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Parameter Reduction in 
Actuarial Triangle Models

by Gary G. Venter, Roman Gutkovich, and Qian Gao

ABSTRACT

Very similar modeling is done for actuarial models in loss 

reserving and mortality projection. Both start with incomplete 

data rectangles, traditionally called triangles, and model the 

data by year of origin, year of observation, and lag from origin 

to observation. Actuaries using these models almost always 

use some form of parameter reduction because there are too 

many parameters to fit reliably, but usually such adjustment is 

an ad hoc exercise. In this paper, we try two formal statistical 

approaches to parameter reduction, random effects and LASSO 

(least absolute shrinkage and selection operator), and discuss 

methods of comparing goodness of fit.
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then, in effect, credibility weighting those toward 0.  
An example might be color-of-car offsets to loss 
severity. What we do here is shrink the changes in 
trend for the three dimensions of time in the triangle 
parameters, so if some go to 0, that just means the 
trend continues as it was at those points.

The paper is organized as follows. Section 2 dis-
cusses the PTF and shows how to set it up as a regres-
sion. Section 3 introduces random effects. Section 4 
illustrates the use of random effects on PTF models  
for loss triangles, and Section 5 looks at EPTF for 
a mortality example. Section 6 reviews LASSO and  
illustrates its use. Section 7 concludes the basic analy-
sis. Appendix 1 addresses using parameter reduction 
on the increasingly popular topic of simultaneous 
estimation of related triangles. Appendix 2 tries EPTF 
on a loss triangle.

2.  Extended probabilistic  
trend family

Say you start with the model of ywd = log of paid 
losses for origin year w for lag d, indexed to start 
at w = d = 0:

.y p q rwd w d w d wd= + + + ε+

Here p, q, and r are the AY, DY, and CY effects, 
respectively; q and r are often expressed as sums of 
trends a and c:

∑ ∑= == + =
+

; .
0 0

q a r cd kk

d
w d kk

w d

This is what Barnett and Zehnwirth (2000) call 
the PTF. It can be put into the form y = Xb + ε.  
In this notation, y is the entire triangle strung out 
into a column of length n; X is a design matrix 
showing, for each observation, to which row, col-
umn, and diagonal it belongs; and b is the vector 
of parameters. If the variables are levels (p, q, r), 
there is a column of the design matrix for each row, 
column, and diagonal of the triangle, with indicators 
0 or 1 for each observation indicating whether or 

1.  Introduction

Triangle models are familiar to casualty actuaries,  
but statisticians and actuaries who do mortality pro-
jections often use similar models. Mortality projection 
is key these days for annuity calculations, including 
workers compensation permanent injury claims, which 
are a form of variable annuity.

Both sets of models start with “triangle” arrays, and 
both track year of origin (or decade, quarter, etc.).  
For claims, the year of origin could be policy year, 
accident year, or report year. For mortality, it is year 
of birth. The columns in both cases represent the lag 
from origin to observation. For claims, the obser
vation could be a payment or a reserve change. For 
mortality, it is demise, so the lag is age at death. The 
time of observation is the sum of the origin time and 
the lag. Typically in mortality models, the rows are 
years of observation, so origin years are northwest-
southeast diagonals, while in claims triangles, the 
rows are years of origin, so the observation times 
are southwest-northeast diagonals. For simplicity, we 
will refer to the origin periods as AYs, lags as DYs, 
and observation times as CYs.

The basic modeling framework reviewed here 
starts with the probabilistic trend family (PTF), 
described by Barnett and Zehnwirth (2000). The 
Renshaw-Haberman (2006) model used in mortality  
studies generalizes this framework by multiplying 
(in log form, where the model is a sum) the AY and 
CY components by the DY factors. We look at a 
slight generalization of both models that we call the 
extended PTF (EPTF).

Both the LASSO (least absolute shrinkage and 
selection operator) and random effects models shrink 
(i.e., credibility weight) parameters toward 0—often 
to the point that they are virtually 0. All model 
selection has some judgment elements built in, and 
these do as well, although once set up they follow 
mechanized rules. In addition, the modeling needs 
to be done in such a way that shrinking toward  
0 makes sense. This is often accomplished by taking 
the parameters as differences from the mean and 
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•	 Calendar-year effects are sometimes stronger for 
some development years and weaker for others. 
This variability could be treated by multiplying 
the trend by a development-year scale, so rw+d 
becomes fdrw+d. For instance, in workers comp, 
the early payments are more indemnity weighted, 
whereas medical picks up later. Wage levels are 
more of an accident-year effect, so the calendar-
year trend from medical might be stronger later on. 
Also, the very end of the triangle often sees a noisier 
payout pattern, which could show less impact of 
the CY trend.

The EPTF is not a linear model, as parameters 
are multiplied with each other. It can be written as 
follows:

.y p q f r g hwd w d d w d w d wd= + + + + ε+

In addition, f, g, and h can be expressed as sums 
of trends:

∑ ∑ ∑

∑ ∑

= = =

= =

= + =
+

=

= =

. . .; . . .; . . .;

. . .; .

0 0 0

0 0

q a r c f l

g m h t

d kk

d
w d kk

w d
d kk

d

w kk

w
d kk

d

Models like these are often estimated sequen-
tially by regarding some of the parameters as con-
stants and estimating the others, and then reversing 
the roles. In this case, the DY parameters could be 
taken as constants, for instance, and all the others 
estimated, then those taken as constants at those 
values and the DYs estimated, iteratively, until they 
all converge.

This model is also an extension of the Renshaw-
Haberman (2006) model used in mortality trend 
modeling. In fact, setting pw to 0 gives that model. 
However, the EPTF may work there as well—it 
would just generalize the cohort effect slightly. For 
both losses and mortality trends, the extra parameters 
would not be included unless they are necessary, 
in which case they are treated as random effects. 
In addition, we will treat the changes in trend as 
random effects.

not the observation comes from that row, column, 
or diagonal. But if the variables are the trends (a, c), 
then the ak parameter is included in all the subse-
quent periods.

The latter case can be handled by making the vari-
able 1 for k and all later periods. When we make the 
parameters the changes in trend, then the changes 
are added to all future trends and thus accumulate 
like a sequence—1, 2, 3, . . . —across the periods,  
so that the random variable starts at 1 at the time  
of the change and then is 2, 3, 4, . . . in the sub
sequent periods.

To forecast to the end of the triangle, the p and q 
parameters are already known, but new values of r 
are needed. Continuing the latest trend is one pos-
sibility. Fitting a first-order autoregression process to 
the trend history is another technique that actuaries 
use. Sometimes also the CY parameters just pick up 
some historical high or low diagonals, and no CY 
projection is done. This method has value in prevent-
ing distortions on the AY and DY parameters. If in 
fact the payment trend is constant, the CY trend is 
not needed because the AY and DY parameters pick 
up the trend, but usually trends do change to some 
degree over time. In any case, good actuarial judg-
ment is an element of the projection task. Here we 
focus only on the estimation issues.

Two possible extensions of the PTF are as 
follows:

•	 It is becoming fairly common for the payout 
pattern of losses to change, either due to chang-
ing technology within the claims department or a 
change in the mix of losses. One way to handle 
such a change is to add a mixture effect, gwhd, for 
accident (origin) year (AY) combined with devel-
opment year (lag, or DY). For instance, Meyers 
(2015) finds that incorporating a mixture for payout 
changes provides a better fit to a number of trian-
gles. He attributes this finding to speedier claims 
handling due to computerized systems. But workers 
comp is seeing the opposite effect, a slower payout 
pattern due to a shift away from the less serious 
injuries that pay faster.
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one unbiased estimate of each random effect is 0 and 
another could come from standard regression sets up 
a credibility weighting that shrinks such parameters 
toward 0.

A random-effect parameter is shrunk more toward 
0 if its variance from D is low and its variance from 
parameter error is high. This is a lot like standard 
least-squares credibility, except that each parameter  
has its own variance from 0 that is estimated by 
maximum likelihood estimation (MLE), whereas 
in credibility theory, the parameters are distributed 
around their mean with a constant variance. For 
a more detailed discussion of random effects and 
credibility, see Klinker (2011).

MLE in this case maximizes the joint likelihood  
of P(y, b) = P(y b)P(b), showing that there are 
opposite pulls on b in the joint likelihood function. 
P(b) has a maximum at b = 0, since it is just a normal 
density. But P(y b) has its maximum at the value  
of b estimated as a fixed effect. Since the product of 
these factors has to be maximized, the estimate will 
end up somewhere between 0 and the fixed-effects 
value. By the definition of conditional probability, we 
also have P(y, b) = P(b y)P(y). Here we can regard 
P(y) as a constant, so maximizing the joint likelihood 
also maximizes the probability of the random-effect 
parameters given the data.

The variance of each random effect is also esti-
mated and has a similar pull. The larger that variance 
is, the lower is the P(b) probability at 0, but the 
shrinkage toward 0 is less, so the estimate is closer 
to its fixed-effects value, which increases the P(y b) 
factor. The random effects that are pulled less toward 
0 are thus the ones that make more of an improve-
ment in the P(y b) term. The joint log-likelihood is 
as follows:
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3.  Random effects

Random effects can be added to the regression 
models to give linear mixed models (LMMs),1 as 
follows:

y X Zb ,= β + + ε

where
•	 y is the n-by-1 response vector, and n is the number 

of observations,
•	 X is the usual n-by-p fixed-effects design matrix,
•	 β is a p-by-1 fixed-effects parameter vector,
•	 Z is an n-by-q random-effects design matrix,
•	 b is a q-by-1 random-effects parameter vector, and
•	 e is the n-by-1 observation error vector.

The random-effects vector, b, and the error vec-
tor, e, are assumed to have the following independent 
distributions:

∼ ∼b N D N I0, , 0, ,2 2[ ] [ ]( )σ θ ε σ

where D is a symmetric and positive semidefinite 
matrix, parameterized by a variance component vec-
tor q; I is an n-by-n identity matrix; and s2 is the error 
variance.

In this model, the parameters to estimate are the 
fixed-effects coefficients, β, and the variance com-
ponents, q and e. The error distribution here is normal, 
but a generalized LMM simply exponentiates the 
mean and uses any distribution in the exponential 
family for the residuals. Most software programs 
provide that option. If you concatenate X and Z, 
you get an n-by-p+q design matrix for the concate
nation of β and b as the parameters, so this model 
effectively divides the design matrix variables into 
two sets, only one of whose parameters get shrunk.

Often but not always, D(θ) is taken as diagonal 
with a variance for each parameter, which is estimated 
along with b, making the random effects indepen-
dent. We will assume that case here. The fact that 

1Not related to the LIBOR market model (LMM).
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the fixed- and random-effect means, and then use the 
chain rule on those to get the derivatives with respect 
to the parameters.

The hat matrix in linear models is used to calculate 
estimated values of each observation from observed 
values: ŷ = Hy. Since the parameters are estimated as 
b̂ = (X ′X)–1X ′y, and the fitted values of y are given by 
ŷ = Xb̂, then ŷ = (X ′X)–1 X′y, and so H = X(X ′X)–1 X ′. 
The diagonal of the hat matrix thus shows how much 
an observation affects its estimate and is therefore 
the derivative of the estimated value with respect to 
the observed value. The sum of the diagonal in a stan-
dard regression turns out to be equal to the number of 
parameters. H depends on the design matrix but not 
on the data, so the sensitivities of the estimates to the 
data and the number of parameters depend only on 
the design matrix.

There is a concept of generalized degrees of 
freedom for nonlinear models, which is the sum of 
the derivatives of the estimates with respect to their 
observations. See Ye (1998) for a discussion. This 
construct takes the place of the number of param-
eters when computing the degrees of freedom used 
by the parameters. The sum of the diagonal of the hat 
matrix gives this value in versions of linear models.

For LMM, the hat matrix has been found to be  
H = I – V–1 + V –1X(X′V–1X)–1X′V–1, conditional on D 
being known and diagonal. The diagonal of this H 
gives the generalized degrees of freedom, which can 
be used in penalized likelihood calculations such as 
the Akaike information criterion (AIC), Bayesian 
information criterion (BIC), Hannan-Quinn infor-
mation criterion (HQIC), and so on, for comparing 
model fits. However, more degrees of freedom are 
used in estimating D. These could be counted exactly 
by numerically estimating the derivatives of the fitted 
values with respect to the observations, by refitting 
the model many times with slightly perturbed obser-
vations, but this approach would be resource inten-
sive. Still, it might be worth doing a few times to 
get a general handle on what fraction of a degree of 
freedom a θ uses up. For reference, the conditional 
and marginal likelihoods can be expressed as follows. 

For the estimation, first note that given D, the 
variance of y is known to be σ2(ZDZ ′ + I ) = σ2V. 
Then, given D and σ2, log L is minimized at

X V X X V yˆ 1 1 1( )β = ′ ′− − −

b DZ V y Xˆ ˆ .1 ( )= ′ − β−

Let SSR be the sum of the ε squared. Then the 
likelihood can be maximized for σ2 and θi by the 
following:

SSR

n
2σ =

and

b
i

i .
2

2θ =
σ

For a mean-0 normal, the probability at b is maxi-
mized with variance b, so the likelihood for each b 
is maximized at this value of θi. With these variance 
estimates, the regression coefficients and then the 
variances can be reestimated, alternating iteratively. 
That is, we can start with judgment estimates of σ2 
and θi, use those to estimate the b and b parameters, 
and then reestimate σ2 and θi, and so on.

This is a form of fixed-point iteration and seems 
to work well for this model. However, fitting pack-
ages such as SAS and MATLAB use more complex 
approaches because they are set up to solve more 
general models. All of the estimation methods appear 
to end up with slightly different fits of the model, 
possibly with a few different parameters going to 0.  
When estimating EPTF for large data sets, fixed-point 
iteration is often much faster—about 250 times faster 
than MATLAB in one such case.

Once a method converges to MLE estimates, the 
information matrix (all mixed second derivatives 
of the negative log-likelihood) can be computed in a 
straightforward, if tedious, way, or estimated numer-
ically, to get the parameter error distributions. It is 
usually easier to get the derivatives with respect to 
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If the CY trend were a constant = c, then r 0 = c,  
r1 = 2c, r2 = 3c, and so on, and similarly for DY. If 
there is a change in trend at CY 1 of w1, then w1 is 
added on that diagonal, 2w1 on the next diagonal, 
then 3w1, and so on. Since the AYs are levels, they 
do not accumulate in quite the same way, but we are 
assuming here that the changes in AY level, denoted 
as u, do persist in later years. Use v to denote the 
changes in a. These trend changes are the random 
effects in this example. For identifiability, we will set 
a0 = q0 = 0 = c0 = r0, so the first DY parameter is a1 
and the first CY is c1.

In this setup, y0,0 is estimated by p0, y1,0 by p0 + c1, 
and y1,0 by p0 + c1 + a1. All of this appears necessary 
to be able to separate the three directions. There are 
no offsetting changes to parameters that would give 
the same fit to every cell, because any change in 
p0 will be the only effect on y0,0 but will still affect 
other cells, and no changes in the DY parameters will 
affect y1,0.

If we had a bigger triangle, the design matrix 
entries for v3 and w3 would increase through the 
integers just as they do in the other columns. With 
AY as a level, not a trend, in essence the fixed-effect 
trend is set to 0, but the random-effect trends here 
accumulate, which is seen in the increasing entries in 
the u columns. The way the matrices are set up here, 
additional rows and columns of the triangle would 
become additional rows and columns of the design 
matrices without changing what is there already.

Macroeconomic variables could add explanatory 
power to a reserve study, or at least link reserve 
changes to broader economic conditions. We will 
consider what happens when they are added as 
fixed effects. Some variables might operate on a 
CY basis, such as price trends, but others could 
conceivably be AY effects—things that affect the 
exposure or possibly the rate level. For instance, less 
experienced workers may be laid off in a recession, 
reducing accidents per worker, which would be  
an AY effect. Both directions can be handled within 
design matrix X.

Here we will assume that the log of a price index 
operates on calendar years, with values 6.0, 6.1, 6.2, 

For the linear mixed-effects model defined above, the 
conditional response of y, given β, b, q, and s2, is

y b N X Zb In( )β θ σ β + σ∼, , , , .2 2

The marginal likelihood of y, given b, θ and σ2, 
comes from integrating out P(b)

P y P y b P b db, , , , , ,2 2 2∫( ) ( ) ( )β θ σ = β θ σ θ σ
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To see how to set up the design matrix for y =  
Xb + Zb + ε, consider a triangle with four accident 
years that is strung out into a column for regression 
(Table 3.1). The cells can be put in any order, but  
it is convenient to arrange them a diagonal at a  
time so that new experience can simply be added 
at the end.

Table 3.1.  Beginning of design matrix

y X Z

y p0 a1 c1 u2 v2 w2 u3 v3 w3

y0,0 1 0 0 0 0 0 0 0 0

y1,0 1 0 1 0 0 0 0 0 0

y0,1 1 1 1 0 0 0 0 0 0

y2,0 1 0 2 1 0 1 0 0 0

y1,1 1 1 2 0 0 1 0 0 0

y0,2 1 2 2 0 1 1 0 0 0

y3,0 1 0 3 2 0 2 1 0 1

y2,1 1 1 3 1 0 2 0 0 1

y1,2 1 2 3 0 1 2 0 0 1

y0,3 1 3 3 0 2 2 0 1 1
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incremental loss from the next one in the row takes 
out the AY effect. Then subtracting that difference 
from the one in the AY below it also takes out the  
DY effect. What is left along each diagonal is the 
change in CY trend, so averaging these over the diag-
onal yields an empirical estimate of the CY trend 
change. These turn out to be very close to the trend 
changes estimated in the model that treated them all 
as fixed effects.

Figure 4.1 shows the empirical trend changes 
and those from the LMM fit. The empirical changes 
are quite noisy, moving back and forth in opposite 
directions. LMM ignored most of those fluctuations, 
ending up with very few trend changes. The exception 
is 2009–2010, which calls attention to a problem with 
formulating the model as trend changes: in some data 
sets, a particular calendar year could be an outlier, 
due perhaps to a problem in claims processing that 
year. It would probably be better to put in a level 
parameter for that year. It takes two to three consecu-
tive trend changes to model this situation—one to get 
to the outlier, one to get back to the existing level, 
and perhaps another to get back to the existing trend. 
Instead of assigning a level parameter, the modeler 
may choose to leave those trend changes out of the 
model, missing that particular CY but showing the 
longer-term pattern.

The fitted AY trend changes have more nonzero 
parameters, as seen in Figure 4.2.

This model has 12 or 13 parameters to represent 
32 accident years, which is reasonably parsimonious.  
Figure 4.3 shows the resulting fitted AY levels, 
unlogged. These are roughly at the level of first-year 
payments at 1980 cost levels. In recent years, losses 
are lower due to safety initiatives. Figure 4.4 is the 
CY fitted trends.

We also did a comparison of LMM estimates using 
fixed-point iteration versus MATLAB’s routine. For 
these we also excluded variables for trend changes 
in 2007–2009, effectively forcing those parameters 
to 0. That decision resulted in underestimating 2008 
and overestimating 2009, but we felt it gave a better  
estimate of the recent trend levels for projection 

and 6.3 for the four years, and that the percentage 
change in gross domestic product (GDP) affects the 
logged losses directly in the accident years, with 
respective values of –2.0, –1.0, 1.5, and 4.0. We will 
assume that the cost index covers the basic CY trend 
and therefore will not put in a trend fixed effect 
separately, but will continue with random effects of 
trend changes. The new design matrix is shown in 
Table 3.2.

4.  Loss reserve triangle example

We tried the procedure described in Section 3 
on an industry-segment workers comp triangle put 
together from Schedule P and covering 1980 to 2011, 
with 10 payment periods up until 2002 and a 9-by-9 
triangle after that, resulting in 275 observations all 
told. PTF was used fit to the logs of the incremental 
paid losses. The model was set up as in Table 3.1. 
For this triangle, the estimated parameters for the 
three fixed-effects parameters were p0 = 14.4555,  
c1 = 4.610%, and a1 = 11.675%. Random-effects 
variables were then put into the Z design matrix for 
the change in trend for every AY, CY, and DY greater 
than 1. For AY, we also tried using trend variables 
instead of change in trend, but this made little differ-
ence in the fit.

The PTF framework includes an empirical esti-
mator for CY trend changes. Subtracting each log 

Table 3.2.  Beginning of design matrix with  
macro variables included

y p0 ΔGDP a1 Price u2 v2 w2 u3 v3 w3

y0,0 1 –2.0 0 6.0 0 0 0 0 0 0

y1,0 1 –1.0 0 6.1 0 0 0 0 0 0

y0,1 1 –2.0 1 6.1 0 0 0 0 0 0

y2,0 1 1.5 0 6.2 1 0 1 0 0 0

y1,1 1 –1.0 1 6.2 0 0 1 0 0 0

y0,2 1 –2.0 2 6.2 0 1 1 0 0 0

y3,0 1 4.0 0 6.3 2 0 2 1 0 1

y2,1 1 1.5 1 6.3 1 0 2 0 0 1

y1,2 1 –1.0 2 6.3 0 1 2 0 0 1

y0,3 1 –2.0 3 6.3 0 2 2 0 1 1
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every point. The AY trends under MATLAB change 
a bit more and actually provide a bit better fit, but 
at the cost of using more nonzero parameters. The fact 
that AY and CY trends can largely offset, even though 
they do not fit every point exactly equally when they 
do so, is a common issue with PTF models. Expe-
rienced practitioners tend to ignore the individual 
trends and just look at their combination, but some 
reasonableness checks of CY trends in themselves 
would be useful, even if not strictly possible.

The all-fixed model shows a lot of fluctuation in 
CY trends, which neither LMM model recognizes. 
The LMM models, while a little different from each 
other, are very comparable and seem to be the result 
of different local maximums. SAS gives almost the 
same results as MATLAB. It would be nice to com-
pare the joint likelihoods, with some adjustment for 

purposes. Figure 4.5 compares the fitted trends from 
both models as well as for the model that takes all the 
trend changes as fixed effects.

The fixed point–estimated AY trends are a bit lower, 
and CY trends a bit higher, than those obtained using 
the other models. With slight differences also in the 
DY trends, these model fits are very comparable at 
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point 7% as much (7% of 275 is 19.25). But when 
the variances are estimated as well, the fitted points 
move by about 18% of the change in the observations. 
There are 70 or so variance parameters, and it looks 
like, in this case, estimating them used up about  
30 degrees of freedom. It always takes degrees of free-
dom to estimate variances, but usually in an informal 
way that often is ignored. In this case of mechanical 
model selection, the number of degrees of freedom 
used in the process is quantifiable.

How much penalty should these parameters get 
when comparing fits of this model using the various  
estimation methods? We use simplified versions of  
the AIC, BIC, and HQIC to investigate. Rather than 
multiply the negative log-likelihood (NLL) by 2, 
which gives an information distance, we just add 
a penalty to the NLL directly. For AIC, the penalty 
is 1 for each degree of freedom used, for BIC it is 
log(square root(sample size)), and for HQIC it is 
log(log(sample size)). The AIC has strong theory 
behind it but may tend to overparameterize in prac-
tice. The BIC sometimes seems to overpenalize, so 
we favor the HQIC basically for being somewhere 
in between, where the truth often lies. Close values, 
however, must be rated a tossup, as the penalty is 
mostly an approximation.

The sample size of 275 gives per-parameter penal-
ties of 1.73 for HQIC and 2.81 for BIC. The NLL of 
the fit is –202.1 for the fixed-point model and –209.5 
for MATLAB, which thus has the better fit. (In logs, 
the standard deviations were small, so the normal  

degrees of freedom, but there is a problem with doing 
to. The random-effect parameters that go to 0 also 
end up with very low variances, which increases their 
likelihood. These likelihoods can be very different 
with slightly different, very small variances, so they 
are often left out when computing the likelihood, but 
that creates a problem of arbitrary thresholds.

As an alternative, we look at the likelihood of the 
fitted y part of the model only, and compare by penal-
ized likelihood for degrees of freedom. The diago-
nal of the hat matrix gives the number of degrees of 
freedom used, conditional on the variances. This is a 
starting point but is known to leave out the degrees of 
freedom used up in estimating the variances. We also 
tried a grind-out approach to estimating the degrees 
of freedom—change each observation slightly, one 
at a time, and refit the model, seeing how much the 
corresponding fitted value changes, which gives an 
estimate of the derivatives of the fitted values with 
respect to the actuals.

For the fixed-point estimation, the hat matrix shows 
it used 17.3 degrees of freedom, compared with 19.9 
for MATLAB. These are nice small numbers, since 
the all-fixed model has 70 parameters, as does each of 
the fitted models if we count the parameters that are 0.  
However, using numerical derivatives, fixed-point 
estimation used 45.1 effective parameters (degrees 
of freedom), versus 50.7 for MATLAB. This is a sur-
prisingly large increase. Since there are 275 observa-
tions, with the optimized variance parameters given, 
changing a data point, on average, changes the fitted 

Figure 4.5.  Comparative fits by accident year (numbered sequentially)
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relative changes in observations due to a change in 
the variable. For medical costs, this parameter was 
59%, which is fairly reasonable since that is close 
to the percentage of workers comp costs that are 
medical. The payroll effect was 1.08, which is inter-
esting as some actuaries just assume it is 1.0 and 
divide losses by payroll as an exposure base. The 
unemployment duration had a parameter of –14%, 
which is not as large. Workers comp losses by AY are 
thought to go up with unemployment duration, but 
as a CY effect, the sign is ambiguous theoretically—
injured workers might prefer to stay out longer or 
return to work sooner—so the empirical result is a 
finding in itself.

Figure 4.7 shows the AY and CY trends from this 
model and from the time-only model. Although the 
macro model allows estimation of how the losses 
would change in various economic scenarios and 
could rationalize reserve changes when there are 
economic changes, it does not have any better fit 
and would not necessarily give a better reserve 
estimate.

5.  Mortality triangle example

Mortality research uses a bit different notation 
for the same models, so we will now shift to that 
notation. The primary modeling is by age at death, 
so we have lag, still denoted as d, and calendar 

densities tended to be well over 1 over a small interval, 
actually making the log-likelihoods positive.) But 
after penalizing for the hat matrix parameter count, 
HQIC is –175 for MATLAB and –172 for fixed point, 
so MATLAB is only slightly better. When including 
the full parameter count, HQIC is at –124 for fixed 
point, which is now slightly better than the –122 
for MATLAB. Thus these estimates really are quite 
similar in goodness of fit. Another test would be the 
small sample AIC, which for a sample of size n and  
k parameters, gives a penalty of nk/(n – k – 1). For 
50 and 45 parameters, respectively, that would give 
penalties of 61.4 and 54, with a difference of 7.4, 
exactly canceling the NLL difference.

Companies and regulators have an interest in 
the impact of macro variables on losses, so we tried 
using such variables to model this triangle. What 
worked pretty well was to use the log of the per-
sonal consumption expenditures medical price index 
instead of the average CY trend as the fixed-effects 
CY variable, add the log of unemployment duration 
also as a CY variable, and add the detrended log of 
payroll as an AY variable. Detrending seemed to be 
necessary to avoid collinearity, and it also allowed 
us to keep the average AY level constant. Figure 4.6 
shows the historical log of payroll and its trend, 
which is subtracted. In the fit of logged dependent 
variables on logged independent variables, param
eters can be interpreted as elasticities, that is, the  
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Figure 4.6.  Log of payroll and its trend
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where a lot of this modeling has been done. And they 
have an impact in the United States as well. Some 
years of birth seem to have higher or lower mortality 
at all ages, perhaps depending on economic and cli-
matic conditions when cohort members were young, 
or perhaps relating to ages reached at various societal 
milestones, such as the popularity of smoking or 
the arrival of medicines to reduce blood pressure. 
Anecdotally, for example, children born in Russia  
during the early years of World War II seem to have 
experienced higher mortality, perhaps due to the 
harsh conditions in their youth. The u parameters 
pick up a cohort effect that varies by age, and f is a 
constant cohort effect. The former is in the Renshaw-
Haberman (2006) model, while the latter is the AY 
parameter in reserve models. We include them both 
and hope that parameter reduction will eliminate any 
overparameterization.

The Human Mortality Database has population 
mortality data for a number of countries. We were 
interested in modeling mortality trends for annuities, 
such as workers compensation permanent claims. The  
exposures for annuities are typically older ages, per-
haps 55–99. However, as Venter (2011) and others 
note, estimating cohort effects is subject to a lot of 
parameter uncertainty unless enough observations 
are used for each cohort. Another restriction is that 
U.S. data is regarded as unreliable before 1970. For 
these reasons, we choose to model ages 16–99 for 
calendar years 1971–2010, which involved the birth-
year cohorts 1881–1955. This gives 40 observations 
for both the 1955 cohort and age 99. The 84 ages 

year, which was w + d but here will be denoted as t.  
Then year of birth is t – d. The EPTF model can be 
written as

M a b h c u fd t d d t d t d t d d t( ) = + + + + ε− −log ., ,

M is the ratio of deaths in the year to lives at the 
beginning of the year. For now we will model its 
log as normally distributed, but often the number of 
deaths is modeled as a Poisson or negative binomial2 
distribution in M times the beginning lives. All of 
these parameters were fitted as trend changes after 
initial levels using LMM, as in the loss triangle case, 
here using a nonlinear optimizer in R to maximize 
the joint log-likelihood.

In this model, a is the mortality curve showing 
the increase in mortality rates at higher ages. The 
curve is close to linear on the log scale after about 
age 30. The trend toward lower mortality over time is 
expressed by h, but this trend is different at different 
ages and so is multiplied by an age effect, b. These 
two terms together form the original Lee-Carter 
mortality trend model, which actually picks up most 
of the variability in mortality over time.

Year-of-birth groups are called cohorts in this 
literature and tend to be quite strong factors in the UK, 

Figure 4.7.  AY and CY trends from time and macro models
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2If deaths were independent, this would be binomial, as a sum of  
Bernoulli processes. However, there is a degree of contagion, caused by 
larger effects such as weather, disease, war, depression, and so on. The 
negative binomial fits much better than Poisson, and some even more 
skewed distributions—such as Poisson mixed with inverse Gaussian or 
generalized inverse Gaussian—fit as well or better. See Venter (2011).
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negative (Figure 5.5). This is an arbitrary outcome of 
the parameterization and could have been reversed. 
Again, there appears to be room here for further 
parameter reduction. The age multiplier, b, is actually 
stronger (here on a percentage basis) at the younger 
ages and appears to be largely gone by the late 90s.

The cohort parameters u (with age multiplier) and f,  
shown in Figures 5.6 and 5.7, respectively, tend to 
be a bit smoother and both center around 0, as does 
the cohort age multiplier c, shown in Figure 5.8. 
Apparently these have all had some parameter reduc-
tion applied.

The bottom line is the combined effects of trend, 
age, and time, which we calculate as the trend rates 
for the fitted mortality rates from the model. Fig-
ure 5.9 shows the average mortality trend by age for 
the last 10 and 20 years, respectively. It looks to be 

were modeled with about 40 nonzero changes in trend 
for the mortality curve ad, as shown in Figure 5.1.

This estimation nonetheless produced a fairly 
steadily rising mortality trend after age 30, the slope 
shown in Figure 5.2. Figure 5.1 shows a few con-
secutive offsetting trend changes, for reasons not 
entirely clear. There appear to be a few milestone ages, 
such as 80, that people seem to be able to hang on 
to reach. In addition, changes between ages 16 and 
30 may be related to risky behavior patterns. Some, 
though, might simply be random, and other param
eter reduction methods, such as LASSO, may produce 
fewer of them.

We modeled the mortality trend over the 40 years 
with about 25 trend changes (Figure 5.3).

The result was a fairly constant slope over time, 
but with many kinks (Figure 5.4).

The curve is upward sloping because it is multi-
plied by b, with the product generally coming out 
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Figure 5.1.  Trend changes in base mortality, 
ages 16–99
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Figure 5.2.  Base mortality curve ages 16–99, 
log scale
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Figure 5.5.  Trend multiplier by age, ages 16–99
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Figure 5.6.  Cohort effect with age multiplier, 
birth-year cohorts 1881–1955
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Figure 5.7.  Constant cohort effect by  
year-of-birth cohort, 1881–1955
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Figure 5.8.  Age multiplier for cohorts,  
ages 16–99
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Figure 5.9.  Average mortality trend from  
model over time

2%–2½% annually in the most critical age range. 
A 1916 workers comp permanent disability claim 
finally closed in 1991—it was being paid for 75 years. 
That accident was a hundred years ago, so with this 
kind of mortality trend, a comp claim that will receive 
benefits for a century is probably open already. Taking 
account of the mortality trend is one critical factor 
needed to get comp reserves right.

6.  LASSO (least absolute shrinkage 
and selection operator)

LASSO provides another way to reduce the num-
ber of parameters in a model. Start with the linear 
model y = μ1n + Xb + ε. The mean times a vector of 
all 1s is modeled a little differently and therefore is 
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the blue lines are the smoother 10–3, which tends 
to have fewer trend change parameters (i.e., more 
parameters at 0). Both of these are a fair bit smoother 
than LMM (Figure 6.1).

The resulting mortality curves are also a bit 
smoother than in LMM (Figure 6.2).

The time trend in mortality also loses a lot of its 
annual fluctuations in these models (Figure 6.3).

The fitted mortality time trend thus has less fluc-
tuation in slope (Figure 6.4).

The trend multipliers by age end up with the 
same basic shape as but a lot smoother than LMM 
(Figure 6.5).

Cohort effects that vary by age were essentially 
eliminated in the LASSO tests (Figure 6.6). The 
cohort effects that are constant across ages for each 
year of birth were quite similar to those from LMM.

shown separately. The LASSO estimate is the set of 
parameters that minimize NLL + λΣ βj for a selected 
value of λ. This selection allows the modeler to 
control the degree of smoothing.

To make this a fair fight, all of the predictive vari-
ables are first standardized—that is, divided by their 
standard deviations after their means have been 
subtracted. That puts all the variables on the same 
scale. Each standard deviation just ends up in the 
coefficient, and all the mean impacts get into the esti-
mate of μ, which is not included in the minimization 
of the sum of the parameters.

This is a little different than LMM in that there 
is only a single fixed effect, the mean. In the LMM 
triangle models, the AY-level starting variable has 
value 1 for all observations, so in regression terms,  
this is the overall mean. Experimenting with the other 
fixed-effects variables has shown that making them 
all random effects creates little change in their param
eters, so setting up LMM with only the mean as a fixed 
effect works fine, and can thus translate to LASSO.

The choice of the smoothing factor may make 
LASSO seem less objective than LMM, but LMM 
involves choices as well. Just taking a normal distri-
bution for each random-effect parameter is a choice 
in itself, as is assuming that these normal distributions 
are independent. Indeed it is not unusual for modelers  
to impose a correlation structure on the random 
effects to get more smoothing, which did in fact seem 
potentially useful in the tests above. In addition, there 
are approaches within LASSO to select the smoothing 
factor, typically cross-validation. A common way to 
do so is to fit n different models, each leaving out one 
of the n observations, and find the factor that does 
the best at this form of out-of-sample prediction.

There are a number of statistical packages that do 
LASSO fitting, and we used MATLAB’s. It is pretty 
straightforward to do—the packages may even do 
the standardization for you. We illustrate the results 
here for the mortality fitting described in Section 5.  
A λ of around 10–6 turns out to give parameters 
roughly comparable to LMM, so we look at additional 
smoothing by using 10–4 and 10–3 for comparison. 
In the charts, the red lines represent λ = 10–4, and 
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Figure 6.1.  LASSO trend changes in base 
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Figure 6.2.  LASSO base mortality curve,  
ages 16–99, log scale
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Sometimes mortality models use cubic splines 
across the parameters for smoothing, but the more 
statistically based approach described in this paper 
picks out the variables for which more or less smooth-
ing would be appropriate, and it does not always end 
up with graphs that look like splines.

LASSO fitting to trend changes is easy with statis-
tical packages and affords a choice of smoothing, so 
clearly it has a lot of potential for actuarial use. The 
different choices of λ give alternative models, for 
example, which are often needed in reserving. Using 
cross-validation to choose the degree of smoothing 
is also promising and is somewhat standard, but it is 
beyond the scope here.

7.  Conclusions

Modeling trends in three directions is not needed if 
the cost trend is a constant over time, but otherwise it 
can provide a more accurate account of the develop-
ment process than do other models. Some method for 
parameter reduction is usually applied when trends 
are modeled in this way. Reducing parameters also 
leads to better fits based on statistical fit measures 
that penalize for overparameterization even in row-
column models. Nevertheless, parameter reduction 
has tended to be ad hoc.

LMM and LASSO provide methodologies for 
reducing the parameters in loss and mortality triangle 
models that are consistent with modern approaches in 
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Figure 6.3.  LASSO-fitted mortality trend changes 
over time, calendar years 1971–2010
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Figure 6.4.  LASSO-fitted mortality time trend, 
calendar years 1971–2010
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Figure 6.5.  LASSO time trend multipliers by age, 
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Appendix 1.  Modeling multiple 
triangles simultaneously

Actuaries typically have several segment triangles 
that go into a reserve study. These are often related in 
some way, and an ongoing problem is how to model 
these segments simultaneously. We try a common 
random-effects approach: for several triangles, put 
the logs of the incremental losses all into a single 
column as the y variable; then have fixed effects for 
the AY starting level for each triangle; then have a 
common fixed effect for initial change in CY trend 
and initial change in DY trend starting after CY = 0  
and DY = 0, which applies to all triangles; then, for the 
total y (combined) variable and all but one of the indi-
vidual triangles, put in random effects for changes in 
trend in all three dimensions, starting at time 2.

The left-out triangle then gets only the common 
effects, except for overall level. All the other trian-
gles also get the common effects but can also have 
their own variations from them if needed. The LMM 
methodology will determine how many of these are 
needed. Does it work?

We tried it for a fairly standard (not long-tailed) 
liability line with three segments: New York (NY), 
California (CA), and Other. The triangle was for 
1998–2013, so for 16 years but ending after 11 devel-
opment periods. The left-out triangle was Other, 
so that NY and CA could get their own parameters 
as needed. Starting in 2009, this book underwent a 
shift in underwriting approach, with fewer policies 
being written. This was pretty uniform countrywide, 
but with a bit of variation. The payout pattern is 
very different for the three triangles, but still there 
were common trend changes that allowed for com-
mon parameterization to a fair degree. Figure A1.1 
shows the trend changes, resulting DY levels, and 
level parameters (p, q, r) for each triangle.

The trend changes are for NY, CA, and Common,  
but the levels translate this to NY, CA, and Other. The 
common trend shows five nonzero trend changes, with 
an especially sharp drop at the last lag. NY starts out 
at a higher trend, which drops a bit and then stays 
with the common trend, thus taking two parameters.  

other areas of statistics. It is possible to do penalized 
likelihood calculations for these models using the 
method of generalized degrees of freedom, but this 
method is computationally extensive. Doing so for 
LMM revealed that the common approach of having 
a variance for each random effect uses a lot of degrees 
of freedom and thus is its own form of overfitting. 
Specifying only one variance parameter, or one for 
each direction, would possibly work better.

LASSO uses just one shrinkage parameter, which 
can be optimized by penalized likelihood with gen-
eralized degrees of freedom. A more common way of 
optimizing it is leave-one-out estimation, or LOO, in 
which the model is fitted sequentially on every subset 
of the data that omits a single observation, and then 
the sum of the NLLs of the omitted observations is 
optimized by choice of the shrinkage parameter. This 
method is also resource intensive, however.

The next logical step is to try Bayesian LASSO, 
which results in models similar to those of classical 
LASSO but provides a very fast method for numeri-
cal estimation of the LOO NLL. Thus it allows opti-
mization of parameter shrinkage on out-of-sample 
observations.
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Another possibility is that the cause of the sharp 
trend change in 2011 is in part an offset to the drop 
in AY and even DY levels. A problem with the  
PTF is that it assumes a constant payout pattern in 
real terms, but the pattern actually could change 
over time, especially if the book is undergoing a 
change in mix. Meyers (2015) finds that includ-
ing payout changes improves the fit for a number 
of triangles, but his model does not include CY 
effects. We believe there are cases with both CY 
changes and changing payout patterns, which the 
EPTF allows for, but even with parameter reduc-
tion we have not to date been able to separate these 
effects. Apparent noise in the data tends to obscure 
these patterns.

Even with different payout speeds, these three 
triangles have quite a few common trends. Only  
20 parameters were needed to describe them. A stan-
dard analysis would have 48 AY parameters and  
30 development factors without even accounting 
for CY trends. Modeling with common parameters 
allows all of the triangles to utilize information from 
each other.

CA also has two parameters, with a lower starting trend 
that picks back up five periods later. With the initial 
common trend, 10 parameters describe the DY trends 
of the three triangles. Looking at the levels, NY has a 
slower payout than Other, and CA a faster one.

The AY trends are in Figure A1.2.
The common trend has only one change, where it 

starts to decline at a steady rate. NY does not have any 
separate trend changes, but CA has three. It begins its 
decline earlier and more dramatically than the com-
mon trend, and then recovers before dropping again. 
The resulting levels are parallel for NY and Other, 
but a bit different for CA. Each triangle has its own 
starting level, so seven parameters are used for the 
16 accident years for three triangles.

Finally, the CY trends are given in Figure A1.3.
The common trend was a constant 13.4%, with 

sharp increases in CA and NY in the third-to-last 
period. Thus there are only three trend parameters. 
It is not obvious why there should be such a sharp 
trend change in 2011, but it has been seen in other 
triangles, company and industry, for some lines. It 
could be a change in tort conditions.
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Figure A1.1.  DY trend changes and levels for three triangles
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Figure A1.2.  AY trend changes and levels for three triangles
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estimated parameters as stronger than what the ulti-
mate AY loss change will turn out to be. This phe-
nomenon could be accompanied by an exaggerated 
increase in the CY trend.

We tried an EPTF model that included an inter-
action term for AY by DY—that would show up as 
a different DY trend for some AYs. The model we 
fitted is

y p q r g hwd w d w d w d wd= + + + + ε+ .

This is not the full EPTF as there is no CY-by-DY 
interaction. However, with this many parameters it 
was difficult to get reasonable estimates even with 
parameter reduction. What gave an interesting fit 
was not allowing any CY trend changes after the 
first 10 CYs. This output omitted two or three largely 
offsetting CY trend changes that showed up in the 
original model. This model also showed a significant  
change in the payout pattern, finding a gradual length-
ening of the payout timing after the third lag for about 
the last 10 accident years. Figure A2.1 shows the 
resulting CY trends and DY levels by accident year.

This model explained the data about as well as the 
original. If we tried to include later possible CY trend 
changes with the DY-by-AY interaction, we got very 
noisy models that were not easy to interpret. Thus we 
can choose either to include the interaction with no 
later trend changes or to have the later trend changes 
with no interaction. The triangle data is explained by 
either but does not provide a clear choice for one or 
the other in this case. However, more detailed data 
does support the change-in-payout model.

Appendix 2.  EPTF applied  
to loss triangles

The workers comp industry loss example in Sec-
tion 4 found fairly high CY trends in recent years.

The all-fixed effects and the data showed a large 
drop in the CY trend in 2009, made up for with even 
higher jumps the next two years. Something prob-
ably happened that year—medical inflation was a  
bit lower than usual, for example—but the LMM 
fits took out that effect. Still, they show quite a high 
calendar-year trend from about 2006. There is another 
possible explanation for that effect, however.

For quite a few years now, average workers com-
pensation claim severities have been going up at an 
unusually fast pace. Detailed data by type of injury 
shows that this is a change-in-mix effect. Severities 
by type of injury have been increasing at about the 
rate of inflation, but frequency has been dropping for 
temporary impairment claims, which cost less. This 
effect is commonly attributed to workplace safety 
initiatives. This effect would tend to reduce losses by 
AY but would also lengthen the payout pattern, as the 
temporary claims also finish paying earlier and are 
becoming a smaller portion of total claims. The PTF 
does not provide for changes in the payout pattern 
for later accident years, but the EPTF can accommo-
date that.

The PTF might project the change in payout pattern 
onto the CY direction. The reduction in temporary 
losses in the recent AYs would have only shown up 
in the first several DYs and thus could be interpreted 
as an AY effect that would actually show up in the 
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Figure A1.3.  CY trend changes and levels for three triangles
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Figure A2.1.  CY trend and DY level by AY in EPTF
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