(n)k,JAD
!

= E

24Ã NX
n=1

(dC(n)i,J AD +dC(n)k,JAD)¡ NX
n=1

(C(n)i,J +C
(n)
k,J )

!2
¯̄̄̄
¯̄DNI

35 :
(49)

We obtain for the conditional MSEP of the sum
of two accident years the decomposition into pro-
cess variance and conditional estimation error
which leads to

msepP
n
C(n)
i,J +
P

n
C(n)
k,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
+

NX
n=1

d
C(n)k,J

AD
!

=msepP
n
C(n)
i,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
!

+msepP
n
C(n)
k,J jDNI

Ã
NX
n=1

d
C(n)k,J

AD
!

+2 ¢ 10 ¢ (dCi,JAD¡E[Ci,J j DNI ])
¢ (dCk,JAD¡E[Ck,J j DNI ])0 ¢ 1: (50)

This shows that we have to derive an esti-
mator for the cross product [third term on the
right side of (50)], which comes from the de-
pendence described above. Analogously to (41),
we estimate this cross product by its expected
value

10 ¢E[(dCi,JAD¡E[Ci,J j DNI ])
¢ (dCk,JAD¡E[Ck,J j DNI ])0] ¢ 1 (51)

and obtain the following result:

PROPERTY 4.4. (Estimator of the cross product)
Under Model Assumptions 3.1 the estimator (51)
of the cross product of aggregated accident years
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i and k with 1· i < k · I is given by

10 ¢E[(cCi,JAD¡E[Ci,J j DNI ]) ¢ (dCk,JAD¡E[Ck,J j DNI ])0] ¢ 1
= 10 ¢Vi ¢

24 JX
j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l
!¡135 ¢Vk ¢ 1:

(52)

PROOF Analogously to the proof of Property 4.2
we obtain for i < k

10 ¢E[(cCi,JAD¡E[Ci,J j DNI ]) ¢ (dCk,JAD¡E[Ck,J j DNI ])0] ¢ 1
= 10 ¢Vi ¢

"
JX

j=I¡i+1
Var(m̂j)

#
¢Vk ¢ 1

= 10 ¢Vi ¢

24 JX
j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢§¡1j¡1 ¢V1=2l

!¡135 ¢Vk ¢ 1:
(53)

Q.E.D.

Putting (47) and (52) in (50) leads to the fol-
lowing estimator for the conditional MSEP of the
ultimate claim for aggregated accident years:

RESULT 4.5. (Conditional MSEP for aggregated
accident years) Under Model Assumptions 3.1
we have the estimator for the conditional MSEP of
the ultimate claim for aggregated accident years

dmsepP
i

P
n
C(n)
i,J jDNI

Ã
IX
i=1

NX
n=1

d
C(n)i,J

AD
!

=
IX
i=1

dmsepP
n
C(n)
i,J jDNI

Ã
NX
n=1

d
C(n)i,J

AD
!

+2 ¢
X

1·i<k·I
10 ¢Vi

¢
24 JX
j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢ §̂¡1j¡1 ¢V1=2l
!¡135 ¢Vk ¢ 1,

(54)

where the estimated covariance matrix §̂j¡1 is
given in (59), below.

For N = 1, formula (54) reduces to the esti-
mator of the conditional MSEP for aggregated

accident years in the univariate additive method

dmsepP
i
Ci,J jDI

Ã
IX
i=1

dCi,JAD
!

=
IX
i=1

dmsepCi,J jDI (dCi,JAD)
+2 ¢

X
1·i<k·I

Vi ¢Vk ¢
JX

j=I¡i+1

¾̂2j¡1PI¡j
l=0Vl

(55)

with known one-dimensional volume measure Vi
for accident year i [cf. Mack (2002)].

5. Parameter estimation
For the estimation of the claims reserves

and the conditional MSEP we need estimates of
the N-dimensional parameters m1, : : : ,mJ and of
the N £N-dimensional covariance parameters
§0, : : : ,§J¡1.
Estimates of the multivariate incremental loss

ratios mj are given in (22). However, estimator
(22) is only an implicit estimator for mj since it
depends on parameter §j¡1, which on the other
hand is estimated by means of m̂j . Therefore,
as in the multivariate chain-ladder method [cf.
Merz and Wüthrich (2008)], we propose an iter-
ative estimation of these parameters. In this spirit,
the “true” estimation error is slightly larger be-
cause it should also involve the uncertainties in
the estimate of the variance parameters. In order
to obtain a feasible MSEP formula we neglect
this term of uncertainty.
Estimation of mj . As starting values for the

iteration we define m̂(0)j by (28) for j = 1, : : : ,J .

Estimator m̂(0)j is an unbiased optimal estimator
for mj if the N run-off subportfolios are uncor-
related. However, if the subportfolios are corre-
lated, it is still unbiased but no longer optimal (cf.
Property 3.4). From m̂(0)j we derive an estimate

§̂(1)j¡1 of §j¡1 for j = 1, : : : ,J [see estimator (59)
below]. Then this estimate is used to determine
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m̂(1)j via

m̂(k)j = (m̂(1)(k)j , : : : ,m̂(N)(k)j )0

=

0@I¡jX
l=0

V1=2l ¢ (§̂(k)j¡1)¡1 ¢V1=2l
1A¡1

¢
I¡jX
l=0

(V1=2l ¢ (§̂(k)j¡1)¡1 ¢V1=2l ) ¢Ml,j

(56)

for j = 1, : : : ,J . This algorithm is then iterated
until it has sufficiently converged.
Estimation of §j¡1. The N £N-dimensional

covariance parameters §j¡1 are estimated iter-
atively from the data for j = 1, : : : ,J . A posi-
tive semidefinite estimator of the positive definite
matrix §j¡1 is given by

§̂j¡1 =
1
I¡ j ¢

I¡jX
i=0

V¡1=2i ¢ (Xi,j ¡Vi ¢ m̂(0)j )

¢ (Xi,j ¡Vi ¢ m̂(0)j )0 ¢V¡1=2i (57)

for j = 1, : : : ,J . If the matrices Vi are all diago-
nal, the diagonal elements of the random matrix
(57) are unbiased estimators of the correspond-
ing diagonal elements

(¾(1)j¡1)
2, : : : , (¾(N)j¡1)

2 (58)

of §j¡1. Its nondiagonal elements slightly un-
derestimate the absolute value of the correspond-
ing nondiagonal elements of §j¡1. However, this
lack of unbiasedness is not too important since
the random matrix (57) has to be inverted any-
way and the inverse of an unbiased estimator is
in general not unbiased [cf. Appendix of Merz
and Wüthrich (2008)].
This leads to the following iteration for the

estimator of §j¡1:

§̂(k)j¡1 =
1
I¡ j ¢

I¡jX
i=0

V¡1=2i ¢ (Xi,j ¡Vi ¢ m̂(k¡1)j )

¢ (Xi,j ¡Vi ¢ m̂(k¡1)j )0 ¢V¡1=2i (59)

for j = 1, : : : ,J and k ¸ 1.

If we have enough data (i.e., we have a run-
off trapezoid with I > J), we are able to estimate
iteratively the parameter §J¡1 by (59). Other-
wise, we can use the estimates b'(n,m)(k)j¡1 of the

elements '(n,m)j¡1 of §j¡1 for j · J ¡ 1 in itera-
tion k ¸ 1 [i.e., b'(n,m)(k)j¡1 is an estimate of '(n,m)j¡1 =
¾(n)j¡1 ¢¾(m)j¡1 ¢ ½(n,m)j¡1 in iteration k ¸ 1, cf. (18)] to
derive estimates b'(n,m)(k)J¡1 of the elements of §J¡1
for all 1· n·m·N. For example, this can be
done by extrapolating the usually exponentially
decreasing series

jb'(n,m)(k)0 j, : : : , jb'(n,m)(k)J¡2 j (60)

by one additional member b'(n,m)(k)J¡1 for 1· n·
m·N and k ¸ 1. However, one needs to care-
fully check that the estimate §̂(k)J¡1 is positive def-
inite. In higher dimensional cases this is often
nontrivial, and in fact, many choices are not
positive definite, which calls for additional ad-
justments. Moreover, observe that the N £N-
dimensional estimate §̂(k)j¡1 is singular when j ¸
I¡N +2, since in this case the dimension of the
linear space generated by any realizations of the
(I¡ j+1) N-dimensional random vectors

V¡1=2i ¢ (Xi,j ¡Vi ¢ m̂(k¡1)j ) with

i 2 f0, : : : ,I¡ jg (61)

is at most I¡ j+1· I¡ (I¡N +2)+1 =
N ¡ 1. Furthermore, the realizations of (61) may
be (nearly) linearly dependent for some j < I¡
N +2 which implies that the corresponding
realization of the random matrix §̂(k)j¡1 is ill-con-
ditioned or even singular. Therefore, in practi-
cal application it is important to verify whether
the estimates §̂(k)j¡1 are well-conditioned or not
and to modify those estimates (e.g., by extrap-
olation as in the example below) which are not
well-conditioned.
Many methods have been suggested to improve

the estimation of the covariance matrix so that the
estimate is positive definite and well-conditioned.
By producing a well-conditioned covariance es-
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Table 1. General liability run-off triangle (incremental claims X (1)
i,j ), source Braun (2004)

General liability run-off triangle

AY/DY 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 59,966 103,186 91,360 95,012 83,741 42,513 37,882 6,649 7,669 11,061 ¡1,738 3,572 6,823 1,893
1 49,685 103,659 119,592 110,413 75,442 44,567 29,257 18,822 4,355 879 4,173 2,727 ¡776
2 51,914 118,134 149,156 105,825 78,970 40,770 14,706 17,950 10,917 2,643 10,311 1,414
3 84,937 188,246 134,135 139,970 74,450 65,401 49,165 21,136 596 24,048 2,548
4 98,921 179,408 170,201 113,161 79,641 80,364 20,414 10,324 16,204 ¡265
5 71,708 173,879 171,295 144,076 93,694 72,161 41,545 25,245 17,497
6 92,350 193,157 180,707 153,816 121,196 86,753 45,547 23,202
7 95,731 217,413 240,558 202,276 101,881 104,966 59,416
8 97,518 245,700 232,223 193,576 165,086 85,200
9 173,686 285,730 262,920 232,999 186,415

10 139,821 297,137 372,968 364,270
11 154,965 373,115 504,604
12 196,124 576,847
13 204,325

Table 2. Auto liability run-off triangle (incremental claims X (2)
i,j ), source Braun (2004)

Auto liability run-off triangle

AY/DY 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 114,423 133,538 65,021 31,358 27,139 ¡377 9,889 4,477 ¡316 7,108 ¡1,035 103 209 ¡109
1 152,296 152,879 71,438 41,686 22,009 25,315 7,961 4,843 ¡113 1,593 848 4,383 ¡1,164
2 144,325 162,919 106,365 50,432 55,224 7,951 8,234 1,409 2,061 669 176 977
3 145,904 161,732 79,458 46,642 29,384 15,811 3,598 5,527 ¡2,484 462 ¡1,018
4 170,333 171,168 92,601 36,227 11,872 18,760 3,180 3,538 948 ¡875
5 189,643 171,480 85,734 61,226 18,479 13,556 7,523 1,964 88
6 179,022 217,202 101,080 56,183 28,362 29,791 11,244 12,568
7 205,908 210,139 104,397 45,277 34,888 30,193 17,563
8 210,951 215,478 98,618 62,846 52,435 22,824
9 213,426 295,796 140,211 82,259 59,209

10 249,508 330,502 142,126 122,023
11 258,425 427,587 229,097
12 368,762 540,304
13 394,997

timate we automatically get a well-conditioned
estimate for the inverse of the covariance esti-
mate. Most of these approaches rely on the con-
cept of shrinkage which is quite similar to the
well-known actuarial concept of credibility. For
more details and other advanced methods on co-
variance matrix estimation we refer to Schäfer
and Strimmer (2005).

6. Example: two correlated
liability run-off subportfolios
To illustrate the methodology, we consider two

correlated run-off portfolios A and B (i.e., N =
2), which contain data of general and auto lia-
bility business, respectively. The data are given

in Tables 1 and 2 in incremental form. These are
the data used in Braun (2004) and also in Merz
and Wüthrich (2007; 2008). The assumption that
there is a positive correlation between these two
lines of business is justified by the fact that both
run-off portfolios contain liability business; that
is, certain events (e.g., bodily injury claims) may
influence both run-off portfolios, and we are able
to learn from the observations from one portfolio
about the behavior of the other portfolio.
We assume that the 2£ 2-matrices Vi are diag-

onal and their diagonal elements V(1,1)i and V(2,2)i

are prior estimates of the ultimate claims in the
different accident years i in run-off portfolio A
and B, respectively. Such prior estimates are usu-
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Table 3. Prior estimates and chain-ladder estimates of the
ultimate claims

Run-off portfolio A Run-off portfolio B

i V(1,1)
i

cC(1)
i,J

CL
V(2,2)
i

cC(2)
i,J

CL

0 510,301 549,589 413,213 391,428
1 632,897 564,740 537,988 483,839
2 658,133 608,104 589,145 540,002
3 723,456 795,248 523,419 486,227
4 709,312 783,593 501,498 508,744
5 845,673 837,088 598,345 552,825
6 904,378 938,861 608,376 639,113
7 1,156,778 1,098,200 698,993 658,410
8 1,214,569 1,154,902 704,129 684,719
9 1,397,123 1,431,409 903,557 845,543

10 1,832,676 1,735,433 947,326 962,734
11 2,156,781 2,065,991 1,134,129 1,169,260
12 2,559,345 2,660,561 1,538,916 1,474,514
13 2,456,991 2,274,941 1,487,234 1,426,060

Total 17,758,413 17,498,658 11,186,268 10,823,418

ally obtained from budget figures, plan values
or from premium calculation parameters. Table 3
shows these a priori estimates as well as the cor-
responding classical univariate chain-ladder es-

timates
d
C(1)i,J

CL
and

d
C(2)i,J

CL
for comparison pur-

poses. We see that the prior estimates and the uni-
variate chain-ladder estimates are close together
[for the univariate chain-ladder method see, e.g.,
Mack (1993) or Buchwalder, Bühlmann, Merz,
and Wüthrich (2006)].
Since I = J = 13 we do not have enough data

to derive an estimate of the 2£ 2-matrix §12 us-
ing estimator (59). Therefore, we use the extrap-
olation

b'(n,m)12 = minf(b'(n,m)11 )2=jb'(n,m)10 j, jb'(n,m)10 jg
(62)

to derive estimates of its elements '(n,m)12 = ¾(n)12 ¢
¾(m)12 ¢ ½(n,m)12 for n,m= 1,2 (note ½(1,1)12 = ½(2,2)12 = 1).
Moreover, since estimator (59) would lead to
an ill-conditioned matrix §̂11, we have also esti-
mated the elements of the 2£ 2-matrix §11
by

b'(n,m)11 = minf(b'(n,m)10 )2=jb'(n,m)9 j, jb'(n,m)9 jg:
(63)

Table 4 shows the estimates for the parameters
mj , ¾j and ½

(1,2)
j after three iterations k = 1,2,3.

We observe fast convergence of the two-dimen-
sional estimates m̂(k¡1)j , b¾(k)j and the one-dimen-
sional estimates ½̂(1,2)(k)j (k = 1,2,3) in the sense
that there are barely any changes in the estimates
after three iterations. The first and second com-
ponent of the estimates m̂(0)j and b¾(1)j are the pa-
rameter estimates used in the univariate additive
method applied to the individual run-off portfo-
lios A and B, respectively. Except for develop-
ment years 0, 6, and 10, we observe positive esti-
mates ½̂(1,2)(k)j for the correlation coefficients. The
three negative estimates should not be overstated
since they are close to zero.
The first two columns of Table 5 show for each

accident year the claims reserves for run-off sub-
portfolios A and B estimated by the (univariate)
additive loss reserving method. Column “port-
folio (k = 1)” shows the reserves for the whole
portfolio consisting of the two run-off subport-
folios A and B estimated by the multivariate ad-
ditive loss reserving method. These values are
based on the estimates m̂(0)j and therefore coin-
cide with the sum of the claims reserves for the
two individual subportfolios. Columns “portfo-
lio (k = 2)” and “portfolio (k = 3)” contain the
claims reserves for the whole portfolio based on
the estimates m̂(1)j and m̂(2)j , respectively. These
estimates lead to a total reserve which is about
6,900 higher than the one based on m̂(0)j . The
column denoted by “overall calculation” shows
the estimated reserve when first aggregating both
run-off triangles to one single run-off triangle
and then estimating the claims reserves with the
(univariate) additive loss reserving method. Since
in this approach two run-off triangles with dif-
ferent development patterns are added together
(cf. components of estimates m̂(k)j in Table 4),
this approach is only reasonable if the propor-
tion of exposures from each triangle does not
change significantly over the different accident
years. In our example this approach leads to a
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Table 4. Estimates m̂(k¡1)
j

, b¾(k)
j

and ½̂(1,2)(k)
j

for the parameters mj , ¾j and ½(1,2)
j

in the first three iterations k = 1,2,3

A/B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

m̂(0)
j

0.19969 0.20638 0.17528 0.12117 0.08466 0.04852 0.02474 0.01403 0.01186 0.00606 0.00428 0.00529 0.00371

0.32897 0.16129 0.09054 0.05577 0.03166 0.01548 0.00910 0.00006 0.00349 ¡0:00050 0.00355 ¡0:00100 ¡0:00026b¾(1)
j

31.58 20.03 14.42 18.92 13.64 13.91 5.79 7.15 12.21 6.09 1.84 0.56 0.17

27.74 18.19 15.17 16.00 11.74 5.17 4.70 2.05 4.96 1.35 3.00 1.35 0.61

½̂(1:2)(1)
j

¡0:02644 0.84865 0.59119 0.37108 0.34004 0.31249 ¡0:10460 0.75342 0.33212 0.66573 ¡0:13915 0.14397 0.14895

m̂(1)
j

0.19974 0.20640 0.17493 0.12119 0.08452 0.04844 0.02476 0.01441 0.01195 0.00614 0.00428 0.00529 0.00371

0.32899 0.16172 0.09061 0.05572 0.03170 0.01550 0.00910 0.00017 0.00354 ¡0:00051 0.00354 ¡0:00097 ¡0:00026b¾(2)
j

31.58 20.03 14.42 18.92 13.64 13.91 5.79 7.16 12.21 6.09 1.84 0.56 0.17

27.74 18.20 15.17 16.00 11.74 5.17 4.70 2.05 4.96 1.35 3.00 1.35 0.61

½̂(1:2)(2)
j

¡0:02654 0.84893 0.59215 0.37111 0.34034 0.31262 ¡0:10467 0.75527 0.33235 0.66612 ¡0:13921 0.14399 0.14894

m̂(2)
j

0.19974 0.20640 0.17493 0.12119 0.08452 0.04844 0.02476 0.01441 0.01195 0.00614 0.00428 0.00529 0.00371

0.32899 0.16172 0.09061 0.05572 0.03170 0.01550 0.00910 0.00017 0.00354 ¡0:00051 0.00354 ¡0:00097 ¡0:00026b¾(3)
j

31.58 20.03 14.42 18.92 13.64 13.91 5.79 7.16 12.21 6.09 1.84 0.56 0.17

27.74 18.20 15.17 16.00 11.74 5.17 4.70 2.05 4.96 1.35 3.00 1.35 0.61

½̂(1:2)(3)
j

¡0:02654 0.84893 0.59216 0.37111 0.34034 0.31262 ¡0:10467 0.75529 0.33235 0.66612 ¡0:13921 0.14399 0.14894

Table 5. Estimated reserves

Additive method Chain-ladder method

Multivariate Univariate Multivariate

Univariate Univariate portfolio portfolio portfolio portfolio portfolio portfolio
i subportfolio A subportfolio B (k = 1) (k = 2) (k = 3) overall calc. Braun (2004) MW (2008)

1 2,348 ¡142 2,206 2,206 2,206 2,262 1,810 1,810
2 5,923 ¡747 5,176 5,196 5,196 5,442 4,655 4,655
3 9,608 1,193 10,801 10,815 10,815 10,356 11,827 11,826
4 13,717 893 14,610 14,677 14,677 13,821 16,212 16,371
5 26,386 3,154 29,541 29,723 29,723 28,266 29,120 29,409
6 40,906 3,243 44,149 44,749 44,753 41,604 45,793 46,829
7 80,946 10,087 91,032 91,808 91,813 84,451 86,004 87,241
8 143,915 21,058 164,973 165,709 165,715 153,693 157,165 158,569
9 283,823 55,625 339,448 340,160 340,166 328,700 344,301 346,142

10 594,362 111,151 705,513 706,398 706,405 659,509 679,812 681,729
11 1,077,515 235,757 1,313,272 1,313,647 1,313,653 1,246,294 1,287,458 1,287,654
12 1,806,833 568,114 2,374,947 2,376,160 2,376,170 2,325,704 2,453,038 2,451,016
13 2,225,221 1,038,295 3,263,516 3,264,815 3,264,826 3,223,750 3,101,679 3,092,098

Total 6,311,503 2,047,680 8,359,183 8,366,062 8,366,119 8,123,852 8,218,874 8,215,350

total reserve which is about 235,300—242,300
less than the one obtained by separate calculation
of the claims reserves in run-off subportfolios A
and B. The last two columns show the values
calculated by the multivariate chain-ladder re-
serving methods proposed by Braun (2004) (i.e.,
chain-ladder factors are estimated in a univari-
ate way) and Merz and Wüthrich (2008) (i.e.,

chain-ladder factors are estimated in a multivari-
ate way), respectively. We see that the multivari-
ate additive loss reserving method leads to a total
reserve which is about 147,200—150,800 higher
than the ones obtained by the two multivariate
chain-ladder methods.
Table 6 shows for each accident year the es-

timates for the conditional process standard de-
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Table 6. Estimated conditional process standard deviations

Additive method Chain-ladder method

Multivariate Univariate Multivariate

Univariate Univariate portfolio portfolio portfolio portfolio overall portfolio portfolio
i subportfolio A subportfolio B (k = 1) (k = 2) (k = 3) calculation Braun (2004) MW (2008)

1 133 5.7% 444 ¡313:1% 483 21.9% 483 21.9% 483 21.9% 512 22.6% 1,289 71.2% 1,289 71.2%
2 471 7.9% 1,134 ¡151:8% 1,289 24.9% 1,289 24.8% 1,289 24.8% 1,275 23.4% 5,966 128.2% 5,966 128.2%
3 1,640 17.1% 2,418 202.7% 2,783 25.8% 2,783 25.7% 2,783 25.7% 2,851 27.5% 7,290 61.6% 7,290 61.6%
4 5,381 39.2% 2,552 285.9% 6,420 43.9% 6,421 43.7% 6,421 43.7% 6,196 44.8% 9,801 60.5% 9,805 59.9%
5 12,669 48.0% 4,743 150.3% 14,781 50.0% 14,782 49.7% 14,782 49.7% 14,656 51.8% 16,143 55.4% 16,149 54.9%
6 14,763 36.1% 5,043 155.5% 17,227 39.0% 17,233 38.5% 17,234 38.5% 17,020 40.9% 19,120 41.8% 19,145 40.9%
7 17,819 22.0% 6,682 66.3% 20,537 22.6% 20,544 22.4% 20,544 22.4% 20,133 23.8% 21,910 25.5% 21,937 25.1%
8 23,840 16.6% 7,989 37.9% 27,112 16.4% 27,118 16.4% 27,118 16.4% 26,640 17.3% 28,933 18.4% 28,966 18.3%
9 30,227 10.6% 14,366 25.8% 36,978 10.9% 36,985 10.9% 36,985 10.9% 37,860 11.5% 39,281 11.4% 39,322 11.4%

10 43,067 7.2% 21,419 19.3% 53,848 7.6% 53,854 7.6% 53,854 7.6% 53,978 8.2% 63,663 9.4% 63,724 9.3%
11 51,294 4.8% 28,466 12.1% 67,390 5.1% 67,404 5.1% 67,404 5.1% 69,957 5.6% 99,918 7.8% 100,004 7.8%
12 64,413 3.6% 40,112 7.1% 91,552 3.9% 91,569 3.9% 91,569 3.9% 94,860 4.1% 199,543 8.1% 199,608 8.1%
13 80,204 3.6% 51,955 5.0% 107,567 3.3% 107,580 3.3% 107,580 3.3% 110,223 3.4% 316,020 10.2% 316,020 10.2%

Total 131,444 2.1% 77,162 3.8% 174,596 2.1% 174,624 2.1% 174,624 2.1% 179,043 2.2% 396,731 4.8% 396,805 4.8%

Table 7. Square roots of estimated conditional estimation errors

Additive method Chain-ladder method

Multivariate Univariate Multivariate

Univariate Univariate portfolio portfolio portfolio without portfolio overall portfolio portfolio
i subportfolio A subportfolio B (k = 1) (k = 2) (k = 3) corr. in m̂(0)

j
calculation Braun (2004) MW (2008)

1 149 6.3% 507 ¡357:2% 549 24.9% 549 24.9% 549 24.9% 549 24.9% 576 25.5% 1,320 72.9% 1,320 72.9%
2 375 6.3% 985 ¡131:9% 1,103 21.3% 1,103 21.2% 1,103 21.2% 1,103 21.3% 1,086 19.9% 4,533 97,4% 4,533 97.4%
3 1,074 11.2% 1,538 128.9% 1,809 16.7% 1,809 16.7% 1,809 16.7% 1,809 16.7% 1,898 18.3% 6,087 51.5% 6,087 51.5%
4 2,916 21.3% 1,547 173.3% 3,515 24.1% 3,515 23.9% 3,515 23.9% 3,516 24.1% 3,383 24.5% 7,037 43.4% 7,034 43.0%
5 6,710 25.4% 2,615 82.9% 7,810 26.4% 7,810 26.3% 7,810 26.3% 7,811 26.4% 7,640 27.0% 9,796 33.6% 9,795 33.3%
6 7,859 19.2% 2,750 84.8% 9,087 20.6% 9,090 20.3% 9,090 20.3% 9,092 20.6% 8,807 21.2% 11,738 25.6% 11,742 25.1%
7 10,490 13.0% 3,584 35.5% 11,887 13.1% 11,890 13.0% 11,890 13.0% 11,892 13.1% 11,283 13.4% 13,991 16.3% 13,996 16.0%
8 12,953 9.0% 4,000 19.0% 14,510 8.8% 14,513 8.8% 14,513 8.8% 14,516 8.8% 13,734 8.9% 16,637 10.6% 16,644 10.5%
9 16,473 5.8% 6,934 12.5% 19,523 5.8% 19,527 5.7% 19,527 5.7% 19,530 5.8% 19,446 5.9% 22,767 6.6% 22,776 6.6%

10 24,583 4.1% 9,520 8.6% 28,861 4.1% 28,865 4.1% 28,865 4.1% 28,871 4.1% 27,814 4.2% 34,103 5.0% 34,116 5.0%
11 30,469 2.8% 13,116 5.6% 36,975 2.8% 36,982 2.8% 36,982 2.8% 36,996 2.8% 36,798 3.0% 51,413 4.0% 51,386 4.0%
12 38,904 2.2% 20,318 3.6% 50,834 2.1% 50,843 2.1% 50,843 2.1% 50,956 2.1% 51,665 2.2% 99,933 4.1% 99,857 4.1%
13 42,287 1.9% 23,687 2.3% 54,274 1.7% 54,282 1.7% 54,282 1.7% 54,380 1.7% 54,980 1.7% 131,734 4.2% 131,590 4.3%

Total 172,174 2.7% 74,052 3.6% 207,119 2.5% 207,157 2.5% 207,157 2.5% 207,300 2.5% 203,909 2.5% 313,361 3.8% 313,074 3.8%

viations and the corresponding estimates for the
coefficients of variation. The first two columns of
Table 6 contain the values for the individual sub-
portfolios A and B calculated by the univariate
additive loss reserving method. Columns “port-
folio (k = 1)” to “portfolio (k = 3)” show the es-
timated conditional process standard deviations
for the portfolio consisting of the two subport-
folios A and B if we use the multivariate addi-
tive loss reserving method (first three iterations).
In particular this means that the values in col-
umn k = 1 are based on the parameter estimates

m̂(0)j . The column denoted by “overall calcula-
tion” shows the results for the overall calcula-
tion. The last two columns show the values cal-
culated by the multivariate chain-ladder reserv-
ing methods proposed by Braun (2004) and Merz
and Wüthrich (2008), respectively.
Table 7 shows the square roots of estimated

conditional estimation errors. The first two col-
umns contain the estimates for the individual sub-
portfolios A and B calculated by the univariate
method. Columns “portfolio (k = 1),” “portfolio
(k = 2)” and “portfolio (k = 3)” show the esti-
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Table 8. Estimated prediction standard errors

Additive method Chain-ladder method

Multivariate Univariate Multivariate

Univariate Univariate portfolio portfolio portfolio without portfolio overall portfolio portfolio
i subportfolio A subportfolio B (k = 1) (k = 2) (k = 3) corr. in m̂(0)

j
calculation Braun (2004) MW (2008)

1 200 8.5% 674 ¡475:0% 731 33.1% 731 33.1% 731 33.1% 731 33.1% 770 34.1% 1,845 101.9% 1,845 101.9%
2 602 10.2% 1,502 ¡201:1% 1,696 32.8% 1,697 32.6% 1,697 32.6% 1,696 32.8% 1,675 30.8% 7,493 161.0% 7,493 161.0%
3 1,961 20.4% 2,866 240.3% 3,319 30.7% 3,319 30.7% 3,319 30.7% 3,319 30.7% 3,425 33.1% 9,497 80.3% 9,497 80.3%
4 6,120 44.6% 2,984 334.3% 7,319 50.1% 7,320 49.9% 7,320 49.9% 7,320 50.1% 7,059 51.1% 12,066 74.4% 12,067 73.7%
5 14,337 54.3% 5,416 171.7% 16,717 56.6% 16,718 56.2% 16,718 56.2% 16,718 56.6% 16,528 58.5% 18,883 64.8% 18,887 64.2%
6 16,724 40.9% 5,744 177.1% 19,477 44.1% 19,484 43.5% 19,484 43.5% 19,479 44.1% 19,163 46.1% 22,435 49.0% 22,459 48.0%
7 20,677 25.5% 7,583 75.2% 23,729 26.1% 23,737 25.9% 23,737 25.9% 23,732 26.1% 23,079 27.3% 25,996 30.2% 26,022 29.8%
8 27,131 18.9% 8,935 42.4% 30,751 18.6% 30,757 18.6% 30,757 18.6% 30,753 18.6% 29,972 19.5% 33,376 21.2% 33,407 21.1%
9 34,424 12.1% 15,952 28.7% 41,815 12.3% 41,823 12.3% 41,823 12.3% 41,818 12.3% 42,562 12.9% 45,401 13.2% 45,442 13.1%

10 49,589 8.3% 23,440 21.1% 61,094 8.7% 61,102 8.6% 61,102 8.6% 61,099 8.7% 60,723 9.2% 72,222 10.6% 72,282 10.6%
11 59,660 5.5% 31,342 13.3% 76,868 5.9% 76,883 5.9% 76,883 5.9% 76,878 5.9% 79,045 6.3% 112,370 8.7% 112,434 8.7%
12 75.250 4.2% 44,965 7.9% 104,718 4.4% 104,737 4.4% 104,738 4.4% 104,777 4.4% 108,017 4.6% 223,169 9.1% 223,192 9.1%
13 90,670 4.1% 57,100 5.5% 120,484 3.7% 120,499 3.7% 120,499 3.7% 120,532 3.7% 123,174 3.8% 342,377 11.0% 342,322 11.1%

Total 216,613 3.4% 106,947 5.2% 270,891 3.2% 270,938 3.2% 270,939 3.2% 271,030 3.2% 271,358 3.3% 505,560 6.2% 505,440 6.2%

mated conditional estimation errors for the port-
folio consisting of the two subportfolios A and B
if we use the multivariate additive loss reserving
method. The new column “without corr. in m̂(0)j ”
contains the estimated conditional estimation er-
rors if we do not take into account correlations
within the parameter estimates m̂j and use in-
stead the estimates m̂(0)j . In contrast to the reserve
and the conditional process standard deviation,
these estimates do not coincide with the values
in column “portfolio (k = 1)” since the estimator
of the estimation error for a single accident year
and the cross product term [i.e., right-hand side
of (42) and (52)] are now given by
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and
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respectively. We see (as expected) that the esti-
mation error is larger (207,300 vs. 207,157) if

we estimate the parameters on the single trian-
gles. However, the difference in this example is
small, which would justify working with m̂(0)j .
The column “overall calculation” shows the es-
timates for the overall calculation. The last two
columns show the values calculated by the multi-
variate chain-ladder reserving methods proposed
by Braun (2004) and Merz and Wüthrich (2008),
respectively.
Table 8 contains the estimated prediction stan-

dard errors and coefficients of variation for the
same set of models as above.
Table 9 contains the results for the estimated

prediction standard errors assuming perfect
positive correlation, no correlation, and perfect
negative correlation between the corresponding
claims reserves of the two run-off subportfolios
A and B. These values are calculated by

dmsepCi,J jDNI = dmsep
C(1)i,J jDNI

+ dmsep
C(2)i,J jDNI

+2c ¢ dmsep1=2
C(1)i,J jDNI

¢ dmsep1=2
C(2)i,J jDNI

(66)

with c= 1, c= 0 and c=¡1, respectively. Ex-
cept for accident year 3, we observe that the es-
timator in the multivariate additive loss reserving
method leads to estimates of the prediction stan-
dard errors which are between the ones assuming
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Table 9. Estimated prediction standard errors assuming
correlation 1, 0 and ¡1, respectively

Portfolio Portfolio Portfoliodmsep
1=2
Ci,J jDNI

dmsep
1=2
Ci,J jDNI

dmsep
1=2
Ci,J jDNI

i correlation = 1 correlation = 0 correlation =¡1

1 874 703 474
2 2,104 1,618 901
3 4,826 3,472 905
4 9,105 6,809 3,136
5 19,752 15,325 8,921
6 22,469 17,683 10,980
7 28,260 22,024 13,094
8 36,066 28,565 18,197
9 50,376 37,940 18,472

10 73,029 54,850 26,149
11 91,003 67,392 28,318
12 120,215 87,661 30,286
13 147,769 107,151 33,570

Total 323,561 241,576 109,666

no correlation and a correlation equal to one for
all accident years and all accident years together
(cf. columns 3—5 in Table 8). Moreover, we see
that an assumed correlation of 0 or 1 would lead
to an estimated prediction standard error that is
about 29,500 lower and 52,500 higher, respec-
tively, than the one taking the estimated correla-
tion between the two subportfolios into account.

7. Conclusion
In this paper we consider the claims reserv-

ing problem for a portfolio consisting of several
correlated run-off subportfolios. The simultane-
ous study of several individual run-off subport-
folios is motivated by several important facts and
is especially crucial in the development of new
solvency guidelines. However, the calculation of
the conditional MSEP for the predictor of the ul-
timate claim size for a whole portfolio of several
correlated run-off subportfolios is more sophis-
ticated since now multidimensional matrix cal-
culations are involved and the model parameters
are interdependent so that generally an iterative
parameter estimation procedure is required.
In the present paper we study a special case

of the multivariate additive loss reserving model
proposed by Hess, Schmidt, and Zocher (2006)
and Schmidt (2006a). Our derived formulas for

the conditional MSEP in the additive claims re-
serving method can be used to quantify the un-
certainty in the claims reserves for a single run-
off portfolio (i.e., N = 1) or a whole portfolio of
several correlated run-off subportfolios (i.e., N >
1) and can easily be implemented in a spread-
sheet. By means of a detailed example, we com-
pare our multivariate estimator to the resulting
estimator for the conditional MSEP if we ignore
the correlation structure between individual sub-
portfolios as well as to the estimator for the con-
ditional MSEP of the multivariate chain-ladder
methods considered by Braun (2004) and Merz
and Wüthrich (2008). We obtain that in our ex-
ample the prediction standard errors are substan-
tially smaller in the multivariate additive method
than in the multivariate chain-ladder claims re-
serving methods proposed by Braun (2004) and
Merz and Wüthrich (2008). These findings may
suggest that in the present case the multivari-
ate additive method would provide a better re-
serve estimate than the multivariate chain-ladder
claims reserving method. However, it is impor-
tant to note that such a conclusion would be only
admissible if we tested that the underlying model
assumptions of the additive method are fulfilled.
This could be done, for example, by the tech-
niques described in Venter (1998).
Finally, we want to emphasize that the condi-

tional MSEP does not provide a complete pic-
ture of the uncertainty associated with the pre-
dictor of the ultimate claims of the total port-
folio. This can only be provided by the whole
predictive distribution of the claims reserves [cf.
England and Verrall (2006) and Wüthrich and
Merz (2008)]. Unfortunately, in most cases one
is not able to calculate the predictive distribu-
tion analytically and one is forced to adopt nu-
merical algorithms such as bootstrapping meth-
ods and Markov chain Monte Carlo methods [cf.
Wüthrich and Merz (2008)]. Endowed with the
simulated predictive distribution, one is not only
able to calculate estimates for the first two mo-
ments of the claims reserves but one can also de-
rive prediction intervals, quantiles (e.g., value at
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risk) and more sophisticated risk measures such
as the expected shortfall. However, in practical
applications and solvency considerations, esti-
mates for second moments such as the (condi-
tional) MSEP and its components (conditional
process variance/estimation error) are often suffi-
cient, since then in most cases one fits an analytic
overall predictive distribution using these first
two moments. In our opinion analytic solutions
(for second moments) are important because they
allow for explicit interpretations in terms of the
parameters involved. Moreover, these estimates
are very easy to interpret and allow for sensitiv-
ity analysis with respect to parameter changes.
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