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ABSTRACT

Excess loss factors, which are ratios of expected losses ex-
cess of a limit to total expected losses, are used by the Na-
tional Council on Compensation Insurance (NCCI) in class
ratemaking (estimating the expected ratio of losses to pay-
roll for individual workers compensation classifications)
and are used by insurance carriers to determine premiums
for certain retrospectively rated policies (on policies for
which claims used in the premium determination are sub-
ject to a per-claim limitation). Collections of workers com-
pensation classifications that use the same expected excess
loss factors are called hazard groups. At the beginning of
2007, NCCI implemented a new seven-hazard-group sys-
tem, replacing the previous four-hazard-group system. This
paper describes the analysis that led to the assignment of
classes to the new seven hazard groups.
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1. Introduction

In the United States, most private employers
are required to provide workers compensation
coverage to pay employees injured on the job lost
wages and medical costs arising from the work
injury. Often employers provide this coverage by
purchasing workers compensation insurance. For
many insureds, premiums are based, in part, on
the payroll classification of the employer, which
is based on the type of business and operations
performed by employees. For example, there is
a classification for roofing businesses, and an-
other classification for professional employees of
hospitals. Currently there are about 800 different
classifications in use in states for which NCCI
provides ratemaking services (although the ex-
act number used in any given state varies).
For various individual risk-rating purposes, for

use in NCCI ratemaking, and for other reasons,
it is useful to have tables of excess loss factors.
An excess ratio or excess loss factor (ELF)1 is the
ratio of the expected amount of claims excess of
a given limit to total expected claims. Because
the probability that a loss is large, given that a
loss occurs, varies by class, it is useful to have
ELFs that vary by class.
A hazard group is a collection of workers com-

pensation classifications that have relatively sim-
ilar expected excess loss factors over a broad
range of limits. NCCI periodically publishes ta-
bles of ELFs for states where NCCI provides
ratemaking services. Generally these tables are
updated annually, and give ELFs (or closely re-
lated factors) by hazard group for selected limits.
At the beginning of 2007, NCCI implemented

a new seven-hazard-group system, replacing the

1In published tables, what we denote here as ELFs are often called
Excess Loss Pure Premium Factors, or ELPPFs. And in published
tables, ratios of excess loss to premium are often called Excess
Loss Factors, or ELFs. Some published tables give ratios of excess
loss plus allocated loss adjustment expense to either premium or
loss plus allocated loss adjustment expense. We are concerned only
with ratios of excess losses to total losses.

Table 1. Distribution of classes by prior hazard group

NCCI Hazard
Group

Number of
Classes

Premium
(billions)

Percent of Total
Premium

I 38 $1.3 0.9%
II 428 $67.2 45.6%
III 318 $75.3 51.1%
IV 86 $3.6 2.5%

previous four-hazard-group system. That is, un-
der the new system, each classification is as-
signed to one of seven hazard groups. The seven
new hazard groups are not simply a subdivision
of the previous four; they are a substantially dif-
ferent mapping of classes to hazard group. This
article describes the analysis that led to the as-
signment of classes to the new seven hazard
groups.
Under the previous NCCI four-hazard-group

system, the bulk of workers compensation (WC)
exposure in NCCI states was concentrated in two
hazard groups, as can be seen in Table 1.
In our analysis, we considered whether a finer

delineation would be possible, and what might
be the optimal number of hazard groups. Apart
from those considerations, hazard group assign-
ments should be reviewed periodically because
of changes over time in the insurance industry,
technology, workplaces, and the evolution of the
classification system and workers compensation
infrastructure. The previous review had been
done in 1993.
NCCI defines hazard groups on a country-wide

basis. That is, the grouping of classes into haz-
ard groups does not vary by state. Most workers
compensation classes apply in every state where
NCCI provides ratemaking services, although
there are a few classes known as “state specials”
that apply in only one state or a few states. NCCI
takes the view, as it does in class ratemaking, that
classes are homogeneous with respect to opera-
tions of the insureds, and therefore that the rel-
ative mix of injuries within a class should not
vary much from state to state.
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1.1. Prior work

The prior NCCI hazard groups were developed
by first identifying seven variables based on rela-
tive claim frequency, severity, and pure premium,
which were thought to be indicative of excess
loss potential (NCCI 1993). These variables were
the ratios of class average to statewide weighted
average:

1. serious2 to total claim frequency ratio

2. serious indemnity severity3

3. serious medical severity

4. serious severity, including medical

5. serious to total indemnity pure premium4 ratio

6. serious medical to total medical pure premium
ratio

7. serious pure premium to total pure premium
ratio

Because of the correlations among these seven
variables, the seven variables were grouped into
three subsets based on an examination of the par-
tial correlation matrix. A principal components5

analysis was then done to determine a single rep-
resentative variable from each of the three sub-
sets and the linear combination of these repre-
sentative variables that maximized the proportion
of the total variance explained. The representa-
tive variables selected were the first, second, and
last variables. The linear combination so identi-
fied is called the first principal component and is
the single variable that was used to sort classes
into hazard groups. Determination of the optimal
number of hazard groups was outside the scope

2A serious claim is one for which at least one of the following
benefits for lost wages is paid or is expected to be paid:
a. Fatal (death)
b. Permanent Total (injured worker not expected to ever be able

to work)
c. Permanent Partial (able to work after recovery period, but with

a permanent injury, such as loss of a limb) and benefits for lost
wages exceed certain thresholds that vary by state and year.
3Severity is the average claim cost. Indemnity is benefits for lost
wages. Medical is benefits for medical costs.
4Pure premium is the ratio of expected losses to payroll in $100s.
5See Johnson and Wichern (2002) for a discussion of principal
components.

of that study and so the number of hazard groups
remained unchanged at four.
A very different approach was employed by

the Workers Compensation Insurance Rating Bu-
reau of California (WCIRB 2001). TheWCIRB’s
objective was to group classes with similar loss
distributions. They used two statistics to sort
classes into hazard groups. The first statistic was
the percentage of claims excess of $150,000. This
statistic was thought of as a proxy for large loss
potential. The second statistic measured the dif-
ference between the class loss distribution and
the average loss distribution across all classes.
The different hazard groups corresponded to dif-
ferent ranges of these two statistics. The results
were checked by using cluster analysis on these
two variables.

1.2. Overview

Our approach owes much to the prior work
on the subject, yet it is quite distinct. We sorted
classes into hazard groups based on their excess
ratios rather than proxy variables. As shown in
Corro and Engl (2006), a distribution is char-
acterized by its excess ratios and so there is no
loss of information in working with excess ratios
rather than with the size of loss density or dis-
tribution function. Section 2 describes how we
computed class-specific excess ratios.
Section 3 describes how we used cluster anal-

ysis to group classes with similar excess ratios,
and how we determined that seven is the optimal
number of hazard groups. In Section 4 we com-
pare the new hazard group assignments with the
prior assignments.
Following the analytic determination of hazard

groups, the tentative assignments were reviewed
by several underwriters, and, based on this input,
NCCI changed some assignments; we describe
this in Section 5.
Finally, Section 6 recaps the key ideas of this

study and the key features of the new assign-
ments.
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2. Class excess ratios
Gillam (1991) describes in detail the NCCI

procedure for computing excess ratios by hazard
group for individual states. In the NCCI proce-
dure, each ELF for a state and hazard group is a
weighted average of ELFs by injury type specific
to the state and hazard group. The ELFs for an
injury type for a state and hazard group are de-
rived from ELFs for the injury type in the state,
adjusted to the estimated mean loss in the hazard
group in the state. Injury types used by NCCI are
Fatal, Permanent Total, Permanent Partial, Tem-
porary Total, and Medical Only.
To put this in mathematical terms, let Xi be the

random variable giving the amount of loss for in-
jury type i in the state, and let Xi have density
function fi(x) and mean ¹i. Let Si be the normal-
ized state excess ratio function for injury type i;
that is

Si(r) = E
·
max

μ
Xi
¹i
¡ r,0

¶¸
=
Z 1

r
(t¡ r)gi(t)dt,

where gi(x) = ¹ifi(¹ix) is the density function of
the normalized losses Xi=¹i and r ¸ 0 can be in-
terpreted as an entry ratio, i.e., the ratio of a
loss amount to the mean loss amount. For hazard
group j, the overall excess ratio Rj(L) at limit L
is

Rj(L) =
X
i

wi,jSi(L=¹i,j), (1)

where wi,j is the percentage of losses due to in-
jury type i in hazard group j (so

P
i wi,j = 1), and

¹i,j is the average cost per case for injury type i
in hazard group j.
In the same way we can compute countrywide

excess ratios for a given class by just knowing
the weights and average costs per case by injury
type for a class. These excess ratios were based
on the most recent five years of data, as of April
2005, and included claim counts and losses by
injury type for the states where NCCI collects
such data. Losses were developed, trended, and
brought on-level to reflect changes in workers

Figure 1. Class code credibility

compensation benefits. With some minor state
exceptions, the same classes apply in all states.
As such, we could estimate class excess ratios on
a countrywide basis. Thus for each class, c, we
had a vector

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln))

of excess ratios at certain loss limits L1,L2, : : : ,Ln.
The credibility to assign to each class excess

ratio vector is considered in the next subsection,
and selection of the loss limits to use in the anal-
ysis is discussed in Section 3.

2.1. Credibility

In the prior review, the credibility given to a
class was

z =min
μ

n

n+ k
£ 1:5,1

¶
, (2)

where n is the number of claims in the class and
k is the average number of claims per class. This
gives a class with the average number of claims
75% credibility and a class with at least twice the
average number of claims full credibility. Figure
1 shows the credibility produced by this formula
by size of class. The fully credible classes have
over 70% of the total premium, as can be seen in
Table 2. A few classes have most of the claims,
as can be seen in Figure 2, where the classes with
the greatest number of claims are to the left. In-
deed, the distribution of claims per class is very
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Table 2. Distribution of classes by credibility

Claims per Number of Percent of
Credibility Range Year Classes Premium

0· z < 10% 0–237 355 1.2%
10· z < 20% 238–511 89 1.3%
20· z < 30% 512–831 61 1.6%
30· z < 40% 832–1209 56 2.7%
40· z < 50% 1210–1662 46 2.5%
50· z < 60% 1663–2216 34 2.5%
60· z < 70% 2217–2909 46 4.8%
70· z < 80% 2910–3799 35 4.3%
80· z < 90% 3800–4987 29 4.0%
90· z < 100% 4988–6649 18 3.2%
z = 100% ¸ 6650 101 71.8%

Total 870 100.0%

Figure 2. Distribution of classes by claim count

Figure 3. Histogram of number of claims by class

highly skewed, as can be seen in Figure 3. Figure
4 expands the first bar in Figure 3, and shows the
persistency of the skewness. And Figure 5 fur-
ther expands the first bar in Figure 4, revealing
the same general pattern. The average number of
claims per class is nearly ten times the median.
We thus considered using the median rather than

Figure 4. Detail of histogram of number of claims by
class

Figure 5. Detail of histogram of number of claims by
class

Figure 6. Comparison of credibility formulas

the mean for k in Formula 2. This would have
resulted in a very large increase in credibility, as
shown in Figure 6. We considered several other
variations on Formula 2 as well. Because Medical
Only claims have almost no impact on the ELFs
at the published limits, we considered exclud-
ing all Medical Only claims. Taking that idea a
step further, we looked at including only Serious
claims. We also considered taking k in Formula 2
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to be the mean number of claims over only those
classes with some minimal number of claims.
In addition, we considered basing credibility

on various square root rules. We considered a
simple square root rule of the form

z =
r

n

384
,

where n is the number of claims in a class, and
z is capped at 1. The full credibility standard of
384, given in Hossack, Pollard, and Zehnwirth
(1983, p. 159), corresponds to a 95% chance of
the actual number of claims being within 10% of
the expected number of claims. For the determi-
nation of ELFs, serious claims (Fatal, Permanent
Total, and major Permanent Partial) are more im-
portant than nonserious claims, so we looked at
the following variation on the square root rule

z =
NF

r
nF
384

+NM

r
nM
384

+Nm

r
nm
384

NF +NM +Nm
,

where

nF = the number of fatal claims in the class;
NF = the number of fatal claims in all classes;
nM = the number of permanent total and major
permanent partial claims in the class;
NM = the number of permanent total and major
permanent partial claims in all classes;
nm = the number of minor permanent partial and
temporary total claims in the class;
Nm = the number of minor permanent partial and
temporary total claims in all classes.

We also considered varying the full credibility
standard by injury type with the following cred-
ibility formula

z =
Ns

r
ns
175

+ (N ¡Ns)
r
n¡ ns
384

N

where

ns = the number of serious claims in the class;
Ns = the number of serious claims in all classes;
n= the total number of claims in the class;
N = the total number of claims in all classes.

In the end, none of the alternatives considered
seemed compelling enough to warrant a change
and the results did not seem to depend heavily on
the credibility formula; consequently we retained
Formula 2 for computing credibility.
For the complement of credibility we used the

excess ratios corresponding to the current hazard
group of the class. More precisely, for each class
c we have a vector of excess ratios

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln))

and a credibility z. We also have a vector of ex-
cess ratios for the hazard group HG containing
the class c (which can be determined, as above,
as a loss weighted sum over vectors for classes
in HG)

RHG = (RHG(L1),RHG(L2), : : : ,RHG(Ln)):

We now associate to each class a credibility-
weighted vector of excess ratios

zRc+(1¡ z)RHG:
It is these credibility-weighted vectors of excess
ratios that we use in the cluster analysis described
in the next section.

3. Analytic determination of the
new hazard groups

The fundamental analytic method used to de-
termine the new hazard groups is Cluster Analy-
sis. It is a way to group classes with similar ELFs
and is described in this section.

3.1. Selection of loss limits

The class excess ratio is a function of the loss
limit, so it was necessary to select the limits to
use in the analysis. We used limits of 100, 250,
500, 1000, and 5000, in thousands of dollars. Be-
cause excess ratios at different limits were highly
correlated, five limits were thought to be suffi-
cient. We considered using fewer limits but de-
cided that it was better to use five limits to cover
the range commonly used for retrospective rat-
ing.
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Table 3. Correlations among excess ratios at selected limits

Limit 100,000 250,000 500,000 1,000,000 5,000,000

100,000 0.992 0.973 0.935 0.824
250,000 0.994 0.969 0.879
500,000 0.990 0.925

1,000,000 0.968
5,000,000

Table 4. Correlations of ELFs for pairs of limits

Limits not Selected Most Correlated Limit of
the Five Selected

Correlation
Coefficient

25,000 100,000 0.9882
30,000 100,000 0.9907
35,000 100,000 0.9926

40,000 100,000 0.9942
50,000 100,000 0.9965
75,000 100,000 0.9993

125,000 100,000 0.9996
150,000 100,000 0.9985
175,000 250,000 0.9987

200,000 250,000 0.9995
750,000 1,000,000 0.9982

2,000,000 1,000,000 0.9919

We began by considering the 17 limits for
which NCCI published excess loss factors before
2005. These limits, in thousands of dollars, were:
25, 30, 35, 40, 50, 75, 100, 125, 150, 175, 200,
250, 300, 500, 1000, 2000, and 5000. We mod-
ified this list by dropping $300,000 and adding
$750,000. We reduced this to the five selected
limits based primarily on two considerations:

² ELFs at any pair of excess limits are highly
correlated across classes, especially when the
ratio of the limits is close to 1.

² Limits below $100,000 are heavily represented
in the list of 17 limits.

The correlations were computed using only the
162 classes with at least 75% credibility. Classes
with small credibility have estimated ELFs close
to those for the prior overall hazard group. In-
cluding the low-credibility classes would skew
the correlations towards those of the overall haz-
ard groups.

Even among the five selected limits, correla-
tions between ELFs for pairs of limits are very
high, as can be seen in Table 3.
Each of the 12 limits not used has a correlation

coefficient of at least 0.9882 with a limit that was
used, as can be seen in Table 4.
Although we ultimately used five limits, we

experimented by clustering with different lim-
its. We found that the hazard group assignments
resulting from five limits were quite similar to
those resulting from 17. When mapping the
classes to seven hazard groups, only 68 out of
870 classes were assigned to different hazard
groups and these accounted for just 5.5% of the
total premium.
To see whether five limits were more than

needed for the analysis, we tried clustering the
classes using only a single limit. In one instance
we used $100,000 and in another we used
$1,000,000. Figures 7 and 8 compare those sin-
gle limit assignments with clustering using the
five-limit approach. In both cases, the results dif-
fered from the five-limit case, markedly so when
$1,000,000 was used. This indicates that too
much information is lost by dropping down to
one limit. Retrospectively rated policies are pur-
chased over a range of limits and no single limit
captures the full variability in excess ratios.
We used principal components analysis to en-

hance the clustering investigation. The first two
principal components of the five limits retained
over 99% of the variation in the data. While this
might suggest that fewer limits could have been
used, we decided to use five limits in order to
cover the range of limits commonly used in retro-
spective rating. The distance between two classes
in principal components space does not have the
same simple interpretation as it does in excess ra-
tio space. However principal components analy-
sis allows one to project a five-dimensional plot
onto two dimensions. Clustering using the five
limits and plotting the resulting hazard group as-
signments using the first two principal compo-
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Figure 7. Clustering using $100,000 limit compared
to five selected limits (the number of classes that
moved is shown above each bar)

Figure 8. Clustering using $1,000,000 limit compared
to five selected limits (the number of classes that
moved is shown above each bar)

nents showed that the clusters were well sepa-
rated and that outliers were easily identified. In
our view, this confirmed the success of the five-
dimensional clustering.

3.2. Metrics

The objective of assigning classes to hazard
groups is to group classes with similar vectors of
excess ratios. This raises the question of how to
determine how similar or “close” two vectors are.
The usual approach is to measure the distance
between the vectors. If

x= (x1,x2, : : : ,xn) and y = (y1,y2, : : : ,yn)

are two vectors in Rn, then the usual Euclid-
ean, or L2, distance between x and y is speci-

fied as

kx¡ yk2 =
vuut nX
i=1

(xi¡ yi)2:

This metric is used extensively in statistics and
is what we used. In linear regression this met-
ric penalizes large deviations. That is, one big
deviation is seen to be worse than many small
deviations.
There are many other metrics. Perhaps the sec-

ond most common distance function is the L1

metric which specifies

kx¡ yk1 =
nX
i=1

jxi¡ yij:

Here a large deviation in one component gets
no more weight than many small deviations. The
intuitive rationale for using this metric is that it
minimizes the relative error in estimating excess
premium. If Rc(L) is the hypothetically correct
excess ratio at a limit of L for a class c and the
premium on the policy is P then the excess pre-
mium is given by P ¢PLR ¢Rc(L), where PLR de-
notes the permissible loss ratio. But in practice
the class excess ratio is approximated by the haz-
ard group excess ratio RHG(L). The relative error
in estimating the excess premium is then

jP ¢PLR ¢RHG(L)¡P ¢PLR ¢Rc(L)j
P

= PLR ¢ jRHG(L)¡Rc(L)j:

If we assume that each loss limit is equally likely
to be chosen by the insured, then the expected
relative error in estimating the excess premium
is given by

nX
i=1

PLR

n
jRHG(Li)¡Rc(Li)j=

PLR

n
kRHG¡Rck1,

which is proportional to the L1 distance between
the two excess ratio vectors.
Our analysis was not very sensitive to whether

the L1 or L2 metric was used and we preferred
the more traditional L2 metric.
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3.3. Standardization

When clustering variables are measured in dif-
ferent units, standardization is typically applied
to prevent a variable with large values from ex-
erting undue influence on the results. Standard-
ization ensures that each variable has a similar
impact on the clusters. Duda and Hart (1973)
point out that standardization is appropriate when
the spread of values in the data is due to normal
random variation, however “it can be quite inap-
propriate if the spread is due to the presence of
subclasses. Thus, this routine normalization may
be less than helpful in the cases of greatest inter-
est.”
We considered two common approaches to

standardization. The usual approach is to subtract
the mean and divide by the standard deviation
of each variable. For example, if x1,x2, : : : ,xn are
the sample values of some random variable, with
sample mean x̄, and sample standard deviation s,
then the standardized values are given by

zi =
xi¡ x̄
s
:

An alternative standardization method depends
on the range of observations. Under this approach
we would take

zi =
xi¡minxi

maxxi¡minxi
:

We conducted two cluster analysis trials in
whichwe standardized according to the approach-
es described above. In each case we clustered
the classes into seven hazard groups. Both tri-
als resulted in hazard groups that were not very
different from those produced without standard-
ization.
Further, two issues were apparent with regard

to standardizing in our particular analysis. First,
excess ratios at different limits have a similar unit
of measure, which is dollars of excess loss per
dollar of total loss. That is, excess ratios share a
common denominator. Any attempt to standard-
ize would have resulted in new variables without
a common unit interpretation. Second, all excess

ratios are between zero and one. Some standard-
ization approaches would have resulted in stan-
dardized observations outside this range.
Another consideration is the greater range of

excess ratios at lower limits. Without standard-
ization, the excess ratios at lower loss limits have
more influence on the clusters than do those at
higher limits. This result is not undesirable be-
cause excess ratios at lower limits are based more
on observed loss experience than on fitted loss
distributions (see Corro and Engl 2006). Even
on a nationwide basis, there are few claims with
reported losses above $5,000,000, but there are
many more claims above $100,000. Greater con-
fidence can be placed in the relative accuracy
of excess ratios at lower limits because they are
based on a greater volume of data.
In summary, the determination was made not

to standardize because standardization would
have eliminated the common denominator and it
would have led to increased emphasis on higher
limits. Our clustering algorithm used the L2 met-
ric and unstandardized credibility-weighted class
excess ratios at the five selected loss limits:
$100,000, $250,000, $500,000, $1,000,000 and
$5,000,000. Premium weights were used to clus-
ter the classes, as will be discussed in the next
section.

3.4. Cluster analysis

Given a set of n objects, the objective of clus-
ter analysis is to group similar objects. In our
case, we wanted to group classes with similar
vectors of excess ratios, where similarity is deter-
mined by the L2 metric. At this stage the number
of clusters is taken as given. Typically partitions
of the objects into 1,2,3, : : : ,n clusters are con-
sidered. Non-hierarchical cluster analysis simply
seeks the best partition for any given number of
clusters. In hierarchical cluster analysis the parti-
tion with k+1 clusters is related to the partition
with k clusters in that one of the k clusters is
simply subdivided to get the k+1 element parti-
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tion. Thus if two objects are in different clusters
in the k cluster partition then they will be in dif-
ferent clusters in all partitions with more than k
elements. This places a restriction on the clus-
ters that can be sensible in some contexts. Our
approach was non-hierarchical.

3.5. Optimality of k-means

The clustering technique we used is called k-
means. For a given number, k, of clusters, k-
means groups the classes into k hazard groups
so as to minimize

kX
i=1

X
c2HGi

kRc¡ R̄ik22, (3)

where the centroid

R̄i =
1

jHGij
X
c2HGi

Rc

is the average excess ratio vector for the ith
hazard group and jHGij denotes the number of
classes in hazard group i. Theoretically there is a
difference between the hazard group excess ratio
vector, RHGi , computed using (1), and the hazard

group centroid, R̄i, but in practice this difference
is very small.
There is a commonly used algorithm to deter-

mine clusters, known as the k-means algorithm
(Johnson and Wichern 2002). To start, some as-
signment to clusters is made. The algorithm then
has two steps, performed iteratively until the
clustering stabilizes. The first step is to compute
the centroid of each cluster. The second step is
to find the centroid closest to each class, and as-
sign the class to that cluster. If any classes have
been reassigned from one cluster to another dur-
ing the second step, return to the first step. If no
classes have been reassigned, then the algorithm
terminates.
Commercial software for clustering is also

available. We computed clusters using the SAS
FASTCLUS routine.6

6We used SAS software, Version 8.2 of the SAS System for a
SunOS 5.8 platform.

Hazard groups determined by k-means have
several desirable optimality properties. First, they
maximize the following statistic

1¡
Pk
i=1
P
c2HGi kRc¡ R̄ik22P
c kRc¡ R̄k22

, (4)

where

R̄ =
1
C

X
c

Rc

is the overall average excess ratio vector, with
C =

P jHGij being the total number of classes.
Formula (4) is analogous to the R2 statistic in
linear regression. It gives the percentage of the
total variation explained by the hazard groups.
A second way to evaluate hazard groups is

based on the traditional concepts of within and
between variance. We would like the hazard
groups to be homogeneous and well separated.
Thus we would like to minimize the within vari-
ance and maximize the between variance; using
k-means accomplishes both.
Instead of considering a single excess ratio for

each class, we have a vector of excess ratios, one
excess ratio for each of several fixed loss limits.
Thus we do not have a single random variable
corresponding to an excess ratio at a single loss
limit, but rather a random vector, with one ran-
dom variable, the excess ratio, for each loss limit,
from which we get a variance-covariance matrix.
If Xi is the random variable for the excess ratio
function at the ith loss limit, Li, across classes
c, then the observed values are the Rc(Li). The
variance-covariance matrix of the random vector
X = (X1,X2, : : : ,Xn) is given by

§ =

2666664
¾11 ¾12 ¢ ¢ ¢ ¾1n

¾21 ¾22 ¢ ¢ ¢ ¾2n
...

...
. . .

...

¾n1 ¾n2 ¢ ¢ ¢ ¾nn

3777775 ,

where

¾ik = E[(Xi¡¹i)(Xk ¡¹k)]
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is the covariance of Xi and Xk and ¹i = E[Xi]. If
we regard X as a 1£ n matrix then

§ = E[(X ¡¹)T(X ¡¹)],
where ¹= (¹1,¹2, : : : ,¹n) and (X ¡¹)T is the
transpose of (X ¡¹).
In practice the variance-covariance matrix is

not known, but must be estimated from the data,
i.e., the vectors

Rc = (Rc(L1),Rc(L2), : : : ,Rc(Ln)):

Let
x̄j =

1
C

X
c

Rc(Lj),

where C is the total number of classes, and let

x̄= (x̄1, x̄2, : : : , x̄n):

Then the sample covariance of the ELFs at Li
and Lk is

sik =
1
C

X
c

(Rc(Li)¡ x̄i)(Rc(Lk)¡ x̄k),

and the sample variance-covariance matrix is
given by

S =

266666664

s11 s12 ¢ ¢ ¢ s1n

s21 s22 ¢ ¢ ¢ s2n

...
...

. . .
...

sn1 sn2 ¢ ¢ ¢ snn

377777775
=
1
C

X
c

(Rc¡ x̄)T(Rc¡ x̄):

One way to generalize the concept of variance to
the multivariate context is to consider the trace
of S, the sum of the main diagonal of S

trace(S) = s11 + s22 + ¢ ¢ ¢+ snn:
This is just the sum of the sample variances of
each variable and is called the total sample vari-
ance.
We let

T = CS =
X
c

(Rc¡ x̄)T(Rc¡ x̄):

The matrix T is proportional to the variance-
covariance matrix for the whole data set. It is

called the dispersion matrix, and is the matrix of
sums of squares and cross products. We can pro-
ceed similarly within each hazard group and de-
fine

Wi =
X
c2HGi

(Rc¡ x̄i)T(Rc¡ x̄i):

If we let

Bi = jHGij(x̄i¡ x̄)T(x̄i¡ x̄),
then it can be shown (see Späth 1985) thatX

c2HGi
(Rc¡ x̄)T(Rc¡ x̄) = Bi+Wi:

We then let

W =
kX
i=1

Wi:

This is the pooled within group dispersion ma-
trix. For the between variance we let

B =
kX
i=1

Bi:

This is the weighted between group dispersion
matrix. We then have

T = B+W:

This means, roughly that the total variance is the
sum of the between variance and the within vari-
ance. Taking the trace we get

trace(T) = trace(B) + trace(W):

Thus the total sample variance is the sum of the
between and within sample variance. Because
trace(T) is constant, maximizing trace(B) is
equivalent to minimizing trace(W), which is what
k-means cluster analysis accomplishes.

3.6. Weighted k-means

As observed in Section 2, some classes are
much larger than others. To avoid letting the
small classes have an undue influence on the
analysis, we weighted each class by its premium.
In simplest terms, this amounts to counting a
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class twice if it has twice as much premium as
the smallest class. So instead of minimizing the
expression in (3), we instead minimized

kX
i=1

X
c2HGi

wckRc¡ R̄ik22,

where wc is the percentage of the total premium
in class c. We used the premium-weighted cen-
troids as well, that is

R̄i =

P
c2HGi wcRcP
c2HGi wc

:

3.7. Optimal number of hazard groups

So far, we have discussed the task of deter-
mining clusters when the number of clusters is
given. We now address how to tell whether one
number of clusters performs better than another,
e.g., whether seven clusters works better than six
or eight.
Various test statistics can be used to help deter-

mine the optimal number of clusters. The proce-
dure is to compute the test statistic for each num-
ber of clusters under consideration and then iden-
tify the number of clusters at which the chosen
statistic reaches an optimal value (either a mini-
mum or a maximum, depending on the particular
test statistic being used). Milligan and Cooper
(1985) and Cooper and Milligan (1988) tested
such procedures to determine which statistics
were the most reliable.
Milligan and Cooper (1985) performed a sim-

ulation to test 30 procedures. The simulated clus-
ters were well separated from each other and they
did not overlap. For each simulated data set, the
true number of clusters was known, and they
computed the number of clusters indicated by
each method of determining the optimal number
of clusters. The methods were ranked according
to the number of times that they successfully in-
dicated the correct number of clusters.
They noted that their simulation was idealized

but that “It is hard to believe that a method that

fails on the present data would perform better on
less defined structures” (1985, p. 161). Hence,
although the hazard group data had both noise
and overlap, it was useful to refer to Milligan
and Cooper (1985) to determine which methods
to rule out.
In a later study, Cooper and Milligan (1988)

conducted tests that were more relevant to our
application because random errors were added
to the simulated data. That study found that the
two best performing methods in the error-free
scenario were also the best with errors (Cooper
and Milligan 1988, p. 319). The best performing
method is due to Calinski and Harabasz. Milligan
and Cooper (1985, p. 163) define the Calinski
and Harabasz statistic as

trace(B)=(k¡ 1)
trace(W)=(n¡ k)

where n is the number of classes and k is the
number of hazard groups, B is the between clus-
ter sum of squares and cross product matrix, and
W is the within cluster sum of squares and cross
product matrix. Higher values of this statistic in-
dicate better clusters because that corresponds to
higher between clusters distances (the numera-
tor) and lower within cluster distances (the
denominator). This test is also known as the
Pseudo-F test due to its resemblance to the F-test
of regression analysis, often used to determine
whether the explanatory variables as a group are
statistically significant.
Another test that ranked high in the Milligan

and Cooper testing was the Cubic Clustering
Criterion (CCC). This test compares the amount
of variance explained by a given set of clus-
ters to that expected when clusters are formed at
random based on data sampled from the multi-
dimensional uniform distribution. If the amount
of variance explained by the clusters is signifi-
cantly higher than expected then a high value of
the CCC statistic will result, indicating a high-
performing set of clusters. An optimum num-
ber of clusters is identified when the test statistic
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reaches a maximum (Milligan and Cooper 1985,
p. 164).
Milligan and Cooper (1985) found that the

Calinski and Harabasz test produced the correct
number of clusters for 390 data sets out of 432.
The CCC test produced the correct value 321
times. We could not use some of the other meth-
ods that ranked high because they were only ap-
plicable to hierarchical clustering, or for other
reasons.
In a SAS Institute technical report, Sarle (1983)

noted that the CCC is less reliable when the data
is elongated (i.e., variables are highly correlated).
Excess ratios are correlated across limits, so we
gave the CCC results less weight than the Calin-
ski and Harabasz results.
We performed cluster analyses for four to nine

hazard groups. There were four hazard groups in
the prior NCCI system, and we saw no reason to
consider any smaller number. Implementing ten
or more hazard groups would be substantially
more difficult than implementing nine or fewer,
because having 10 or more requires an additional
digit for coding hazard groups. Testing up to nine
was appropriate because the Workers Compensa-
tion Insurance Rating Bureau of California uses
nine hazard groups (WCIRBC 2001).
In the first phase of our cluster analysis, we as-

signed classes and calculated the two test statis-
tics for each number of groups under consid-
eration. Figure 9 shows that the Calinski and
Harabasz statistic indicated that the best number
of hazard groups was seven. Figure 10 shows that
the CCC statistic suggested nine hazard groups.
But nine hazard groups produced crossover,

meaning that at some high loss limit the haz-
ard group excess ratio for a higher hazard group
was lower than the hazard group excess ratio for
a lower hazard group. While crossover is pos-
sible in principle (from a purely mathematical
standpoint, it is easy to specify two loss distri-
butions so that one has higher ELFS at low lim-
its and the other has higher ELFs at high limits),

Figure 9. Indicated number of hazard groups

Figure 10. Indicated number of hazard groups, cubic
clustering criterion

we don’t think the data provided strong evidence
for crossover, and one of our guiding principles
was that there would be no crossover in the fi-
nal hazard groups. In our opinion, the crossover
that occurred with the clustering into nine hazard
groups suggested that nine is more clusters than
can accurately be distinguished.
As can be seen in Table 2, most of the premium

is concentrated in the largest classes with the
highest credibility. We were concerned that the
indicated number of hazard groups in the anal-
ysis could have been distorted by the presence
of hundreds of non-credible classes. In the sec-
ond phase of our cluster analysis, we applied the
tests to determine the optimal number of clusters
using large classes only.
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Figure 11. Statistics for various numbers of hazard groups, only classes with at least 50 percent credibility

In one scenario, we applied the Calinski and
Harabasz and CCC tests using only those classes
with credibility greater than or equal to
50 percent. In a second scenario, we applied
the tests using only fully credible classes.
As shown in Figure 11, the indicated number of
hazard groups was seven for both tests in both
scenarios.
In summary, we used two test statistics in three

scenarios for a total of six tests. Seven hazard
groups was the indicated optimal number in five
of these six tests. The exception was the sce-
nario in which all classes were included, where
the CCC test indicated that nine hazard groups
were optimal. There are four reasons why this
exception received little emphasis:

² Milligan and Cooper (1985) and Cooper and
Milligan (1988) found that the Calinski and
Harabasz procedure outperformed the CCC
procedure.

² The CCC procedure deserves less weight when
correlation is present, which was the case in all
of our scenarios.

² The selection of the optimal number of clusters
ought to be driven by the large classes where
most of the experience is concentrated. The
large classes have the highest credibility and
so the most confidence can be placed in their
excess ratios.

² There is crossover in the nine hazard groups,
and we had a guiding principle that there
would not be crossover.

We concluded that seven hazard groups were
optimal. These are denoted A to G, with Hazard
Group A having the smallest ELFs and Hazard
Group G having the largest.

3.8. Alternate mapping to four hazard
groups

We recognized that some insurers would not
be able to adopt the seven hazard group system
immediately because they needed additional time
to make the necessary systems changes. There-
fore we produced a four hazard group alternative
to supplement the seven hazard group system.
We chose to collapse the seven hazard groups
into four by combining Hazard Groups A and B
to form Hazard Group 1, combining C and D to
form 2, combining E and F to form 3, and let-
ting Hazard Group 4 be the same as G. Having
an alternate mapping to four hazard groups sim-
plifies comparisons between the prior and new
mappings as well.
Prior to choosing this simple scheme we con-

sidered other alternatives. We tried using k-means
cluster analysis to map the seven hazard group
centroids into four. This approach resulted in a
hazard group premium distribution that was not
homogeneous enough. Another approach we
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considered was using cluster analysis to group
the classes directly into four hazard groups. That
approach yielded reasonable results, but it re-
sulted in a non-hierarchical collapsing scheme,
i.e., the seven hazard groups were not a result of
subdividing the four hazard groups. The hierar-
chical collapsing scheme we chose has this fea-
ture, which allows users to know which of the
four hazard groups a class is in based on know-
ing that class’ assignment in the seven hazard
group system.
The new four hazard group system is intended

to be temporary. The four hazard group system
is in place only to ensure that all carriers have
sufficient time to make the transition to seven
hazard groups.

4. Comparison of new mapping
with old

4.1. Distribution of classes and premium

The bulk of the exposure was concentrated in
two of the hazard groups prior to our review.
Hazard Groups I and IV contained a small per-
centage of the total premium. Hazard Groups II
and III, on the other hand, contained 97 percent
of the total premium (see Table 1). We knew that
a more homogeneous distribution of premium
by hazard group would improve pricing accu-
racy. When discussing the new hazard groups
in this section we will focus on the mapping
that resulted directly from the statistical analysis.
Later on, as will be discussed in the underwrit-
ing review subsection, numerous classes were re-
assigned among the groups based on feedback
gathered in our survey of underwriting experts.
These changes are not reflected in Figures 12
to 20.
Figures 12 and 13 compare the prior mapping

to the collapsed new mapping based on the distri-
bution of classes and premium. Hazard Group 1
has a large number of classes and a substantial
portion of total premium in contrast to Hazard

Figure 12. Prior mapping vs. collapsed new mapping,
number of classes per hazard group

Figure 13. Prior mapping vs. collapsed new mapping,
percent of premium by hazard group

Group I. Hazard Groups 2 and 3 have become
slightly smaller than before although they are
still large. In the prior mapping Hazard Groups II
and III each had over 45 percent of the premium,
but in the new mapping, none of the four groups
has as much as 40 percent. This refinement al-
lows for improved homogeneity of classes within
each hazard group. Hazard Group 4 has retained
a similar number of classes but it has more pre-
mium than Group IV.
Figure 14 shows that most of the classes and

premium remained in the same hazard group
when assigned to the new four Hazard Groups.
Among those classes that did move, the great
majority (300 classes and 37 percent of the pre-
mium) moved down one hazard group. Most of
this movement was from Hazard Group II to
1. The movements of classes and premium are
detailed in Table 5. The table can be read ver-
tically. For instance, among the 428 classes in
Hazard Group II, 255 were mapped into Haz-
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Figure 14. Comparison of old with new assignment to
four hazard groups (the number of classes that moved
is shown above each bar)

ard Group 1, 164 into Hazard Group 2, nine into
Hazard Group 3, and none into Hazard Group 4.
The 255 classes that moved from Hazard Group
II into Hazard Group 1 comprised 25.4% of the
total premium. A significant number of classes
and amount of premium moved from Hazard
Group III to 2. Three classes moved from III
to 1. Just 15 classes moved up by one hazard
group, making up three percent of the premium.
Hazard Group 1 is so large primarily because
of classes that entered it from Hazard Group II.
Hazard Group 2 is quite different than Hazard
Group II because many of the classes in 2 origi-
nated in III and many of the classes that were in
II have moved into 1.
The new seven hazard group assignment has

a fairly homogenous distribution of classes and

Figure 15. Number of classes and percent of premium in each hazard group

Table 5. Comparison of distributions of classes between
prior and new hazard group assignments

Prior Mapping

Hazard Group I II III IV Total

Number of Classes 38 428 318 86 870
% Premium 0.9% 45.6% 51.1% 2.5% 100%

Hazard Group
1 38 255 3 0 296

0.9% 25.4% 0.5% 0.0% 26.7%

2 0 164 41 0 205
0.0% 19.6% 11.8% 0.0% 31.4%

3 0 9 268 4 281
0.0% 0.6% 36.3% 0.2% 37.1%

4 0 0 6 82 88
0.0% 0.0% 2.6% 2.2% 4.8%

premium, as shown in Figure 15. This distri-
bution is a marked improvement over the prior
mapping. In terms of premium, Hazard Group A
is 11 times larger than Hazard Group I was. Haz-
ard Group G is twice as large as Hazard Group IV
was.
Table 6 shows the distribution of classes to

hazard groups based on their level of credibil-
ity. Overall there were 162 classes with at least
75 percent credibility and 708 classes with lower
credibility. Generally, within each hazard group
most of the premium is due to highly credible
classes but most of the classes have lower cred-
ibility. Hazard Groups D and G are exceptions.
Hazard Group D has nearly equal numbers of
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Table 6. Number of classes with given credibility by hazard
group

162 Classes with 708 Classes with
Credibility ¸ 75% Credibility < 75%

Hazard Group Number of
Classes

% Premium Number of
Classes

% Premium

A 18 8.4% 37 0.9%
B 40 14.5% 201 2.8%
C 41 17.6% 119 3.6%
D 22 8.9% 23 1.3%
E 22 14.0% 202 4.4%
F 15 15.0% 42 3.7%
G 4 2.4% 84 2.4%

Total 162 80.9% 708 19.1%

high and low-credibility classes. In Hazard
Group G, high and low-credibility classes have
similar premium percentages.
Although Hazard Groups B and E have far

more classes than the other hazard groups, they
do not have far more premium. The reason that
they have the most classes with credibility less
than 75 percent is that the complement of credi-
bility is the prior hazard group excess ratio. For
instance, the excess ratio of Hazard Group III at
$100,000 was 0.451 which is close to the excess
ratio of Hazard Group E. Given a small class in
Hazard Group III, the credibility-weighted ex-
cess ratio was likely to be close to the excess
ratio of Hazard Group E.

4.2. Range of excess ratios

In Figure 16 each horizontal bar represents the
range of credibility-weighted excess ratios within
a particular hazard group. The vertical line within
each bar represents the overall excess ratio for
the hazard group. Among the classes in Hazard
Group I, the excess ratios at $100,000 ranged
from 0.254 to 0.315. In Hazard Group II, the
excess ratios at $100,000 ranged from 0.223 to
0.451. Thus the range of Hazard Group I ex-
cess ratios was contained within that of Hazard
Group II, indicating that Hazard Groups I and II
were not as well separated as might be desired.

Figure 16. Prior mapping excess ratio ranges at
$100K

Figure 17. New mapping excess ratio ranges at
$100K

Figure 18. New mapping excess ratio ranges at $1M

The same behavior was observed at $1,000,000
as well.
As shown in Figure 17, k-means clustering re-

sulted in well separated hazard groups. Because
five dimensions were used, we could not avoid
overlap in each dimension, but the excess ra-
tio distribution is a noticeable improvement over
the prior mapping. The new mapping also shows
a well-separated excess ratio distribution at
$1,000,000 as shown in the Figure 18.
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Figure 19. New mapping excess ratio ranges at
$100K, classes with at least 75% credibility

Figure 20. New mapping excess ratio ranges at $1M,
classes with at least 75% credibility

Most of the exposure is concentrated in the
largest classes, and so the hazard group excess
ratios are highly sensitive to the placement of
large classes. In Figures 16—18, the range of ex-
cess ratios for each hazard group is calculated
using all of the classes in that hazard group.
Figures 19 and 20 show that if ranges are com-

puted using only those classes with at least 75
percent credibility, then the separation of hazard
groups by excess ratios is quite strong at both
$100,000 and $1,000,000.

5. Underwriting review

After completing the cluster analysis, we con-
ducted a survey of underwriters to solicit their
comments on the proposed new mapping. The
survey was sent to all members of NCCI’s Un-
derwriting Advisory List (UAL), and included
the draft mapping that resulted from the ana-

lytic determination of the hazard groups. The
survey asked the underwriters to judge the haz-
ardousness of each class based on the likelihood
that a given claim would be a serious claim. We
also pointed out that if the mix of operations
in two classes was very similar then the two
classes should probably be in the same hazard
group.
Members of the UAL recommended changes

in the hazard group assignment for a third of
the classes. We also received feedback from two
underwriters on staff at NCCI. After the survey
comments were compiled, a team consisting of
NCCI actuaries and underwriters reviewed the
comments from UAL members and decided on
the final assignment for each class. When decid-
ing whether to reassign a class, we considered
whether the feedback on that class was consis-
tent. We considered the credibility of each class
and placed more weight on the cluster analy-
sis results for those classes with a large volume
of loss experience. For each class we compared
the excess ratios to the overall hazard group ex-
cess ratios and identified the nearest two hazard
groups.
Class 0030 illustrates the process used at NCCI

to decide on the hazard group for each class. This
class is for employees in the sugar cane planta-
tion industry and is only applicable in a small
number of states. This class

² had 12% credibility,
² was in Hazard Group III under the prior map-
ping, and

² was assigned to Hazard Group E under the
cluster analysis.

An underwriter pointed out that Class 0030
has operations similar to Class 2021, which is for
employees who work at sugar cane refining. In-
sureds in either class can have both farming and
refining operations, their class being determined
by which operation has the greater payroll. Also,
both farming and refining involve use of heavy
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Figure 21. Percent of premium that moved during
the underwriting review (the number of classes that
moved is shown above each bar)

machinery. Class 2021

² applies nationally,
² had 31% credibility,
² was in Hazard Group II under the prior map-
ping,

² was assigned to Hazard Group C under the
cluster analysis, and

² prior to credibility weighting had excess ratios
close to the overall excess ratios for Hazard
Group D.

Credibility weighting had reduced Class 2021’s
excess ratios so that they were between the over-
all excess ratios of Hazard Groups C and D, be-
cause the prior assignment of Class 2021 had
been to Hazard Group II.
We concluded that Hazard Group D was the

best choice for 2021 based on its excess ratios
prior to credibility weighting and its mix of op-
erations. We determined that 0030 should be as-
signed to the same hazard group as 2021, so we
also assigned Class 0030 to Hazard Group D.
Underwriters made several other types of com-

ments besides those comparing one class
to another. For instance, they commented on
the degree to which employees in a given class
are prone to risk from automobile accidents.
They commented on the extent to which heavy
machinery is used in various occupations and
how much exposure there is to dangerous sub-
stances.

Figure 21 displays the movements of premium
and classes during the underwriting review un-
der the collapsed new mapping. It shows that
the overall effect of the underwriting review was
to move a significant number of classes up to a
higher hazard group. The majority of the classes
that moved up one hazard group, 78 of them,
moved from Hazard Group 1 to 2, while 20 class-
es moved from Hazard Group 2 to 3, and 23
classes moved from Hazard Group 3 to 4.

6. Conclusion

Our approach to remapping the hazard groups
was founded on three key ideas.

1. Computing excess ratios by class
The data is too sparse to directly estimate ex-

cess ratios by both class and state. But coun-
trywide excess ratios can be computed by class
in the same way that hazard group excess ra-
tios are computed. This does not require sepa-
rate loss distributions for each class. The exist-
ing loss distributions by injury type can be used
along with the usual scale assumption. Thus all
that is needed is average costs per case by injury
type and injury type weights for each class.

2. Sorting classes based on excess ratios
Rather than using indirect variables to capture

the amorphous concept of “excess loss poten-
tial,” we used excess ratios directly because haz-
ard groups are indeed used to separate classes
based on excess ratios. Because a loss distribu-
tion is in fact characterized by its excess loss
function, this approach involves no loss of infor-
mation. By sorting classes based on excess ratios
we achieve the goal of sorting classes based on
their loss distributions as well.

3. Cluster analysis
Problems involving sorting objects into groups

are not unique to actuarial science. We were thus
able to make use of a large statistical literature
on cluster analysis. This provided an objective
criterion for determining the hazard groups as
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well as the optimal number of hazard groups.
Our approach to determining the seven hazard
groups was non-hierarchical because we wanted
the best seven group partition and because hypo-
thetical partitions into six hazard groups are not
relevant in this context.

As a result of our analysis the number of NCCI
hazard groups was increased from four to seven.
The distribution of both premium and classes is
much more even across the new hazard groups.
The highest hazard group is still relatively small.
The new seven hazard groups collapse naturally
and hierarchically into four hazard groups. Com-
paring the new four hazard groups with the old,
over two-thirds of the classes, with nearly 60%
of the premium, did not move at all. This stabil-
ity was largely a result of the fact that we used
the old hazard group as a complement of cred-
ibility and there were a large number of classes
with very little premium. Of the classes that did
move, the overwhelming majority moved down
one hazard group.
The new mapping was filed in mid-2006 to be

effective with the first rate or loss cost filing in
each state on or after January 1, 2007. The filing
(Item Filing B-1403) was approved prior to the
end of 2006 in all states in which NCCI files
rates or loss costs.
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