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A Note on Parameter Risk
by Gary Venter and Rajesh Sahasrabuddhe

ABSTRACT

Consideration of parameter risk is particularly important when 

building actuarial models of uncertainty. That is because—unlike 

process risk—parameter risk does not diversify when modeling 

a large volume of independent exposures. Without consideration 

of parameter risk, decision makers may be tempted to underwrite 

higher volumes as a result of the apparent high degree of pre­

dictability in the mean outcome. However, the financial impact 

of parameter error is magnified by volume and doing so could 

have significant consequences for the firm. In this paper, we pre­

sent an inventory of uncertainty models associated with various 

approaches that actuaries use in estimating model parameters.
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are estimated from observations from an experi-

ence period. We often adjust these observations in 
an attempt to correct for differences between the 
experience and exposure periods. The most com­
mon such adjustment is the trending of claims 
amounts. This adjustment is intended to remove 
this bias created by cost­level differences. How­
ever, if the data are not adjusted correctly then a 
bias may persist or possibly even be exacerbated. 
Furthermore, if the amount of the adjustment itself 
is uncertain, then it should be treated as an addi­
tional parameter in the model.

The purpose of this note is to demonstrate that, for 
common approaches for determining mean estimates 
of actuarial model parameters, there exist associated 
parameter uncertainty models. These uncertainty mod­
els are intended to address sampling risk, assuming 
that data bias can be addressed through adjustment. 
If that is not the case, sampling risk would include 
data bias. However, this note does not include details 
regarding the theory and derivation of those uncer­
tainty models. Readers should consult appropriate 
sources for that information.

There are (at least) four additional sources of uncer­
tainty that should be recognized.

Process risk refers to the inherent uncertainty of the 
insurance claims process. Process risk can diversify 
away, as discussed in Section 1.2. 

While process risk is well understood, there is an 
additional class of risks that may broadly be catego­
rized as “specification error.” The uncertainty resulting 
from specification error is significant and potentially 
greater than all other sources of risk. Although that 
risk is outside the scope of this paper, it is important to 
understand that it exists and results from the following 
factors.
Model misspecification is the risk that the wrong 

model is being estimated and applied. For exam­
ple, this is the risk that we use an exponential model 
when the phenomenon follows a Pareto distribution. 
Insufficient parameter identification is also a type 
of model misspecification.

1. Introduction

For most actuarial modeling applications, model 
parameters are unknown and must be estimated. If 
the associated parameter estimation error is not rec­
ognized in the modeling, there is a good chance that 
a substantial portion of the adverse (and favorable) 
loss potential will appear to be diversified away in 
the aggregation process.

There is an old fable about buying eggs at 10¢ each 
and selling them for $1.00 per dozen, making up the 
difference by doing high volume. The misestimation 
of the required price is not diversified by volume. 
Rather, it is a systematic risk that has to be analyzed 
separately.

Similarly, parameter risk is a form of systematic 
risk that does not diversify with volume, although it 
may diversify across portfolios to some degree. In 
insurance, of course, we do not know the price of 
the product for any particular customer at the time 
of sale. We assume that, if the price is correct for the 
class, randomness associated with the outcome for 
any particular risk will diversify. However, if we have 
an error in the price of the class, that error will persist 
regardless of volume. The insurer needs to recognize 
that in selecting the appropriate price. (Adding vol­
ume can provide more data for future estimation, but 
it does not diversify current parameter risk the way it 
diversifies process risk.) This paper presents method­
ologies for estimating parameter risk that is present in 
actuarial models.

1.1. Sources of uncertainty

Parameter risk is the uncertainty as to whether the 
parameters are appropriate for the phenomenon that 
we are attempting to model. This uncertainty results 
from the following factors:

Sampling risk. Parameters are estimated from an 
observed sample. Parameter uncertainty results 
from differences between that sample and the 
population.

Data bias. Parameters that are used to model outcomes 
of events that occur during an exposure period 
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CVs [CV(L)2] which is the ratio of the variance divided 
by the mean squared = Var (L)/E(L)2:
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Actuaries often assume that the CV is constant for 
severity distributions.

Likewise, for frequency distributions the ratio of 
variance to mean is often assumed to be constant. 
We denote that ratio as VM and offer the following 
examples:

b For a Poisson distribution, VM is equal to 1.
b For the negative binomial distribution with param­

eters r and b, with mean r and variance r (1 + b), 
VM is 1 + b, which is often taken as a constant as 
volume changes.

In any case, VM is constant under the addition of 
IID exposure units.

By substitution, we have

CV L
CV X

E N
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The numerators of (1.6) are constant under increase 
in exposure units and inflation, so CV(L)2 decreases 
proportionally to the inverse of the expected number 
of claims, and thus can get quite small as volume 
increases. This is the problem with the collective risk 
model without parameter uncertainty. The volatility  
can get unrealistically low, leading the actuary to 
believe that there is no risk in large insurance port­
folios. This is a dangerous conclusion, as it would 
lead the insurer to write more business. If we also 
consider the risk that models for X and N may be 
incorrectly specified (see the example of the eggs), 
we understand that potential financial loss actually 
increases with volume.

Actuarial model risk is a broad form of misspecifi­
cation risk that results from the possibility that the 
entire actuarial modeling framework may not be 
appropriate for the phenomenon being modeled. 
For example, we may model ultimate losses using 
a loss development model when ultimate claim 
amounts are not proportional to claim amounts as 
of the valuation date. Discussion of this risk, which 
may be significant, is beyond the scope of this paper.

Insufficient parameter identification results when 
we fail to recognize relationships in our models or 
fail to recognize that certain elements of our model 
are subject to uncertainty. Examples include:
b Our model may not recognize correlations 

between development factors in adjacent intervals.
b We may not recognize that relativity between the 

frequency for a class and the frequency for a base 
class is an estimated parameter.

1.2. Principles of diversification

One ad­hoc adjustment sometimes applied in order 
to capture parameter risk in risk modeling is to add 
further spread to the frequency and severity distribu­
tions. However, this approach only adds process risk 
which will wash out with diversification.

To illustrate the problem, consider applying uncer­
tain trend to the collective risk model. Let N be the 
random variable for the number of claims, and denote 
amount of the jth claim as Xj, where the claims amounts 
are all independent and identically distributed (IID) 
and independent of N. We then have:

∑=
=

L Xj
j

N

(1.1)
1

E L E N E X( ) ( ) ( )= (1.2)

Var L E N Var X E X Var N( ) ( ) ( ) ( ) ( )= + . (1.3)2

To understand the effect of diversification, consider 
the coefficient of variation (CV, the ratio of standard 
deviation to mean) of L as a proxy for model uncer­
tainty. It is more convenient to calculate square of the 
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2. Parameter estimation methods

We address three common approaches of parameter 
estimation in this note. For the first two approaches 
there is a formal methodology for modeling the dis­
tribution of parameter fitting errors. This provides 
quantification of estimation risk.

b Regression analysis is used to estimate the param­
eters of a dependency relationship. Although the 
category of regression analysis includes non­linear 
approaches, this note focuses on linear approaches.

b Maximum likelihood estimation is most com­
monly used in estimating frequency and severity 
distributions. The resulting parameters are referred 
to as maximum likelihood estimators (MLEs).

Although the last approach is less formal, it is no less 
subject to parameter risk and, in fact, it may be sub­
ject to greater parameter risk.

Model free methods are commonly used by actu­
aries in certain applications, such as estimation of 
claim development factors.

3. Parameter uncertainty models

3.1. Uncertainty in regression 
parameters

When the data displays dependencies and is (approx­
imately) normally distributed after accounting for those 
dependencies, actuaries will often use regression to esti­
mate parameters. A common example exists with the 
modeling of the relationship between claim amounts 
(X ) and time (t), which is often modeled using the 
following relationship:

Y X ti i i i= = β + β + εln (3.1)0 1

where b0 is often referred to as the intercept and b1 is 
often referred to as the slope or regression coefficient.

We observe the following about this relationship:

b Using the log­transform of claim amounts implies 
that claim values are log­normally distributed. This 
may be appropriate if the Xis are individual claim 
observations but possibly not if they are averages. 

1.2.1. Uncertain trend example
We provide the following example to demonstrate 

how the aggregate claims random variable is affected 
by uncertain trend. Including the risk of uncertain 
trend or other systematic risk will put a minimum on 
CV(L) that cannot be reduced by diversification (i.e., 
it is not inversely proportional to E(N)).

Let J denote a random trend factor with mean 
1.00. We then have the following relationships:
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Our claims model and its characteristic functions for 
the trended claim amount K may be expressed as 
follows:

K JL= (1.9)
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We can now observe that CV(K) has a minimum of 
CV(J) even if CV(L)2 goes to zero (as E(N) is large). 
That is, the uncertainty in the trend parameter is not 
diversified away.
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b  The standard error of mi, the estimator of µi 
obtained by substituting bs for bs, is calculated 
as follows:
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Similar to equation (3.3), the scaled residuals of µi also 
follow Student’s t­distribution with N - 2 degrees of 
freedom.

c We can observe that, as N becomes large, �
i

σµ  
approaches �yσ .

c The standard error increases as ti is further from t
_
.

c The (1 - a)% prediction interval is equal to

��Y ti N i
± σ− − α µ . (3.6)2,1
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Particularly when fitting regression models to aver­
age values, N (and, by extension, (N - 2)) may be 
“small,” which leads to a Student’s t­distribution with 
considerable dispersion. This may result in “unreason­
able” parameter values for the regression parameters 
at higher or lower percentile levels. Excessive dis­
persion of estimators of parameters is consistent with 
lack of statistical significance of regression param­
eters. Issues related to the significance of regression 
parameters are outside the scope of this note. Readers 
should consult textbooks on regression analysis for 
the derivation of the formulae above or for a more 
complete understanding of the development of the 
uncertainty model.

3.2. Uncertainty in parameters 
estimated by maximum likelihood

MLE has a built­in methodology for computing 
parameter uncertainty. We review the standard meth­
odology, which identifies an estimation variance for 
each parameter as well as the correlation of the estima­
tion errors among the parameters. This theory says that 
for large samples the distribution of parameters can be 
simulated as a multivariate normal. Then in a simula­
tion model each simulation could begin by simulating 

It also implies that the growth in claim amounts is 
exponential rather than linear. This is a generally 
accepted assumption.

b Exponentiation of the regression coefficient b1 less 
unity (i.e., eb1 - 1) represents an estimate of the 
annual rate of severity trend.

b E(Yi | ti) = b0 + b1ti, often written as µi, is the mean 
of the distribution of the logs of the claim amounts 
at time ti.

We should recognize that regression techniques 
not only provide estimates of parameters such as b1 
and quantities such as µi but also the uncertainty of 
those estimates. More specifically, for a regression 
on N data points, the estimated standard deviation of 
the regression error term ei of the regression may be 
expressed as:

σ =
−

SSE

N
y
�

2
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where SSE refers to the sum of squared errors.1

We denote the sample standard deviation2 of the 
observed times (tis) as st. The estimators then have 
the following properties, which are discussed in text­
books on regression.

b  The standard error of b1 (the estimator of b1) may 
be estimated as

σ = σ
σ −N

b

y
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The residuals of b1, after subtracting b1 and scal­
ing by the standard error of b1, follow a Student’s 
t­distribution with N - 2 degrees of freedom.

b  The (1 - a)% confidence interval is equal to

± σ
− − αb t

N
b
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1SSE is also sometimes referred to as the “error sums of squares” or 
“residual sum of squares.”
2This is the unbiased standard deviation with denominator N - 1.
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this case the NLL. The Hessian of the NLL function is 
also referred to as the information matrix.4

3.2.2. Pareto example
In this section, we demonstrate the calculation for 

the Pareto distribution5 with the following properties:

F x x( ) = − − α1 (3.9)

f x x( ) = α − α− (3.10)1

f x x( ) ( )( ) ( ) ( )= α + −α −ln ln 1 ln (3.11)

We then calculate the NLL as follows:
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To solve for the MLE of a, we take the derivative of 
the NLL with respect to a and solve:
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To determine the variance of the MLE, we take second 
partial derivatives of the NLL as follows:

∂
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the parameters, and then those parameters would be 
used in simulating the process. The normal distribution 
is questionable for smaller samples, however. We show 
through Bayesian arguments that the gamma provides 
a good alternative. The gamma converges to the nor­
mal for large samples, so this approach is consistent 
with the usual large­sample method. The parameters 
can be simulated using a normal copula with gamma 
marginals. Simulation by copulas is outside the scope 
of this note, so we leave it at that point.

The likelihood function (L) represents the prob­
ability that a sample is observed given a model and 
parameters. It is calculated as the product of probabil­
ity functions in the discrete case or density functions 
in the continuous case. As it is computationally more 
efficient, we generally work with the negative of the 
log­likelihood (NLL) which is the negative value of 
the sum of the logarithms of the probability (density) 
functions. Specifically, for a continuous model with 
density function f, we have:

L x f xi∏( ) ( )θ =; (3.7)

NLL x f xi∑( ) ( )θ = −; ln . (3.8)

The maximum of L occurs at the minimum of NLL. 
The minimum of NLL can often be calculated by set­
ting its derivatives with respect to the parameters of the 
probability (density) function to zero and solving for 
the parameters. However, in more complicated models 
the minimization must be done numerically.

3.2.1. Large samples
Part of the estimation theory for MLE finds that 

for large N, the distribution of the parameter esti­
mates is asymptotically normal and the inverse of the 
Hessian matrix (also referred to as the Hessian and 
denoted H) provides the variances and covariances 
of the parameters.3 The Hessian is comprised of the 
second partial derivatives of a function of interest, in 

N3

3This is described in Loss Models by Panjer, Klugman, and Willmot (2005) 
and other texts and papers on parameter estimation.

4Most optimization software will numerically calculate the information 
matrix.
5In this paper, the “Pareto distribution” refers to the “single parameter 
Pareto” or “Pareto (Type I)” that is typically used in the analysis of excess 
claim layers. In application, the parameter a is required to be greater than 
1.0, as the moments of this distribution are otherwise undefined.



Variance Advancing the Science of Risk

60 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 1

sample sizes get larger, the gamma approaches the 
normal, so using it is consistent with the asymptotic 
theory.

3.2.4. The Pareto example
Returning to our Pareto example, we recall that the 

log of a Pareto variate is exponentially distributed and 
the sum of exponentials is gamma. From (3.13), we 
recognize that the Pareto variates are in the denomi­
nator of the MLE of a. As a result, we understand that 
â is inverse gamma distributed with mean and vari­
ance of estimators being â and â2/n, respectively. This 
agrees with what was calculated is Section 3.2.2. The 
associated inverse gamma shape and scale parameters 
would be n + 2 and â (n + 1), respectively.

It would be tempting to use this inverse gamma as 
the distribution of the true parameter given the fit. 
However, it is just the opposite—that inverse gamma 
is the distribution of the estimator given the true 
parameter. Especially with skewed distributions like 
the inverse gamma, these two distributions are not 
the same.

This is a natural setup for Bayesian analysis. We 
know the distribution of the estimator given the param­
eters but want the distribution of the parameters given 
the estimator. If the MLE were also the Bayes estimate 
from some prior distribution of the parameters, then 
Bayes’ theorem would provide the posterior distribu­
tion of the parameters given the estimate. This happens 
in one setting, and the resulting posterior distribution 
of the parameters turns out to be gamma in that case.

3.2.5. Bayes’ theorem
Bayes’ theorem provides a formula for the poste­

rior distribution for Y given X, using the distributions 
of X, Y and X given Y. That is:

( ) ( ) ( )
( )

=f Y X f X Y
f Y

f X
. (3.17)

We can think of Y as the true parameter, which is con­
sidered a random variable since it is not known, and 
X as the data. Then, the prior distribution of Y is f (Y ) 
and f (X | Y ) is the conditional distribution of the data 

With only one parameter, the H is a 1 × 1 matrix.

H
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So for large n, the maximum likelihood estimator 
of the Pareto parameter is normally distributed with 
mean = â and estimation variance = â2/n. N

We leave it to the reader to verify the uncertainty mod­
els for the exponential and lognormal distributions 
in Table 1.

3.2.3. Limited samples sizes
For insurance samples the sample size is usually 

not asymptotic to infinity and the normal distribution 
often is inappropriate. For instance, a normal distri­
bution might imply too high a probability of negative 
values for parameters and functions of parameters that 
have to be positive. A reasonable alternative in that 
case is to use the gamma distribution for each parame­
ter, with the correlation structure of the multivariate  
normal. This can be implemented using the normal 
copula with gamma marginal distributions. As the 
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Comparing this to the gamma density shows that 
the distribution of the parameter given the data is 
a gamma distribution with shape parameter n and 
mean = 1/average[lnxj]. This mean is the MLE for 
a, which supports the use of this particular non­
informative prior. This gamma distribution is thus 
the posterior distribution for the true a, with mean 
equal to the MLE estimate.

A similar exercise for the Poisson with mean l and 
n samples which have sum of observations S gives a 
gamma posterior distribution for l with mean S/n and 
shape parameter S. This again agrees with the MLE 
and has a gamma distribution for the true parameter. 
Both examples support the idea of using gamma dis­
tributions for the parameter uncertainty.

3.3. Uncertainty in model-free 
estimators via bootstrapping methods

Development factors can be calculated within a 
parametric or model­free framework. The factors them­
selves are parameters, but the distinction is whether 
or not a distribution is assumed for the deviation of 
the losses from what would be estimated by applying 
the factors, that is, for the distribution of the residu­
als of the development factor approach.

One method for quantifying the estimation errors 
of the factors is bootstrapping. This method resam­
ples the residuals and uses them to create new, arti­
ficial triangles. The factors are repeatedly estimated 
from these artificial triangles, and an empirical dis­
tribution of the factors is thus built up. Bootstrapping 
is a straightforward approach but has potential pit­
falls that require some care.

b For example, it should be recognized that there 
are a different number of observations used in the 
estimation of successive incremental development 
factors, so each “parameter” has its own number of 
degrees of freedom. The degrees of freedom is an 
input to the resampling process. In nonlinear mod­
els, the degrees of freedom can be estimated by Ye’s 
method of generalized degrees of freedom (gdf)  
(Ye 1998). The gdf for an observed point, for an esti­
mation procedure, is the derivative of the fitted point 
with respect to the observed point. If that derivative 

given the parameter. We want to find the conditional 
distribution of Y given X, and in that context f (X ) in 
equation (3.17) can be considered as a normalizing 
constant (not a function of Y) needed to make the dis­
tribution integrate to unity. As such, Bayes’ theorem 
can also be expressed as:

( ) ( ) ( )∝f Y X f X Y f Y (3.18)

where ∝ indicates proportionality—meaning equal up 
to factors not containing Y. This formulation allows 
the use of so­called non­informative priors—such as, 
in this case, f (Y ). The prior f (Y ) is thus expressed by 
suppressing factors not containing Y. This allows the 
prior f (Y ) itself to be expressed up to a constant fac­
tor, and in fact does not even have to integrate to a 
finite number as long as f (Y | X ) does. This gives the 
possibility of prior distributions that are very spread 
out on the real line and so have little or no impact on 
the estimated parameters.

Common examples are f (Y ) ∝ 1 on the whole real 
line, or f (Y ) ∝ 1/Y on the positive reals. These can 
be expressed as limits of the same distributions on 
(-M, M ) or (1/M, M ) as M grows without limit. Thus 
they are very diffuse. Such non­informative priors 
can give insights into the estimation uncertainty.

For the Pareto, the prior is for the parameter a, 
and for a positive parameter a useful non­informative 
prior is f (a) ∝ 1/a. The anti­derivative of this prior is 
1n(a), which slowly diverges at both ends of the posi­
tive real line. Thus it has infinite weight at both ends 
of the range, and as a result does not bias the param­
eter either up or down. In comparison, for a positive 
parameter, the prior f (a) ∝ 1 only diverges at the right 
end of the range, and tends to pull parameters up.

In this example, f (X | a) is the distribution of the 
observations given a. If P is the product of the obser­
vations, it is easy to show that

( )α ∝ α α+f X Pn . (3.19)1

If we substitute b = -ln1/P, we have

( )( )α ∝ α −βαf X n exp . (3.20)
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number of reported claims). If the model uses just 
a factor, there might be some very high observed 
factors that would not apply in general but might 
when the first report is very low. Resampling can 
generate obviously inappropriate development 
in this case—such as a large residual combined 
with a large initial value—basically because the 
wrong model is being used to estimate claims at 
second report.

c  Also, if there are calendar­year effects in the data 
but not in the model, bootstrapping can again be 
distorted because it is resampling residuals of a 
model that does not apply.

If the development factors are estimated by MLE 
from a parametric model, the inverse of the Hessian 
(information matrix) can be used to quantify the 
param eter uncertainty in the factors, just as in any 
other MLE case. Clark (2003) gives an example of 
this. Comparison studies have found the results of 
this method to be comparable to bootstrapping the 
parameter uncertainty, and using the information 
matrix in this way avoids many of the pitfalls of 
bootstrapping. Most GLM software, even if based 
on quasi­likelihood rather than MLE, will provide 
the parameter­error covariance matrix. Thus there 
is little need to use bootstrapping, with all of its 
potential issues, in loss reserving.

4. Incorporating parameter risk  
in simulation models

Actuaries typically use simulation to model risk and 
uncertainty. Parameter estimation is easily incorpo­
rated in a simulation through a two­stage process: in 
each scenario, we first simulate the parameters from 
the parameter­risk distributions, and then simulate the 
process from the simulated parameters. If the param­
eters or the variables are correlated, simulation using 
copulas would be a convenient part of this process. 
Examples of this approach are as follows:

b In our example of uncertain trend from Section 2, we 
would first simulate aggregate claims from the col­
lective risk model, and then simulate J, which is then 
multiplied by the aggregate claims. This approach 

is one, the observed point has the power to pull the 
model to it with an exact match. This would show 
up, for instance, in fitting a quintic polynomial to 
6 points, which it can fit exactly, using up all the 
degrees of freedom. The gdf agrees with the usual 
notion of degrees of freedom in linear models, and 
is more appropriate in nonlinear models.

Even when using the gdf degrees of freedom for 
each point’s residual, however, bootstrapping is 
regarded as unreliable in small samples (e.g., less 
than 40 observations per fitted parameter). There are 
too few residuals to get a representative resample. 
This leads to the method of parametric bootstrapping, 
which draws from fitted distributions instead of the 
observed residuals. This would only be applicable in 
the case where there is a parametric model for the 
residuals. For instance, if residuals are assumed to 
be over­dispersed Poisson, resampling can be done 
from this distribution.

b The approach outlined in England and Verrall (2002) 
uses Pearson residuals, rp, which are calculated using 
the following approach:

rp = −observation estimatedparameter

estimatedparameter
. (3.21)

1 2

b A technical problem is that bootstrapping gives 
the distribution of the estimated parameters given 
the true parameters, but what is needed is the dis­
tribution of the true parameters given the estimated 
parameters. This difference will be important espe­
cially with asymmetric distributions. This is the same 
problem that was encountered in the Pareto example, 
and which there led to replacing the inverse gamma 
distribution by the gamma. This is a known problem 
with bootstrapping which is addressed in textbooks 
on the subject, but is beyond the scope of this note.

b In development triangles, another pitfall of resam­
pling is that the model might not hold for the data.
c  For instance, in slowly developing lines, the first 

report claim amounts might often be near zero. 
The second report might then be well modeled 
as a constant (for the initial valuation of claims 
that are true IBNR at the first report) plus a factor 
times first report (for development of the small 
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on the manner in which the parameters are estimated. 
Interested readers should consult textbooks and other 
papers for details related to the theory on the param­
eter uncertainty models.
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results in a similar floor imposed on the simulated 
claims CV(K ).

b In our Pareto example, we first simulate the param­
eter value and then simulate claims based on that 
parameter.

Even if the process risk diversifies away, the param­
eter risk will not.

5. Conclusion

Parameter risk is one of the principal elements that 
have to be quantified to obtain reasonable represen­
tations of risky processes. In a loss simulation envi­
ronment, simulating from the collective risk model 
without recognizing parameter risk will understate the 
actual risk. This is particularly true for high­volume 
lines where process risk will diversify away. Including 
parameter risk in models for these exposures is partic­
ularly important, as the financial impact of parameter 
errors is magnified by volume.

In this note we have provided an overview of 
approaches to estimate parameter uncertainty based 


