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Predictive Modeling 
of Multi-Peril 

Homeowners Insurance
by Edward W. Frees, Glenn Meyers, and A. David Cummings

AbSTRACT

Predictive models are used by insurers for underwriting and 

ratemaking in personal lines insurance. Focusing on homeown-

ers insurance, this paper examines many predictive generalized 

linear models, including those for pure premium (Tweedie), fre-

quency (logistic) and severity (gamma). We compare predictions 

from models based on a single peril, or cause of loss, to those 

based on multiple perils. For multi-peril models, we introduce 

an instrumental variable approach to account for dependencies 

among perils. We calibrate these models using a database of 

detailed individual policyholder experience. To evaluate these 

many alternatives, we emphasize out-of-sample model compar-

isons. We utilize Gini indices for global comparisons of models 

and, for local comparisons, introduce nonparametric regression 

techniques. We find that using several different comparison 

approaches can help the actuary critically evaluate the effec-

tiveness of alternative prediction procedures.
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Although allowing sets of parameters to be unre-
lated to one another (sometimes called functionally 
independent) is plausible, it seems unlikely that perils 
are independent. Event classification can be ambigu-
ous (e.g., fires triggered by lightning) and unobserved 
latent characteristics of policyholders (e.g., cautious 
homeowners who are sensitive to potential losses 
due to theft-vandalism as well as liability) may induce 
dependencies among perils. Prior empirical investi-
gations reported in Frees, Meyers, and Cummings 
(2010) demonstrated statistically significant depen-
dence among perils.

To accommodate potential dependencies, we intro-
duce an instrumental variables approach. Instrumental 
variables is an estimation technique that is commonly 
used in econometrics to handle dependencies that arise 
among systems of equations. In this paper, we hypoth-
esize that multiple peril models are jointly determined 
and that a methodology such as instrumental variables 
can be used to quantify these dependencies.

Although examining the multiple peril nature of 
homeowners insurance is intuitively plausible, not 
all insurers will wish to consider this complex model.  
In homeowners, consumers are charged a single price, 
meaning that the decomposition by peril may not be 
necessary for financial transactions. Moreover, from 
statistical learning it is well known (e.g., Hastie,  
Tibshirani, and Friedman 2001) that there is a price to 
be paid for complexity; other things equal, more com-
plex models fare poorly compared to simpler alterna-
tives for prediction purposes.

Thus, in this paper we compare our many alterna-
tive models using out-of-sample validation techniques. 
Section 1 introduces our data and Section 2 presents 
several baseline models. We consider both pure pre-
mium and frequency-severity approaches, as well as 
both a single- and multi-peril modeling framework in 
this work. Section 3 introduces the instrumental vari-
able approach. We then show how these competing 
approaches fare in the context of a held-out validation 
sample in Section 4.

Loss distributions are not even approximately sym-
metric nor normally distributed; to illustrate, in our 
data 94% of the losses are zeros (corresponding to no 

1. Introduction

This paper explores the use of predictive models 
that can be used for underwriting and ratemaking 
in homeowners insurance. Homeowners represents 
a large segment of the personal property and casu-
alty insurance business; for example, in the United 
States, homeowners accounted for 13.6% of all prop-
erty and casualty insurance premiums and 26.8% of 
personal lines insurance, for a total of over $57 bil-
lion (III 2010). Many actuaries interested in pricing 
homeowners insurance are now decomposing the set 
of dependent variables (r

i
, y

i
) by peril, or cause of 

loss (e.g., Modlin 2005). Homeowners is typically 
sold as an all-risk policy, which covers all causes 
of loss except those specifically excluded.

Decomposing risks by peril is not unique to per-
sonal lines insurance, nor is it new. For example, 
it is customary in population projections to study 
mortality by cause of death (e.g., Board of Trustees 
2009). Further, in 1958, Robert Hurley discussed 
statistical considerations of multiple peril rating in 
the context of homeowners insurance. Referring to 
“multiple peril rating,” Hurley stated: “The very name, 
whatever its inadequacies semantically, can stir up 
such partialities that the rational approach is over-
whelmed in an arena of turbulent emotions.”

Rating by multiple perils does not cause nearly 
as much excitement in today’s world. Nonetheless, 
Rollins (2005) argues that multi-peril rating is criti-
cal for maintaining economic efficiency and actuar-
ial equity. Decomposing risks by peril is intuitively 
appealing because some predictors do well in pre-
dicting certain perils but not in others. For example, 
“dwelling in an urban area” may be an excellent 
predictor for the theft peril but provide little useful 
information for the hail peril.

Current multi-peril rating practice is based on 
modeling each peril in isolation from the others. 
From a modeling point of view, this amounts to 
assuming that

 • perils are independent of one another, and
 • sets of parameters from each peril are unrelated to 

one another.
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median claim amount), whereas the Other category is 
the least severe. In Table 1, we note that neither the 
Frequency nor the Number of claims sum to the totals 
due to jointly occurring perils within a policy.

In this work, we consider two sets of explanatory 
variables. The goal is to show how the predictive 
modeling techniques work over a range of informa-
tion available to the analyst. The first set of variables 
is a base set that consists of the amount of insurance 
dwelling coverage, a building adjustment, the con-
struction age of the building, policy deductibles, the 
homeowners policy form, and base cost loss costs. 
Here, the “base cost loss costs” are the ISO base class 
loss costs at the home address, a very reasonable 
proxy for territory.

The second set of variables is an “extended” list of 
variables that consists of many (over 100) explanatory 
variables to predict homeowners claims. These are 
a variety of geographic-based plus several standard 
industry variables that account for

 • weather and elevation,
 • vicinity,
 • commercial and geographic features,
 • experience and trend, and
 • rating variables.

The Web site http://www.iso.com/Products/ISO-
Risk-Analyzer/ISO-Risk-Analyzer-Homeowners.
html provides more information on these explanatory 
variables.

claims) and when losses are positive, the distribution 
tends to be right-skewed and thick-tailed. Thus, the 
usual mean square metrics, such as variance and R2, 
are not informative for capturing differences between 
predictions and held-out data. Thus, we use recent 
developments (Frees, Meyers, and Cummings 2011) 
on a statistical measure called a Gini index to compare 
predictors in Section 2. Section 5 explores nonpara-
metric regression, an alternative validation measure. 
Both approaches allow us to compare, among other 
things, a single peril pure premium model with one 
dependent variable to a multiple peril model with 
many dependent variables. Section 6 closes with a 
summary and a few additional remarks.

2. data and preliminary models
2.1. data

To calibrate our models, we drew two random sam-
ples from a homeowners database maintained by the 
Insurance Services Office. This database contains over 
4.2 million policyholder years. It is based on the poli-
cies issued by several major insurance companies in 
the United States, thought to be representative of most 
geographic areas. These policies are almost all for one 
year and so we will use a constant exposure (one) for 
our models.

Our in-sample, or “training,” dataset consists of a 
representative sample of 404,664 records taken from 
this database. The summary measures in this sec-
tion are based on this training sample. In Section 4, 
we will test our calibrated models on a second held-
out, or “validation,” sample that was also randomly 
selected from this database.

For each record, we have information on whether 
there are any claims due to a peril and the amount 
associated with that peril. Table 1 displays summary 
statistics for nine perils from our sample of 404,664 
records. This table shows that WaterNonWeather is 
the most frequently occurring peril, whereas Liabil-
ity is the least frequent. (WaterNonWeather is water 
damage from causes other than weather, e.g., the 
bursting of a water pipe in a house.) When a claim 
occurs, Hail is the most severe peril (based on the 

Table 1. Homeowners summary statistics

Peril
Frequency 
(in percent)

Number 
of Claims

Median Claim 
Amount

Fire 0.310 1,254 4,152

Lightning 0.527 2,134 899

Wind 1.226 4,960 1,315

Hail 0.491 1,985 4,484

WaterWeather 0.776 3,142 1,481

Water 
NonWeather

1.332 5,391 2,167

Liability 0.187 757 1,000

Other 0.464 1,877 875

Theft-Vandalism 0.812 3,287 1,119

Total 5.889 23,834 1,661
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no simpler.” Many analysts prefer the simpler single-
peril models because of their ease of implementation 
and interpretability. Moreover, based on the discus-
sion in the introductory Section 1, industry analysts 
also find a need for multi-peril models. Previous work 
in Frees, Meyers, and Cummings (2010) established 
statistically significant dependence among perils. 
(Appendix Section A gives readers a feel for the type 
of dependencies discussed in that work.) Thus, based 
on empirical evidence and intuition, a goal of this 
paper is to improve upon the assumption of indepen-
dence in the multi-peril models. One approach is the 
“Dependence Ratio Model” that we introduced in 
Frees, Meyers, and Cummings (2010). A drawback 
of this approach is that it is based on a maximum 
likelihood estimation routine that is cumbersome to 
interpret and calibrate. Thus, in this paper, we intro-
duce an instrumental variable approach that can be 
implemented without specialized software to accom-
modate the dependence among perils.

2.3. Overview of the instrumental 
variables approach

An instrumental variable approach to estimation 
can be used to improve upon the predictions under 
the independence models. To illustrate, suppose that 
we are interested in predicting fire claims and believe 
that there exists an association between fire and theft/
vandalism claims. One would like to use the informa-
tion in theft/vandalism claims to predict fire claims; 
however, the number and severity of theft/vandalism 
claims are unknown when making the predictions. We 
can, however, use estimates of theft/vandalism claims 
as predictors of fire claims. This is the essence of 
the instrumental variable estimation method where 
one substitutes proxies for variables that are not avail-
able a priori.

To provide motivation for someone to adopt this 
approach, consider a classic economic demand and 
supply problem that is summarized by two equations:

y y x

y y

i i i i

i

1 1 2 10 11 1 1

2 2

2 1= + + + ( )
=

β γ γ ε
β

price ( . )

11 20 21 2 2i i ix+ + + ( )γ γ ε quantity

2.2. baseline models

Like most analysts, we do not wish to advocate one 
model as superior to others for every dataset. Rather, 
we view the collection of models as tools that the ana-
lyst has at his or her disposal—the job of the analyst is 
to pick the right tool for a dataset under consideration. 
Below is the collection of baseline models that we con-
sider here. Note that in the empirical data section, we 
calibrate each model with the base and the extended 
list of predictor variables described in Section 1.

 • Single-peril models—the dependent variable is 
the outcome for the total policy, not disaggregated 
by peril.

cc Pure premium models—there is a single depen-
dent variable for this model that represents the 
total loss for a policy.

cc Frequency-severity models—there are two 
dependent variables in this type of model, one 
for the frequency and one for the severity.

 • Multi-peril models—there are c = 9 separate out-
comes for each policy, one for each peril.

cc Independence pure premium models—there is 
a dependent variable for each peril, resulting in 
c = 9 dependent variables. Under the “Indepen-
dence” framework, one assumes independence 
among dependent variables.

cc Independence frequency-severity models—for 
each peril, there are two dependent variables, 
one for the frequency and one for the severity. 
This means that there are 2 × 9 = 18 depen-
dent variables. Under the “Independence” 
framework, one assumes independence among 
dependent variables.

cc Dependence ratio models—these have the same 
set of dependent variables as the Independence 
Frequency-Severity Models. However, a depen-
dence structure is introduced in the frequencies 
to accommodate potential dependencies.

A more detailed description of these models may 
be found in Appendix B.

A piece of advice, sometimes attributed to Albert 
Einstein, is to “Use the simplest model possible, but 
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must also include additional variables. Appendix C 
provides additional details.

3. Multi-peril models with 
instrumental variables

As discussed above, when modeling systems of 
c = 9 perils, it seems reasonable to posit that there 
may be associations among perils and, if so, attempt 
to use these associations to provide better predic-
tors. For example, in prior work (see Appendix A), 
statistically significant associations between claims 
from fire and theft/vandalism were established. Sec-
tions 1 and 2 describe the estimation procedures in 
the pure premium and frequency/severity contexts, 
respectively.

3.1. Pure premium modeling

Under our independence pure premium model 
framework, we assume that the claim amount follows 
a Tweedie (1984) distribution. The shape and disper-
sion parameters vary by peril and the mean param-
eter is a function of explanatory variables available 
for that peril. Using notation, we assume that

y Tweedie p

i n

ij i j j j∼ µ φ, , , ,

, . . . , ,

( )
= =1 404 664,, , . . . , . ( . )j c= =1 9 3 1

Here, ϕ
j
 is the dispersion parameter, p

j
 is the shape 

parameter, and µ
i,j
 = exp(x′

i,j


j
) is the mean param-

eter using a logarithmic link function. There are 
many procedures for estimating the parameters in 
Equation (3.1); we use maximum likelihood. See, 
for example, Frees (2010) for an introduction to the 
Tweedie distribution in the context of regression 
modeling.

Estimating independence pure premium models 
with Equation (3.1) allows us to determine regression 
coefficient estimates b

IND,j
. These coefficients allow 

us to compute (independence model) pure premium 
estimates of the form µ̂

IND,i,j
 = exp(x′

i,j
b

IND,j
).

For instrumental variable predictors, we use loga-
rithmic fitted values from other perils as additional 
explanatory variables. For example, suppose we wish 

Here, we assume that quantity (y
2
) linearly affects 

price (y
1
), and vice versa. Further, let x

1
 be the pur-

chasers’ income and x
2
 be the suppliers’ wage rate. 

The other explanatory variables (x’s) are assumed to 
be exogenous for the demand and supply equations.

For simplicity, assume that we have i = 1, . . . , n 
independent observations that follow display (1). One 
estimation strategy is to use ordinary linear regression. 
This strategy yields biased regression coefficient esti-
mates because the right-hand side of display (2.1), 
the “conditioning” or explanatory variables, contains 
a y variable that is also a dependent variable. The 
difficulty with ordinary least squares estimation of  
the model in display (2.1) is that the right-hand side 
variables are correlated with the disturbance term. 
For example, looking at the price equation, one can 
see that quantity (y

2
) is correlated with ε

1
. This is 

because y
2
 depends on y

1
 (from the supply equation), 

which in turn depends on ε
1
 (from the demand equa-

tion). This circular dependency structure induces the 
correlation that leads to biased regression coefficient 
estimation.

The instrumental variable approach is to use ordi-
nary least squares with approximate values for the 
right-hand side dependent variables. To see how this 
works, we focus on the price equation and assume that 
we have available “instruments” w to approximate y

2
. 

Then, we employ a two-stage strategy:

1. Run a regression of w on y
2
 to get fitted values of 

the form y
2 
.

2. Run a regression of x
1
 and y

2 
 on y

1
.

As one would expect, the key difficulties are com-
ing up with suitable instruments w that provide the 
basis for creating reasonable proxies for y

2
 that do  

not have endogeneity problems. In our example, we 
might use x

2
, the suppliers’ wage rate, as our instrument 

in the stage 1 estimate of y
2
, the quantity demanded. 

This variable is exogenous and not perfectly related 
to x

1
, purchaser’s income. Not surprisingly, there are 

conditions on the instruments. Typically, they may 
include a subset of the model predictor variables but 
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example, to interpret the lightning coefficient of the 
fire fitted value, we have

0 220.
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That is, holding other variables fixed, a 1% change 
in the fitted value for lightning is associated with a 
0.22% change in the fitted value for fire.

3.2. Frequency and severity modeling

The approach to instrumental variable estimation for 
frequency and severity modeling is similar to the pure 
premium case but more complex. At the first stage, we 
calculate independence, frequency, and severity fits; 
we now have many instruments that can be used as 
predictor variables for second stage instrumental vari-
able estimation. That is, in principle it is possible to 
use both fitted probabilities and severities in our instru-
mental variable frequency and severity models.

Based on our empirical work, we have found that 
the fitted probabilities provide better predictions than 
using both fitted probabilities and severities as instru-
ments. Intuitively, coefficients for fitted severities are 
based on smaller sample sizes (when there is claim) 
and may contain less information in some sense than 
fitted probabilities. Thus, for our main model we fea-
ture fitted probabilities and include fitted severities for 
a robustness check (Appendix D).

The algorithm is similar to the pure premium mod-
eling in Section 1. We summarize the procedure as 
follows.

 • Stage 1. Compute independence frequency and 
severity model fitted values. Specifically, for each 
of the j = 1, . . . , 9 perils:
1a. Fit a logistic regression model using the explan-

atory variables x
F,i,j

. These explanatory variables 
differ by peril j. Calculate fitted values to get 
predicted probabilities, denoted as π̂

IND,i,j
.

1b. Fit a gamma regression model using the 
explanatory variables x

S,i,j
 with a logarithmic 

to estimate a pure premium model for the first peril. 
For the j = 1st peril, we already have predictors x

i,1
. We 

augment x
i,1

 with the additional predictor variables

ln ˆ , , . . ., ., ,µ IND i j j c= =2 9

We then estimate the pure premium model in Equa-
tion (3.1) using both sets of explanatory variables.

We summarize the procedure as follows.

 • Stage 1. For each of the nine perils, fit a pure pre-
mium model in accordance with Equation (3.1). 
These explanatory variables differ by peril. Calcu-
late fitted values, denoted as µ̂

IND,i,j
. Because these 

fits are unrelated to one another, these are called 
the “independence” pure premium model fits.

 • Stage 2. For each of the nine perils, fit a pure pre-
mium model using the Stage 1 explanatory vari-
ables as well as logarithmic fitted values from the 
other eight perils. Denote the predictions result-
ing from this model as µ̂

IV,i,j
.

Table 2 summarizes the regression coefficient esti-
mates for the fit of the instrumental variable pure 
premium model. This table shows results only for the 
additional instruments, the logarithmic fitted values. 
This is because our interest is in the extent that these 
additional variables improve the model fit when com-
pared to the independence models. Table 2 shows that 
the additional variables are statistically significant, 
at least when one examines individual t-statistics. 
Although we do not include the calculations here, this 
is also true when examining collections of variables 
(using a likelihood ratio test). However, this is not 
surprising because we are working with a relatively 
large sample size, n = 404,664. We defer our more 
critical assessment of model comparisons to Section 4 
where we compare models on an out-of-sample basis. 
There, we will label the resulting insurance scores as 
“IV_PurePrem.”

We use logarithmic fitted values because of the 
logarithmic link function; in this way the additional 
predictors are on the same scale as the fitted values. 
Moreover, by using a natural logarithm, they can be 
interpreted as elasticities, or percentage changes. For 
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Table 2. Instrumental variable pure premium model coefficients
Shown are coefficients associated with the instruments, logarithmic fitted values

Dependent Variables

Fire Lightning Wind

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic

Log Fitted Fire 0.3313 25.10 −0.0184 −1.52

Log Fitted Lightning 0.2200 15.49 0.4120 28.81

Log Fitted Wind −0.0468 −3.16 0.2238 15.43

Log Fitted Hail −0.0196 −4.08 0.0702 14.04 −0.1021 −23.74

Log Fitted WaterWeather 0.2167 14.16 −0.2120 −11.98 −0.0706 −4.20

Log Fitted WaterNonWeat −0.0568 −4.66 0.2822 12.54 0.3442 18.51

Log Fitted Liability −0.0696 −6.05 −0.1667 −12.82 −0.0330 −2.82

Log Fitted Other −0.0147 −1.34 0.0081 0.80 −0.2229 −20.45

Log Fitted Theft 0.7854 37.76 −0.1107 −4.77 −0.1815 −10.20

Dependent Variables

Hail Water Weather Water NonWeather

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic

Log Fitted Fire −0.0786 −7.08 0.1162 7.13 0.3789 33.24

Log Fitted Lightning 0.1291 9.36 0.0062 0.51 −0.0555 −3.58

Log Fitted Wind 0.1194 5.43 0.0504 3.76 0.0329 2.49

Log Fitted Hail −0.0437 -8.74 0.0007 0.14

Log Fitted WaterWeather 0.2794 12.64 −0.2504 −16.37

Log Fitted WaterNonWeat −0.1302 −7.48 0.2833 18.16

Log Fitted Liability −0.4527 −35.37 −0.1764 −14.95 −0.1297 −11.58

Log Fitted Other −0.2411 −21.72 0.2419 20.33 0.0449 4.49

Log Fitted Theft 0.4334 27.43 0.2642 14.36 0.0827 5.10

Dependent Variables

Liability Other Theft

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic

Log Fitted Fire 0.6046 50.38 −0.2285 −19.20 0.2881 25.72

Log Fitted Lightning 0.3883 31.83 0.1874 19.73 0.1567 11.36

Log Fitted Wind −0.6248 −46.63 −0.1297 −11.09 −0.0907 −7.75

Log Fitted Hail 0.0822 16.12 −0.2128 −56.00 −0.0258 −6.00

Log Fitted WaterWeather −0.4337 −22.71 0.2708 27.92 0.2515 18.22

Log Fitted WaterNonWeat −0.2227 −12.80 0.5306 28.99 −0.2138 −15.06

Log Fitted Liability −0.0341 −3.88 −0.1174 −11.40

Log Fitted Other 0.1258 12.21 0.1555 16.37

Log Fitted Theft 0.1447 7.13 −0.0658 −3.45
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little guidance because we are working with a large 
sample size (404,664 records); with large sample 
sizes, coefficient estimates tend to be statistically 
significant using traditional measures. Moreover, 
goodness-of-fit measures are also not very helpful. 
In the basic frequency-severity model, there are 
two dependent variables and in the multi-peril ver-
sion, there are 18 dependent variables. Goodness- 
of-fit measures typically focus on a single dependent 
variable.

We rely instead on out-of-sample comparisons 
of models. In predictive modeling, the “gold stan-
dard” is model validation through examining per-
formance of an independent held-out sample of 
data (e.g., Hastie, Tibshirani, and Friedman 2001). 
Specifically, we use our in-sample data of 404,664 
records to compute parameter estimates. We then 
use the estimated parameters from the in-sample model 
fit as well as predictor variables from a held-out, or 
validation, sample of 359,454 records, whose claims 
we wish to predict. For us, the important advantage 
of this approach is that we are able to compare mod-
els with different dependent variables by aggregating 
predictions into a single score for a record.

To illustrate, consider the independence frequency 
severity model with 18 dependent variables. We can 
use estimators from this model to compute an overall 
predicted amount as

IND_FreqSev Prob Fit

'

i i j i j

j

c

F i

= ×

=

=
∑ 

, ,

,exp
1

x ,, ,

, , ,

, ,

exp

exp

j F j

F i j F j
j

c

S i j

b

x b

x

( )
+ ( )

×

=
∑

11 '

' bbS j, . ( . )( ) 4 1

Here, Prob i j,  is the predicted probability using logis-
tic regression model parameter estimates, b

F,j
, and 

frequency covariates x
F,ij

, for the jth peril. Further, 
Fit i j,  is the predicted amount based on a logarithmic 
link using gamma regression model parameter esti-
mates, b

S,j
, and severity covariates x

S,i,j
, for the jth 

peril. This predicted amount, or “score,” provides a 
basic input for ratemaking. We focus on this measure 
in this section.

link function. These explanatory variables 
may differ by peril and from those used in the 
frequency model. Calculate fitted values to 
get predicted severities (by peril), denoted as 
Ey

IND,i,j
.

 • Stage 2. Incorporate additional instruments into 
the frequency model estimation. Specifically, for 
each of the j = 1, . . . , 9 perils:
2. Fit a logistic regression model using the explan- 

atory variables x
F,i,j

 and the logarithm of the 
predicted probabilities developed in step 1(a), 
ln π̂

IND,i,k
, k = 1, . . . , 9, k ≠ j.

In Section 4 we will label the resulting insurance 
scores as “IV_FreqSevA.” We remark that this pro-
cedure could easily be adapted to distributions other 
than the gamma, as well as link functions other than 
logarithmic. These choices simply worked well for 
our data.

As with the Section 1 pure premium instrumen-
tal variable model, we found many instruments to 
be statistically significant when this model was esti-
mated with our in-sample data. This is not surprising 
because it is common to find effects that are “statisti-
cally significant” using large samples. Thus, we defer 
discussions of model selection to our out-of-sample 
validation beginning in Section 4. In this section, we 
examine alternative instrumental variable models. In 
particular, using additional instruments in the sever-
ity model (instead of the frequency model) will result 
in insurance scores labeled as “IV_FreqSevB.” Use 
of additional instruments in frequency and severity, 
described in detail in Appendix D, will result in insur-
ance scores labeled as “IV_FreqSevC.”

4. Out-of-sample analysis

Qualitative model characteristics will drive some 
modelers to choose one approach over another. How-
ever, others will seek to understand how these com-
peting approaches fare in the context of empirical 
evidence. As noted earlier, in-sample summary statis-
tics are not very helpful for model comparisons. Mea-
sures of (in-sample) statistical significance provide 
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Table 3 also shows that the single-peril frequency 
severity model using the extended set of variables 
(SP_FreqSev) provides the lowest score, both for the 
mean and at each percentile (below the 75th percen-
tile). Except for this, no model seems to give a score 
that is consistently high or low for all percentiles. All 
scores have a lower average than the average held-
out actual claims (TotClaims).

Table 3 shows that the distributions for the 14 scores 
appear to be similar. For an individual policy, to what 
extent do the scores differ? As one response to this 

In the following, Section 4.1 provides global 
comparisons of scores to actual claims. Section 4.2 
provides cumulative comparisons using a Gini index. 
Section 5 provides local comparisons using non-
parametric regression.

4.1. Comparison of scores

We examine the 14 scores that are listed in the leg-
end of Table 3. This table summarizes the distribution 
of each score on the held-out data. Not surprisingly, 
each distribution is right-skewed.

Table 3. Summary statistics of 14 scores and total claims

Percentiles

Score Mean Minimum 1st 5th 25th 50th 75th 95th 99th Maximum

SP_FreqSev_Basic 291.10 20.48 85.00 120.25 182.74 240.37 334.62 618.37 1,025.88 8,856.79

SP_PurePrem_Basic 289.91 33.01 89.48 127.80 189.87 246.44 329.79 586.33 1,050.15 5,467.41

IND_PurePrem_Basic 290.91 37.49 92.08 124.04 182.68 240.30 328.87 612.47 1,087.06 13,577.91

IV_PurePrem_Basic 293.55 36.61 93.91 128.21 187.57 241.29 327.75 616.05 1,122.84 15,472.82

SP_FreqSev 287.79 8.78 71.55 105.39 171.55 237.95 339.40 631.98 1,039.19 6,864.46

SP_PurePrem 290.00 10.23 72.17 107.90 175.83 242.17 338.64 616.64 1,113.73 7,993.52

IND_FreqSev 294.93 33.05 97.14 126.61 185.07 244.99 333.68 606.03 1,106.17 22,402.49

IND_PurePrem 292.18 28.04 86.53 119.74 181.22 240.52 326.60 592.07 1,078.25 49,912.59

IV_PurePrem 294.06 12.42 78.41 113.14 178.62 240.38 330.21 614.22 1,095.70 107,158.09

IV_FreqSevA 290.91 23.99 88.70 121.70 182.29 241.42 327.81 606.23 1,096.86 18,102.93

IV_FreqSevB 295.32 28.52 94.58 124.77 184.29 245.26 335.38 606.63 1,100.61 24,394.06

IV_FreqSevC 291.17 20.88 84.78 118.21 180.63 241.57 329.92 608.28 1,098.40 20,046.03

DepRatio1 301.12 33.38 98.80 128.95 188.73 249.97 340.64 619.79 1,129.96 23,255.94

DepRatio36 302.39 33.48 99.27 129.65 189.87 251.41 342.30 620.38 1,132.36 23,092.35

TotClaims 332.89 0.00 0.00 0.00 0.00 0.00 0.00 660.00 5,916.33 350,000.00

Legend:
Score Interpretation
Scores using the basic set of explanatory variables
  SP_FreqSev_Basic Single-peril, frequency and severity model
  SP_PurePrem_Basic Single-peril, pure premium model
  IND_PurePrem_Basic Multi-peril independence, pure premium model
  IV_PurePrem_Basic Instrumental variable multi-peril pure premium model

Scores using the extended set of explanatory variables
  SP_FreqSev Single-peril, frequency and severity model
  SP_PurePrem Single-peril, pure premium model
  IND_FreqSev Multi-peril frequency and severity model assuming independence among perils
  IND_PurePrem Multi-peril pure premium model assuming independence among perils
  IV_PurePrem Instrumental variable multi-peril pure premium model

Instrumental variable multi-peril frequency and severity models, using the extended set of explanatory variables
  IV_FreqSevA Uses instruments in frequency model
  IV_FreqSevB Uses instruments in severity model
  IV_FreqSevC Uses instruments in frequency and severity models

Dependence ratio multi-peril frequency and severity models, using the extended set of explanatory variables
  DepRatio1 Uses a single parameter for frequency dependencies
  DepRatio36 Uses 36 parameters for frequency dependencies
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frequency-severity or pure premium). The weakest 
associations are between the single- and multi-peril 
measures. For example, the smallest correlation, 0.798, 
is between SP_FreqSev and IND_FreqSev.

Although strongly associated, do the different scor-
ing methods provide economically important differ-
ences in predictions? To answer this, Figure 1 shows 
the relationship between SP_FreqSev and IND_Freq-
Sev. So that patterns are not obscured, only a 1% sam-
ple is plotted. This figure shows substantial variation 
between the two sets of scores. Particularly for larger 
scores, we see percentage differences that are 20% 
and higher.

4.2. Out-of-sample analysis using  
a Gini index

In insurance claims modeling, standard out-of-
sample validation measures are not the most informa-
tive due to the high proportions of zeros (corresponding 
to no claim) and the skewed fat-tailed distribution of the 
positive values. We use an alternative validation mea-
sure, the Gini index, that is motivated by the economics 
of insurance. Properties of the insurance scoring ver-

question, Table 4 provides correlations among the  
14 scores and total claims. This table shows strong 
positive correlations among the scores, and a positive 
correlation between claims and each score. Because 
the distributions are markedly skewed, we use a 
nonparametric Spearman correlation to assess these 
relationships. Recall that a Spearman correlation is a 
regular (Pearson) correlation based on ranks, so that 
skewness does not affect this measure of association. 
See, for example, Miller and Wichern (1977) for an 
introduction to the Spearman correlation coefficient.

Table 4 shows strong associations within scores 
based on the basic explanatory variables (SP_Freq 
Sev_Basic, SP_PurePrem_Basic, IND_PurePrem_
Basic, and IV_PurePrem_Basic). In contrast, asso-
ciations are weaker between scores based on basic 
explanatory variables and those based on the extended 
set of explanatory variables. For scores based on 
the extended set of explanatory variables, there is 
a strong association between the single peril scores 
(0.892, for SP_FreqSev and SP_PurePrem). It also 
shows strong associations within the multi-peril 
measures, particularly those of the same type (either 

Table 4. Spearman correlations of 14 scores and total claims

Basic Explanatory Variables Extended Explanatory Variables

Single Peril IND_ 
Pure 
Prem

IV_ 
Pure 
Prem

Single Peril IND_ IV_ 
Pure 
Prem

IV_FreqSev DepRatio
Freq 
Sev

Pure 
Prem

Freq 
Sev

Pure 
Prem

Freq 
Sev

Pure 
Prem A B C 1 36

SP_FreqSev_Basic 1.000

SP_PurePrem_Basic 0.949 1.000

IND_PurePrem_Basic 0.922 0.948 1.000

IV_PurePrem_Basic 0.924 0.941 0.965 1.000

SP_FreqSev 0.880 0.842 0.817 0.811 1.000

SP_PurePrem 0.818 0.855 0.809 0.801 0.892 1.000

IND_FreqSev 0.808 0.834 0.875 0.850 0.798 0.802 1.000

IND_PurePrem 0.850 0.875 0.899 0.888 0.849 0.872 0.905 1.000

IV_PurePrem 0.830 0.842 0.852 0.862 0.850 0.879 0.858 0.962 1.000

IV_FreqSevA 0.850 0.878 0.885 0.883 0.853 0.881 0.943 0.939 0.936 1.000

IV_FreqSevB 0.797 0.826 0.858 0.843 0.800 0.806 0.994 0.916 0.871 0.948 1.000

IV_FreqSevC 0.831 0.860 0.858 0.868 0.846 0.876 0.927 0.941 0.938 0.994 0.944 1.000

DepRatio1 0.808 0.834 0.875 0.850 0.798 0.802 1.000 0.905 0.859 0.943 0.994 0.928 1.000

DepRatio36 0.808 0.835 0.876 0.850 0.798 0.803 1.000 0.905 0.859 0.943 0.994 0.928 0.999 1.000

TotClaims 0.043 0.043 0.040 0.041 0.052 0.053 0.032 0.048 0.051 0.048 0.033 0.049 0.032 0.032
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peril, frequency and severity model. Assume that 
the insurer wishes to investigate alternative scoring 
methods to understand the potential vulnerabilities of 
this premium base; Table 5 summarizes several com-
parisons using the Gini index. This table includes the 
comparison with the alternative score IND_FreqSev as 
well as twelve other scores.

The standard errors were derived in Frees, Meyers, 
and Cummings (2011) where the asymptotic normal-
ity of the Gini index was proved. Thus, to interpret 
Table 5, one may use the usual rules of thumb and 
reference to the standard normal distribution to assess 
statistical significance. For the three scores that use 
the basic set of variables, SP_PurePrem_Basic, IND_
PurePrem_Basic, and IV_PurePrem_Basic, all have 
Gini indices less than two standard errors, indicating 
a lack of statistical significance. In contrast, the other 
Gini indices all are more than three standard errors 
above zero, indicating that the ordering used by each 

sion of the Gini index have been recently established in 
Frees, Meyers, and Cummings (2011). Intuitively, the 
Gini index measures the negative covariance between 
a policy’s “profit” (P − y, premium minus loss) and the 
rank of the relativity (R, score divided by premium). 
That is, the close approximation

Gini
n

Cov P y rank R ≈ − −( ) ( )( )2
,

was established in Frees, Meyers, and Cummings 
(forthcoming).

4.2.1. Comparing scoring methods to a 
selected base premium

Assume that the insurer has adopted a base pre-
mium for rating purposes; to illustrate, we use the “SP_ 
FreqSev_Basic” for this premium. Recall from Sec-
tion 1 that this method uses only a basic set of rating 
variables to determine insurance scores from a single-

Figure 1. Single versus multi-peril frequency-severity scores. This graph is based on a 1 in 100 random 
sample of size 3,594. The correlation coefficient is only 79.4%; the figure shows substantial variation 
between the two sets of scores.
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One method of making local comparisons used in 
practice involves comparing averages of relativities 
and loss ratios for homogenous subgroups. Intuitively, 
if a score S is a good predictor of loss y, then a graph of 
scores versus losses should be approximately a straight 
line with slope one. This is also true if we rescale by a 
premium P. To illustrate, let (S

i
, y

i
) represent the score 

and loss for the ith policy and, when rescaled by pre-
mium P

i
, let R

i
 = S

i
/P

i
 and LR

i
 = y

i
/P

i
 be the correspond-

ing relativity and loss ratio. To make homogenous 
subgroups, we could group the policies by relativity 
deciles and compare average loss ratios for each decile.

The left-hand panel of Figure 2 shows this compari-
son for the premium P = “SP_FreqSev_Basic” and 
score S = “SP_FreqSev”. A more primitive compari-
son of relativities and loss ratios would involve a plot 
of R

i
 versus LR

i
; however, personal lines insurance 

typically has many zero losses, rendering such a graph 
ineffective. For our application, each decile is the 
average over 35,945 policies, making this comparison 
reliable. This panel shows a linear relation between 
the average loss ratio and relativity, indicating that the 
score SP_FreqSev is a desirable predictor of the loss.

An overall summary of the plot of relativities to 
loss ratios is analogous to the Gini index calculation. 

In the former, the relationship of interest is LR
y

P
=  

versus R; in the latter, it is y − P versus rank(R). The 
differences are (a) the rescaling of losses by premiums 
and (b) the use of rank relativities versus relativities. 
The Gini index summarizes the entire curve whereas 
the graphs in this section will allow us to examine rela-
tionships “locally,” as described below.

Table 5. Gini indices and standard errors

Alternative Score Gini Standard Error Alternative Score Gini Standard Error

SP_PurePrem_Basic 4.89 2.74 IV_FreqSevA 12.59 2.50

IND_PurePrem_Basic 4.01 2.77 IV_FreqSevB 10.61 2.54

IV_PurePrem_Basic 4.33 2.75 IV_FreqSevC 12.80 2.49

SP_FreqSev 11.15 2.54 DepRatio1 10.09 2.56

SP_PurePrem 9.97 2.59 DepRatio36 10.06 2.56

IND_FreqSev 10.03 2.56

IND_PurePrem 10.96 2.57

IV_PurePrem 11.29 2.55

Note: Base Premium is SP_FreqSev_Basic.

score helps detect important differences between 
losses and premiums.

The paper of Frees, Meyers, and Cummings (2011) 
also derived distribution theory to assess statistical 
differences between Gini indices. Although we do not 
review that theory here, we did perform these calcu-
lations for our data. It turns out that there are no sta-
tistically significant differences among the ten Gini 
indices that are based on the extended set of explana-
tory variables.

In summary, Table 5 suggests that there are impor-
tant advantages to using extended sets of variables 
compared to the basic variables, regardless of the 
scoring techniques used. Moreover, this table suggests 
that the instrumental variable scores provide improved 
“lift” when compared to the scores generated by the 
independence model.

5. Out-of-sample analysis  
using local comparisons  
of claims to scores

As noted in Section 2, one interpretation of the 
Gini index is as the covariance between y − P (loss 
minus premium) and the rank of relativities. Another 
interpretation is as an area between cumulative distri-
butions of premiums and losses. Through the accumu-
lation process, models may be locally inadequate and 
such deficiencies may not be detected by a Gini index. 
Thus, this section describes an alternative graphical 
approach that can help us assess the performance of 
scores locally.
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R = x, we get a good idea as to what one can expect LR 
to be—that is, E(LR⎥ R = x), the regression function. It 
is called “nonparametric” because there is no assump-
tion about a functional form such as linearity.

To see how this works, Figure 3 provides a plot for 
the basic frequency severity score, SP_FreqSev, and 
its multi-peril version assuming independence, IND_
FreqSev. To calculate the nonparametric fits, this 
figure is based on b = 0.1. For our data, this choice of 
b (known as a “bandwidth”) means that the averages 
were calculated using at least 13,000 records. For 
example, at x = 0.6, there were 27,492 policies with 
relativities that fell in the interval [0.5,0.7]. These 
policies had an average loss ratio of 0.7085, result-
ing in a deviation of 0.1085. We plot the fits in incre-
ments of 0.05 for the value of x, meaning that there is 
some overlap in adjacent neighborhoods. This over-
lap is not a concern for estimating average fits, as we 
are doing here. We plot only relativities in the interval 
[0.6, 1.6] because the data become sparse outside of 
that interval. Figure 3 shows that the deviations from 
IND_FreqSev and SP_FreqSev are comparable; it is 
difficult to say which score is uniformly better.

Figure 4 provides additional comparisons. The left 
panel compares the error in IND_FreqSev to one 
of the instrumental variable alternatives, IV_Freq-
SevA. Here, the IV_FreqSevA error is smaller for 
low relativities (0.6 through 0.8) and medium size 

Of course, extensive aggregation such as at the 
decile level may hide important patterns. The middle 
and right-hand panels of Figure 2 show comparisons 
for 20 and 50 bins, respectively. In the right-hand 
panel, each of the 50 bins represents an average of 
2% of our hold-out data (= 7,189 records per bin). 
This panel shows substantial variability between the 
average relativity and loss ratio, so we consider alter-
native comparison methods.

Specifically, we use nonparametric regression to 
assess score performance. Although nonparametric 
regression is well known in the predictive modeling 
community (e.g., Hastie, Tibshirani, and Friedman 
2001), it is less widely used in actuarial applications. 
The ideas are straightforward. Consider a set of rel-
ativities and loss ratios of the form (R

i
, LR

i
), i = 1, 

. . . , n. Suppose that we are interested in a prediction 
at relativity x. Then, for some neighborhood about x, 
say, [x − b, x + b], one takes the average loss ratio over 
all sets whose score falls in that neighborhood. Using 
notation, we can express this average as

ˆ
,

,
, ( . )m x

w x R LR

w x R

i i
i

n

i
i

n( ) =
( )

( )
=

=

∑

∑
1

1

5 1

where the weight function w(x, R
i
) is 1 if R

i
 falls in 

[x − b, x + b] and 0 otherwise. By taking an average of 
all those observations with scores that are “close” to  

Figure 2. Average relativities and loss ratios by groups of scores. Each panel displays a linear 
relationship. The variability about the relationship increases as the number of bins increases.
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Figure 3. Comparison of single and multi-peril frequency-severity loss ratios. The deviations from  
INd_FreqSev and SP_FreqSev are comparable and it is difficult to say which score is uniformly better.
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Figure 4. Comparison of loss ratios from several scoring methods. The left panel compares the 
independence to an instrumental variable frequency-severity approach; the latter is clearly preferred to 
the former. The right panel compares the independence frequency-severity approach to the single peril 
pure premium (Tweedie) method. These two measures perform about the same for most of the data.
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type may be due to fire, liability, and so forth. One 
could also use this strategy to model homeowners and 
automobile policies jointly or umbrella policies that 
consider several coverages simultaneously. As another 
example, in health care, expenditures are often broken 
down by diagnostic-related groups.

Although an important contribution of our work is 
the introduction of instrumental variable techniques 
to handle dependencies among perils, we do not wish 
to advocate one technique or approach as optimal in 
all situations. Sections 2 and 3, as well as Appen-
dix B, introduce many models, each of which has 
advantages compared to alternatives. For example, 
models that do not decompose claims by peril have 
the advantage of relative simplicity and hence inter-
pretability. The “independence” multi-peril mod-
els allow analysts to separate claims by peril, thus  
permitting greater focus in the choice of explana-
tory variables. The instrumental variable models 
allow analysts to accommodate associations among 
perils. When comparing the pure premium to the 
frequency-severity approaches, the pure premium has 
the advantage of relative simplicity. In contrast, the 
frequency-severity has the advantage of permitting 
greater focus, and hence interpretability, on the choice 
of explanatory variables.

This paper supplements these qualitative consid-
erations through quantitative comparisons of predic-
tors based on a held-out, validation sample. For our 
data, we found substantial differences among scor-
ing methods, suggesting that the choice of methods 
could have an important impact on an insurer’s pric-
ing structure. We found that the instrumental vari-
able alternatives provided genuine “lift” compared 
to baseline multi-peril rating methods that implicitly 
assume independence, for both the pure premium 
and frequency-severity approaches. We used non-
parametric regression techniques to explore local dif-
ferences in the scores. Although we did not develop 
this point extensively, we conjecture that insurers 
could use the nonparametric techniques to identify 
regions where one scoring method is superior to an 
alternative (using covariate information) and possibly 
develop a next stage “hybrid” score.

relativities (1.2 through 1.4) and approximately simi-
lar elsewhere (0.8 through 1.2). Based on this com-
parison, the score IV_FreqSevA is clearly preferred to 
the score IND_FreqSev.

The right panel of Figure 4 compares the error in 
IND_FreqSev to the basic pure premium score, SP_
PurePrem. This panel shows that these two measures 
perform about the same for most of the data, sug-
gesting that neither is uniformly superior to the other.

For each illustration, we seek a score that is close to 
the 45 degree line. For our applications, we interpret 
m(x) − x to be the deviation when using the relativity 
R to predict loss ratios LR. Compared to Gini indices, 
this measure allows us to see the differences between 
relativities and loss ratios locally over regions of x.

6. Summary and concluding remarks

In this paper, we considered several models for pre-
dicting losses for homeowners insurance. The models 
considered include

 • single versus multiple perils, and

 • pure premium versus frequency-severity approaches. 

Moreover, in the case of multiple perils, we also 
compared

 • independence to instrumental variable models.

The instrumental variable estimation technique 
is motivated by systems of equations, where the pres-
ence and amount of one peril may affect another. We 
show in Section 3 that instrumental variable estimators 
accommodate statistically significant relationships that 
we attribute to associations among perils.

For our data, each accident event was assigned to 
a single peril. For other databases where an event 
may give rise to losses for multiple perils, we expect 
greater association among perils. Intuitively, more 
severe accidents give rise to greater losses and this 
severity tendency will be shared among losses from 
an event. Thus, we conjecture that instrumental vari-
able estimators will be even more helpful for com-
panies that track accident event level data.

This paper applies the instrumental variable estima-
tion strategy to homeowners insurance, where a claim 
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For example, from Table 6, we would calculate 
this as

11
404664

1254
404664

2134
404664

1 663
×

= . .

A dependence ratio equal to one indicates inde-
pendence among perils.

Table 7 suggests dependence among perils. How-
ever, these statistics do not control for the effects of 
explanatory variables. For example, combinations of 
explanatory variables that mean a high probability of 
one peril may also induce a high probability of another 
peril, thus leading to seeming positive association.

For assessing frequency dependencies in the pres-
ence of explanatory variables, recall that r denotes the 
binary variable that indicates a claim (y = 1). Let q

ij
 be 

the corresponding probability of a claim. The number 
of claims that is joint between the jth and kth perils 
is Σn

i=1 r
ij
 × r

ik
. Assuming independence among perils, 

this has mean and variance

E r r q qij ik
i

n

ij ik
i

n

×( ) = ×
= =

∑ ∑
1 1

and

Var r r q q q qij ik
i

n

ij ik ij ik
i

n

×( ) = − ( )
= =

∑ ∑
1

2

1

.

Appendices
A. Summary statistics of the 
homeowners data

This section displays summary statistics of the 
frequency portion of the homeowners data, the pur-
pose being to illustrate the dependence among perils. 
There were relatively few joint claims and so it is dif-
ficult to intuitively argue for a severity dependency. 
Many of these statistics appeared in Frees, Meyers, and 
Cummings (2010). To keep this paper self-contained, 
these summary measures are provided here to famil-
iarize readers with our data.

Table 6 gives the number of joint claims among 
perils. For example, we see that there were only three 
records that had a Lightning and a Liability claim 
within the year.

To measure association among perils, Table 7 
provides the dependence ratios among perils. A 
dependence ratio is the ratio of the joint probabil-
ity to the product of the marginal probabilities. 
For example, for perils 1 and 2, the dependence 
ratio is

Pr r r

Pr r Pr r

( )
( ) ( )

= = =
= =

dependence ratio
1, 1

1 1
.1 2

1 2

Table 6. Joint claim counts among perils

Fire Lightning Wind Hail
Water 

Weather
Water 

NonWeather Liability Other
Theft 
Vand

Lightning 11

Wind 23 17

Hail 7 11 23

WaterWeather 23 12 62 13

WaterNWeath 27 32 92 43 93

Liability 4 3 17 3 7 16

Other 16 18 45 2 18 48 13

TheftVand 20 25 55 16 38 71 9 31

Totals 1254 2134 4960 1985 3142 5391 757 1877 3287

Note: Totals refer to all claims from a peril, not just those occurring jointly with another peril.
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To assess dependencies among the claim frequen-
cies, we employ the t-statistic

t
r r q q

q q q q
jk

ij ik
i

n

ij ik
i

n

ij ik ij ik

=
× − ×

− (
= =

∑ ∑
1 1

))
=

∑ 2

1i

n
. ( )A.1

The t-statistic in Equation (A.1) would be a standard 
two-sample t-statistic, except that we allow the prob-
ability of a claim to vary by policy i. To estimate these 
probabilities, we fit a logistic regression model for 
each peril j, where the explanatory variables are peril-
specific. Each model was fit in isolation of the others, 
thus implicitly using the null hypothesis of indepen-
dence among perils.

Table 8 summarizes the test statistics for assessing 
independence among the frequencies. Not surprisingly, 
the strongest relationship was between water damage 
due to weather and water damage from causes other 

than weather. The largest dependence ratio in Table 7, 
between fire and the “Other” category, was the second 
largest t-statistic—this indicates strong dependence 
even after covariates are introduced. Interestingly, the 
only significant negative relationship was between hail 
and the “Other” category.

For the degrees of freedom of the t-statistic, we 
have followed the usual rule of the number of obser-
vations minus the number of parameters. Because 
our sample size is large (n = 404,664) relative to the 
number of parameters, the reference distribution is 
essentially normal.

b. Notation and baseline models

In a multi-peril model, one decomposes the risk 
into one of c types (c = 9 in Table 1). To set notation, 
define r

i,j
 to be a binary variable indicating whether 

or not the ith record has an insurance claim due to 

Table 7. dependence ratios among perils

Fire Lightning Wind Hail
Water 

Weather
Water 

NonWeather Liability Other

Lightning 1.663

Wind 1.496 1.338

Hail 1.138 1.051 0.945

WaterWeath 2.362 0.724 1.610 0.843

WaterNWeath 1.616 1.126 1.392 1.626 2.222

Liability 1.705 0.751 1.832 0.808 1.191 1.587

Other 2.751 1.818 1.956 0.217 1.235 1.920 3.702

TheftVand 1.963 1.442 1.365 0.992 1.489 1.621 1.464 2.033

Table 8. Test statistics from logistic regression fits

Fire Lightning Wind Hail
Water 
Weather

Water 
NonWeather Liability Other

Lightning 1.472

Wind 1.662 1.530

Hail 0.754 0.247 −1.240

WaterWeath 3.955 −1.166 3.185 −0.100

WaterNWeath 2.732 0.837 3.369 1.697 7.429

Liability 1.023 −0.485 2.436 −0.303 0.333 1.825

Other 4.048 2.229 3.919 −2.616 0.478 4.004 4.929

TheftVand 3.085 1.816 2.270 −0.235 2.227 3.503 1.147 3.766
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the jth type, j = 1, . . . , c. Similarly, y
i,j
 denotes the 

amount of the claim due to the jth type. To relate the 
multi- to the single-peril variables, we have

r r ri i i c= − −( ) × × −( )1 1 11, ,
. . . ( )B.1

and

y r yi i j i j
j

c

= ×
=

∑ , , . ( )
1

B.2

We interpret r
i
 to be a binary variable indicating 

whether or not the ith policyholder has an insurance 
claim and y

i
 describes the amount of the claim, if 

positive.

Single-Peril Frequency-Severity Model

In homeowners, insurers typically have available 
many home and a few policyholder characteristics 
upon which rates are based. For notation, let x

i
 be a 

complete set of explanatory variables that is available 
to the analyst. In the frequency-severity approach, 
models are specified for both the frequency and sever-
ity components. For example, for the frequency com-
ponent we might fit a logistic regression model with r

i
 

as the dependent variable and x
Fi
 as the set of explana-

tory variables. Denote the corresponding set of regres-
sion coefficients as b

F
. For the severity component, 

we condition on the occurrence of a claim (r
i
 = 1), 

and might use a gamma regression model with y
i
 as 

the dependent variable and x
Si
 as the set of explana-

tory variables. Denote the corresponding set of regres-
sion coefficients as b

S
. In this paper, we call this the 

single-peril frequency-severity model. Beginning in 
Section 4, we label the resulting insurance scores as 
“SP_FreqSev.”

Single-Peril Pure Premium Model

An alternative approach is to model the claim amount 
y

i
 directly using the entire dataset. Because the distri-

bution of {y
i
}n

i=1
 contains many zeros (corresponding to 

no claims) and positive amounts, it is common to use 
a distribution attributed to Tweedie (1984). This distri-
bution is motivated as a Poisson mixture of gamma 

random variables. Moreover, because it is a member 
of the linear exponential family, it may be readily esti-
mated using generalized linear model techniques.  
In our empirical work, we use a logarithmic link func-
tion so that the mean parameter may be written as  
µ

i
 = exp(x′

i
b), thus incorporating all of the explanatory 

variables. We call this the single-peril pure premium 
model. For readers wishing a review of the Tweedie 
distribution, see Frees (2010, Chapter 13). We will 
label the resulting insurance scores as “SP_PurePrem.”

Multi-Peril Independence Models

In both the frequency-severity and pure premium 
approaches, dependent variables can be readily decom-
posed by peril. From our database, explanatory vari-
ables have been selected by peril j for the frequency, 
x

F,i,j
, and severity, x

S,i,j
, portions, j = 1, . . . , 9. For exam-

ple, these variables range in number from eight for the 
Other peril to 19 for the Water Weather peril. A multi-
peril frequency-severity approach is:

 • For frequency, we fit a logistic regression model 
with r

i,j
 as the dependent variable and x

F,i,j
 as the 

set of explanatory variables, with a corresponding 
set of regression coefficients b

F,j
.

 • For severity, after conditioning on the occurrence 
of a claim (r

i,j
 = 1), we use a gamma regression 

model with y
i,j
 as the dependent variable and x

S,i,j
 as 

the set of explanatory variables, with corresponding 
set of regression coefficients b

S,j
.

 • We do this for each peril, j = 1, . . . , 9.

From a modeling point of view, this amounts to 
assuming that perils are independent of one another 
and that sets of parameters from each peril are unre-
lated to one another. Thus, we call these the “inde-

pendence” frequency-severity models. We will label 
the resulting insurance scores as “IND_FreqSev.”

Following a similar set of reasoning, for pure pre-
mium modeling we define the union of the frequency 
x

F,i,j
 and severity x

S,i,j
 variables to be our set of explana-

tory variables for the jth peril, x
i,j
. With these, one can 

estimate a pure premium model for each peril, j = 
1, . . . , 9. We call these the “independence” pure 
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premium models. We will label the resulting insurance 
scores as “IND_PurePrem.”

To compare the basic (single-peril) and indepen-
dence (multi-peril) models, we look to out-of-sample 
results beginning in Section 4. In Frees, Meyers, and 
Cummings (2010), we introduced a multivariate binary 
model that accounts for dependencies among the peril 
frequencies. This work established statistical signifi-
cance among the perils. Thus, for completeness, in Sec-
tion 4 we include these scores labeled as “DepRatio1” 
and “DepRatio36”, for 1 and 36 dependency param-
eters, respectively. Additional details on this method 
are in Frees, Meyers, and Cummings (2010).

C. The instrumental  
variables approach

This section provides a brief introduction of the 
instrumental variable method of estimation that is 
widely used in econometrics. Our treatment follows 
that in Frees (2004).

To motivate this approach, consider a classical eco-
nomic demand and supply problem introduced in Sec-
tion 3. One estimation approach is to organize all of the 
dependent variables on the left-hand side and estimate 
the model using likelihood inference. Specifically, 
with some algebra, we could rewrite display (2.1) as

y Bi
i

i
i

i

y
y

x
x

= 
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−
1

1
1

2
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. Then, parameters of this 

equation could be estimated using, for example, max-
imum likelihood.

Using instrumental variables is an alternative 
ap proach. That is, suppose that theory suggests a 
linear equation of the form

yi i i= +x' ε .

We may consider an explanatory variable to be 
endogenous if it is correlated with the disturbance 

term. Because zero covariance implies zero cor-
relation and because disturbance terms are mean 
zero, we require only that E ε

i
x

i
 = 0 for exogeneity. 

When not all of the regressors are exogenous, the 
instrumental variable technique employs a set of 
variables, w

i
, that are correlated with the regressors 

specified in the structural model. Specifically, we 
assume

E E 'ε i i i i iyw x w= −( ) = 0

for the instruments to be exogenous. With these 
additional variables, an instrumental variable esti-
mator of b is of the form b

IV
 = (X′P

W
X)−1X′P

W
y. 

Here, P
W

 = W(W′W)−1W′ is a projection matrix and 
W = (w

1
, . . . , w

n
) is the matrix of instrumental 

variables.
In many situations, instrumental variable estimators 

can be easily computed using two-stage least squares. 
In the first stage, one regresses each endogenous 
regressor on the set of exogenous explanatory vari-
ables and calculates fitted values of the form X = PW

X. 
In the second stage, one regresses the dependent vari-
able on the fitted values using ordinary least squares 
to get the instrumental variable estimator, that is,  
b

IV
 = (X′X)−1X′y.
As noted in Section 3, there are conditions on the 

instruments. Typically, they may include a subset of x 
but must also include additional variables. For exam-
ple, if they did not include additional variables, then 
linear combinations of instruments yield perfect linear 
combinations of x, resulting in perfect collinearity and 
non-identifiability of the coefficients. Further, the 
new explanatory variables in w must also be exoge-
nous (unrelated to ε), otherwise we have done nothing 
to solve our initial problem.

Instrumental variables are employed when there are 
(1) systems of equations, (2) errors in variables, and 
(3) omitted variables. For the applications in this 
paper, we will use this concept for both systems of 
equations and for omitted variables. Extensions to 
non-linear systems are readily available in standard 
econometric texts, including Arellano (2003) and 
Wooldridge (2002).
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d. Frequency and severity 
instrumental variable estimation

Section 2 describes the instrumental variable 
approach focusing on the frequency portion of the 
model. We also found that fitted probabilities of a peril 
help to predict the severity from that peril (and, vice 
versa, fitted severities help to predict probabilities). 
To provide intuition, we focus on the severity model 
to begin and, as we will see, we will be able to eas-
ily reverse the roles of frequency and severity. In our 
database, we have a variable “base cost loss costs” that 
we use to approximate PREM

j
, pure premium, in our 

empirical work.

 • Pure premium is expected frequency times severity, 
that is, PREM

j
 = π

j
 × E y

j
.

 • This suggests that a good explanatory variable 
for the severity portion is PREM

j
/π

j
.

 • Of course, we do not know π
j
 but can estimate it 

from a stage 1 regression as, say, π̂
j
.

 • Because we use a log-link function, this suggests 
including ln(PREM

j
/π̂

j
). Often, logarithmic base 

cost loss costs are already in the regression, so we 
include ln π̂

j
 as a predictor of severity.

An interesting aspect of this logic is that the instru-
mental variable approach provides motivation for using 
frequency to predict severity.

Now, reverse the roles of frequency and severity— 
include ln Ey

j
 as a predictor of frequency. We remark 

that when one does this, it is not quite as clean an argu-
ment because we typically use the logit link with logis-
tic model. However, for small probabilities, these two 

are quite close and so a log-fitted severity works well 
at this stage.

We summarize the procedure as follows.

 • Stage 1. Compute independence frequency and 
severity model fitted values. Specifically, for each 
of the j = 1, . . . , 9 perils:
– 1a.  Fit a logistic regression model using the 

explanatory variables x
F,i,j

. These explana-
tory variables differ by peril j. Calculate fit-
ted values to get predicted probabilities, 
denoted as π̂

IND,i,j
.

– 1b.  Fit a gamma regression model using the 
explanatory variables x

S,i,j
 with a logarithmic 

link function. These explanatory variables 
may differ by peril and from those used in 
the frequency model. Calculate fitted values 
to get predicted severities (by peril), denoted 
as Ey

IND,i,j
.

 • Stage 2. Incorporate additional instruments into the 
model estimation. Specifically, for each of the j = 1, 
. . . , 9 perils:
– 2a. Fit a logistic regression model using

* the explanatory variables x
F,i,j

,

*  the logarithm of the predicted probabilities 
developed in step 1(a), ln π̂

IND,i,j
, k = 1, . . . , 9, 

k ≠ j and

*  the logarithm of the fitted values in step 
1(b), ln π̂

IND,i,j
.

– 2b. Fit a gamma regression model using

* the explanatory variables xS,i,j and

*  the logarithm of the fitted predicted prob-
abilities in step 1(a), ln π̂

IND,i,j
.


