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ABSTRACT

We model a claims process as a random time to occurrence
followed by a random time to a single payment. Since ac-
cident year payout data available is aggregated by develop-
ment year rather than by payment lag, we calculate those
probabilities and parameterize the payout lag time distri-
bution to maximize the fit to data. General formulae are
given for any distribution, but we use a piecewise linear
continuous distribution.
The companion spreadsheets show the process. It is

sometimes found useful to compromise the quality of the
fit to improve believability of the payout distribution. A
simulation check and example are provided.
As a result, uncertain data can be effectively smoothed

and partial accident year data consistently used.
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1. Introduction

We want to consider the model of a claim with
a random occurrence time followed by one pay-
ment after a random lag time. Our interest is
in creating the distribution of payment lag time
from occurrence. This distribution could best be
estimated by having actual lag data for individ-
ual claims and then performing maximum likeli-
hood estimation procedures on various distribu-
tions. However, actuaries typically do not have
such data. Usually they have dollars or counts in
the form of accident year by development year
or by quarter, and sometimes policy year by de-
velopment year. The payout information comes
from estimating fractions of ultimate by devel-
opment lag from the triangles of data and in-
terpreting them as the probabilities of a cumu-
lative distribution function. The aggregation of
payment data is on the combined occurrence-
payment process, which adds the two random
times of occurrence and lag-to-payment to get
the payout time.
The usual actuarial model of the claims pro-

cess is that claims happen in the middle of the
year and that payment activity happens only on
anniversary dates of the claim; that is, immedi-
ately, exactly one year later, exactly two years
later, and so on. The virtue of this model of the
payout lag time distribution is that accident year
by development year payout patterns are easy
to fit. The payout density consists of a series
of point masses on the anniversary dates, with
the probabilities given directly by the aggregated
data. Further, unless there are time-sensitive fea-
tures in the problem, this may be adequate.
In this paper both the accident date and the

lag to payment are modeled as continuous vari-
ables. One resulting advantage is that, given
the payout lag distribution, we can work with
partial years1 or switch to accident year by
development quarter, or even accident year by

1See Section A.5 for an example.

development month if desired. It provides a nat-
ural way of interpolating empirical payouts and
hence development factors. This representation
allows one to use partial years of data at ei-
ther end or even work with time periods of vari-
able length. The technique also gives a consistent
smoothing technique for payouts.
Section 2 develops the underlying formulas for

arbitrary distribution density functions. Section
3 specializes to the particular class of distribu-
tions which are piecewise linear and continuous
with a possible mass point at the origin. Details
of much of the mathematics are relegated to the
appendices.
Section 4 discusses the use of the formulas and

the possible desirability of smoothing. The pay-
out lag time distribution represents the combined
activity of the claims departments, claimants, and
sometimes courts. Our preference for the payout
lag time density is a smooth curve with no zero
values before the final tail.
Section 5 discusses how the companion

spreadsheets are set up and how to use them. An
example is given which uses excess layer Med-
ical Malpractice (Med-Mal) data to illustrate the
notions.

2. Probabilities and payouts

We denote by f(t) the probability density func-
tion for the lag time t of a payment for a claim
occurring at time zero. We have the natural con-
dition that f(t) = 0 for t < 0 (a claim is not usu-
ally paid before it occurs). Here, we assume that
the density function for individual claim payment
depends only on the time difference between oc-
currence and payment.2

We denote the probability density function for
occurrence at time t by occ(t). The occurrence
distribution is assumed uniform but the equations

2In principle we could incorporate calendar time as well, if there
are effects such as an increased number of claims paid just before
or after quarter-end.
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could be modified to accommodate seasonality.3

Then the density for payment at time t is the
convolution4 of these two densities:

p(t) =
Z t

¡1
occ(x)f(t¡ x)dx: (2.1)

Intuitively, this is the probability of an occur-
rence at time x multiplied by the probability of
a payment at time t (lag of t¡ x), summed over
available occurrence times. The probability of a
payment between times a and b is

P(a,b) =
Z b

a
p(t)dt

=
Z b

a

½Z t

¡1
occ(x)f(t¡ x)dx

¾
dt

=
Z 1

0

(Z b

a
occ(t¡ z)dt

)
f(z)dz:

(2.2)

We may now frame the problem as follows:
we have developed the probabilities of payment
in various intervals (and ideally also their un-
certainties5) from some empirical payout pattern.
We want to find a density function which is ev-
erywhere non-negative and closely gives the em-
pirical payout pattern probabilities. We will sup-
plement this in Section 4 by requiring that the
density function also be reasonably believable.
We want the count payout pattern, but often

have only a dollar payout pattern. If severities
do not change over time then this is also the
count payout pattern. However, it is often felt
that larger claims close later, and in such a case
we would have to find some way to approximate
the count pattern. It may also be that the data is
sufficiently noisy that it does not matter.

3The housekeeping would get messy with such modifications be-
cause there would be many points in the year to consider rather
than just the endpoints.
4See any book on probability theory, for instance An Introduction
to Probability Theory and Its Applications by William Feller.
5At the least, if the probabilities result from averaging over accident
years we would want to know the associated standard deviations.
The spreadsheet is set up to use relative uncertainties.

For accident-year data we take a uniform oc-
currence distribution between times 0 and 1. In
Appendix A.2 the probability of seeing a pay-
ment in development year6 n= 0,1, : : : is derived.
Note that development year n begins at time n
and ends at time n+1.

P(n) =
Z n

n¡1
(1+ z¡ n)f(z)dz

+
Z n+1

n
(n+1¡ z)f(z)dz: (2.3)

The first term is, of course, missing7 for n= 0.
The two terms represent the probabilities for a
payment in calendar year n to come from payout
year n¡ 1 or payout year n.
An alternative form of Equation (2.3) can be

stated by using the cumulative distribution func-
tion (cdf)

F(x)´
Z x

0
f(z)dz (2.4)

and the first moment cumulative distribution
function

F1(x)´
Z x

0
zf(z)dz: (2.5)

We define the increments

¢(n)´ F(n+1)¡F(n), and (2.6)

¢1(n)´ F1(n+1)¡F1(n): (2.7)

We can also recognize that because of the gen-
eralized mean value theorem there is a quantity
μn such that 0< μn < 1 and

¢1(n) = (n+ μn)¢(n): (2.8)

The specific form of μn will depend on the un-
derlying density, of course. In Equation (A.16),
Appendix A.2 we derive the concise result

P(n) = (1¡ μn)¢(n) + μn¡1¢(n¡ 1): (2.9)

6Partial years or nonyearly intervals sometimes occur in real data;
the general Equation (A.10) in the Appendix relates to the proba-
bilities for any interval. See Section A.5 for an example.
7Formally, the first term does not contribute, since f(z) = 0 for
negative time to payment.
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The equivalent and more directly usable form us-
ing cdf increments is

P(n) = (n+1)¢(n)¡ (n¡ 1)¢(n¡ 1)¡¢1(n)
+¢1(n¡ 1) (2.10)

for n¸ 1 and

P(0) =¢(0)¡¢1(0): (2.11)

As an example, if the density is exponential
f(t) = e¡t=¿ =¿ with mean time ¿ > 0 then

F(n) =
Z n

0
e¡z=¿ =¿ dz = 1¡ e¡n=¿

¢(n) = e¡n=¿ (1¡ e¡1=¿ )

F1(n) = ¿[1¡ e¡n=¿ (1+ n=¿)] and

¢1(n) = e
¡n=¿ [(¿ + n)(1¡ e¡1=¿ )¡ e¡1=¿ ]:

For n¸ 1, P(0) = 1¡ ¿ (1¡ e¡1=¿ ) and P(n)
= ¿e¡(n¡1)=¿ (1¡ e¡1=¿ )2. Note that μn = ¿¡
(e1=¿ ¡ 1)¡1 is independent of n and 0< μn <

1=2, which satisfies the general requirement
0< μn < 1.
For accident-year data by development quar-

ter, we change the meaning of the index n to
refer to quarters. The occurrence distribution is
uniform over n= 0, 1, 2, and 3 and a claim has
probability 1/4 to be in any one of them. Let Q(n)
be the probability for payment from an accident
quarter in its development quarter n, conditional
upon occurrence in that accident quarter. It
will have the formulas of Equations (2.9) and
(2.10). Let P(n) be the summed accident year
by development quarter incremental probabil-
ity. Then from Equation (A.21) in Appendix
A.3 or just building up the accident year from
quarters,

PQ(n) =
nX

k=max(n¡3,0)
Q(k)=4: (2.12)

The factor 1/4 for each quarter comes from the
accident-year occurrence density, as in Equation
(A.20).

For policy year by development year, there is
an additional step in the process. The policies are
written over a year, and we will assume uniform
writings, although again it is certainly possible
to put in seasonal or other nonuniform behavior.
After a policy is written, there is the distribu-
tion over time for a claim to happen up to a year
later, which again we take to be uniform. The re-
sulting claim occurrence density function is tri-
angular and extends over two years in Equation
(2.2). From Equation (A.25) in Appendix A.4,
the probability of a payment in development year
n is

PPY(n) =
1
2

Z n+1

n

[(n+1)2¡ 2(n+1)z+ z2]f(z)dz

+
Z n

n¡1
[1=2¡ n(n¡ 1)+ (2n¡ 1)z¡ z2]f(z)dz

+
1
2

Z n¡1

n¡2
[(n¡ 2)2¡2(n¡ 2)z+ z2]f(z)dz:

(2.13)

For n= 0 only the first term is present, and for
n= 1 only the first two. We will again express
this in terms of the cumulative distribution func-
tions, and because there is a quadratic term we
will also need the differences of the second mo-
ment function:

F2(x)´
Z x

0
z2f(z)dz (2.14)

¢2(n)´ F2(n+1)¡F2(n)´
Z n+1

n
z2f(z)dz

´ (n2 +Án)¢(n): (2.15)

The last equality defines Án. Because of the mean
value theorem, 0< Án < 2n+1 for any distribu-
tion. Then we may write

PPY(n) = [1=2¡ (n+1)μn+(1=2)Án]¢(n)

+ [1=2+ (2n¡ 1)μn¡1¡Án¡1]¢(n¡ 1)

+ [¡(n¡ 2)μn¡2 + (1=2)Án¡2]¢(n¡ 2)
(2.16)

212 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 2



Parameterizing Payout Lag Time Distributions

or the more directly useful form

PPY(n) =
1
2 [(n+1)

2¢(n)¡ 2(n+1)¢1(n) +¢2(n)]

+ f[1=2¡ n(n¡ 1)]¢(n¡ 1)
+ (2n¡ 1)¢1(n¡ 1)¡¢2(n¡1)g

+ 1
2[(n¡ 2)2¢(n¡ 2)¡ 2(n¡2)¢1(n¡2)
+¢2(n¡ 2)] (2.17)

with

PPY(0) = (1=2)[¢(0)¡ 2¢1(0)+¢2(0)]

PPY(1) = [2¢(1)¡ 2¢1(1)+ (1=2)¢2(1)]
+ [(1=2)¢(0)+¢1(0)¡¢2(0)]:

(2.18)

3. A specific distribution

We will work in the context of the accident-
year-by-development-year problem, but the ex-
tensions to the other cases are straightforward.
The immediate question is how to get the pay-
out lag time distribution given a payout pattern.
We will pick a parameterized form of the density
function and use it to develop formulas for the
probabilities. There are, of course, many possible
forms and the reader is certainly invited to cre-
ate the probabilities of Equation (2.3) from her
favorite form.
We will focus on a mixed distribution which

has a possible positive probability at zero and a
continuous distribution on positive time. A piece-
wise linear density function specifies values at
the integer8 times and is linear between them.
Mathematically, the form is

f(t) = P0±(t)+
NX
n=0

I[n,n+1](t)

£ [(n+1¡ t)fn+(t¡ n)fn+1]: (3.1)
We have switched from x to t as a variable to
remind us that this is the time from occurrence

8If the data came in noninteger intervals, we would adjust the den-
sity intervals.

to payout. The value P0 is the amount of prob-
ability9 at t = 0 and is subject to the constraint
0· P0 · 1. It is meant to represent the probabil-
ity of payout immediately after occurrence. The
values fn are the values of the density function at
times t = n. The interval function I[n,n+1](t) is 1
in the interval n· t · n+1 and zero otherwise.
The density function in that nonzero range has
the value

(n+1¡ t)fn+(t¡ n)fn+1 (3.2)

which yields the straight line from fn at t = n
to fn+1 at t = n+1. In order to be a probabil-
ity density, we must have fn ¸ 0 for all n. Since
our data is always bounded in time, we have
specified N +1 intervals and we take fn = 0 for
n >=N +1. However, if the reader knows of a
good form for the tail she is encouraged to use
it. For some patterns such as workers comp the
distribution density almost certainly should be
nonzero, well past any data we actually have.
Appendix B derives the results of the rest of

this section. The differences of the cdf are

¢(n) =
fn+fn+1

2
for n > 0 and

¢(0) =
f0 +f1
2

+P0:
(3.3)

The cdf starts with P0 and is quadratic in each
interval. If K is the integer part of t and z is the
fractional part of t so that t =K + z and 0· z < 1,
then

F(t) = P0 +
K¡1X
n=0

fn+fn+1
2

+
z

2
[(2¡ z)fK + zfK+1]:

(3.4)

If K = 0 the sum does not contribute. There is a
constraint on the fn in that the total probability
must be 1:

1 = F(N +1) = P0 +
f0
2
+

NX
n=1

fn: (3.5)

9The delta function integrates to 1 and is zero for nonzero argu-
ment. In this context, it is basically symbolic in that the term only
exists at t = 0.
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The accident-year-by-development-year prob-
abilities of Equation (2.9) for n > 0 are

P(n) =
fn¡1 +4fn+fn+1

6
: (3.6)

There are some special cases at both ends of the
distributions:

P(0) = P0 +
2f0 +f1
6

P(N) =
fN¡1 +4fN

6

P(N +1) =
fN
6

P(n > N +1) = 0:

(3.7)

The accident-year-by-development-quarter
probabilities from Equation (2.12) are generally

PQ(n) =
fn¡4 +5fn¡3 +6fn¡2 +6fn¡1 +5fn+fn+1

24
:

(3.8)

The special cases at the start are from Equation
(A.21),

PQ(0) = Pr0+
2f0+f1
24

PQ(1) = Pr0+
3f0+5f1+f2

24

PQ(2) = Pr0+
3f0+6f1+5f2+f3

24

PQ(3) = Pr0+
3f0+6f1+6f2+5f3+f4

24 ,

(3.9)

and the special cases at the end are

PQ(N) =
fN¡4 +5fN¡3 +6fN¡2 +6fN¡1 +5fN

24

PQ(N +1) =
fN¡3 +5fN¡2 +6fN¡1 +6fN

24

PQ(N +2) =
fN¡2 +5fN¡1 +6fN

24
(3.10)

PQ(N +3) =
fN¡1 +5fN

24

PQ(N +4) =
fN
24

PQ(n) = 0 for n > N +4:

In practice it is easier just to use Equation (2.12)
for the accident year as a sum of quarters.

The policy-year-by-development-year proba-
bilities of Equation (2.16) are

PPY(n) =
1
24(fn¡2 +8fn¡1 +14fn+fn+1):

(3.11)

The special cases are similarly at the ends

PPY(0) =
Pr0
2
+
3f0 +f1
24

PPY(1) =
Pr0
2
+
8f0 +11f1 +f2

24

(3.12)

and

PPY(N) =
fN¡2 +8fN¡1 +14fN

24

PPY(N +1) =
fN¡1 +8fN

24

PPY(N +2) =
fN
24

PPY(n) = 0 for n > N +2:

(3.13)

4. Believability and smoothing

It is a fair question to ask why we have both-
ered with creating a continuous distribution for
payout times. As mentioned in the introduction,
the implicit accident-year-by-development-year
payout distribution which is widely used is one
where the density is nonzero only at a discrete
set of points on the lag time axis. The virtue of
this distribution is that it is easy to parameterize.
If the payout pattern indicates X% of the claims
are paid in year n, then we put a X% probability
at t = n.
This discrete distribution requires that once a

claim occurs, it either is paid immediately or
is paid exactly on one of its anniversary dates.
While special circumstances may suggest that
some claim payments may cluster around an-
niversary dates, in general it not believable that
claims never have payments at times other than
anniversary dates.
The problem noted with this discrete distribu-

tion is twofold: its density has zero values almost
everywhere, and it is not smooth. One expects
the density to be smooth, however, because of
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the complexity of the process that actually pro-
duces a payment. We do not expect that there
will be lag times with no probability of payment
before the end of the tail.
We are trying to create a distribution over pay-

ment lag time that more closely reflects real-
ity. We do not know exactly what this distri-
bution should look like for any given line of
business. The distribution could have a proba-
bility of (almost) immediate payment. The den-
sity should ultimately fall to zero. For some di-
rect lines such as personal insurance, we might
expect the density to decrease monotonically to
zero. Alternatively, it may have a peak a few
years out. For excess lines and reinsurance per-
haps the density should rise from zero. There is
some suggestion that workers comp claims may
be bimodal because of short- and long-term care.
Also, there may be enough of a distinction in
some lines of business between claims that go to
court and those that do not to create more than
one peak.
In all cases, we do not expect there to be re-

gions of zero probability before the final tailing
out and we do expect the density to be smooth–
the failure of both these requirements is what we
find unreal about the discrete distribution.
What prejudgment on the density may or not

be applied to results from available data is clearly
a matter for the judgment of the actuary in any
particular situation.
There is another reason for considering

smoothing, which has to do with the noise in
any data. Looking at the accident-year relations
Equations (3.6) and (3.7), it would seem that for
a finite amount of data we should just solve the
equations. We certainly could. After all, we have
N +2 probabilities P(0) to P(N +1) and we have
N +2 parameters in P0 and f0 to fN . It is even a
set of linear equations, and we can begin at the
high end and work recursively backwards. This
sounds good until it comes up against actual data.
While it is true that mathematically the equations

can be easily solved, what cannot be guaranteed
is that all the parameters thus produced from real
data10 are positive. If they aren’t, then we do not
have an actual density function and we have to
try something different.
Note that negative parameters in the density

have nothing to do with negative payments; we
are talking about the probabilities of having a
payment and not about the payment size. If one
has a line with considerable salvage and subro-
gation at the end of the payment pattern, it may
be worthwhile to have the severity change sign
at some point in time or create two densities, one
for the positive payments and one for the nega-
tive. If the data are separate, just model sal-sub
separately from the outgoing payments.
What can create negative parameters? Having

data from not very many claims in the payout
triangles; using average11 payout values and not
recognizing the uncertainty associated with them;
not really having a line of business where the
payout pattern can be reasonably represented by
only a single payment; having noise in the data
from miscoding or other sources; any combina-
tion of the above; or something else. We do not
expect to get negative parameters for payout pat-
terns created by many claims in straightforward
lines of business, but we want a procedure which
will always work.
So what can we do? We can recognize that

the data always has noise in it, and that a perfect
fit may not even be desirable. Outliers do hap-
pen. We can pick some measure of fit–we used
variance-weighted least squares error–and min-
imize the differences between the data and the
predicted probabilities using normalized positive
parameters. In other words, we can insist on a
proper density function and see how close we can
get. In the cases where we could solve the equa-
tions and get positive parameters, we will get the

10The author’s experience with high excess layers may have fos-
tered prejudiced views on the consistency of actual data.
11Over accident years.
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solution and in every case we have something
physically consistent.12

Experimentation with the spreadsheet tools has
indicated that it is typically possible to get a
pretty good fit, even to very irregular data. How-
ever, the cost to the best fit may be that the den-
sity function has violent swings in it, and possi-
bly be zero over some periods. Neither of these
properties is desirable, and we would like to have
a way to ameliorate them.
The spreadsheets have as an input the weight

to be given to having a smooth result. As this
weight is increased from zero, the payout density
function gets smoother–here meaning smaller
changes in the slopes from segment to segment.
However, the fit gets worse. The question of how
much weight to give to the smoothing to get a
more believable density function is purely sub-
jective, and depends in part on how bad it is to
be away from the exact values of the data points.
If the data points have substantial intrinsic uncer-
tainty, then considerable smoothing of the den-
sity may be possible with very little statistical
loss of fit even though the predicted curve moves
substantially.
It should be said that if smoothing is used, the

density parameters will depend on the smooth-
ness measure as well as on the degree to which
the smoothness is imposed. The measure of
smoothness used here, which seems to work well,
is the sum of the squares of the differences of
the slopes at each interior point in the distribu-
tion. This measure is zero when the density is a
straight line and responds strongly to “W” shapes
in the density. The reader is of course invited to
use any smoothing measure that seems appropri-
ate or none at all if it is not needed.
Since the predicted curve is derived from us-

ing a valid density, it smoothes–“graduates” in
older terminology–the data in a consistent fash-
ion. Frequently smoothing of the data is desirable

12That is, no negative probabilities.

in the first place and was often done on an ad hoc
basis.
There is one further consideration. After do-

ing the smoothing or not, the analyst may recog-
nize the shape of the density function as being
essentially gamma or Pareto or something simi-
lar. If so, it is generally preferable to work with
fewer rather than more parameters and it would
be good to go back and recalculate the proba-
bilities in the intervals on the basis of the new
form of the density. These calculations are easily
done in terms of the cdf and first moment cdf
differences with Equation (2.10).

5. Spreadsheet tools

We will work with “AY Payout Density.xls” as
the exemplar, since the accident quarter and pol-
icy year are similar except for the detailed for-
mulas in the probabilities. These differ in that for
“AY Payout Density.xls” we use Equations (3.6)
and (3.7), while for “AQ Payout Density.xls” we
incorporate accident-quarter data via Equation
(2.12). This is equivalent to using Equations (3.8)
to (3.10) but is perhaps easier to understand. For
“PY Payout Density.xls” we use Equations (3.11)
to (3.13).
The sheet labeled “accident-year data” has its

inputs in light blue. There is an input for the pay-
out pattern, its name, and the relative uncertainty
of the payouts. The fundamental measure of fit
is the square of the difference between the fitted
values and the data divided by the square of the
uncertainty, and summed over all the data points.
There is also an input for the weight to give to
smoothing. At first, leave it at zero.
We begin by entering data. The data below

is from some excess Med-Mal reinsurance con-
tracts, but the uncertainties are estimated. Note
that we have put in a relatively larger uncer-
tainty for the earlier values.13 The button “Guess
Start Values” puts half of the first data value

13This could be the standard deviation of the values used to get the
average payout. Here, we had to make it up.
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Figure 1. Data with “Guess Start Values” applied to the density

(at n= 0) into the probability at zero, and puts
the probabilities at each n as the estimate for
fn. In the other spreadsheets there are modifica-
tions from these formulas made to the first few
cells.
After clicking on “Guess Start Values” the data

sheet “accident year data” looks in part as in
Figure 1.
The graph sheet “AY probabilities” then shows

Figure 2.
The graph’s horizontal axis has two meanings:

for the data and the fit, it is the development
period. For the density function, it is the lag
from occurrence. At the guessed startup values
the density function will follow the payout pat-
tern and add a point mass at zero. The fit here is
already not too bad.
The next step is to run Excel Solver by click-

ing on “Solve.” This will vary all the density

parameters to try to improve the fit. On the
spreadsheet, the solver variables are allowed
to vary freely, with the positivity constraints
being imposed by formula rather in Solver itself.
After Solver stops, the graph sheet shows Fig-
ure 3.
We can see from the error statistics that the

fit is better. The root mean square error has de-
creased from 0.26% to 0.01% and the maximum
absolute error has decreased from 0.76% to
0.05%. One could simply stop here and declare
oneself satisfied. The data sheet now shows as in
Figure 4.
Some notes for the data sheet: the input ranges

can be extended by inserting rows between the
two sets of double red lines14 and copying for-

14The second, bottom, set of double red lines is after lag 38 and
not shown in this picture.
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Figure 2. Accident Year probabilities with guessed start values

Figure 3. Accident year probabilities with best solution
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Figure 4. Data sheet with best solution

mulas down. This insures that the special con-
ditions at both ends are met and all the named
ranges retain their integrity. There are several
convenience buttons: “Zero the Input” clears out
old input; “Normalize the Input” multiplies it all
by a factor to make its sum one; and “Guess Start
Values” will usually give a reasonable place to
begin the minimizations. As used above, “Solve”
will run Excel Solver15 to minimize the crite-
rion of fit. The cells in pink, also commented
as “solver variable” are parameters changed by
Solver.
The column “normalized value at endpoints” is

directly the fn of this paper. The column “Prob-
ability from fit” is our P(n). The columns la-
beled “Payout CDF” are the cdf values of the

15Sometimes Solver will, on the author’s machine, give an error
message. In that case, running the solver once by hand from the
menu rather than by the macro from the button seems to fix the
problem.

payout density and the corresponding lag time
values. If we were working with noninteger time
values, then this is where we would make the
change, and consequently also on the sheet “CDF
draw” to be discussed later. The data sheet gives
the minimization function value, the root mean
square (RMS) error, and the maximum absolute
error for the fit. The latter two are also shown on
the graph sheet.
The decision function minimized is the stan-

dard weighted least squares function plus a user-
specified weight times the sum of the column la-
beled “square second.” As mentioned in the last
section, each cell in that column is proportional
to the square of the difference in slopes of the
density at that point (which would be the second
derivative), and has value zero if the density is
a straight line. The effect of giving more weight
to this column is to smooth out the density with
most emphasis on the largest changes in slope.
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Figure 5. AY probabilities with smoothing 0.001

The recommended use is to start with zero
smoothing weight and observe the graph sheet.
As you gradually increase the weight the den-
sity will become more and more smooth and the
fit will worsen. In Figure 3, we might not like
the shoulder between lags 2 and 4 and the very
high value at lag 5, preferring a smoother vari-
ation of the underlying payout density. This is
entirely a matter of actuarial judgment. With a
smoothing value of 0.001, the graph sheet be-
comes as shown in Figure 5. The fit is not par-
ticularly worse, and the payout density is much
more reasonable to the author’s perspective. It
still has a very sharp peak at lag 5 and a wiggle
at lags 12 and 13.
If we push the smoothing up to 0.05, we get

Figure 6. Whether this fit is unacceptably bad de-
pends on what we think the uncertainties are on
the data, and especially in this case on how much
we really believe the spike in the data at lag 5.
This parameterization certainly does smooth out
the payout lag time density function. The sugges-
tion is to find a compromise that you can believe.

A word of caution: Solver will sometimes hang
up in less than optimal solutions. The author’s
recommendation is always to start with the
“Guess Start Values” and put in the smoothing
weight, and then “Solve.”
In the spreadsheet “AY by Q payout density.

xls” the same accident-year data is used, while
pretending that it is quarterly data instead. The
best fit shows up as in Figure 7. This is a clear
candidate for smoothing. A weight of 0.1 gives
Figure 8. This still has zero probability values,
so we try a weight of 1, yielding Figure 9. Since
the data is unreal, it is perhaps not surprising that
much smoothing was required.
Finally, as a check on what the selected cdf for

the payout will produce in simulation probabil-
ities, the sheet “CDF draw” uses the cdf on the
data sheet and the Equations (B.21) and (B.24)
to illustrate how the random draws generate ab-
solute time values for payouts. This sheet shows
exactly how this payout is simulated in a timeline
formulation. There is a random draw for the time
of occurrence, and then another random draw
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Figure 6. AY probabilities with smoothing 0.05

Figure 7. AY by Q probabilities for best fit
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Figure 8. AY by Q probabilities with smoothing 0.1

Figure 9. AY by Q probabilities with smoothing 1.0
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Figure 10. Simulation of a single claim

from the cdf for the lag time from occurrence
to payment. These two random times are added
together, and then the integer part of their sum
is the payment period. If you push F9 (Calcu-
late) on this sheet you will see the process. The
calculation part of the sheet looks like Figure 10.
Again, the shaded cells are random uniform vari-
ables from the interval zero to one.
The button “Simulate” on this sheet will erase

current data on the sheet “simulation results” and
create new data for comparing the simulation
with the predicted fit of “Probability from fit.”
This is provided in case one wants to validate
the formulas, and also is a reminder that a finite
number of simulations will usually give a mean
result near but not at the theoretical value.

Appendix A. Mathematical
derivations
A.1. Accident-year probabilities

There are undoubtedly much more concise
derivations of the results presented here. How-
ever, we have used the same methodology ev-
erywhere in this appendix and have written this
version out in detail so that the reader will hope-
fully be able to follow the steps easily.
To aid in deriving Equation (2.3) from a uni-

form occurrence distribution and Equation (2.2),
we first define the index function and list some
of its properties:

£(x) =

(
1 for x > 0

0 for x < 0

)
: (A.1)

This is the unit step function at zero. A useful and
intuitive way to read a factor of £(x¡ a) is to say

that “x must be greater than a.” This function has
some obvious properties (up to a set of measure
zero):

£(x) = 1¡£(¡x): (A.2)

If x is greater than a and x is greater than b, then
x is greater than the larger of the two. If a is
greater than b, then x is greater than a, but if b
is greater than a, then x is greater than b. Thus

£(x¡ a)£(x¡ b)

=£(x¡max[a,b])

=£(x¡ a)£(a¡ b)+£(x¡ b)£(b¡ a):
(A.3)

Similarly, for “less than” relationships,

£(a¡ x)£(b¡ x) =£(min[a,b]¡ x)

=£(a¡ x)£(b¡ a)

+£(b¡ x)£(a¡ b) (A.4)

£(x¡ a)£(a¡ x) = 0 (A.5)

£(x¡ a)£(b¡ x) =£(x¡ a)£(b¡ x)£(b¡ a):
(A.6)

Equation (A.3) and (A.4) will be particularly use-
ful later on in formal manipulation of integrals.
In fact, it is often helpful to make all integra-
tion limits infinite and put the finite limits into
indicator functions. For example,

R1
a f(x)dx=R1

¡1£(x¡ a)f(x)dx.
We can now state the uniform occurrence time

density, which is 1 in the interval 0 · t · 1 and
zero elsewhere, as

occ(t) =£(t)£(1¡ t): (A.7)
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A change of variable gives occ(t¡ z) =£(t¡ z)
¢£(1¡ t+ z), to be used immediately.
For the accident-year case with b > a using

Equation (2.2) the probability for a payment in
the interval can be developed. First we state the
probability with the index functions:

P(a,b) =
Z b

a

½Z 1

0
£(t¡ z)£(1¡ t+ z)f(z)dz

¾
dt

=
Z 1

0

(Z b

a
£(t¡ z)£(1¡ t+ z)dt

)
f(z)dz

=
Z 1

0

½Z 1

¡1
£(t¡ a)£(b¡ t)£(t¡ z)

¤£(1+ z¡ t)dt
¾
f(z)dz: (A.8)

Then we use Equation (A.3) on £(t¡ a)£(t¡ z)
and Equation (A.4) on the other pair:

P(a,b) =
Z 1

0

Z 1

¡1

(
[£(t¡ a)£(a¡ z)+£(t¡ z)£(z¡ a)]

¤[£(b¡ t)£(1+ z¡ b)+£(1+ z¡ t)£(b¡ 1¡ z)]

)
dtf(z)dz

=
Z 1

0

Z 1

¡1

8>>>>><>>>>>:

£(t¡ a)£(a¡ z)£(b¡ t)£(1+ z¡ b)
+£(t¡ a)£(a¡ z)£(1+ z¡ t)£(b¡ 1¡ z)
+£(t¡ z)£(z¡ a)£(b¡ t)£(1+ z¡ b)

+£(t¡ z)£(z¡ a)£(1+ z¡ t)£(b¡ 1¡ z)

9>>>>>=>>>>>;
dtf(z)dz: (A.9)

Finally, integrating out t gives

P(a,b)

=

Z 1

0

8>>>><>>>>:

(b¡ a)£(a¡ z)£(1+ z¡ b)

+(1+ z¡ a)£(1+ z¡ a)£(a¡ z)£(b¡ 1¡ z)

+(b¡ z)£(b¡ z)£(z¡ a)£(1+ z¡ b)

+£(z¡ a)£(b¡ 1¡ z)

9>>>>=>>>>;
f(z)dz

(A.10)

This is the form that can be used for nonintegral
or varying-sized time periods. See Section A.5
for an example where the last period is in-
complete. In fact, we can use it for any set of
time intervals over which the data happen to be
stated.

A.2. Accident year by development year

Here a= n and b = n+1 so the probability of
payment in lag n¸ 1 is

P(n) =

Z 1

0

8>>>><>>>>:
£(n¡ z)£(z¡ n)

+(1+ z¡ n)£(1+ z¡ n)£(n¡ z)£(n¡ z)

+(n+1¡ z)£(n+1¡ z)£(z¡ n)£(z¡ n)

+£(z¡ n)£(n¡ z)

9>>>>=>>>>;
f(z)dz

=

Z 1

0

½
(1+ z¡ n)£(1+ z¡ n)£(n¡ z)

+(n+1¡ z)£(n+1¡ z)£(z¡ n)

¾
f(z)dz:

(A.11)

The first and last terms are zero because of Equa-
tion (A.5). Finally,

P(n) =
Z n

n¡1
(1+ z¡ n)f(z)dz

+
Z n+1

n
(n+1¡ z)f(z)dz: (A.12)

This is Equation (2.3). For the first lag, n= 0,
only the second term contributes:

P(0) =
Z 1

0
(1¡ z)f(z)dz: (A.13)

We can get an intuition for Equation (A.11) by
looking at the second line of Equation (A.8) and
realizing that we want to integrate t over the in-
tersection of the intervals n· t · n+1 and z ·
t · z+1. The four cases z > n+1, n < z < n+1,
n¡ 1< z < n, and z < n¡ 1 are the four terms
in Equation (A.11). The first and last contribute
zero, because the intersection does not exist. In
the more general Equation (A.10) we have the
same four terms.
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In order to formulate in terms of the cumula-
tive distribution functions F(x)´ R x0 f(z)dz and
F1(x)´

R x
0 zf(z)dz, we repeat the definitions in

Equations (2.6) to (2.8):

¢(n)´ F(n+1)¡F(n): (A.14)

¢1(n)´ F1(n+1)¡F1(n)´ (n+ μn)¢(n):

(A.15)

We can restate Equation (A.12) for n¸ 1 as
P(n) = (1¡ n)[F(n)¡F(n¡ 1)]+ [F1(n)¡F1(n¡ 1)]

+ (n+1)[F(n+1)¡F(n)]¡ [F1(n+1)¡F1(n)]

= (1¡ n)¢(n¡ 1)+¢1(n¡ 1)+ (n+1)¢(n)¡¢1(n):

(A.16)

This is Equation (2.10). This can also be written

P(n) = (1¡ n)¢(n¡ 1)+ (n¡ 1+ μn¡1)¢(n¡ 1)
+ (n+1)¢(n)¡ (n+ μn)¢(n)

= μn¡1¢(n¡ 1)+ (1¡ μn)¢(n): (A.17)

This is Equation (2.9). When n= 0,

P(0) = F(1)¡F1(1) =¢(0)¡ μ0¢(0)

= (1¡ μ0)¢(0): (A.18)

A.3. Accident year by development
quarter

The index is now taken to mean the quarter.
The accident-year occurrence density is uniform
in the range 0· t· 4 and must integrate to 1, so
we have

occ(t) = (1=4)£(t)£(4¡ t)

= (1=4)
3X
n=0

£(t¡ n)£(n+1¡ t):

(A.19)

The second form simply expresses that the acci-
dent year is a sum of four accident quarters. Let
Q(n) be the probability for payment in a quarter
by one accident quarter. The formulas are either
of Equations (A.12) or (A.16). Let PQ(n) be the
summed accident year by development quarter

incremental probability. Then, using the second
form of Equation (A.19), we see that we have
Equation (2.12):

PQ(n) =
nX

k=max(n¡3,0)
Q(k)=4: (A.20)

Another way of writing this is to show the first
three explicitly, which also shows the growth of
the accident year:

PQ(0) =Q(0)=4

PQ(1) = (Q(0)+Q(1))=4

PQ(2) = (Q(0)+Q(1)+Q(2))=4

PQ(n¸ 3) =
nX

k=n¡3
Q(k)=4:

(A.21)

A.4. Policy year by development year

In order to get the probability of claim occur-
rence as a function of time, we need to specify
how policies are written and how claims occur
for a policy. Let w(t) be the probability density
for writing a policy at time t and h(t) the proba-
bility density for a claim to happen at time t from
the onset of the policy. We explicitly assume that
h(t) does not depend on the policy issuance time.
We also assume that the policies are written uni-
formly in the year, and that the probability of a
claim occurrence is uniform in the policy period.
If other conditions are known, then they can be
incorporated into the convolution. Using Equa-
tions (A.3) and (A.4) produces

occ(t) =

Z t

¡1
w(x)h(t¡ x)dx

=

Z 1

¡1
£(x)£(1¡ x)£(t¡ x)£(x+1¡ t)dx

=

Z 1

¡1

(
[£(x)£(1¡ t) +£(x+1¡ t)£(t¡ 1)]
¤[£(1¡ x)£(t¡ 1)+£(t¡ x)£(1¡ t)]

)
dx

=£(1¡ t)
Z 1

¡1
£(x)£(t¡ x)dx

+£(t¡ 1)
Z 1

¡1
£(1¡ x)£(x+1¡ t)dx

= t£(t)£(1¡ t) + (2¡ t)£(2¡ t)£(t¡ 1): (A.22)
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This result is the familiar triangular exposure
curve rising from zero at t = 0 to 1 at t = 1 and
falling to zero again at t= 2.
The probability for payment at time t between

t = n and t = n+1 is again given by Equation
(2.2).

PPY(n) =

Z 1

0

½Z n+1

n

o(t¡ z)dt
¾
f(z)dz =

Z 1

0

Z 1

¡1
fo(t¡ z)£(t¡ n)£(n+1¡ t)gdtf(z)dz

=

Z 1

0

Z 1

¡1

8>>>>><>>>>>:

(t¡ z)[£(t¡ z)£(z¡ n) +£(t¡ n)£(n¡ z)]
¤[£(n+1¡ t)£(z¡ n) +£(1+ z¡ t)£(n¡ z)]

+(2¡ t+ z)[£(t¡ z¡ 1)£(z+1¡ n) +£(t¡ n)£(n¡ 1¡ z)]
¤[£(n+1¡ t)£(z+1¡ n) +£(2+ z¡ t)£(n¡ 1¡ z)]

9>>>>>=>>>>>;
dtf(z)dz

=

Z 1

0

Z 1

¡1

8>>><>>>:
(t¡ z)

"
£(n+1¡ t)£(t¡ z)£(z¡ n)
+£(1+ z¡ t)£(t¡ n)£(n¡ z)

#

+(2¡ t+ z)
"
£(n+1¡ t)£(t¡ z¡ 1)£(z+1¡ n)
+£(2+ z¡ t)£(t¡ n)£(n¡ 1¡ z)

#
9>>>=>>>;dtf(z)dz

=

Z 1

0

Z 1

¡1
t

8>>>>><>>>>>:

£(n+1¡ z¡ t)£(t)£(z¡ n)
+£(1¡ t)£(t¡ n+ z)£(n¡ z)

+£(t+ n¡ z¡ 1)£(1¡ t)£(z+1¡ n)
+£(t)£(z+2¡ n¡ t)£(n¡ 1¡ z)

9>>>>>=>>>>>;
dtf(z)dz: (A.23)

Integration over t yields the following quadratics:

PPY(n)

=

Z 1

0

8>>>>>>>>>><>>>>>>>>>>:

£(z¡ n)£(n+1¡ z)(n+1¡ z)2=2

+£(n¡ z)£(1¡ n+ z)
·
1¡ (n¡ z)2

2

¸
+£(z+1¡ n)£(n¡ z)

·
1¡ (z+1¡ n)2

2

¸
+£(n¡ 1¡ z)£(2+ z¡ n)

·
(2+ z¡ n)2

2

¸

9>>>>>>>>>>=>>>>>>>>>>;
f(z)dz

=
1
2

Z n+1

n

(n+1¡ z)2f(z)dz+ 1
2

Z n

n¡1
[1¡ (n¡ z)2]f(z)dz

+
1
2

Z n

n¡1
[1¡ (z+1¡ n)2]f(z)dz+ 1

2

Z n¡1

n¡2
(2+ z¡ n)2f(z)dz:

(A.24)

By combining the middle terms we finally have
Equation (2.13):

PPY(n) =
1
2

Z n+1

n

[(n+1)2¡ 2(n+1)z+ z2]f(z)dz

+

Z n

n¡1
[1=2¡ n(n¡ 1)+ (2n¡ 1)z¡ z2]f(z)dz

+
1
2

Z n¡1

n¡2
[(n¡ 2)2¡ 2(n¡ 2)z+ z2]f(z)dz: (A.25)

For n= 0 only the first term is present, and for
n= 1 only the first two.
Alternatively, we can restate the arguments of

the density:

PPY(n) =
1
2

Z 1

0

fx2[f(n+1¡ x) +f(n¡ 2+ x)]

+ (1¡ x2)[f(n¡ x) +f(n¡ 1+ x)]gdx:

(A.26)
Using Equation (A.25),

PPY(n)

= 1
2 [(n+1)

2¢(n)¡ 2(n+1)¢1(n)+¢2(n)]

+ f[1=2¡ n(n¡ 1)]¢(n¡ 1)

+ (2n¡ 1)¢1(n¡ 1)¡¢2(n¡ 1)g

+ 1
2 [(n¡ 2)2¢(n¡ 2)¡ 2(n¡ 2)¢1(n¡ 2)+¢2(n¡ 2)]

(A.27)
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where

¢2(n)´ F2(n+1)¡F2(n)

´
Z n+1

n
z2f(z)dz ´ (n2 +Án)¢(n):

(A.28)

The last form defines Án, and if we use the earlier
mean value variables then

PPY(n) =
1
2 [(n+1)

2¡ 2(n+1)(n+ μn) + (n
2 +Án)]¢(n)

+ f[1=2¡ n(n¡ 1)]+ (2n¡ 1)(n¡ 1+ μn¡1)

¡ ((n¡ 1)2 +Án¡1)g¢(n¡ 1)

+ 1
2 [(n¡ 2)2¡ 2(n¡ 2)(n¡ 2+ μn¡2)

+ ((n¡ 2)2 +Án¡2)]¢(n¡ 2)

= [1=2¡ (n+1)μn+1=2Án]¢(n)

+ [1=2+ (2n¡ 1)μn¡1¡Án¡1]¢(n¡ 1)

+ [¡(n¡ 2)μn¡2 +1=2Án¡2]¢(n¡ 2): (A.29)

This is Equation (2.16).

A.5. Accident year by development year
with partial last year

This is the situation of A.2 when the last year
is incomplete. For example, if we have calendar
data as of June 1 there would only be five months
of data in the last period of every accident year
in a development triangle. A crude adjustment
is to multiply the last numbers by 12/5 but in
general this is not accurate. We shall take the
partial year fraction to be tf with 0< tf < 1 and
we want the probabilities for each of the intervals
n· t · n+ tf for all n. From Equation (A.10), if
n¸ 1

P(n,n+ tf) =
Z 1

0

8>>>>><>>>>>:

tf£(n¡ z)£(1+ z¡ n¡ tf)
+(1+ z¡ n)£(1+ z¡ n)£(n¡ z)£(n+ tf ¡ 1¡ z)
+(n+ tf ¡ z)£(n+ tf ¡ z)£(z¡ n)£(1+ z¡ n¡ tf)

+£(z¡ n)£(n+ tf ¡ 1¡ z)

9>>>>>=>>>>>;
f(z)dz

= tf

Z n

n¡1+tf
f(z)dz+

Z n¡1+tf
n¡1

(1¡ n+ z)f(z)dz+
Z n+tf

n
(n+ tf ¡ z)f(z)dz, (A.30)

and

P(0, tf) =
Z tf

0
(tf ¡ z)f(z)dz: (A.31)

In terms of the cumulative distribution func-
tions, if n¸ 1
P(n,n+ tf)

= tf[F(n)¡F(n¡ 1+ tf)]
+ (n+ tf)[F(n+ tf)¡F(n)]
¡ (n¡ 1)[F(n¡ 1+ tf)¡F(n¡ 1)]
¡ [F1(n+ tf)¡F1(n)]+ [F1(n¡ 1+ tf)¡F1(n¡ 1)]:

(A.32)

Notice that as tf ! 1 we recover the result in
section A.2.

Appendix B. The piecewise linear
continuous distribution

The general form of a piecewise linear con-
tinuous distribution would have an arbitrary set
of locations at which the value of the density
is specified, and between which the density is
linear. There could also be one or more point
masses of probability at selected points. The only
substantial conditions are that it be everywhere
non-negative and that the integral over it is one.
For some problems involving partial years, this
may be a preferable way to state the problem.
The algebra is only a little messier.
Here we will assume complete periods refer-

enced by the integers and a point mass at zero.
We repeat the defining Equation (3.1), translating
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the interval function into the index function

f(t) = P0±(t) +
NX
n=0

£(n+1¡ t)£(t¡ n)

£ [(n+1¡ t)fn+(t¡ n)fn+1]: (B.1)

For t such that n· t· n+1 the density is linear
with value

(n+1¡ t)fn+(t¡ n)fn+1 (B.2)

running from fn at t = n to fn+1 at t = n+1. There
is the additional point mass at t = 0. We typically
will take fN+1 = 0 so that the density drops to
zero in the last interval and is continuous.
In the interest of those who may wish to work

with nonidentical periods, we can assume a set of
times T0,T1,T2, : : : at which we specify the density
values. The density corresponding to Equation
(B.1) is

f(t) = P0±(T0) +
NX
n=0

£(Tn+1¡ t)£(t¡Tn)

£ (Tn+1¡ t)fn+(t¡Tn)fn+1
Tn+1¡Tn

: (B.3)

The usual understanding would be that f(t) = 0
for t < T0. Some of the following case-specific
results still hold, such as Equations (B.4) and
(B.5); others, such as Equation (B.6), need mod-
ification in an obvious fashion where t = TK +
(TK+1¡TK)z. However, the real problem lies in
getting the probabilities for the intervals in the
general case. Specifically, we need terms such
as the integral from Tn¡ 1 (because we integrate
over a year) to Tn and there can be arbitrarily
many time points Tm in this range. The two spe-
cial cases of most interest are more amenable,
though, being where the first or last interval is
short.
Returning to the usual case of unit intervals,

in all intervals except the first,

¢(n) =

Z n+1

n

f(t)dt =

Z n+1

n

[(n+1¡ t)fn+(t¡ n)fn+1]dt

=

Z 1

0

[(1¡ z)fn+ zfn+1]dz =
fn+fn+1

2
:

(B.4)

In the first interval, there is an additional contri-
bution from the point mass at zero:

¢(0) = Pr0+
f0 +f1
2

: (B.5)

The cdf is piecewise quadratic. Specifically, if
t = K + z with K an integer and 0· z < 1 then

F(t) = P0 +
Z t

0
f(¿ )d¿

= p0 +
Z K

0
f(¿ )d¿ +

Z K+z

K

f(¿)d¿

= P0 +
K¡1X
n=0

¢(n) +
Z z

0
[(1¡ x)fK + xfK+1]dx

= P0 +
K¡1X
n=0

fn+fn+1
2

+
μ
z¡ z

2

2

¶
fK +

z2

2
fK+1

= P0 +
K¡1X
n=0

fn+fn+1
2

+
z

2
[(2¡ z)fK + zfK+1]:

(B.6)

In the first time interval where t < 1 then K =
0 and the sum from n= 0 to n= K ¡ 1 is not
present. The normalization condition is that

1 = F(1) = P0 +
f0
2
+

1X
n=1

fn (B.7)

and for the case of a finite number of terms, as
in Equation (B.1),

1 = F(N +1) = P0 +
f0
2
+

NX
n=1

fn: (B.8)

We have used the condition fN+1 = 0 to get this,
as there is really a term with fN+1=2 present in
Equation (B.6).
The first moment differences are

¢1(n) =
Z n+1

n
tf(t)dt

=
Z n+1

n
t[(n+1¡ t)fn+(t¡ n)fn+1]dt

=
Z 1

0
(n+ z)[(1¡ z)fn+ zfn+1]dz

= n¢(n)+
³
1
2 ¡ 1

3

´
fn+

1
3fn+1

=
3n+1
6

fn+
3n+2
6

fn+1: (B.9)
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There is no special form for n= 0 because the
point mass is at zero. Remembering Equation
(2.8) which defines ¢1(n)´ (n+ μn)¢(n) yields

μn¢(n) =
fn+2fn+1

6
: (B.10)

We note in passing that

μn =
fn+2fn+1
6¢(n)

=
1
3
fn+2fn+1
fn+fn+1

(B.11)

always satisfies 1=3· μn · 2=3, a more restric-
tive condition than the general result 0 < μn < 1.
Now Equation (B.10) can be used, for exam-
ple, in the accident-year probabilities of Equation
(A.16) to give

P(n) = μn¡1¢(n¡ 1)+ (1¡ μn)¢(n)

=
fn¡1 +2fn

6
+
fn+fn+1

2
¡ fn+2fn+1

6

=
fn¡1 +4fn+fn+1

6
: (B.12)

For n= 0 this becomes

P(0) = (1¡ μ0)¢(0) = Pr0+
f0 +f1
2

¡ f0 +2f1
6

= Pr0+
2f0 +f1
6

: (B.13)

As a consequence of our finite case, fn = 0 n >=
N +1 and the last probabilities are

P(N) =
fN¡1 +4fN

6
, P(N +1) =

fN
6 (B.14)

P(n) = 0 for n > N +1:

We can also note that the sum of the probabili-
ties equals the sum in the normalization condi-
tion Equation (B.8), so that if the probabilities
sum to 1 the normalization is correct when these
equations are solved.
For policy year, we need the second moment

differences. In this situation,

¢2(n) =
Z n+1

n
t2f(t)dt

=
Z n+1

n
t2[(n+1¡ t)fn+(t¡ n)fn+1]dt

=
Z 1

0
(n+ z)2[(1¡ z)+ zfn+1]dz

= n2
·μ
1¡ 1

2

¶
fn+

1
2
fn+1

¸
+2n

·μ
1
2
¡ 1
3

¶
fn+

1
3
fn+1

¸
+
μ
1
3
¡ 1
4

¶
fn+

1
4
fn+1

= n2
fn+fn+1

2
+ n

fn+2fn+1
3

+
fn+3fn+1

12
:

(B.15)

Remembering the definition in Equation (A.28)
that ¢2(n)´ (n2 +Án)¢(n),

Án¢(n) =
4n+1
12

fn+
8n+3
12

fn+1: (B.16)

The policy-year probabilities of Equation (2.16)
are now

PPY(n) = [1=2¡ (n+1)μn+1=2Án]¢(n) + [1=2+ (2n¡ 1)μn¡1¡Án¡1]¢(n¡ 1)
+ [¡(n¡ 2)μn¡2 +1=2Án¡2]¢(n¡ 2)

=
·
fn+fn+1

4
¡ (n+1)fn+2fn+1

6
+
4n+1
24

fn+
8n+3
24

fn+1

¸

+
·
fn¡1 +fn

4
+ (2n¡ 1)fn¡1 +2fn

6
¡ 4(n¡ 1)+1

12
fn¡1¡

8(n¡ 1)+3
12

fn

¸

+
·
¡(n¡ 2)fn¡2 +2fn¡1

6
+
4(n¡ 2)+1

24
fn¡2 +

8(n¡ 2)+3
24

fn¡1
¸
: (B.17)
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And finally, the policy year probabilities are
given by

PPY(n) =
1
24(fn¡2 +8fn¡1 +14fn+fn+1):

(B.18)

The special cases are the consequences of fn = 0
for n >=N +1 and the point mass at the origin:

PPY(0) = [1=2¡ μ0 +1=2Á0]¢(0)

=
P0
2
+
3f0 +f1
24

PPY(1) = [1=2¡ 2μ1 +1=2Á1]¢(1)
+ [1=2+ μ0¡Á0]¢(0)

=
P0
2
+
8f0 +11f1 +f2

24
: (B.19)

Again, the sum of the probabilities is the right-
hand side of the normalization equation, so that
if these equations are solved, normalization is au-
tomatic.
The last piece we want is the inversion of the

cdf of Equation (B.6). We need this in order to
do simulations. We start by generating a uniform
random variable U with 0<U < 1. We want to
find t= F¡1(U). We first find the integer K such
that

P0 +
K¡1X
n=0

fn+fn+1
2

<U · P0 +
KX
n=0

fn+fn+1
2

:

(B.20)

If 0<U · P0, then t = F¡1(U) = 0 and K = 0
when 0<U¡P0 · (f0 +f1)=2. Because of the
normalization condition Equation (B.8), there
will always be a value of K found. We will write

t =K +¢t (B.21)

and solve for ¢t in terms of

¢U ´U¡
8<:P0 +

K¡1X
n=0

fn+fn+1
2

9=; : (B.22)
Again, the sum does not exist for K = 0. Refer-
ring back to Equation (B.6) we see that

¢U = fK¢t+
fK+1¡fK

2
¢t2: (B.23)

The quadratic is elementary, but it is helpful to
get the correct root of the equation and elimi-
nate any problems when the coefficient of the
quadratic term vanishes by writing the solution
as

¢t =
2¢U

fK +
q
f2K +2¢U(fK+1¡fK)

:

(B.24)
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