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ABSTRACT

In this paper we construct a stochastic model and derive

approximation formulae to estimate the standard error of

prediction under the loss ratio approach of assessing pre-

mium liabilities. We focus on the future claims compo-

nent of premium liabilities and examine the weighted and

simple average loss ratio estimators. The resulting mean

square error of prediction contains the process error com-

ponent and the estimation error component, in which the

former refers to future claims variability while the latter

refers to the uncertainty in parameter estimation. We illus-

trate the application of our model to public liability data

and simulated data.
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1. Introduction
There has been extensive literature on loss re-

serving models over the past 25 years, includ-

ing the Mack (1993) model. While the focus has

been largely on how to tackle outstanding claims

liabilities, relatively few materials have been pre-

sented for premium liabilities. Some references

include Cantin and Trahan (1999), Buchanan

(2002), Collins and Hu (2003), and Yan (2005),

which focus on the central estimate (i.e., the

mean) of premium liabilities but not on the un-

derlying variability.

As noted in Clark et al. (2003), the Interna-

tional Accounting Standards Board (IASB) has

proposed a new reporting regime for insurance

contracts, in which both outstanding claims li-

abilities and premium liabilities should be as-

sessed at their fair values. It is generally under-

stood that this fair value includes a “margin” al-

lowing for different types of variability for insur-

ance liabilities. Accordingly, the Australian Pru-

dential Regulation Authority (APRA) has pre-

scribed an approach similar to the fair value ap-

proach. Under Prudential Standard GPS 310, a

“risk margin” has to be explicitly calculated such

that outstanding claims liabilities and premium

liabilities are assessed at a sufficiency level of

75%, subject to a minimum of the mean plus one-

half the standard deviation. Australian Account-

ing Standard AASB 1023 also requires inclusion

of a risk margin, though there is no prescription

on the adequacy level. No matter what approach

one takes, it is obvious that urgency for develop-

ing proper tools to measure liability variability

exists not only for outstanding claims liabilities

but also for premium liabilities. In addition, ac-

cording to Yan (2005), premium liabilities ac-

count for around 30% of insurance liabilities for

direct insurers and 15% to 20% for reinsurers in

Australia from 2002 to 2004. Premium liabilities

represent a significant portion of an insurer’s li-

abilities and proper assessment of the underlying

variability should not be overlooked.

The definition of premium liabilities varies for

different countries. Broadly speaking, premium

liabilities refer to all future claim payments and

associated expenses arising from future events

after the valuation date which are insured under

the existing unexpired policies. Buchanan (2002)

notes that there are two main methods of de-

termining the central estimate of premium lia-

bilities. The first method is prospective in na-

ture and involves a full actuarial assessment from

first principles. Yan (2005) calls this method the

claims approach and differentiates it into the loss

ratio approach and historical claims approach.

The loss ratio approach is the most common one

for premium liability assessment in practice and

is essentially an extension of the outstanding

claims liability valuation. It applies a projected

loss ratio to the unearned premiums or number

of policies unexpired. The historical claims ap-

proach uses the number of claims and average

claim size and is more suitable for short-tailed

lines of business where data is sufficient. While

the historical claims approach has been studied

extensively under the classical risk theory, the

loss ratio approach has received relatively little

attention in the literature. In this paper we follow

the loss ratio approach and attempt to supplement

this knowledge gap.

On the other hand, the second method noted in

Buchanan (2002) is retrospective in nature and

involves an adjustment of the unearned premi-

ums to take out the profit margin. As discussed

in Cantin and Trahan (1999) and Yan (2005),

both Canadian and Australian accounting stan-

dards require a reporting of this unearned premi-

ums item, in which a premium deficiency reserve

is added if this item is less than the premium li-

ability estimate determined by the first method.

Obviously the first method above plays a key role

in premium liability assessment, and we focus

on the loss ratio approach under this prospective

method.
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In this paper we construct a stochastic model

to estimate the standard error of prediction under

the loss ratio approach of assessing premium lia-

bilities. We focus on modeling the future claims

which form the largest component in premium li-

abilities (about 85% according to Collins and Hu

2003). We look at the weighted average ultimate

loss ratio and simple average ultimate loss ratio,

and derive approximation formulae to estimate

the corresponding mean square error of predic-

tion with respect to the accident year following

the valuation date. As similarly reasoned in Tay-

lor (2000), the resulting mean square error of

prediction is composed of the process error com-

ponent and the estimation error component, and

no covariance term exists as one part is related

only to the future while the other only to the past.

We also illustrate the application of our model to

Australian private-sector direct insurers’ public

liability data and some hypothetical data simu-

lated from the compound Poisson model.

The outline of the paper is as follows. In Sec-

tion 2 we introduce the basic notation and as-

sumptions of our model. In Section 3 we present

the formulae for estimating the standard error of

prediction for premium liabilities. In Section 4

we apply the model to public liability data and

simulated data and analyze the results. In Sec-

tion 5 we set forth our concluding remarks. Ap-

pendices A to D furnish the proofs for the for-

mulae stated in this paper.

2. Notation and assumptions

Let Ci,j (for 1· i · n+1 and 1· j · n) be
a random variable representing the cumulative

claim amount (either paid or incurred) of acci-

dent year i and development year j. Assuming

all claims are settled in n years, Ci,n represents

the ultimate claim amount of accident year i.

We consider the case where a run-off triangle

of Ci,j’s is available for i+ j · n+1. In effect,
the valuation date is at the end of accident year

n, Ci,j’s for i+ j > n+1 and 1· i· n refer to

the future claims of outstanding claims liabili-

ties, and Cn+1,j’s refer to the future claims of

premium liabilities. Let Ei (for 1· i · n+1) be
the premiums of accident year i. The premiums

are assumed to be known. The term Ci,n=Ei then

becomes the ultimate loss ratio of accident year i.

It is also assumed that exposure is evenly dis-

tributed over each year, and the exposure dis-

tribution of accident year n+1 is the same as

that of the past accident years. In reality, the

future exposure relating to premium liabilities

would arise more from the earlier part of accident

year n+1, while the past exposure would spread

more uniformly across the whole year. Although

the timing of claims development is actually dif-

ferent between the two cases, the way that the

claims develop to ultimate remains basically the

same. As our focus is on the ultimate loss ratio,

this approximation is reasonable and represents

a convenient simplification for the model setting.

As mentioned in the Introduction, the loss ratio

approach for the premium liability valuation is

basically an extension of the outstanding claims

liability valuation. Hence we start with the struc-

ture of the chain ladder method, which is the

most common method for assessing outstanding

claims liabilities in practice and is linked to a

distribution-free model in Mack (1993). Incor-

porating Ei into the three basic assumptions of

the Mack (1993) model, we deduce the follow-

ing for 1· i · n+1:

E

Ã
Ci,j+1
Ei

¯̄̄̄
¯Ci,1,Ci,2, : : : ,Ci,j

!
=
Ci,j
Ei
fj ;

(for 1· j · n¡ 1) (2.1)

Var

Ã
Ci,j+1
Ei

¯̄̄̄
¯Ci,1,Ci,2, : : : ,Ci,j

!
=
Ci,j

E2i
¾2j ;

(for 1· j · n¡ 1) (2.2)

Ci,j and Cg,h are independent.

(for i 6= g) (2.3)

The parameter fj is the development ratio and

the parameter ¾2j is related to the conditional vari-
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ance of Ci,j+1. These two parameters are un-

known and need to be estimated from the claims

data.

As of the valuation date, there is no claims

data for accident year n+1. In order to model

the future claims in the first development year

of accident year n+1, we add the following two

assumptions for 1· i · n+1, which are anal-
ogous to those for new claims in Schnieper

(1991):

E

μ
Ci,1
Ei

¶
= u; (2.4)

Var

μ
Ci,1
Ei

¶
=
v2

Ei
: (2.5)

Rearranging assumptions (2.4) and (2.5) into

E(Ci,1) = Eiu and Var(Ci,1) = Eiv
2, we can see

that the mean and variance of the claim amount

of the first development year is effectively as-

sumed to be proportional to the premiums. This

is analogous to assumptions (2.1) and (2.2), in

which the conditional mean and variance of the

claim amount Ci,j for 2· j · n depends on the
previous development year’s claim amount

Ci,j¡1. The parameters u and v2 are unknown and
can be estimated from the claims and premiums

data.

Mack (1993) suggests the following unbiased

estimators for fj and ¾
2
j and proves that f̂j and

f̂h are uncorrelated for j 6= h:

f̂j =

Pn¡j
r=1Cr,j+1Pn¡j
r=1Cr,j

=

Pn¡j
r=1Cr,j

Cr,j+1
Cr,jPn¡j

r=1Cr,j
;

(for 1· j · n¡ 1) (2.6)

¾̂2j =
1

n¡ j¡ 1
n¡jX
r=1

Cr,j

Ã
Cr,j+1
Cr,j

¡ f̂j
!2
;

(for 1· j · n¡ 2)

¾̂2n¡1 = min
Ã
¾̂4n¡2
¾̂2n¡3

, ¾̂2n¡3

!
: (2.7)

We now introduce two unbiased estimators for

u and v2 as follows, which are again based on

Schnieper (1991):

û=

Pn
r=1Cr,1Pn
r=1Er

=

Pn
r=1Er

Cr,1
ErPn

r=1Er
; (2.8)

v̂2 =
1

n¡ 1
nX
r=1

Er

μ
Cr,1
Er

¡ û
¶2
: (2.9)

It can be seen that both formulae (2.6) and

(2.8) are weighted averages and that both formu-

lae (2.7) and (2.9) use weighted sums of squares.

The proofs for unbiasedness of û and v̂2 are given
in Appendix A.

In effect, we integrate the model assumptions

in Mack (1993) with those of development year

one for new claims in Schnieper (1991). The

overall structure is based on the chain ladder

method. It then becomes possible to assess the

next accident year’s ultimate loss ratio using the

observed run-off triangle. As shown in the next

section, the results of the outstanding claims lia-

bility valuation (i.e., projected ultimate loss ratios

of the past accident years) are carried through

to the premium liability valuation (regarding the

expected ultimate loss ratio of the accident year

following the valuation date).

3. Standard error of prediction
In practice, actuaries often examine the pro-

jected ultimate loss ratios of past accident years

and compare these figures with target or bud-

get ratios or industry ratios to obtain an esti-

mate of the next accident year’s ultimate loss

ratio. Here we assume no such prior knowledge

or objective information is available and inves-

tigate the following two estimators for the next

accident year’s expected ultimate loss ratio q=
E(Cn+1,n=En+1):

q̂=

Pn
i=1Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1Pn

i=1Ei

=

Pn
i=1Ci,n+1¡iSn+1¡i,n¡1Pn

i=1Ei
=

Pn
i=1 Ĉi,nPn
i=1Ei

=

Pn
i=1Ei

Ĉi,n
EiPn

i=1Ei
; (3.1)
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q̂¤ =
1

n

nX
i=1

Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1
Ei

=
1

n

nX
i=1

Ci,n+1¡iSn+1¡i,n¡1
Ei

=
1

n

nX
i=1

Ĉi,n
Ei
:

(3.2)

Let Sj,h = f̂j f̂j+1 : : : f̂h (for j · h; equal to one
otherwise) and Ĉi,j = Ci,n+1¡iSn+1¡i,j¡1 (for i+
j > n+1 and 1· i · n). Ĉ1,n is read as equal
to C1,n. Formula (3.1) gives a weighted average

while formula (3.2) provides a simple average.

Both estimators are unbiased and the proofs are

set forth in Appendix B. For the expected future

claims component of premium liabilities of the

next accident year E(Cn+1,n), we define its esti-

mator as

Ĉn+1,n = En+1q̂: (3.3)

For now we deal with (3.1) and, as shown later,

the results of (3.1) can readily be extended to the

use of (3.2). We will also look at the effects of

excluding some accident years when calculating

q, as a practitioner may exclude or adjust a few

years’ projected loss ratios that are regarded as

inconsistent with the rest, out of date, or irrele-

vant. Such circumstances arise when there have

been past changes in, for example, the regula-

tions, underwriting procedures, claims manage-

ment, business mix, or reinsurance arrangements.

Using the idea in Chapter 6 of Taylor (2000),

we define the mean square error of prediction of

the estimator q̂ as follows:

MSEP(q̂) = E

Ãμ
Cn+1,n
En+1

¡ q̂
¶2!

= E

Ãμ
Cn+1,n
En+1

¡ q+ q¡ q̂
¶2!

= E

Ãμ
Cn+1,n
En+1

¡ q
¶2!

+E((q̂¡ q)2)

(Cn+1,n and q̂ are independent due to (2.3))

= Var

μ
Cn+1,n
En+1

¶
+Var(q̂): (q̂ is unbiased)

(3.4)

The mean square error of prediction above

consists of two components: the first allows for

process error and the second for estimation er-

ror. The process error component refers to future

claims variability and the estimation error com-

ponent refers to the uncertainty in parameter esti-

mation due to sampling error. As similarly noted

in Taylor (2000), there is no covariance term in

(3.4) because at the valuation date, Cn+1,n is en-

tirely related to the future while q̂ is completely

based on the past observations.

The corresponding standard error of prediction

can then be calculated as

SEP(q̂) =
q
MSEP(q̂): (3.5)

For the next accident year’s expected ultimate

claim amount, we compute the standard error of

prediction of its estimator as

SEP(Ĉn+1,n) = En+1 SEP(q̂) = En+1

q
MSEP(q̂):

(3.6)

We derive the process error component as fol-

lows and the proof is given in Appendix C:

Var

μ
Cn+1,n
En+1

¶
=

1

En+1
E

μ
Cn+1,n
En+1

¶

£
n¡1X
j=1

¾2j
fj
fj+1fj+2 : : :fn¡1

+
v2

En+1
f21 f

2
2 : : :f

2
n¡1, (3.7)

which can be estimated by

dVarμCn+1,n
En+1

¶
=

q̂

En+1

n¡1X
j=1

¾̂2j

f̂j
Sj+1,n¡1

+
v̂2

En+1
S21,n¡1: (3.8)

The estimation error component requires more

computation. We derive the following approxi-

mation for this component and the proof is pro-
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vided in Appendix D:

Var(q̂)¼ 1¡Pn

i=1
Ei
¢2 n¡1X

j=1

Ã
nX

i=n+1¡j

E(Ci,n)

fj

!2

Var(f̂j)

+
1¡Pn

i=1
Ei
¢2 nX

i=1

f2n+1¡if
2
n+2¡i : : :f

2
n¡1Var(Ci,n+1¡i)

+
2¡Pn

i=1
Ei
¢2 n¡1X

j=1

n¡jX
i=1

Ã
nX

r=n+1¡j

E(Cr,n)

fj

!

£ (fn+1¡ifn+2¡i : : :fn¡1)Cov(f̂j ,Ci,n+1¡i), (3.9)

which can be estimated by

dVar(q̂) = 1¡Pn
i=1Ei

¢2 n¡1X
j=1

0@ nX
i=n+1¡j

Ĉi,n

f̂j

1A2dVar(f̂j)
+

1¡Pn
i=1Ei

¢2 nX
i=1

S2n+1¡i,n¡1dVar(Ci,n+1¡i)
+

2¡Pn
i=1Ei

¢2 n¡1X
j=1

n¡jX
i=1

nX
r=n+1¡j

Ĉr,n

f̂j

£ Sn+1¡i,n¡1dCov(f̂j ,Ci,n+1¡i),
(3.10)

where the estimators of the variance and covari-

ance terms are derived as

dVar(f̂j) = ¾̂2jPn¡j
r=1Cr,j

; (3.11)

dVar(Ci,n+1¡i) = Ci,n+1¡i n¡iX
j=1

¾̂2j

f̂j
Sj+1,n¡i+Eiv̂

2S21,n¡i;

(3.12)

dCov(f̂j ,Ci,n+1¡i) = Ci,n+1¡iPn¡j
r=1Cr,j

¾̂2j

f̂j
: (3.13)

By now we have shown all the formulae that

are needed to calculate the standard error of pre-

diction of (3.1). Note that the term fjfj+1 : : :fn¡1
for j > n¡ 1 is read as equal to one in the sum-
mations. In the next section we will apply these

formulae to some real claims data and simulated

data.

4. Illustrative examples

We first apply the formulae shown previously

to some public liability data. We use the aggre-

gated claim payments and premiums (both gross

and net of reinsurance) of the private-sector di-

rect insurers from the “Selected Statistics on the

General Insurance Industry” (APRA) for acci-

dent years 1981 to 1991 (n= 10). Adopting the

approach as described in Hart et al. (1996), all

the figures have been converted to constant dol-

lar values in accordance with the average weekly

ordinary time earnings (AWOTE) before the cal-

culations. This procedure is common in practice

and is based on the assumption that wage infla-

tion is the ‘normal’ inflation for the claims.

The inflation-adjusted claims (incremental)

and premiums data are presented in Table 1 be-

low for gross of reinsurance and in Table 2 for

net of reinsurance. All the figures are in thou-

sands.

The two run-off triangles show that it takes

several years for public liability claims to de-

velop and this line of business is generally re-

garded as a long-tailed line of business. We use

formulae (2.6) to (2.9), (3.1), and (3.3) to es-

timate the parameters, accident year 1991’s ex-

pected ultimate loss ratio, and so the expected fu-

ture claims of premium liabilities. We then adopt

formulae (3.4) to (3.13) to compute the corre-

sponding standard error of prediction. Table 3

below presents our results both gross and net of

reinsurance.

As shown in Table 3, the estimated gross and

net expected ultimate loss ratios for accident year

1991 are 49.2% and 53.6%. The standard error of

prediction for the future claims of premium lia-

bilities, expressed as a percentage of the mean, is

greater for gross than for net. The gross and net

percentages are 47.1% and 33.1% respectively.

This feature is in line with the general percep-

tion that gross liability variability is greater than

its net counterpart. In both cases the process er-

ror component is larger than the estimation error

component.
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Table 1. Public liability (gross of reinsurance)

Claims 1 2 3 4 5 6 7 8 9 10 Premiums

1981 15,898 20,406 17,189 19,627 35,034 12,418 8,922 12,555 8,965 6,693 289,732
1982 16,207 21,518 17,753 18,780 19,113 18,634 15,857 13,050 9,362 319,216
1983 14,141 20,315 16,458 25,473 16,427 92,888 18,698 15,295 314,607
1984 14,649 21,162 19,084 23,857 20,171 15,098 17,637 344,446
1985 21,949 26,455 23,285 25,251 22,286 23,424 418,358
1986 18,989 28,741 32,754 30,240 28,443 535,658
1987 19,367 36,420 31,204 27,487 639,130
1988 26,860 39,550 33,852 751,897
1989 23,738 52,683 780,669
1990 34,567 719,181
1991 334,566

Table 2. Public liability (net of reinsurance)

Claims 1 2 3 4 5 6 7 8 9 10 Premiums

1981 13,451 16,801 12,947 13,752 13,802 8,583 6,847 9,237 5,641 3,784 168,975
1982 13,533 17,489 13,111 13,541 13,603 11,937 10,524 8,609 5,987 186,990
1983 11,808 17,525 12,644 15,609 11,821 17,305 10,524 11,061 200,475
1984 13,309 17,806 14,777 17,295 15,340 12,060 11,752 222,843
1985 19,546 22,786 19,686 21,860 19,268 18,692 262,748
1986 17,865 25,888 28,194 25,578 22,985 333,716
1987 17,797 33,517 24,182 24,337 410,429
1988 24,591 33,398 28,512 502,869
1989 21,567 46,146 532,298
1990 30,343 545,218
1991 234,659

All accident years’ estimated ultimate loss ra-

tios are fairly consistent with one another ex-

cept the gross loss ratio of accident year 1983.

A closer look at the claims data reveals that the

gross claim payments made at accident year 1983

and development year 6 are $92,888 thousand,

the amount of which is much larger than the

other figures in the same development year. We

find that if the amount is changed to say $18,000

thousand, then the standard error of predic-

tion reduces significantly from 47.1% to 35.5%.

Whether to allow for this extra variability or ad-

just the data is a matter of judgment and in prac-

tice requires further investigation into the under-

lying features of those claims.

As mentioned in the previous section, one can

exclude some accident years’ loss ratios when

calculating q if those loss ratios are considered

inconsistent, out of date, or irrelevant. This com-

putation can readily be done by setting an indica-

tor variable for each accident year, in which the

indicator is one if the loss ratio of that accident

year is included and zero otherwise. Table 4 be-

low demonstrates some results of using different

numbers of accident years in computing q and

SEP(q̂) with (3.1), (3.8), and (3.10).

For each case of a particular number of acci-

dent years being included, Table 4 sets out the

average figures across all the possible combina-

tions of accident years in that case. It can be seen

that the estimation error component and so the

standard error of prediction decreases when more

accident years (i.e., more data) are used. The pro-

cess error component is stable because in our

analysis, the indicator adjustments are only

applied to (3.1) and (3.10) but not (2.6) to

(2.9).

Hitherto we have been focusing on the use of

(3.1). In many situations one may prefer using

a simple average of loss ratios as in (3.2). We

only need to replace (3.9) and (3.10) with the

following, the proof of which is analogous to
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Table 3. Estimated results using weighted average loss ratio

Gross of Reinsurance Net of Reinsurance

Accident Ultimate Loss Accident Ultimate Loss
Year Premiums Claims Ratio Year Premiums Claims Ratio

1981 289,732 157,705 54.4% 1981 168,975 104,844 62.0%
1982 319,216 156,934 49.2% 1982 186,990 112,391 60.1%
1983 314,607 244,292 77.6% 1983 200,475 118,959 59.3%
1984 344,446 159,365 46.3% 1984 222,843 124,138 55.7%
1985 418,358 192,494 46.0% 1985 262,748 165,031 62.8%
1986 535,658 247,328 46.2% 1986 333,716 191,706 57.4%
1987 639,130 259,865 40.7% 1987 410,429 195,706 47.7%
1988 751,897 313,187 41.7% 1988 502,869 227,747 45.3%
1989 780,669 364,832 46.7% 1989 532,298 264,892 49.8%
1990 719,181 421,727 58.6% 1990 545,218 297,641 54.6%
1991 334,566 164,750 49.2% 1991 234,659 125,678 53.6%

Var

μ
Cn+1,n

En+1

¶
Var(q̂) SEP(q̂) SEP(Ĉn+1,n)

E(Cn+1,n)
Var

μ
Cn+1,n

En+1

¶
Var(q̂) SEP(q̂) SEP(Ĉn+1,n)

E(Cn+1,n)

0.0481 0.0058 0.2322 47.1% 0.0292 0.0022 0.1773 33.1%

Gross 1 2 3 4 5 6 7 8 9

fj 2.5556 1.5283 1.3761 1.2773 1.3170 1.1148 1.0886 1.0648 1.0443

¾2
j 2,227.06 242.72 235.27 720.66 13,377.69 166.44 35.49 0.78 0.02

u 0.0404
v2 42.1016

Net 1 2 3 4 5 6 7 8 9

fj 2.5075 1.4858 1.3431 1.2323 1.1744 1.1167 1.1043 1.0588 1.0374

¾2
j 1,992.25 206.88 36.77 11.43 157.84 32.84 11.97 0.02 0.00

u 0.0546
v2 50.2089

Table 4. Average results with different number of accident years included

Gross of Reinsurance Net of Reinsurance
No. of
Accident
Years
Included

q Var

μ
Cn+1,n

En+1

¶
Var(q̂) SEP(q̂) SEP(Ĉn+1,n)

E(Cn+1,n)
q Var

μ
Cn+1,n

En+1

¶
Var(q̂) SEP(q̂) SEP(Ĉn+1,n)

E(Cn+1,n)

1 50.7% 0.0490 0.0340 0.2852 57.0% 55.5% 0.0295 0.0245 0.2311 41.7%
2 49.9% 0.0485 0.0159 0.2532 51.2% 54.4% 0.0293 0.0110 0.2006 36.9%
3 49.6% 0.0483 0.0112 0.2438 49.4% 54.1% 0.0293 0.0071 0.1906 35.3%
4 49.4% 0.0482 0.0091 0.2394 48.6% 53.9% 0.0292 0.0053 0.1858 34.5%
5 49.4% 0.0482 0.0080 0.2369 48.1% 53.8% 0.0292 0.0042 0.1829 34.1%
6 49.3% 0.0482 0.0072 0.2353 47.8% 53.7% 0.0292 0.0036 0.1810 33.7%
7 49.3% 0.0482 0.0067 0.2342 47.5% 53.6% 0.0292 0.0031 0.1797 33.5%
8 49.3% 0.0481 0.0063 0.2333 47.4% 53.6% 0.0292 0.0027 0.1787 33.3%
9 49.3% 0.0481 0.0060 0.2327 47.3% 53.6% 0.0292 0.0025 0.1779 33.2%

10 49.2% 0.0481 0.0058 0.2322 47.1% 53.6% 0.0292 0.0022 0.1773 33.1%
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Table 5. Estimated results using simple average loss ratio

Gross of Reinsurance Net of Reinsurance

Accident Ultimate Loss Accident Ultimate Loss
Year Premiums Claims Ratio Year Premiums Claims Ratio

1991 334,566 169,752 50.7% 1991 234,659 130,184 55.5%

Var

μ
Cn+1,n

En+1

¶
Var(q̂¤) SEP(q̂¤) SEP(Ĉn+1,n)

E(Cn+1,n)
Var

μ
Cn+1,n

En+1

¶
Var(q̂¤) SEP(q̂¤) SEP(Ĉn+1,n)

E(Cn+1,n)

0.0490 0.0063 0.2353 46.4% 0.0295 0.0027 0.1794 32.3%

Appendix D:

Var(q̂¤)¼ 1

n2

n¡1X
j=1

0@ nX
i=n+1¡j

E(Ci,n)

Eifj

1A2

Var(f̂j)

+
1

n2

nX
i=1

f2n+1¡if
2
n+2¡i : : :f

2
n¡1

E2i
Var(Ci,n+1¡i)

+
2

n2

n¡1X
j=1

n¡jX
i=1

0@ nX
r=n+1¡j

E(Cr,n)

Erfj

1A
£
μ
fn+1¡ifn+2¡i : : :fn¡1

Ei

¶
Cov(f̂j ,Ci,n+1¡i),

(4.1)

which can be estimated by

dVar(q̂¤) = 1

n2

n¡1X
j=1

0@ nX
i=n+1¡j

Ĉi,n

Eif̂j

1A2dVar(f̂j)
+
1

n2

nX
i=1

S2n+1¡i,n¡1
E2i

dVar(Ci,n+1¡i)
+
2

n2

n¡1X
j=1

n¡jX
i=1

nX
r=n+1¡j

Ĉr,n

Erf̂j

£ Sn+1¡i,n¡1
Ei

dCov(f̂j ,Ci,n+1¡i):
(4.2)

The estimated results using (3.2), (3.8), and

(4.2) are shown in Table 5. The resulting ulti-

mate loss ratios are slightly larger than previ-

ously while the standard error of prediction esti-

mates are slightly larger in magnitude but smaller

in percentage.

Finally we apply our formulae to some hypo-

thetical data simulated from the compound Pois-

son model Xi,j =
PNi,j
k=1Yi,j,k. Let Xi,j be a ran-

dom variable representing the incremental claim

amount of accident year i and development year

j and so Ci,j = Ci,j¡1 +Xi,j for 2· j · 10 and
Ci,1 = Xi,1. Let Ni,j and Yi,j,k be independent ran-

dom variables representing the number of claims

and the size of the kth claim of accident year i

and development year j. Let Ni,j » Pn(Ei¸j) and
Yi,j,k » LN(¹,¾) where ¸j’s are equal to 9£ 10¡6,
8£ 10¡6, 7£ 10¡6, 6£ 10¡6, 5£ 10¡6, 5£ 10¡6,
4£ 10¡6, 3£ 10¡6, 2£ 10¡6, 1£ 10¡6 respec-
tively for 1· j · 10, ¹= 8:8638, and ¾ =

0:8326 (E(Yi,j,k) = 10,000 and SD(Yi,j,k) =

10,000). We assume Ei grows from 1,000,000 at

10% each year and the unearned premiums are

half of E11. Effectively, accident year 11’s ulti-

mate loss ratio has a mean of 50% and a variance

of 0.0077. We then simulate a run-off triangle

based on this compound Poisson model and ap-

ply our formulae (3.2), (3.8), and (4.2) to this

triangle.

Under the compound Poisson model above,

Xi,j’s are independent while under our model,

Ci,j+1 depends on Ci,j . Hence we expect our for-

mulae to produce a process error estimate larger

than the true variance underlying the simulated

data. The simulated run-off triangle and estimat-

ed results are presented in Tables 6 and 7.

As expected, the process error estimate of

0.0259 is larger than the underlying variance of

0.0077. In dealing with real claims data, one

should check the underlying assumptions thor-

oughly regarding the conditional relationships or

independence between different development

years.
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Table 6. Simulated data (10% growth)

Claims 1 2 3 4 5 6 7 8 9 10 Premiums

1 80,946 97,396 43,469 40,208 52,068 19,518 14,644 1,692 12,429 1,964 1,000,000
2 63,077 76,181 46,565 68,880 26,412 44,620 53,513 14,540 3,577 1,100,000
3 93,688 112,399 87,149 133,804 17,549 14,814 91,392 35,367 1,210,000
4 116,704 224,930 87,005 61,843 101,357 42,731 27,057 1,331,000
5 192,542 147,366 85,361 61,776 90,964 103,829 1,464,100
6 118,717 97,519 83,964 114,058 89,192 1,610,510
7 156,966 172,695 139,843 156,225 1,771,561
8 175,068 116,656 100,157 1,948,717
9 164,691 112,805 2,143,589

10 239,127 2,357,948
11 1,296,871

Table 7. Estimated results using simple average loss ratio

Accident Ultimate Loss
Year Premiums Claims Ratio

11 1,296,871 581,948 44.9%

Var

μ
Cn+1,n

En+1

¶
Var(q̂¤) SEP(q̂¤) SEP(Ĉn+1,n)

E(Cn+1,n)

0.0259 0.0030 0.1699 37.9%

5. Concluding remarks
In this paper we examine the weighted and

simple average loss ratio estimators and construct

a stochastic model to derive some simple ap-

proximation formulae to estimate the standard

error of prediction for the future claims compo-

nent of premium liabilities. Based on the idea in

Taylor (2000), we deduce the mean square er-

ror of prediction as comprising the process error

component and the estimation error component,

and no covariance term exists as the first part

is associated only with the future while the sec-

ond part only with the past observations. We ap-

ply these formulae to some public liability data

and simulated data and the results are reason-

able in general. Since the starting part of our

model follows the structure of the chain ladder

method, one may apply the various tests stated

in Mack (1994) to check whether the model as-

sumptions are valid for the claims data under in-

vestigation.

The formulae derived in this paper appear to

serve as a good starting point for assessment of

premium liability variability in practice. Never-

theless, there are other practical considerations

in dealing with premium liabilities such as the

insurance cycle, claims development in the tail,

catastrophes, superimposed inflation, multi-year

policies, policy administration and claims han-

dling expenses, future recoveries, future reinsur-

ance costs, retrospectively rated policies, un-

closed business, refund claims, and future

changes in reinsurance, claims management, and

underwriting. To deal with these issues, a prac-

titioner needs to judgmentally adjust the data or

make an explicit allowance, based on managerial,

internal, and industry information.
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Appendix A

In this appendix we prove that the estimators û and v̂2 of (2.8) and (2.9) are unbiased:

E(û) = E

μPn
r=1Cr,1Pn
r=1Er

¶
=

Pn
r=1E(Cr,1)Pn
r=1Er

=

Pn
r=1EruPn
r=1Er

= u; (from (2.4))

Var(û) = Var

μPn
r=1Cr,1Pn
r=1Er

¶
=

Pn
r=1Var(Cr,1)¡Pn

r=1Er
¢2 =

Pn
r=1Erv

2¡Pn
r=1Er

¢2 = v2Pn
r=1Er

; (from (2.3) and (2.5))

E(v̂2) = E

"
1

n¡ 1
nX
r=1

Er

μ
Cr,1
Er

¡ û
¶2#

=
1

n¡ 1
nX
r=1

ErE

"μ
Cr,1
Er

¡ û
¶2#

=
1

n¡1
nX
r=1

Er

(
E

Ã
C2r,1
E2r

!
¡ 2E

Ã
Cr,1
Er

Pn
g=1Cg,1Pn
g=1Eg

!
+E(û2)

)

=
1

n¡1
nX
r=1

Er

(
Var

μ
Cr,1
Er

¶
+E

μ
Cr,1
Er

¶2
¡ 2

Er

"Pn
g=1E(Cr,1)E(Cg,1)Pn

g=1Eg
+
Var(Cr,1)Pn

g=1Eg

#
+Var(û)+E(û)2

)

(from (2.3))

=
1

n¡1
nX
r=1

Er

(
v2

Er
+ u2¡ 2

Er

"Pn
g=1ErEgu

2Pn
g=1Eg

+
Erv

2Pn
g=1Eg

#
+

v2Pn
g=1Eg

+ u2

)

(from (2.4), (2.5), and above)

=
1

n¡1
nX
r=1

Ã
v2¡ Erv

2Pn
g=1Eg

!
= v2:

Appendix B

We prove in this appendix that both (3.1) and (3.2) give unbiased estimators. To start with, we have

to show the following with repeated use of the law of total expectation:

E

μ
Cn+1,n
En+1

¶
= E

μ
E

μ
Cn+1,n
En+1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡1

¶¶
= E

μ
Cn+1,n¡1
En+1

fn¡1
¶

(from (2.1))

= E

μ
E

μ
Cn+1,n¡1
En+1

fn¡1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡2

¶¶
= E

μ
Cn+1,n¡2
En+1

fn¡2fn¡1
¶

(from (2.1) again)

= ¢ ¢ ¢= E
μ
Cn+1,1
En+1

f1f2 : : :fn¡1
¶

(repeat above)

= uf1f2 : : :fn¡1: (from (2.4))

The above results can readily be extended to accident years and development years other than n+1

and n shown here.
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Mack (1993) proves that f̂j is unbiased and that f̂j and f̂h are uncorrelated for j 6= h. First we look
at the expected value of the weighted average estimator of (3.1):

E(q̂) = E

0@Pn
i=1Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1Pn

i=1Ei

1A
=

Pn
i=1E(Ci,n+1¡i)fn+1¡ifn+2¡i : : :fn¡1Pn

i=1Ei
(from Mack (1993))

=

Pn
i=1Eiuf1f2 : : :fn¡1Pn

i=1Ei
= uf1f2 : : :fn¡1 = q: (from above)

Similarly, the expected value of the simple average estimator of (3.2) is as follows:

E(q̂¤) = E

0@1
n

nX
i=1

Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1
Ei

1A
=
1

n

nX
i=1

E

μ
Ci,n+1¡i
Ei

¶
fn+1¡ifn+2¡i : : :fn¡1 (from Mack (1993))

=
1

n

nX
i=1

uf1f2 : : :fn¡1 = uf1f2 : : :fn¡1 = q: (from above)

Appendix C
We derive the process error component in (3.7) of the mean square error of prediction as follows,

with repeated use of the law of total variance:

Var

μ
Cn+1,n
En+1

¶
= E

μ
Var

μ
Cn+1,n
En+1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡1

¶¶
+Var

μ
E

μ
Cn+1,n
En+1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡1

¶¶

= E

μ
Cn+1,n¡1
E2n+1

¾2n¡1

¶
+Var

μ
Cn+1,n¡1
En+1

fn¡1

¶
(from (2.2) and (2.1))

= E

μ
Cn+1,n¡1
E2n+1

¾2n¡1

¶
+E

μ
Var

μ
Cn+1,n¡1
En+1

fn¡1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡2

¶¶

+Var

μ
E

μ
Cn+1,n¡1
En+1

fn¡1

¯̄̄̄
Cn+1,1,Cn+1,2, : : : ,Cn+1,n¡2

¶¶
= E

μ
Cn+1,n¡1
E2n+1

¾2n¡1

¶
+E

μ
Cn+1,n¡2
E2n+1

¾2n¡2f
2
n¡1

¶
+Var

μ
Cn+1,n¡2
En+1

fn¡2fn¡1

¶
(from (2.2) and (2.1) again)

= ¢ ¢ ¢= E
μ
Cn+1,n¡1
E2n+1

¾2n¡1

¶
+E

μ
Cn+1,n¡2
E2n+1

¾2n¡2f
2
n¡1

¶
+ ¢ ¢ ¢+E

μ
Cn+1,1
E2n+1

¾21f
2
2 f

2
3 : : :f

2
n¡1

¶

+Var

μ
Cn+1,1
En+1

f1f2 : : :fn¡1

¶
(repeat above)

=
1

En+1

·
E

μ
Cn+1,n¡1
En+1

¶
¾2n¡1 +E

μ
Cn+1,n¡2
En+1

¶
¾2n¡2f

2
n¡1 + ¢ ¢ ¢+E

μ
Cn+1,1
En+1

¶
¾21f

2
2 f

2
3 : : :f

2
n¡1

¸

+
v2

En+1
f21 f

2
2 : : :f

2
n¡1 (from (2.5))
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=
1

En+1

"
E

μ
Cn+1,n
En+1

¶
¾2n¡1
fn¡1

+E

μ
Cn+1,n
En+1

¶
¾2n¡2
fn¡2

fn¡1 + ¢ ¢ ¢+E
μ
Cn+1,n
En+1

¶
¾21
f1
f2f3 : : :fn¡1

#

+
v2

En+1
f21 f

2
2 : : :f

2
n¡1 (from Appendix B)

=
1

En+1
E

μ
Cn+1,n
En+1

¶ n¡1X
j=1

¾2j
fj
fj+1fj+2 : : :fn¡1 +

v2

En+1
f21 f

2
2 : : :f

2
n¡1:

Appendix D
In the following we derive the estimation error component in (3.9) of the mean square error of

prediction. We first apply the Taylor series expansion to the estimator q̂ of (3.1):

q̂=

Pn
i=1Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1Pn

i=1Ei
¼
Pn
i=1E(Ci,n+1¡i)fn+1¡ifn+2¡i : : :fn¡1Pn

i=1Ei

+
1Pn
i=1Ei

n¡1X
j=1

(f̂j ¡fj)
nX
i=1

@

@f̂j
Ci,n+1¡if̂n+1¡if̂n+2¡i : : : f̂n¡1

¯̄̄̄
¯
Ci,n+1¡i=E(Ci,n+1¡i); f̂j=fj

+
1Pn
i=1Ei

nX
i=1

(Ci,n+1¡i¡E(Ci,n+1¡i))
nX
r=1

@

@Ci,n+1¡i
Cr,n+1¡rf̂n+1¡rf̂n+2¡r : : : f̂n¡1

¯̄̄̄
Ci,n+1¡i=E(Ci,n+1¡i); f̂j=fj

= E(q̂)+
1Pn
i=1Ei

n¡1X
j=1

(f̂j ¡fj)
nX

i=n+1¡j

E(Ci,n)

fj
(from Appendix B)

+
1Pn
i=1Ei

nX
i=1

(Ci,n+1¡i¡E(Ci,n+1¡i))fn+1¡ifn+2¡i : : :fn¡1:

Moving the term E(q̂) to the left-hand side of the equation and then taking the expectation on the

square of the resulting equation, we deduce that:

Var(q̂)¼ 1¡Pn
i=1Ei

¢2 E
264
0@n¡1X
j=1

(f̂j ¡fj)
nX

i=n+1¡j

E(Ci,n)

fj

1A2
375

+
1¡Pn
i=1Ei

¢2 E
24Ã nX

i=1

(Ci,n+1¡i¡E(Ci,n+1¡i))fn+1¡ifn+2¡i : : :fn¡1
!235

+
2¡Pn
i=1Ei

¢2 E
240@n¡1X

j=1

(f̂j ¡fj)
nX

i=n+1¡j

E(Ci,n)

fj

1AÃ nX
i=1

(Ci,n+1¡i¡E(Ci,n+1¡i))fn+1¡ifn+2¡i : : :fn¡1
!35

=
1¡Pn
i=1Ei

¢2 n¡1X
j=1

0@ nX
i=n+1¡j

E(Ci,n)

fj

1A2

Var(f̂j) (f̂j’s are unbiased and uncorrelated)

+
1¡Pn
i=1Ei

¢2 nX
i=1

f2n+1¡if
2
n+2¡i : : :f

2
n¡1Var(Ci,n+1¡i) (from (2.3))

+
2¡Pn
i=1Ei

¢2 n¡1X
j=1

n¡jX
i=1

0@ nX
r=n+1¡j

E(Cr,n)

fj

1A (fn+1¡ifn+2¡i : : :fn¡1)Cov(f̂j ,Ci,n+1¡i):
(f̂j is unbiased; f̂j and Ci,n+1¡i are independent for j > n¡ i due to (2.3)).
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As shown in Mack (1993), E(f̂j j Bj) = fj and Var(f̂j j Bj) = ¾2j =
Pn¡j
r=1Cr,j where Bj represents all the

past claims data to development year j. We then deduce the following:

Var(f̂j) = E(Var(f̂j j Bj))+Var(E(f̂j j Bj))

= E

0@ ¾2jPn¡j
r=1Cr,j

1A+Var(fj)
= E

0@ ¾2jPn¡j
r=1Cr,j

1A ,
which can be approximated by dVar(f̂j) = ¾̂2j =Pn¡j

r=1Cr,j .

Repeatedly using the law of total variance as in Appendix C, we derive that Var(Ci,n+1¡i) = E(Ci,n+1¡i)
¢Pn¡i

j=1(¾
2
j =fj)fj+1fj+2 : : :fn¡i+Eiv

2f21 ¢ f22 : : :f2n¡i, which can then be estimated by dVar(Ci,n+1¡i) =
Ci,n+1¡i

Pn¡i
j=1(¾̂

2
j =f̂j)Sj+1,n¡i+Eiv̂

2 ¢ S21,n¡i.
Finally, we derive the covariance between f̂j and Ci,n+1¡i for j · n¡ i as follows:

Cov(f̂j ,Ci,n+1¡i) = E(f̂jCi,n+1¡i)¡E(Ci,n+1¡i)fj (f̂j is unbiased)

= E(E(f̂jCi,n+1¡i j Bn¡i))¡E(Ci,n+1¡i)fj

= E(f̂jCi,n¡ifn¡i)¡E(Ci,n+1¡i)fj (from (2.1))

= ¢ ¢ ¢= E(f̂jCi,j+1fj+1fj+2 : : :fn¡i)¡E(Ci,n+1¡i)fj (repeat above)

= E

ÃPn¡j
r=1Cr,j+1Ci,j+1Pn¡j

r=1Cr,j
fj+1fj+2 : : :fn¡i

!
¡E(Ci,n+1¡i)fj (from (2.6))

= E

ÃPn¡j
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!
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ÃPn¡j
r=1 E(Cr,j+1 j Bj)E(Ci,j+1 j Bj) +Var(Ci,j+1 j Bj)Pn¡j
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!
¡E(Ci,n+1¡i)fj

(from (2.3))

= E

ÃPn¡j
r=1Cr,jCi,jf

2
j +Ci,j¾

2
jPn¡j

r=1Cr,j
fj+1fj+2 : : :fn¡i

!
¡E(Ci,n+1¡i)fj (from (2.1) and (2.2))

= E

Ã
Ci,jf

2
j fj+1fj+2 : : :fn¡i+

Ci,j¾
2
jPn¡j

r=1Cr,j
fj+1fj+2 : : :fn¡i

!
¡E(Ci,n+1¡i)fj

= E

Ã
Ci,n+1¡iPn¡j
r=1Cr,j

!
¾2j
fj
, (from Appendix B)

which can be approximated by dCov(f̂j ,Ci,n+1¡i) = (Ci,n+1¡i=Pn¡j
r=1Cr,j)(¾̂

2
j =f̂j).

168 CASUALTY ACTUARIAL SOCIETY VOLUME 4/ISSUE 2



Prediction Error of the Future Claims Component of Premium Liabilities under the Loss Ratio Approach

References
Australian Bureau of Statistics (ABS), Labor Statistics and

Prices, Earnings and Employment Conditions: Average

Weekly Ordinary Time Earnings (AWOTE), Australia,

www.abs.gov.au.

Australian Prudential Regulation Authority (APRA), Pru-

dential Standard GPS 310, July 2010, “Audit and Ac-

tuarial Reporting and Valuation,” http://www.apra.gov.

au/Policy/upload/GPS-310-final-June-2010.pdf.

Australian Prudential Regulation Authority (APRA), Select-

ed Statistics on the General Insurance Industry, www.apra.

gov.au.

Buchanan, R., “Valuations under the Insurance Act–Tech-

nical Guidance Notes,” Australian Actuarial Journal 8,

2002, pp. 365—396.

Cantin, C., and P. Trahan, “Study Note on Actuarial Evalu-

ation of Premium Liabilities,” Casualty Actuarial Society

Forum, Fall 1999, pp. 21—83, http://www.casact.org/pubs/

forum/99fforum/99ff021.pdf.

Clark, P. K., P. H. Hinton, E. J. Nicholson, L. Storey, G. G.

Wells, and M. G. White, “The Implication of Fair Value

Accounting for General Insurance Companies,” British

Actuarial Journal 9, 2003, pp. 1007—1059.

Collins, E., and S. Hu, “Practical Considerations in Valuing

Premium Liabilities,” Institute of Actuaries of Australia

14th General Insurance Seminar, Sydney, Australia, 2003.

Hart, D. G., R. A. Buchanan, and B. A. Howe, The Actuarial

Practice of General Insurance, Sydney, Australia: Institute

of Actuaries of Australia, 1996.

Mack, T., “Distribution-free Calculation of the Standard Er-

ror of Chain Ladder Reserve Estimates,” ASTIN Bulletin

23, 1993, pp. 213—225.

Mack, T., “Measuring the Variability of Chain Ladder Re-

serve Estimates,” Casualty Actuarial Society Forum,

Spring 1994, pp. 101—182, http://www.casact.org/pubs/

forum/94spforum/94spf101.pdf.

Schnieper, R., “Separating True IBNR and IBNER Claims,”

ASTIN Bulletin 21, 1991, pp. 111—127.

Taylor, G. C., Loss Reserving–an Actuarial Perspective,

Boston: Kluwer Academic Publishers, 2000.

Yan, M., “Premium Liabilities,” Institute of Actuaries of Aus-

tralia 15th General Insurance Seminar, Sydney, Australia,

2005.

VOLUME 4/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 169




