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ABSTRACT

Although the copula literature has many instances of bi-
variate copulas, once more than two variates are correl ated,
the choice of copulas often comes down to selection of the
degrees-of-freedom parameter in the t-copula. In search for
a wider selection of multivariate copulas we review a gen-
eralization of the t-copula and some copulas defined by
Harry Joe. Generalizing the t-copula gives more flexibility
in setting tail behavior. Possible applications include in-
surance losses by line, credit risk by issuer, and exchange
rates. The Joe copulas are somewhat restricted in the range
of correlations and tail dependencies that can be produced.
However, both right- and left-positive tail dependence is
possible, and the behavior is somewhat different from the
t-copula.
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1. Introduction

Copulas provide a convenient way to express
multivariate distributions. Given the individual
distribution functions Fi(Xi) the multivariate dis-
tribution can be expressed as a copula function
applied to the probabilities, i.e., F(X1, : : : ,Xn) =
C[F1(X1), : : : ,Fn(Xn)]. Venter [6] discusses many
of the basic issues of using copulas with the
heavy-tailed distributions of property and liabil-
ity (P&L) insurance. One of the key concepts
is that copulas can control where in the range
of probabilities the dependence is strongest. Any
copula C is itself a multivariate distribution func-
tion but one that applies only to uniform distribu-
tions on the unit square, unit cube,: : : , depending
on dimension. The uniform [0,1] variables are
interpreted as probabilities from other distribu-
tions and are represented by U, V, etc.
One application is correlation in losses across

lines of business. Lines tend to be weakly cor-
related in most cases but can be strongly cor-
related in extreme cases, like earthquakes.
Belguise and Levi [1] study copulas applied to
catastrophe losses across lines. With financial
modeling growing in importance, other poten-
tial applications of copulas in insurance com-
pany management include the modeling of de-
pendence between loss and loss expense, depen-
dence among asset classes, dependence among
currency exchange rates, and credit risk among
reinsurers.
The upper and lower tail dependence coeffi-

cients of a copula provide quantification of tail
strength. These can be defined using the right
and left tail concentration functions R and L on
(0,1):

R(z) = Pr(U > z j V > z) and

L(z) = Pr(U < z j V < z):
The upper tail dependence coefficient is the limit
of R as z! 1, and the lower tail dependence co-

efficient is the limit of L as z! 0. For the nor-
mal copula and many others, these coefficients
are zero. This means that for extreme values the
distributions are uncorrelated, so large-large or
small-small combinations are not likely. How-
ever, this is somewhat misleading, as the slopes
of the R and L functions for the normal and
t-copulas can be very steep near the limits.
Thus there can be a significant degree of de-
pendence near the limits even when it is zero
at the limit. Thus looking at R(z) for z a bit less
than 1 may be the best way to examine large loss
dependencies.
While a variety of bivariate copulas is avail-

able, when more than two variables are involved
the practical choice comes down to normal vs.
t-copula. The normal copula is essentially the t-
copula with high degrees of freedom (df), so the
choice is basically what df to use in that cop-
ula. Venter [5] discusses the use of the t-copula
in insurance. The t takes a correlation param-
eter for each pair of variates, and any correla-
tion matrix can be used. The df parameter adds
a common-shock effect. This can be seen in the
simulation methodology, where first a vector of
multivariate normal deviates is simulated then
the vector is multiplied by a draw from a sin-
gle inverse gamma distribution. The df parameter
is the shape parameter of the latter distribution,
which is more heavy-tailed with lower df. The
factor drawn represents a common shock that
hits all the normal variates with the same fac-
tor. This increases tail dependence in both the
right and left tails but also increases the like-
lihood of anti-correlated results, so the overall
correlation stays the same as in the normal
copula.
Two problems for the t-copula are the symme-

try between right and left tails and having only
a single df parameter. The stronger tail depen-
dence in insurance tends to happen in the right
tail. Putting the same dependence in the left tail
would be inaccurate, but it would probably have
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little effect on risk measurement overall, which
is largely affected by the right tail. The single
df parameter is more of a restriction. It results
in giving more tail dependence to more strongly
correlated pairs. This is reasonable but is not al-
ways consistent with data.
Thus more flexible multivariate copulas would

be useful. One alternative provided by Daul et
al. [2] is the grouped t-copula, which uses differ-
ent df parameters for different subgroups of vari-
ables, such as corporate bonds grouped by coun-
try. We introduce a special case of that called
the individuated t-copula, or IT, which has a df
parameter for each variable. Another direction
is that of Joe [3], who develops a method for
combining simple copulas to build up multivari-
ate copulas. Three of these–called MM1, MM2,
and MM3–have closed-form expressions. We
investigate some of the properties of these
copulas.
The t-copula for n variates has (n2¡ n+2)=2

parameters. The MMC copulas have one more
parameter for each variate and so have (n2 + n+
2)=2 all together, while the IT has (n2 + n)=2.
This situation does not include enough parame-
ters to have separate control of the strength of
the tail dependency for every pair of variates,
but it does add some flexibility. The IT copula
generalizes the t so it can be tried any time the
t is too limiting in the possibilities for tail be-
havior. The MMC copulas have a parameter for
each pair of variates, but this does not give them
full flexibility in matching a covariance matrix.
When all the bivariate correlations are fairly low
(below 50% in the trivariate case but decreasing
with more dimensions) they can usually all be
matched, but the higher they get the more simi-
lar they are forced to be. This would probably be
fine for insurance losses by line of business, as
they tend to have low correlations overall but can
be related when the losses are large. In modeling
them, some additional flexibility in tail behavior

vs. overall correlation could be helpful, so this
could be an application where the MMC copulas
would have an advantage over the t-copula.

2. IT copula

This copula is most readily described by the
simulation procedure from its parameters, which
are a correlation matrix ½ and a parameter ºn for
each of the N variables. The simulation starts
with the generation of a multivariate normal vec-
tor fzng with correlation matrix ½ by the usual
approach (Cholesky decomposition, etc.). Then
a uniform (0,1) variate u is drawn. The inverse
chi-squared distribution quantile with probability
u and df ºn, denoted by wn = hn(u), is calculated.
Then tn = zn[ºn=wn]

1=2 is t-distributed with ºn df.
To get the copula value, which is a probability,
that t-distribution is applied to tn. The only differ-
ence between this and simulation of the t-copula
is the t uses the same inverse chi-square draw for
each variate.
The chi-squared distribution is a special case

of the gamma. The ratio wn=ºn is a scale trans-
form of the chi-squared variate, so is a gamma
variate. If the gamma density is parameterized to
be proportional to x®¡1e¡x=¯ , then wn=ºn
has parameters ¯ = 2=ºn and ®= ºn=2. This is
a distribution with mean 1. It can be simulated
easily if an inverse gamma function is available,
as in some spreadsheets. It is not necessary for
the df to be an integer for this to work. If not
an integer, a beta distribution can be used to
calculate the t-distribution probability, as in
Venter [5].
Although the simulation is straightforward,

the copula density and probability functions are
somewhat complicated. In terms of hn, the in-
verse chi-squared function above, and denoting
the matrix inverse of ½ as J and the inverse
t-distribution of un with ºn df as tn, the copula
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density at (u1, : : : ,un) can be shown to be:

c(~u) =
Z 1

0
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n=1
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This has to be computed numerically unless the
df parameters are all the same, in which case it
reduces to the t-copula density.
Daul et al. [2] find that the correlations (Spear-

man’s rho and Kendall’s tau) are not exactly the
same as for the t-copula, but are quite close. Also
the bivariate t-copula right and left dependence
coefficients are Sn+1f[(n+1)(1¡ ½)=(1+ ½)]0:5g
where Sn+1 is the t-distribution survival function
(PrX > x) with n+1 df. If we denote the bivari-
ate standard normal survival function as S(x,y)
= Pr(X > x,Y > y), then the tail dependence
coefficients for Xm and Xn for the IT copula
are:Z 1

0
S(cny

1=ºn ,cmy
1=ºm)dy,
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p
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These tend to be between the t-copula depen-
dence coefficients for the two dfs but closer to
that for the higher of the two dfs if these are very
different.
Fitting the IT by maximum likelihood is possi-

ble but involves several numerical steps. Alterna-
tively, the df parameter for the t-copula could be
estimated for each pair of variables by matching
tail behavior, as in Venter [5], and then individ-
ual dfs assigned to be consistent with this. Daul
et al. [2] propose separate t-copulas for different
groups of variables, which are combined into a
single copula with the overall correlation matrix
and the separate dfs.

3. MMC copulas

Joe’s MM1, MM2, and MM3 copulas each
have an overall strength parameter µ, a param-
eter for each pair of variables ±ij (not the Kro-
necker delta), and add an additional parameter
pj , with 1=pj ¸m¡ 1, for each of the m variables
Uj , which gives the possibility of more control
over the tails.
The parameters are then ±ijfor i < j,pj , for j =

1, : : : ,m, and µ. For each variable uj , it is conve-
nient to use the abbreviations yj = (¡ lnuj)µ and
wj = pj(u

¡µ
j ¡ 1). The ±ij parameters would seem

to allow for a correlation matrix, but it turns out
that there are restrictions on how different the
correlations can be, with the µ parameter exert-
ing a lot of control. In effect, the parameters do
not have as much freedom to fit to data as might
be desired. The copula functions and dependency
coefficients are given below. The density func-
tions for the copulas needed for maximum like-
lihood estimation (MLE) are discussed in Ap-
pendix 1. Appendix 2 discusses numerical eval-
uation of MLE and rejection sampling (Tillé [4])
as a method for assessing standard errors.

MM1

Here ±ij ¸ 1 and µ ¸ 1. The copula at the m-
vector u is:

C(u) = exp

8<:¡
24 mX
j=1

(1¡ (m¡ 1)pj)yj

+
X
i<j

((piyi)
±ij +(pjyj)

±ij )1=±ij

351=µ
9>=>;
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The bivariate i,j margin is:

C(ui,uj) = expf¡[(1¡pi)yi+(1¡pj)yj
+((piyi)

±ij +(pjyj)
±ij )1=±ij ]1=µg

Lower tail dependence is zero. Upper tail depen-
dence is given by:

¸ij = 2¡ [2+ (p±iji +p
±ij
j )

1=±ij ¡pi¡pj]1=µ

MM2

Here ±ij > 0 and µ > 0. The copula at the m-
vector u is:

C(u) =

24 mX
j=1

u¡µj +1¡m

¡
X
i<j

(w¡±iji +w¡±ijj )¡1=±ij
35¡1=µ

The i,j margin is:

C(ui,uj) = [u
¡µ
i + u¡µj ¡ 1

¡ (w¡±iji +w¡±ijj )¡1=±ij ]¡1=µ

Because both upper and lower tail dependence
are positive for this copula, a subscript is used to
distinguish them here. The upper tail dependence
is:

¸ij,U = (p
¡±ij
i +p¡±ijj )¡1=±ij

The lower tail dependence is:

¸ij,L = [2¡ (p¡±iji +p
¡±ij
j )¡1=±ij ]¡1=µ

MM3

This starts with ±ij > 0 and µ > 1 (Although
Joe says µ > 0 is allowed, we have had problems
if µ < 1.). The copula at u is

C(u) = exp

(
¡
"

mX
j=1

yj ¡
X
i<j

((piyi)
¡±ij

+(pjyj)
¡±ij )¡1=±ij

#1=µ )

The i,j margin is

C(ui,uj) = expf¡[yi+ yj ¡ ((piyi)¡±ij

+(pjyj)
¡±ij )¡1=±ij ]1=µg

The upper tail dependence is:

¸ij = 2¡ [2¡ (p¡±iji +p¡±ijj )¡1=±ij ]1=µ

4. Range of possible correlations
and dependencies

It turns out that not every possible correlation
matrix can be matched by these copulas. The µ
parameter determines a lot of what is possible
for each copula. Tables 1—6 show the tail depen-
dence and Spearman’s ½ for selected parameters.
For MM1 and MM3 the lower tail dependence
is zero, so it is not shown. It is shown for MM2,
but there the upper dependence does not depend
on µ, so “any” is shown for µ.

5. Discussion

The tables in the previous section are bivariate
relationships. However, since the p parameters
can be no greater than 1=(m¡ 1), the possible
values of p, and so the range of possible corre-
lations and tail dependencies, reduce as the di-
mension increases. The µ parameter i n general
has a great deal of influence over what any of
these copulas can do. As µ gets higher, the other
parameters have very little influence. Thus when
it is high, all pairs of variables will have simi-
lar correlations and tail dependencies. This is the
case for any of the correlation coefficients (lin-
ear, rank, tau) so we use the term “correlation”
generically. When µ is low, however, it is not
possible to have very high correlations. Thus, in
general, these copulas can only apply when all
pairs of variables have similar tails and correla-
tions.
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Table 1. MM1 upper tail dependence

± µ: 1.037 1.037 1.037 1.037 1.111 1.111 1.111 1.111 1.333 1.333 1.333 1.333 2 2 2 2 4 4 4 4
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

1.01 .005 .049 .049 .049 .049 .134 .134 .134 .134 .318 .318 .318 .318 .586 .586 .586 .586 .811 .811 .811 .811
1.01 .17 .049 .051 .052 .052 .134 .136 .137 .137 .318 .320 .320 .321 .586 .587 .587 .587 .811 .811 .811 .811
1.01 .335 .049 .052 .053 .054 .134 .137 .138 .139 .318 .320 .321 .322 .586 .587 .587 .588 .811 .811 .811 .812
1.01 .5 .049 .052 .054 .055 .134 .137 .139 .140 .318 .321 .322 .323 .586 .587 .588 .588 .811 .811 .812 .812
1.1 .005 .049 .051 .051 .051 .134 .135 .136 .136 .319 .319 .319 .320 .586 .586 .586 .587 .811 .811 .811 .811
1.1 .17 .051 .068 .076 .080 .135 .151 .158 .162 .319 .331 .336 .339 .586 .593 .596 .598 .811 .814 .815 .816
1.1 .335 .051 .076 .087 .095 .136 .158 .168 .176 .319 .336 .344 .349 .586 .596 .600 .603 .811 .815 .817 .818
1.1 .5 .051 .080 .095 .106 .136 .162 .176 .185 .320 .339 .349 .357 .587 .598 .603 .608 .811 .816 .818 .820
2 .005 .052 .054 .054 .054 .136 .138 .138 .138 .320 .321 .321 .321 .587 .588 .588 .588 .811 .812 .812 .812
2 .17 .054 .143 .171 .183 .138 .218 .243 .254 .321 .381 .400 .409 .588 .621 .632 .637 .812 .826 .831 .832
2 .335 .054 .171 .234 .269 .138 .243 .300 .331 .321 .400 .444 .468 .588 .632 .657 .671 .812 .831 .841 .847
2 .5 .054 .183 .269 .325 .138 .254 .331 .382 .321 .409 .468 .507 .588 .637 .671 .693 .812 .832 .847 .857
11 .005 .053 .054 .054 .054 .138 .138 .138 .138 .321 .321 .321 .321 .587 .588 .588 .588 .811 .812 .812 .812
11 .17 .054 .199 .209 .209 .138 .268 .277 .277 .321 .419 .427 .427 .588 .643 .647 .647 .812 .835 .837 .837
11 .335 .054 .209 .344 .365 .138 .277 .399 .417 .321 .427 .520 .534 .588 .647 .701 .709 .812 .837 .860 .864
11 .5 .054 .209 .365 .491 .138 .277 .417 .532 .321 .427 .534 .623 .588 .647 .709 .762 .812 .837 .864 .887

Table 2. MM1 Spearman’s ½

± µ: 1.037 1.037 1.037 1.037 1.111 1.111 1.111 1.111 1.333 1.333 1.333 1.333 2 2 2 2 4 4 4 4
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

1.01 .01 .053 .054 .054 .054 .149 .149 .149 .149 .364 .364 .364 .364 .682 .682 .682 .682 .913 .913 .913 .913
1.01 .17 .054 .056 .057 .057 .149 .151 .152 .152 .364 .365 .366 .366 .682 .683 .684 .684 .913 .913 .913 .913
1.01 .335 .054 .057 .058 .059 .149 .152 .153 .154 .364 .366 .367 .368 .682 .684 .684 .685 .913 .913 .913 .913
1.01 .5 .054 .057 .059 .061 .149 .152 .154 .155 .364 .366 .368 .369 .682 .684 .685 .685 .913 .913 .913 .913
1.1 .01 .054 .056 .056 .056 .149 .151 .151 .151 .364 .365 .365 .366 .682 .683 .683 .683 .913 .913 .913 .913
1.1 .17 .056 .075 .083 .088 .151 .168 .176 .181 .365 .379 .385 .389 .683 .691 .694 .696 .913 .915 .916 .917
1.1 .335 .056 .083 .096 .105 .151 .176 .187 .196 .365 .385 .394 .401 .683 .694 .699 .702 .913 .916 .917 .918
1.1 .5 .056 .088 .105 .117 .151 .181 .196 .207 .366 .389 .401 .409 .683 .696 .702 .707 .913 .917 .918 .920
2 .01 .056 .060 .060 .060 .151 .155 .155 .155 .366 .369 .369 .369 .683 .685 .685 .686 .913 .913 .914 .914
2 .17 .060 .148 .182 .203 .155 .235 .267 .286 .369 .430 .455 .470 .685 .717 .730 .739 .913 .923 .926 .929
2 .335 .060 .182 .245 .287 .155 .267 .324 .362 .369 .455 .498 .528 .685 .730 .753 .768 .914 .926 .933 .937
2 .5 .060 .203 .287 .348 .155 .286 .362 .417 .369 .470 .528 .570 .686 .739 .768 .790 .914 .929 .937 .943
11 .01 .057 .060 .061 .061 .152 .155 .155 .155 .366 .369 .369 .369 .684 .686 .686 .686 .913 .914 .914 .914
11 .17 .060 .179 .223 .246 .155 .263 .303 .325 .369 .451 .482 .500 .686 .727 .744 .754 .914 .925 .930 .933
11 .335 .061 .223 .312 .369 .155 .303 .383 .435 .369 .482 .542 .582 .686 .744 .774 .794 .914 .930 .938 .944
11 .5 .061 .246 .369 .457 .155 .325 .435 .514 .369 .500 .582 .641 .686 .754 .794 .823 .914 .933 .944 .952

Table 3. MM2 upper tail dependence and MM2 lower tail dependence

MM2 Upper Tail Dependence MM2 Lower Tail Dependence

± µ: any any any any .111 .111 .111 .111 .333 .333 .333 .333 1 1 1 1 3 3 3 3
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

.25 .005 .000 .001 .002 .002 .002 .002 .002 .002 .125 .125 .125 .125 .500 .500 .500 .500 .794 .794 .794 .794

.25 .17 .001 .011 .015 .018 .002 .002 .002 .002 .125 .127 .128 .128 .500 .503 .504 .504 .794 .795 .796 .796

.25 .335 .002 .015 .021 .025 .002 .002 .002 .002 .125 .128 .129 .130 .500 .504 .505 .506 .794 .796 .796 .797

.25 .5 .002 .018 .025 .031 .002 .002 .002 .002 .125 .128 .130 .131 .500 .504 .506 .508 .794 .796 .797 .798
1 .005 .003 .005 .005 .005 .002 .002 .002 .002 .125 .126 .126 .126 .501 .501 .501 .501 .794 .794 .794 .794
1 .17 .005 .085 .113 .127 .002 .003 .003 .004 .126 .142 .149 .152 .501 .522 .530 .534 .794 .805 .809 .811
1 .335 .005 .113 .168 .201 .002 .003 .004 .005 .126 .149 .163 .172 .501 .530 .546 .556 .794 .809 .817 .822
1 .5 .005 .127 .201 .250 .002 .004 .005 .006 .126 .152 .172 .187 .501 .534 .556 .571 .794 .811 .822 .830
4 .005 .004 .005 .005 .005 .002 .002 .002 .002 .126 .126 .126 .126 .501 .501 .501 .501 .794 .794 .794 .794
4 .17 .005 .143 .167 .169 .002 .004 .004 .004 .126 .156 .162 .163 .501 .538 .546 .546 .794 .814 .817 .817
4 .335 .005 .167 .282 .320 .002 .004 .008 .009 .126 .162 .197 .211 .501 .546 .582 .595 .794 .817 .835 .841
4 .5 .005 .169 .320 .420 .002 .004 .009 .016 .126 .163 .211 .254 .501 .546 .595 .633 .794 .817 .841 .859
16 .005 .005 .005 .005 .005 .002 .002 .002 .002 .126 .126 .126 .126 .501 .501 .501 .501 .794 .794 .794 .794
16 .17 .005 .163 .170 .170 .002 .004 .004 .004 .126 .161 .163 .163 .501 .544 .546 .546 .794 .816 .818 .818
16 .335 .005 .170 .321 .335 .002 .004 .009 .010 .126 .163 .211 .217 .501 .546 .596 .601 .794 .818 .841 .844
16 .5 .005 .170 .335 .479 .002 .004 .010 .023 .126 .163 .217 .284 .501 .546 .601 .657 .794 .818 .844 .870

108 CASUALTY ACTUARIAL SOCIETY VOLUME 01/ISSUE 01



Multivariate Copulas for Financial Modeling

Table 4. MM2 Spearman’s ½

± µ: 0.037 0.037 0.037 0.037 0.111 0.111 0.111 0.111 0.333 0.333 0.333 0.333 1 1 1 1 3 3 3 3
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

.25 .005 .028 .029 .029 .029 .079 .080 .081 .081 .213 .214 .214 .214 .479 .479 .479 .480 .787 .787 .787 .787

.25 .17 .029 .039 .043 .047 .080 .090 .094 .097 .214 .222 .226 .229 .479 .485 .488 .490 .787 .790 .791 .792

.25 .335 .029 .043 .050 .055 .081 .094 .101 .106 .214 .226 .232 .236 .479 .488 .492 .495 .787 .791 .793 .794

.25 .5 .029 .047 .055 .062 .081 .097 .106 .112 .214 .229 .236 .241 .480 .490 .495 .499 .787 .792 .794 .796
1 .005 .030 .034 .034 .034 .081 .085 .085 .085 .214 .218 .218 .218 .480 .482 .483 .483 .787 .788 .788 .789
1 .17 .034 .113 .144 .164 .085 .160 .190 .209 .218 .284 .310 .326 .482 .527 .546 .557 .788 .808 .815 .821
1 .335 .034 .144 .200 .238 .085 .190 .243 .280 .218 .310 .356 .387 .483 .546 .577 .599 .788 .815 .829 .838
1 .5 .034 .164 .238 .291 .085 .209 .280 .331 .218 .326 .387 .432 .483 .557 .599 .629 .789 .821 .838 .851
4 .005 .031 .034 .035 .035 .082 .086 .086 .086 .215 .218 .219 .219 .480 .483 .483 .483 .787 .789 .789 .789
4 .17 .034 .152 .195 .219 .086 .197 .239 .262 .218 .315 .352 .372 .483 .548 .574 .588 .789 .816 .827 .833
4 .335 .035 .195 .282 .338 .086 .239 .322 .375 .219 .352 .423 .469 .483 .574 .621 .652 .789 .827 .846 .859
4 .5 .035 .219 .338 .424 .086 .262 .375 .456 .219 .372 .469 .539 .483 .588 .652 .698 .789 .833 .859 .878
16 .005 .031 .034 .035 .035 .082 .086 .086 .086 .215 .219 .219 .219 .480 .483 .483 .483 .787 .789 .789 .789
16 .17 .034 .157 .202 .225 .086 .202 .245 .268 .219 .320 .357 .377 .483 .551 .577 .592 .789 .817 .828 .835
16 .335 .035 .202 .294 .352 .086 .245 .333 .388 .219 .357 .432 .480 .483 .577 .627 .659 .789 .828 .848 .862
16 .5 .035 .225 .352 .443 .086 .268 .388 .474 .219 .377 .480 .554 .483 .592 .659 .708 .789 .835 .862 .882

Table 5. MM3 upper tail dependence

± µ: 1.037 1.037 1.037 1.037 1.111 1.111 1.111 1.111 1.333 1.333 1.333 1.333 2 2 2 2 4 4 4 4
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

.25 .005 .049 .050 .050 .050 .134 .135 .135 .135 .318 .319 .319 .319 .586 .586 .586 .586 .811 .811 .811 .811

.25 .17 .050 .059 .063 .065 .135 .143 .146 .149 .319 .325 .327 .329 .586 .590 .591 .592 .811 .812 .813 .813

.25 .335 .050 .063 .069 .073 .135 .146 .152 .155 .319 .327 .331 .334 .586 .591 .593 .595 .811 .813 .814 .815

.25 .5 .050 .065 .073 .078 .135 .149 .155 .160 .319 .329 .334 .338 .586 .592 .595 .597 .811 .813 .815 .815
1 .005 .051 .053 .054 .054 .136 .138 .138 .138 .320 .321 .321 .321 .587 .588 .588 .588 .811 .812 .812 .812
1 .17 .053 .129 .155 .168 .138 .205 .229 .241 .321 .372 .390 .399 .588 .616 .626 .631 .812 .824 .828 .830
1 .335 .054 .155 .207 .238 .138 .229 .275 .303 .321 .390 .425 .446 .588 .626 .646 .659 .812 .828 .837 .842
1 .5 .054 .168 .238 .285 .138 .241 .303 .345 .321 .399 .446 .478 .588 .631 .659 .677 .812 .830 .842 .850
4 .005 .053 .054 .054 .054 .137 .138 .138 .138 .321 .321 .321 .321 .587 .588 .588 .588 .811 .812 .812 .812
4 .17 .054 .184 .207 .209 .138 .254 .275 .277 .321 .409 .425 .426 .588 .637 .646 .647 .812 .833 .836 .837
4 .335 .054 .207 .315 .351 .138 .275 .372 .405 .321 .425 .499 .524 .588 .646 .689 .704 .812 .836 .855 .862
4 .5 .054 .209 .351 .446 .138 .277 .405 .491 .321 .426 .524 .591 .588 .647 .704 .743 .812 .837 .862 .879
16 .005 .053 .054 .054 .054 .138 .138 .138 .138 .321 .321 .321 .321 .587 .588 .588 .588 .812 .812 .812 .812
16 .17 .054 .202 .209 .209 .138 .271 .277 .277 .321 .422 .427 .427 .588 .645 .647 .647 .812 .836 .837 .837
16 .335 .054 .209 .352 .365 .138 .277 .406 .418 .321 .427 .525 .534 .588 .647 .704 .710 .812 .837 .862 .864
16 .5 .054 .209 .365 .501 .138 .277 .418 .541 .321 .427 .534 .630 .588 .647 .710 .767 .812 .837 .864 .889

Table 6. MM3 Spearman’s ½

± µ: 1.037 1.037 1.037 1.037 1.111 1.111 1.111 1.111 1.333 1.333 1.333 1.333 2 2 2 2 4 4 4 4
pi pj:.005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5 .005 .17 .335 .5

.25 .005 .054 .055 .055 .055 .148 .150 .150 .150 .363 .365 .365 .365 .682 .683 .683 .683 .912 .913 .913 .913

.25 .17 .055 .065 .069 .072 .150 .159 .163 .166 .365 .372 .375 .377 .683 .687 .689 .690 .913 .914 .914 .915

.25 .335 .055 .069 .076 .081 .150 .163 .169 .174 .365 .375 .380 .384 .683 .689 .691 .693 .913 .914 .915 .916

.25 .5 .055 .072 .081 .087 .150 .166 .174 .180 .365 .377 .384 .388 .683 .690 .693 .696 .913 .915 .916 .917
1 .005 .051 .060 .060 .060 .146 .154 .155 .155 .362 .368 .369 .369 .681 .685 .685 .685 .912 .913 .914 .914
1 .17 .060 .137 .168 .187 .154 .225 .253 .271 .368 .423 .445 .459 .685 .713 .725 .733 .913 .922 .925 .927
1 .335 .060 .168 .222 .259 .155 .253 .303 .336 .369 .445 .483 .509 .685 .725 .745 .759 .914 .925 .931 .934
1 .5 .060 .187 .259 .311 .155 .271 .336 .384 .369 .459 .509 .545 .685 .733 .759 .778 .914 .927 .934 .940
4 .005 .050 .060 .061 .061 .146 .155 .155 .155 .366 .369 .369 .369 .683 .686 .686 .686 .913 .914 .914 .914
4 .17 .060 .175 .217 .241 .155 .259 .298 .320 .369 .448 .479 .496 .686 .726 .742 .752 .914 .925 .929 .932
4 .335 .061 .217 .302 .357 .155 .298 .374 .424 .369 .479 .536 .574 .686 .742 .771 .790 .914 .929 .937 .943
4 .5 .061 .241 .357 .440 .155 .320 .424 .499 .369 .496 .574 .630 .686 .752 .790 .818 .914 .932 .943 .951
16 .005 .050 .060 .061 .061 .145 .155 .155 .155 .366 .369 .369 .369 .684 .686 .686 .686 .913 .914 .914 .914
16 .17 .060 .180 .224 .247 .155 .264 .304 .326 .369 .451 .483 .501 .686 .727 .744 .754 .914 .925 .930 .933
16 .335 .061 .224 .313 .370 .155 .304 .384 .436 .369 .483 .543 .583 .686 .744 .774 .794 .914 .930 .938 .944
16 .5 .061 .247 .370 .459 .155 .326 .436 .516 .369 .501 .583 .642 .686 .754 .794 .824 .914 .933 .944 .952
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Figure 1. MM1 R as a function of rho by theta, m = 3

Figure 2. MM2 R as a function of rho by theta, m = 3

Also the right tail dependence R and the corre-
lation are closely related. Scatter plots of R as a
function of ½ for different values of µ are shown
for the cases m= 3 and m= 7 for the MM1 and
MM2 copulas and m= 7 for MM3 in Figures
1—5. These points are taken from the above ta-
bles so just give a suggestion of the spread in

R available for the same values of ½ and µ.
Even so, it is clear that some degree of variabil-
ity of R is possible for pairs within a single cop-
ula even for the same rank correlation. This is
in contrast to the t-copula for which the cor-
relation and df determine the tail dependence
uniquely.
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Figure 3. MM1 R as a function of rho by theta, m = 7

Figure 4. MM2 R as a function of rho by theta, m = 7

For MM2, R is not a function of µ, so a wider
range of Rs is possible for any µ. The possi-
ble range of ½ for each µ is about the same for
each copula. This range decreases with higher
ms, however, due to the restricted range of p.
The relationship for MM3 in Figure 5 is simi-

lar to that for MM1 in Figure 1, but MM3 might
have a bit more possible spread in R.

6. Fitting MM1 and MM2

As an example, we tried fitting the MM1 and
MM2 copulas to currency rate changes. Currency
data was chosen because it is publicly available,
not because it is fit better by the MMC copu-
las. But by fitting to actual data, some of the
shape differences among the copulas can be
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Table 7. Parameters for the various fitting methods

MM2 MM1 t

SSE MLE bi SSE MLE bi MLE tri MLE bi MLE tri

±12 2.62588 1.50608 3.69513 2.14275 2.1094 0.491 0.490
±13 0.80055 0.43963 1.52005 1.19832 1.1152 0.262 0.266
±23 3.2E-07 0.0103 1 1 1 0.097 0.097
p1 0.49881 0.37649 0.49963 0.40533 0.37175
p2 0.5 0.5 0.5 0.5 0.5
p3 0.26236 0.49625 0.29097 0.5 0.5
µ 0.19599 0.2209 1.08308 1.0939 1.1234 20.53 20.95

Figure 5. MM2 R as a function of rho by theta, m = 3

illustrated, as can fitting methods. The data con-
sists of monthly changes in the US $ exchange
rate for the Swedish, Japanese and Canadian cur-
rencies from 1971 through September 2005. The
data come from the Fred database of the St. Louis
Federal Reserve. The Fred exchange rates were
converted to monthly change factors, with a fac-
tor greater than 1.0 representing an appreciation
of the US $ compared to that currency. These
factors are comparative movements against the
dollar, so if an event strengthens or weakens the
dollar in particular, all the currencies would be
expected to move in the same direction. Thus
there could be common shocks.
The MMC copula densities get increasingly

difficult to calculate as the dimension increases.

For this reason, some alternatives to MLE were
explored. One alternative is to maximize the
product of the bivariate likelihood functions,
which just requires the bivariate densities. Since
the copulas are defined by the copula functions,
an even easier fit is to minimize the distance be-
tween the empirical and fitted copulas, measured
by sum of squared errors (SSE). Numerical dif-
ferentiation, as discussed in Appendix 2, is an-
other way to calculate the multivariate MLE but
was not tried here.
The parameters for the various fitting meth-

ods are shown in Table 7. The product of the bi-
variate likelihood estimates for MM1 are quite
close to the full trivariate MLE. It should be
noted, however, that there are many local max-
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Figure 6. Sweden—Japan J function

Figure 7. Sweden—Japan Â function

ima for both likelihood functions, so we cannot
be absolutely sure that these are the global max-
ima. Only the bivariate estimates were done for
MM2. The SSE parameters are quite a bit dif-
ferent from the MLEs. Thus, the product of the
bivariate MLEs appears to be the more promising
short-cut method.

The t parameters were estimated by maximiz-
ing the trivariate and product of bivariate like-
lihood functions for comparison. We use a beta
distribution version of the t that allows fractional
degrees of freedom. Comparisons of fits were
done using graphs of the empirical and fitted J
and Â functions in Figures 6—11. These functions
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Figure 8. Sweden—Canada J function

Figure 9. Sweden—Canada Â function

are defined as:

J(z) =¡z2 +4
Z z

0

Z z

0
C(u,v)c(u,v)dvdu=C(z,z) and

Â(z) = 2¡ ln[C(z,z)]= lnz:

As z! 1 these approach Kendall’s ¿ and the up-
per tail dependence R, respectively. They also

can be compared to see the fit in the left tail,
which is important for currency movements.
In two of the three J graphs, the t-copula is

clearly the best fit, but MM2 is close for Sweden-
Canada. In the third, MM2 is the best. MM1 is
always worse for this data. The t is also best in
two of the three Â graphs, but not much bet-
ter than MM2 for Sweden-Canada. In the third
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Figure 10. Japan—Canada J function

Figure 11. Japan—Canada Â function

graph, each of the three is best in some range
but MM1 is probably best. Overall, MM2 seems
to provide almost as good a fit as t, but not
quite.
Although this data set is fit best by the t-copula,

that does not negate the value of having more
than one multivariate copula available. The ex-

ample explores methods of fitting multivariate
copulas and comparing their fits, and illustrates
the different shapes of the descriptive functions
that can be produced by the different copulas.
For exchange rates in particular, it may be worth
exploring fitting the logs of the change factors
by multivariate normal and t-distributions, as re-
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ciprocals of the factors are of interest and could
have the same distribution.

7. Summary

The IT copula has potential for better fits when
the t-copula tails differ. Trying to fit this to some
actual data seems worthwhile.
The closed-form MMC copulas do not give

full flexibility in the range of the bivariate cor-
relations that can occur in a single multivariate
copula. These copulas would be most appropri-
ate when the empirical correlations are all fairly
small or fairly close to each other. This gets more
so as the number of dimensions increases. These
copulas all have somewhat different shapes, and
differ from the t-copula as well, so they could
be useful with the right data. An interesting ap-
plication may be to insurance losses by line of
business, as their correlations are all relatively
low and the tail dependences may not have the
t-copula property of strictly growing with corre-
lation. The correlations of losses across lines may
not have the t’s symmetric right and left tails ei-
ther, but this is less of a concern, as putting too
much correlation into small losses is not likely to
critically affect the properties of the distribution
of the sum of the lines.
Joe also defines MM4 and MM5 copulas.

These do not have closed-form expressions, but
he asserts that they have a wide range of possi-
ble dependence. To build a larger repertoire of
multivariate copulas, it may be worth developing
algorithms for calculation and fitting these and
trying them on live data.

Appendix 1. MMC density
functions

For maximum likelihood estimation, it would
be desirable to have expressions for the copula
densities, which are mixed partial derivatives of

the copula C functions. Although it is difficult

to write down general formulas for the densities,
some broad outlines can be developed. Recall

the product formula for derivatives (ab)0 = a0b+
b0a. Then (abc)0 = (ab)0c+ abc0 = a0bc+ ab0c+
abc0. Similarly (abcd)0 = a0bcd+ ab0cd+ abc0d+
abcd0, etc. For any function F of the vector u,
consider the simple multivariate function B(u) =
F(u)a. Denoting partial derivatives with respect
to the elements of u by subscripts, we have suc-
cessively:

B = Fa:

Bi = aF
a¡1Fi:

Bij = a(a¡ 1)Fa¡2FiFj + aFa¡1Fij:

Bijk = a(a¡ 1)(a¡ 2)Fa¡3FiFjFk + a(a¡ 1)Fa¡2

£ (FiFjk +FjFik +FkFij)+ aFa¡1Fijk:

Bijkl = a(a¡ 1)(a¡ 2)(a¡ 3)Fa¡4FiFjFkFl
+ a(a¡ 1)(a¡ 2)Fa¡3(FijFkFl+FikFjFl
+FilFjFk +FjkFiFl+FjlFiFk +FklFiFj)

+ a(a¡ 1)Fa¡2(FiFjkl+FjFikl+FkFijl
+FlFijk +FijFkl+FikFjl+FilFjk)

+ aFa¡1Fijkl:

This is the form of the MM2 C function. Al-

though a pattern is emerging in the subscripts, it
seems difficult to write down a general rule for

an arbitrary mixed partial.
A similar exercise can be carried out for C(u)

= e¡B(u).

C = e¡B:

C1 =¡CB1:
C12 = C(B1B2¡B12):
C123 = C(B1B23 +B2B13 +B3B12¡B1B2B3

¡B123):
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C1234 = C(B1B234 +B2B134 +B3B124 +B4B123

+B12B34 +B13B24 +B14B23

¡B12B3B4¡B13B2B4¡B14B2B3
¡B23B1B4¡B24B1B3¡B34B1B2
+B1B2B3B4¡B1234):

This is the form of the MM1 and MM3 C with

Fa replacing B.

To calculate the derivatives let xj = y
0
j =

µ(¡ lnuj)µ¡1=uj , and tj = w
0
j = µpju

¡µ¡1
j . The

case m= 3 is not too bad. First for MM1:

F(u) =
3X
j=1

(1¡ 2pj)yj +
X
i<j

((piyi)
±
ij +(pjyj)

±
ij )1=±ij

Taking the first derivative:

Fi(u) = (1¡ 2pj)yjxi+(piyi)±ij¡1pixi
£
X
j6=i
((piyi)

±ij +(pjyj)
±ij )1=±ij¡1

This would be almost the same for the bivariate

margin. Then:

Fij(u) = (1¡ ±ij)(pipjyiyj)±ij¡1pipjxixj
£ ((piyi)±ij +(pjyj)±ij )1=±ij¡2

This is the same for the bivariate margin. From

this it is clear that F123 = 0. Then taking a= 1=µ

and plugging in these values of Fi and Fij will

give all values of Bi, Bij , and B123, which can

then be plugged in the formula for C123 to give

the density. From the formulas for C12 the bivari-

ate density is similar.

MM2 is even easier, as the C formulas are not

needed. What is needed is:

F(u) =
3X
j=1

u¡µj ¡ 2¡
X
i<j

(w
¡±ij
i +w

¡±ij
j )¡1=±ij

This gives:

Fi(u) =¡µu¡µ¡1i ¡w¡±ij¡1i ti
X
j6=i
(w

¡±
ij

i +w
¡±

ij

j )¡1=±ij¡1

And:

Fij(u) =¡(1+ ±ij)(wiwj)¡±ij¡1titj(w
¡±

ij

i +w
¡±

ij

j )¡1=±ij¡2

Again F123 = 0. Then setting a=¡1=µ gives
B123, which is the density.
This gets harder and harder as the dimension

of u increases. Then numerical differentiation be-
comes increasingly attractive.

Appendix 2. Numerical densities

Background and notation
The discussion is oriented to copulas, i.e.,

smooth, parametric, cumulative distribution func-
tions on the unit hypercube.
Let X 2 − = [0,1]d with cdf F(X j µ). Sample

points are denoted x alone or x(i) if a sequence
needs to be indexed. Components of x are xj .

From CDF to measure
Define the hypercube H(x,±) as

([x1¡ ±=2,x1 + ±=2]£ [x2¡ ±=2,x2 + ±=2]£ ¢¢ ¢
£ [xd ¡ ±=2,xd + ±=2])\−

Without loss of generality, we may assume a
generic H is wholly contained in −. We can iden-
tify the set of vertices of H(x,±) with the set
S= f¡1,1gd by the mapping
s= hs1,s2, : : : ,sdi
7! hx1 + s1 ¢ ±=2,x2 + s2 ¢ ±=2, : : : ,xd + sd ¢ ±=2i
= C(x,±,s):

Let g(s) =
Q
j sj be the sign of s.

Define the probability measure ¹(H j µ) as
PrfX 2H j µg.
THEOREM

¹(H(x,±) j µ) =
X
s2S
g(s) ¢F(C(x,±,s) j£):

The probability of X being in a hypercube is the
sum of the distribution function at positive corners
minus its value at the negative corners. For d = 1
this is just the difference between the function at
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the top and bottom of the interval. For d = 2, this
is the sum of the function at the upper right and
lower left corners minus the function at each of the
other corners. The latter two functions cover an
overlapping area that gets subtracted twice, which
is why you have to add back the function at the
lower left. In general the proof requires keeping
track of what are the positive and negative corners.

PROOF For 0·N · d, define the hypersolids
HN = ([x1¡ ±=2,x1 + ±=2]£ ¢¢ ¢

£ [xN ¡ ±=2,xN + ±=2]£ [0,xN+1 + ±=2]
£ [0,xN+2 + ±=2]£ ¢¢ ¢£ [0,xd+ ±=2])

H¡N = ([x1¡ ±=2,x1 + ±=2]£ ¢¢ ¢
£ [xN ¡ ±=2,xN + ±=2]£ [0,xN+1¡ ±=2]
£ [0,xN+2 + ±=2]£ ¢¢ ¢£ [0,xd+ ±=2])

and associated vertex index sets

SN = fh§1, : : : ,§1,1,1, : : : ,1ig and

S¡N = fh§1, : : : ,§1,¡1,1, : : : ,1ig,
respectively, each with 2N elements. There is a
natural 1-to-1 mapping

s= hs1, : : : ,sN ,1, : : : ,1i7! hs1, : : : ,sN ,¡1, : : : ,1i= s¡

between SN and S
¡
N .

We have that

¹(H0 j µ) = F(x1 + ±=2,x2 + ±=2, : : : ,xd+ ±=2)
=
X
s2S0

g(s) ¢F(C(x,±,s) j µ)

¹(H¡0 j µ) = F(x1¡ ±=2,x2 + ±=2, : : : ,xd + ±=2)
=¡

X
s2S¡0

g(s) ¢F(C(x,±,s) j µ)

¹(H1 j µ) = ¹(H0nH¡0 j µ) = ¹(H0 j µ)¡¹(H¡0 j µ)
=
X
s2S0

g(s) ¢F(C(x,±,s) j µ)

+
X
s2S¡0

g(s) ¢F(C(x,±,s) j µ)

=
X
s2S1

g(s) ¢F(C(x,±,s) j µ)

Assume that

¹(HN j µ) =
X
s2SN

g(s) ¢F(C(x,±,s) j µ):

The mapping s7! s¡ induces a correspondence
between vertices of HN and H

¡
N , and the fact that

¹(H¡N j µ) =¡
X
s2S¡N

g(s) ¢F(C(x,±,s) j µ)

follows by noting the change in sign between
each g(s) and corresponding g(s¡). Then

¹(HN+1 j µ) = ¹(HNnH¡
N j µ) = ¹(HN j µ)¡¹(H¡

N j µ)

=
X
s2SN

g(s) ¢F(C(x,±,s) j µ)

+
X
s2S¡

N

g(s) ¢F(C(x,±,s) j µ)

=
X
s2SN+1

g(s) ¢F(C(x,±,s) j µ)

By mathematical induction, it must be the case
that

¹(Hd j µ) =
X
s2Sd

g(s) ¢F(C(x,±,s) j µ):

But Sd = S and the theorem is proved.

Approximating MLE
Since F is smooth, it has a probability density

function defined by

f(x j µ) ¢=lim
±!0

¹(H(x,±) j µ)
±d

:

In general, this is intractable; i.e., a closed-form
expression is not convenient. However, since ¹
can be evaluated, a numerical approximation
f(x j µ,±) for small ± is readily available by ap-
plying the theorem. Therefore, the log-likelihood
of a set of data fx(1),x(2), : : : ,x(n)g can be approx-
imated by

L(µ)¼
X
i

ln(f(x(i) j µ,±))

for suitably chosen ±.
This allows the application of standard Maxi-

mum Likelihood Estimation techniques.
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Sampling
While ML estimation carries its own asymp-

totic results for assessing standard errors, it might
be useful to conduct simulation experiments to
bolster these results. A form of rejection sam-
pling is outlined here. Say the goal is to sample
n points from the distribution defined by F(¢ j µ).
Step 1 Choose NÀ n points x(i) uniformly

from −.
Step 2 For each i, calculate Ái = f(x

(i) j µ,±).
Let m=maxfÁig and M = (§Ái)=m. If M < n

then go back to step 1 and choose a larger N .
Step 3 Sample n points without replacement

from the discrete distribution fhx(i),piig where
pi = n ¤Ái=(§Ái). If you make sure the x(i) are
in random order, e.g., the order in which they
were first sampled, you can use the following
systematic sampling procedure:
Sample := fg. Sp := 0. i := 0.
Repeat
i := i+1.
If the interval (Sp, Sp+ pi] contains an integer,

then Sample := Sample [ fx(i)g.
Sp := Sp+pi.
Until Sp= n.
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dépendances entre les branches Automobile et Incen-
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