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Moment-Based Approximation 
with Mixed Erlang Distributions
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ABSTRACT

Moment-based approximations have been extensively analyzed 

over the years (see, e.g., Osogami and Harchol-Balter 2006 

and references therein). A number of specific phase-type (and 

non phase-type) distributions have been considered to tackle the 

moment-matching problem (see, for instance, Johnson and Taaffe 

1989). Motivated by the development of more flexible moment-

based approximation methods, we develop and examine the use 

of finite mixture of Erlangs with a common rate parameter for the 

moment-matching problem. This is primarily motivated by Tijms 

(1994) who shows that this class of distributions can approximate 

any continuous positive distribution to an arbitrary level of accu-

racy, as well as the tractability of this class of distributions for 

various problems of interest in quantitative risk management. We 

consider separately situations where the rate parameter is either 

known or unknown. For the former case, a direct connection with 

a discrete moment-matching problem is established. A parallel 

to the s-convex stochastic order (e.g., Denuit et al. 1998) is also 

drawn. Numerical examples are considered throughout.
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moment-based approximation of Whitt (1982) when 
CV > 1 using a Coxian distribution. Alternatively, 
Johnson and Taaffe (1989) considered a mixture of 
Erlangs with a common shape (order) parameter as 
their moment-based approximation.

Most predominantly, there exists a substantial body 
of literature on the three-moment approximation 
within the phase-type class of distributions (e.g., Telek 
and Heindl 2002, Bobbio et al. 2005, and references 
therein). Matching the first three moments is often 
viewed as effective to provide a reasonable approxi-
mation to the underlying system (e.g., Osogami and 
Harchol-Balter 2006 and references therein). How-
ever, as illustrated in this paper and many others, three 
moments does not always suffice, triggering the devel-
opment of more flexible moment-based approxima-
tions. Among others, we mention the work of Johnson 
and Taaffe (1989) on mixed Erlang distributions of 
common order. Also, Dufresne (2007) proposes two 
approximation techniques based on Jacobi polynomial 
expansions and the logbeta distribution to fit combina-
tions of exponential distributions. This paper is com-
plementary to the aforementioned ones by considering 
the family of finite mixture of Erlangs with common 
rate parameter to approximate a distribution on R+, as 
theoretically justified in the continuous case by Tijms 
(1994, Theorem 3.9.1). The reader is also referred to 
Lee and Lin (2010) where fitting of the same class of 
distributions is considered using the EM algorithm 
(which relies on the knowledge of the approximated 
distribution rather than only its moments).

It is worth pointing out that other non-phase type 
approximation methods have been widely used in 
actuarial science. A good survey paper on this topic 
is Chaubey et al. (1998). One of these approximation 
classes are refinements to the normal approxima-
tion such as the normal power and the Cornish Fisher 
approximations (e.g., Ramsay 1991, Daykin et al. 
1994, and Lee and Lin 1992). These approximations 
are based on the first few moments. However, the 
resulting approximation is often not a proper distribu-
tion. Other moment-based distributional approxima-
tions are the translated gamma distribution (e.g., Seal 
1977), translated inverse Gaussian distribution (e.g., 

1. Introduction

Mixed Erlang distributions are known to yield ana-
lytic solutions to many risk management problems of 
interest. This is primarily due to the tractable features 
of this distributional class. Among others, the class 
of mixed Erlang distributions is closed under various 
operations such as convolutions and Esscher transfor-
mations (e.g., Willmot and Woo 2007 and Willmot and 
Lin 2011). As such, risk aggregation and ruin problems 
can more easily be tackled under mixed Erlang assump-
tions (e.g., Cheung and Woo 2016, Cossette et al. 2012, 
and Landriault and Willmot 2009). Also, Tijms (1994) 
showed that the class of mixed Erlang distributions is 
dense in the set of all continuous and positive dis-
tributions. Therefore, we consider a moment-based 
approximation method which capitalizes on the afore-
mentioned properties of the mixed Erlang distribution. 
More precisely, we propose to approximate a distri-
bution with known moments by a moment-matching 
mixed Erlang distribution. Moment-based approxi-
mations have been extensively developed in various 
research areas, including performance evaluation, 
queueing theory, and risk theory, to name a few.

Osogami and Harchol-Balter (2006) identify the 
following four criteria to evaluate moment-matching 
algorithms: (1) the number of moments matched; 
(2) the computational efficiency of the algorithm; 
(3) the generality of the solution; and (4) the mini-
mality of the number of parameters (phases). It also 
seems desirable for the approximation to be in itself 
a distribution. This is not mentioned in Osogami 
and Harchol-Balter (2006) for the obvious reason 
that they consider phase-type distributions as their 
moment-based approximation class. There exists an 
extensive literature on the approximation of distribu-
tions by a specific subset of phase-type distributions 
using moment-based techniques. For instance, Whitt 
(1982) proposed a mixture of two exponential dis-
tributions or a generalized Erlang distribution as  
a moment-based approximation when either the coef-
ficient of variation (CV) is greater than or less than 1, 
respectively. Also, both Altiok (1985) and Vanden 
Bosch et al. (2000) proposed an alternative to the 
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As stated in Courtois and Denuit (2007), there 
exists a non-negative random variable (rv) with dis-
tribution function (df) F and first m moments lm if 
and only if the following two conditions are satisfied:

• det Pk > 0, for k = 1, . . . , (m - 1)/2;
• det Qk > 0, for k = 1, . . . , m/2;

where x holds for the integer part of x. In what fol-
lows, we silently assume the moment set lm is from 
a probability distribution on R+.

2.2. Mixed Erlang distribution

We now review some known properties of mixed 
Erlang distributions with common rate parameter. A 
more elaborate review of this class of distributions 
can be found in Willmot and Woo (2007), Lee and 
Lin (2010), and Willmot and Lin (2011).

Let W be a mixed Erlang rv with common rate 
parameter b > 0 and df

F x H x kW
k Al

k∑ ( )( ) = ζ β
∈

; , , (1)

where Al = {1, 2, . . . , l}, and {zk}
l
k=1 is the probability 

mass function (pmf) of a discrete rv K with support 
Al for a given l ∈ {1, 2, . . .}  {∞}. The Erlang df H 
is defined as

H x k H x k e
x
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where the parameters k and b of the Erlang df are 
known as the shape and rate parameters, respectively. 
An alternative and useful representation of the mixed 
Erlang rv W is W C

k

K
k∑=

=1
 where {Ck}k≥1 are iid expo-

nential rv’s with mean 1/b, independent of K, i.e., the 
rv W follows a compound distribution.

Remark 1. As in, e.g., Willmot and Woo (2007), we 
consider the class of mixed Erlang dfs (1) rather than 
the more general class of combinations of Erlangs 
where some zk’s are possibly negative. For the latter 
class, additional constraints on {zk}

l
k=1 exist to ensure 

that the right-hand side of (1) is a non-decreasing 
function in x. This presents additional challenges in 

Chaubey et al. 1998) and the generalized Pareto dis-
tribution (e.g., Venter 1983). It should be noted that 
all these approximation methods are designed to fit a 
specific number of moments, and thus lack the flex-
ibility to match an arbitrary number of moments.

The rest of the paper is constructed as follows. In 
Section 2, a brief review on admissible moments, 
mixed Erlang distributions and the approximation 
method of Johnson and Taaffe (1989) is provided. 
Section 3 is devoted to our class of finite mixture of 
Erlangs with common rate parameter. Theoretical and 
practical considerations related to the approximation 
method are drawn. Various examples are considered 
to examine the quality of the resulting approximation. 
In Section 4, we consider applications of our moment-
based approximations of Section 3 when the underly-
ing distribution is of mixed Erlang form with known 
rate parameter. A parallel is drawn with a discrete 
moment-matching problem and certain stochastic 
orderings, notably the s-convex stochastic order (e.g., 
Denuit et al. 1998). An application of Cossette et al. 
(2002) will be examined in more detail.

2. Background

2.1. Admissible moments

Karlin and Studden (1966) provide the necessary 
and sufficient conditions for a set of (raw) moments 
lm = (µ1, . . . , µm) to be from a probability distribution 
defined on R+. To state this result, define the matrices 
Pk and Qk (k ≥ 1) as
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for more details). In general, these moment-based 
approximations propose to work with a specific sub-
class of all finite and infinite mixed Erlang dis-
tributions. Among them, we recall the method of 
Johnson and Taaffe (1989), who will be used later for 
comparative purposes.

2.3. Method of Johnson and Taaffe (1989)

Johnson and Taaffe (1989) investigated the use of 
mixtures of Erlang distributions with common shape 
parameter for moment-matching purposes. More pre-
cisely, mixtures of n (or fewer) Erlangs with common 
shape parameters are used to match the first (2n - 1) 
moments (whenever the set of moments is within the 
feasible set). For the three-moment matching problem, 
Johnson and Taaffe (1989) generalized the approxima-
tion of Whitt (1982) and Altiok (1985) by enlarging the 
set of feasible moments l3 when CV > 1. Their method 
is also valid for some combinations of l3 when CV < 1.

Their three-moment approximation is a mixture 
of two Erlangs with common shape parameter r (see 
Theorem 3 of Johnson and Taaffe 1989), i.e.,

F x pH x r p H x r( ) ( )( ) ( )= β + − β; , 1 ; , , (5)1 2
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The choice of the shape parameter r is discussed in 
Johnson and Taaffe (1989, Proposition 4).

the subsequent moment-matching application, chal-
lenges which do not arise in the mixed Erlang case.

It is well known that the j-th moment of W is given 
by E[Wj] = b-jΣ ∞

k=1zk{∏ j-1
i=0(k + i)}. Of particular impor-

tance in actuarial science and quantitative risk man-
agement (see, e.g., McNeil et al. 2005 and references 
therein) are the VaR and TVaR risk measures. For 
the mixed Erlang rv W, there is in general no closed 
form expression for VaRk(W) = inf{x ∈ R : FW(x) ≥ k} 
where 0 ≤ k < 1, but its value can be obtained using a 
routine numerical procedure. As for its TVaR, Lee and 
Lin (2010) showed that

∫
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Another quantity of interest is the stop-loss premium 
defined as pW(b) = E[(W - b)+] with (x)+ = max{x, 0}. 
For the mixed Erlang df (1), we have

b
k
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(see also Willmot and Woo (2007, Eq. 3.6) for the 
higher-order stop-loss moments). Tijms (1994) showed 
that this class of distributions can approximate any 
continuous positive distribution with an arbitrary 
level of accuracy. For completeness, the theoretical 
foundation of this result is given next.

Theorem 2. (Tijms 1994, Theorem 3.9.1). Let F be  
the df of a positive rv. For any given h > 0, define

F x F kh F k h H x k
h

h
k
∑ ( )( )( ) ( ) ( )= − − 



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∞

1 ; ,
1

. (4)
=1

Then, F x F x
h

h ( ) ( )
→

lim =
0

 for any continuity point x of F.

Note that Fh in (4) is a mixed Erlang df of the form 
(1) with zk = (F(kh) - F((k - 1)h)) (k = 1, 2, . . .) and 
rate parameter b = 1/h.

Several approximation methods motivated by Tijms’ 
theorem were proposed over the years (see Section 1 
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where ym = (zi1
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It follows that ym = Gm
-1Mb under the constraint 

that ym e = 1, where e is the vector 1’s. Note that  
yT

me = (Gm
-1Mb)

T e is a polynomial of degree (at most) 
m in b. Thus, we only consider the real and positive 
solutions (in b) of (Gm

-1Mb)
T e = 1, and complete their 

mixed Erlang representation with the identification 
of the mixing weights ym = Gm

-1Mb. The procedure is 
systematically repeated for all ( l

m) possible sets of m 
distinct elements in Al.

Remark 4. Given that the above procedure is 
repeated ( l

m) times, the computational efficiency of the 
proposed methodology is mostly driven by this num-
ber, and hence the parameters m and l should be cho-
sen accordingly. For a given number of moments, m, 
we observe that: (a) larger values of l result in a more 
time-consuming numerical procedure; (b) however,  
l should be chosen large enough for the approxima-
tion class res(lm, Al) to have a reasonable number 
of members (to legitimally produce a “good” approxi-
mation). From our numerical studies, we observe that  
the selection of l (for a given m) can be problem- 
specific, and thus this tradeoff in the choice of l should 
be handled with care. However, as a rule of thumb, 
when m is relatively small (i.e., m ≤ 6) which is tra-
ditionally in moment-matching exercises, a value of l 
between 50 and 100 leads to reasonable mixed Erlang 
approximations. We refer the reader to the numerical 
illustrations and subsequent remarks in Section 3.2 
for a more detailed discussion on this topic.

Among all res(lm, Al) distributions, we propose 
to use as a criterion of the quality of these approxima-
tions the Kolmogorov-Smirnov (KS) distance defined 
for two rv’s S and W (with respective dfs FS and FW) 

3. Moment-based approximation 
with mixed Erlang distribution

In this section, we propose to use a different subclass 
of mixed Erlang distributions to examine moment-
based approximation techniques.

3.1. Description of the approach

For a given l ∈ N+, let (lm, Al) be the set of 
all finite mixture of Erlangs with df (1) and first m 
moments lm. From Section 2.2, this consists in the 
identification of all solutions to the problem

∑ ∏ ( )
ζ

+
β

= µ =
−

k i
j m

k

l

k
i

j

j j , 1, . . . , , (6)
=1

=0

1

under the constraints that b > 0 and {zk}
l
k=1 is a prob-

ability measure on Al.

Remark 3. For a rv W with df (1) and first m 

moments lm, we indifferently write W ∈ (lm, Al) 
or FW ∈ (lm, Al). This will also apply to the other 

distributional classes.

Also, let res(lm, Al) be the (restricted) subset of 
(lm, Al) with at most m non-zero mixing probabili-
ties {zk}

l
k=1. Given that  res(lm, Al) has a finite num-

ber of solutions, we propose to use  res(lm, Al) as 
our approximation class. It is clear that  res(lm, Al) 
⊆ res(lm, Al′) for l ≤ l′.

Note that for a continuous positive distribution with 
moments lm, we know from Theorem 2 that there exists 
a l large enough such that (lm, Al) is not empty. 
Even though no formal conclusion can be reached for 
the restricted class  res(lm, Al), all our numerical 
studies have shown that this set has a large number of 
distributions (see, for instance, the examples of sub-
sections 3.2.1 and 3.2.2) for a given m when l is chosen 
large enough.

Distributions in the res(lm, Al) class are identi-
fied as follows: for a given set {ik}

m
k=1 ⊂ Al with 1 ≤ i1 < 

i2 < . . . < im ≤ l, (6) can be rewritten in matrix form as

G M= βm m ,y
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0.0001 ; 69, 8.3608 ,

5,70

for x ≥ 0 with respective KS distances of dKS(S,W3,70) 
= 0.0040, dKS(S,W4,70) = 0.0018 and dKS(S,W5,70) = 
0.0011. Note that the quality of the mixed Erlang 
approximation (as measured by the KS distance) 
increases with the number of moments matched. For 
comparative purposes, the three-moment approxima-
tion (5) of Johnson and Taaffe (1989) is given by

( ) ( )

( )+

F x H x

H x

WJT
= 0.0087 ; 4,1.2804

0.9913 ; 4, 3.5855 ,

In Figure 1, we compare the density function of Wm,70 
(m = 3, 4, 5) WJT and S.

All three mixed Erlang approximations provide an 
overall good fit to the exact distribution. To further 
examine the tail fit, specific values of VaR and TVaR 
for the exact and approximated distributions are pro-
vided in Tables 1 and 2, respectively.

We observe that the VaR and TVaR values of 
the mixed Erlang approximations compare very well 
to their lognormal counterparts, especially for the 
5-moment approximation. This is particularly true 
given that the lognormal distribution is known to 
have a heavier tail than the mixed Erlang distribution. 

as dKS(S,W) = supx≥0FS(x) - FW(x). The KS distance 
is commonly used in the context of continuous dis-
tributions (e.g., Denuit et al. 2005). Therefore, 
the chosen mixed Erlang approximation within 
 res(lm, Al) is the one minimizing the KS dis-
tance with the true df FS. We denote by FWm,l

 this 
approximation, i.e.,

ME
( ) ( ) ( )= −

( )∈ ≥
d S W F x F xKS m l

F A x
S W

W
res

m l

, inf sup ,,
, 0l

where Wm,l is a rv with df FWm,l
. This requires the calcu-

lation of the KS distance for each mixed Erlang distri-
bution in res(lm, Al) to identify its minimizer Wm,l. 
In general, an explicit expression for this KS distance 
does not exist, and hence we propose to numerically 
find this value by evaluating the distance between the 
two dfs over all multiples (up to a given high value) of 
a small discretization span.

Note that other distances such as the stop-loss 
distance (e.g., Gerber 1979) could have been used 
to select our approximation distribution. Alterna-
tively, one could have relied on another criterion 
to identify this approximation distribution (for 
instance, select the distribution in  res(lm, Al) 
with the closest subsequent moment to the true 
distribution).

3.2. Numerical examples

We consider a few simple examples to illustrate 
the quality of the approximation. For comparative 
purposes, other approximation methods will also be 
discussed. Some concluding remarks on the mixed 
Erlang approximation method are later made based 
on the numerical experiment conducted next.

3.2.1. Lognormal distribution: Dufresne 
(2007, Example 5.4)

Let S = exp(Z) where Z is a normal rv with mean 0 
and variance 0.25. The first 5 moments of S are  
l5 = (1.1331, 1.6487, 3.0802, 7.3891, 22.7599). We con-
sider the class of mixed Erlang distributions res(lm, 
A70) (m = 3, 4, 5) which have a total of 13198, 89294 
and 290422 distributions, respectively. The resulting 
mixed Erlang approximations FWm,70

 (m = 3, 4, 5) are
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and first 6 moments l6 = (4.3623, 25.7308, 176.9624, 
1369.8272, 11754.2149, 110674.4154). We consider 
the class of mixed Erlang distributions res(µm, A70) 

Note that the improvement is indeed not monotone 
with the number of moments matched, as increasing 
this number does not necessarily lead to a higher qual-
ity approximation in moment-matching techniques.

3.2.2. Mixture of two gamma distributions: 
Lee and Lin (2010, Section 5, Example 1)

Let S be a mixture of two gamma distributions 
with density

Figure 1. Density function: Lognormal vs. Approximations

Table 2. Values of TVaRj for WJT, Wm,70 (m = 3, 4, 5) and S

k TVaRk (WJT) TVaRk (W3,70) TVaRk (W4,70) TVaRk (W5,70) TVaRk (S)

0.9 2.3931 2.4540 2.4601 2.4616 2.4616

0.95 2.7528 2.8350 2.8431 2.8600 2.8586

0.99 3.7939 3.9007 3.8125 3.8579 3.8413

0.995 4.4115 4.4455 4.3654 4.3323 4.2957

0.999 6.2260 5.4245 5.6195 5.3151 5.4341

Table 1. Values of VaRj for WJT, Wm,70 (m = 3, 4, 5) and S

k VaRk (WJT) VaRk (W3,70) VaRk (W4,70) VaRk (W5,70) VaRk (S)

0.9 1.8906 1.9129 1.9056 1.8936 1.8980

0.95 2.2119 2.2692 2.2918 2.2791 2.2760

0.99 2.9953 3.1223 3.0991 3.1812 3.2001

0.995 3.4239 3.6892 3.4811 3.6572 3.6252

0.999 5.0672 4.9237 5.0623 4.7241 4.6885
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( )

( )

( )

+

+

+

+

H x

H x

H x

H x

0.2739 ( ;11, 3.0731)

0.3928 ;17, 3.0731

0.1188 ; 25, 3.0731

0.0052 ; 37, 3.0731 ,

with respective KS distances of dKS(S,W3,70) = 0.0148, 
dKS(S,W4,70) = 0.0050, dKS(S,W5,70) = 0.0035 and 
dKS(S,W6,70) = 0.0024. Lee and Lin (2010) used the EM 
algorithm to fit a mixed Erlang distribution to the same 
distribution, which resulted in the following model:

( ) =

+

+

F x H x

H x

H x

WEM
0.2282 ( ; 2,1.9603)

0.5430 ( ; 9,1.9603)

0.2288 ( ;14,1.9603),

with KS distance dKS(S, WEM) = 0.0094. Note that the 
KS distance for the 3-moment approximation is greater 
than the KS distance obtained using the EM estima-
tion. We recall that the EM algorithm finds maximum 
likelihood estimates using the approximated distribu-
tion as an input, while our method is based on only 
partial information on the approximated distribution 
(e.g., its first m moments). We observe that the fit 
improves and the KS distance decreases when more 
moments are included in the approximation. For illus-
trative purposes, we also provide in Tables 3 and 4 

for m = 3, 4, 5, 6 which are composed of 16000, 83797, 
494532 and 1928919 distributions, respectively. The 
resulting mixed Erlang approximations FWm,70

 (m = 3, 4, 
5, 6) are

( ) =

+

+

F x H x

H x

H x

W 0.2140 ( ; 2, 2.0835)

0.5215 ( ; 9, 2.0835)

0.2645 ( ;15, 2.0835),

3,70

( ) =

+

+

+

F x H x

H x

H x

H x

W 0.2266 ( ; 2, 2.0469)

0.4440 ( ; 9, 2.0469)

0.2963 ( ;13, 2.0469)

0.0330 ( ;19, 2.0469),

4,70

( ) =

+

+

+

+

F x H x

H x

H x

H x

H x

W 0.2023 ( ; 3, 3.7271)

0.2091 ( ;12, 3.7271)

0.3936 ( ;19, 3.7271)

0.1805 ( ; 28, 3.7271)

0.0145 ( ; 42, 3.7271),

5,70

and

( ) =

+

F x H x

H x

W 0.0768 ( ; 2, 3.0731)

0.1325 ( ; 3, 3.0731)

6,70

Table 4. Values of TVaRj for Wm,70 (m = 3, 4, 5, 6), WEM and S

k TVaRk (WEM) TVaRk (W3,70) TVaRk (W4,70) TVaRk (W5,70) TVaRk (W6,70) TVaRk (S)

0.9  9.0866  9.1909  9.1596  9.1404  9.1634  9.1598

0.95  9.9929 10.0845 10.1583 10.1234 10.1378 10.1469

0.99 11.8253 11.8620 12.2766 12.3665 12.2440 12.2528

0.995 12.5377 12.5481 13.1132 13.2302 13.1371 13.1065

0.999 14.0774 14.0266 14.9062 14.8770 15.0978 15.0069

Table 3. Values of VaRj for Wm,70 (m = 3, 4, 5, 6), WEM, and S

k VaRk (WEM) VaRk (W3,70) VaRk (W4,70) VaRk (W5,70) VaRk (W6,70) VaRk (S)

0.9  7.7069  7.8183  7.6726  7.6943  7.6969  7.6859

0.95  8.7494  8.8676  8.7595  8.7172  8.7825  8.7666

0.99 10.7708 10.8451 11.0385 11.0462 10.9514 11.0023

0.995 11.5349 11.5835 11.9366 12.0611 11.8566 11.8925

0.999 13.1604 13.1473 13.8488 13.9701 13.9651 13.8551
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and

( ) =

+

+

+

F x H x

H x

H x

H x

W 0.0347 ( ; 35,1.0972)

0.0834 ( ; 66,1.0972)

0.1009 ( ; 67,1.0972)

0.7810 ( ; 90,1.0972),

4,90

with KS distances dKS(S,W3,90) = 0.0188, and dKS(S,W4,90) 
= 0.0239. In Figure 2, we compare the fit of the  
3- and 4-moment approximations to the exact dis-
tribution by plotting their densities (left) and dfs 
(right). Overall, we observe that the fit is quite 
reasonable.

Note that the KS distance increases from the 
3-moment to the 4-moment approximation. We notice 
that both FW3,90

 and FW4,90
 use the Erlang-90 df, where 

90 is the largest element of A90. As such, a mixed 
Erlang approximation with a smaller KS distance can 
likely be found in both cases by choosing a larger 
support Al (i.e., l > 90).

3.2.4. Some remarks
To provide insight on the quality of the moment-

based mixed Erlang approximation proposed in this 
section, we briefly revisit the results of the above three 
examples. In the first two (lognormal and mixture 
of two gammas), the mixed Erlang approximation is 
easy to implement and provides a very satisfactory fit 

some values of VaR and TVaR for Wm,70 (m = 3, 4, 5, 6), 
WEM and S.

3.2.3. Gompertz distribution
The Gompertz distribution with df FS(x) = 1 -  

exp{-B(cx - 1)/ln c} (x > 0) has been extensively 
applied in various life contingency contexts (e.g., 
Bowers et al. 1997). Lenart (2014) provides an expres-
sion for the j-th moment, namely

j

c
e E

B

c
j j

B

c j

( )
µ = 





−!

ln ln
, (7)ln

1
1

where E z
x

j
x e dxs

j
j

s zx∫( ) ( )=
∞ − −ln

!1
 is the generalized

integro-exponential function (see Milgram 1985). Here, 
we consider an example of Melnikov and Romaniuk 
(2006) on the 1959–1999 USA mortality data of the 
human mortality database where the parameters B and 
c were estimated to B = 6.148 × 10-5 and c = 1.09159. 
Using (7), the first five moments are l5 = (76.3437, 
6037.202, 489676.3, 40524308, 3410245408). We 
consider the class of mixed Erlang distributions 
 res(lm, A90). The resulting mixed Erlang approxi-
mations FW3,90

 and FW4,90
 are

F x H x

H x

H x

W ( ) =

+

+

0.0154 ( ; 22,1.0928)

0.2210 ( ; 65,1.0928)

0.7637 ( ; 90,1.0928)

3,90

Figure 2. Density (left) and df (right): 3- and 4-moment approximations vs. Gompertz distribution
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( ) =

+

+

+

F x H x

H x

H x

H x

W 0.0168 ( ; 40,1.6422)

0.0971 ( ; 85,1.6422)

0.3044 ( ;115,1.6422)

0.5818 ( ;140,1.6422),

4,5:200

and

( ) =

+

+

+

+

F x H x

H x

H x

H x

H x

W 0.0038 ( ; 20,1.9095)

0.0393 ( ; 75,1.9095)

0.1262 ( ;110,1.9095)

0.3275 ( ;140,1.9095)

0.5032 ( ;165,1.9095),

5,5:200

with KS distances dKS(S,W3,5:200) = 0.0171, dKS(S,W4,5:200) 
= 0.0086, and dKS(S,W5,5:200) = 0.0072. Note that the KS 
distance in the 4-moment approximation is consider-
ably lower than for dKS(S,W4,90) = 0.0239. In Figure 3, 
we compare the fit of the 5-moment approximation 
W5,5:200 to the Gompertz distribution by plotting their 
densities (left) and dfs (right). We can see that the fit 
is quite acceptable and of a better quality than the two 
approximations displayed in Figure 3.

4. Moment-based mixed Erlang 
approximation with known a

4.1. Basic definitions

We consider here a slightly different context than the 
one of Section 3. Instead of approximating a general df 
FS with known moments lm, we assume that the df FS is 
known to be of mixed Erlang form (1) with given rate 
parameter b > 0, and first m moments lm. However, 
the mixing weights {zk}

l
k=1 are assumed unknown or 

difficult to obtain. Various applications in risk theory 
and credit risk fall into this context (e.g., Cossette et al. 
2002, Lindskog and McNeil 2003, and McNeil et al. 
2005; see also the application of Section 4.4).

For a given rate parameter b > 0, let (lm, b) 
be the set of all mixed Erlang distributions with df 
(1) (as l → ∞) and first m moments lm. Also, define 
 (lm, Al, b) to be the subset of  (lm, b) with 

to the true distribution. As none of the resulting mixed 
Erlang approximations uses the Erlang-70 df (as  
l = 70 in the first two examples), it is unlikely that a 
better approximation (from the viewpoint of KS dis-
tance) can be found by increasing the value of l. Given 
that the best KS-fit is found from a mixture of Erlang 
distributions with relatively small shape parameter 
(which corresponds to the parameter k in the Erlang 
df (2), the proposed method seems particularly well 
suited for these two cases.

As for any approximation method, limitations can 
also be found, as evidenced by the Gompertz exam-
ple. Indeed, for this example, both the 3-moment 
and 4-moment mixed Erlang approximations use the 
Erlang-90 df (recall l = 90 for this example). As men-
tioned earlier, one can likely reduce the KS distance (if 
so desired) of the resulting mixed Erlang approximation 
by increasing the value of l (in light of the comments 
in Remark 4). This implies that the KS-optimal mixed 
Erlang approximation would likely involve Erlang 
distributions with large shape parameters (which have 
smaller variances for a given rate parameter b).

In general, distributions with negative skewness 
and sharp density peak(s) may require the use of 
Erlang distributions with large shape parameters to 
provide a good approximation. Computational time of 
the proposed mixed Erlang methodology may become 
a non-negligible issue in these cases (especially as the 
number of moments matched increases). However, a 
slight adjustment to the proposed methodology may 
be considered to address this time-consuming issue. 
Indeed, one may replace the set Al = {1, 2, . . . , l} in 
(1) by a set of the form {a, 2a, . . . , ja} for positive 
integers a and j (note that the two sets coincide when  
a = 1 and j = l). To illustrate this, we have re-considered 
the Gompertz example by replacing the set A90 by the 
set {5, 10, 15, . . . . , 200}. The resulting mixed Erlang 
approximation, denoted by the rv Wm,5:200 when m 
moments are matched (m = 3,4,5), are given by

( )

+

+

F x H x

H x

H x

W = 0.0447 ( ; 45,1.3185)

0.2573 ( ; 85,1.3185)

0.6980 ( ;110,1.3185),

3,5:200
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for j = 1, . . . , m where kn = ∑l
k=1 zk kn. In matrix 

form, we have Mb = sjT
m, where s = {s( j, n)}m

j,n=1 
(with s( j, n) = 0 for n > j) and jm = (k1, . . . , km). 
Isolating jm yields

s M( )= −
βm

T
. (9)1j

From Comtet (1974, p. 213) we know that s-1 ≡  
c = {(-1)i+j c(i, j)}m

i,j=1 where the c(i, j)’s are the Stir-
ling numbers of the second kind defined as c(i, j) 
= ( j!)-1∑ j

k=0(-1) j-k( j
k)k

i (e.g., Abramowitz and Stegun 
1972).

Thus, for a given b > 0, the class  (lm, Al, b) can  
be found through the identification of all discrete dis-
tributions with support Al and first m moments given 
by the right-hand side of (9). Equivalently, the class 
 ext(lm, Al, b) can be identified by restricting the 
discrete distributions on Al to have at most (m + 1) 
non-zero mass points. This argument is formalized 
in the next section.

4.2. Discrete s-convex extremal 
distributions

Let (`m, Al) be all discrete distributions with 
support Al and first m moments am = (`1, a2, . . . , am). 
Also, denote by ext(`m, Al) the subset of (`m, Al) 
with distributions having at most (m + 1) non-zero 
mass points. For a given b > 0, each distribution 

df (1) for a given l ∈ N+, and let  ext(lm, Al, b) be 
a further subset of (lm, Al, b) such that at most 
(m + 1) of the mixing weights {zk}

l
k=1 are non-zero. 

Note that a distribution in  (lm, Al, b) can be 
expressed as a convex combination of distributions 
in  ext(lm, Al, b) (see, e.g., De Vylder 1996).

For a given function f, we consider two approaches 
to derive bounds and approximations for E[f(S)] when 
S ∈(lm, Al, b) (in cases when the expectation exists). 
The first approach is based on discrete s-convex extre-
mal distributions while the second is based on moment 
bounds on discrete expected stop-loss transforms.

Remark 5. Naturally, the set  (lm, Al, b) tends 
to  (lm, b) as l → ∞. As such, when S ∈ (lm, b), 
bounds for risk measures on  (lm, b) can be 
approximated by their counterparts in  (lm, Al, b) 
for l reasonably large.

For a mixed Erlang rv S with df (1), its j-th moment 
is known to satisfy (6). Using the identity

∏ ∑( ) ( )+ =
−

k i s j n k
i

j

n

j
n, ,

=0

1

=1

where the s( j, n)’s are the (signed) Stirling numbers of 
the first kind (e.g., Abramowitz and Stegun 1972), (6) 
becomes

s j nj
j n

n

j

∑ ( )β µ = κ
=

, , (8)
1

Figure 3. Density (left) and df (right): 5-moment approximation vs Gompertz distribution
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We mention that the definition of s-convex func-
tion, which refers to higher-convexity, should not be 
confused with the one for Schur-convex function, 
also known as S-convex function.

Definition 8. Denuit, Lefèvre and Shaked (2000). 
For two rv’s X and Y defined on , X is smaller than 
Y in the s-convex sense, namely X

s-cxY, if E[f(X)] 
≤ E[f(Y)] for all s-convex functions f (provided the 
expectation exists).

We mention that the 1-convex order corresponds 
to the usual stochastic dominance order, and the 
2-convex order is the usual convex order (see Müller 
and Stoyan (2002), Denuit et al. (2005), and Shaked  
and Shanthikumar (2007) for a review on stochastic 
orders). Also, as stated in Theorem 1.6.3 of Müller 
and Stoyan (2002), the s-convex order can only  
be used to compare rv’s with the same first (s - 1)  
moments (which explains why s is chosen to be m + 1 
in what follows). Examples of s-convex functions 
are f(x) = xs+j for j ∈N and f(x) = exp(cx) for  
c ≥ 0. For a general treatment of the s-convex order, 
see, e.g., Denuit, Lefèvre, and Mesfioui (1999) and 
Denuit, Lefèvre, and Shaked (2000) and section 1.6 
of Müller and Stoyan (2002).

Let K(m+1)-min and K(m+1)-max be the (m + 1)-extremum 
rv’s on (jm, Al), i.e., those which satisfy

[ ]

[ ]

( )

( )

[ ]( )φ ≤ φ

≤ φ

( )

( )

+ −

+ −

E K E K

E K

m

m ,

1 min

1 max

for any (m + 1)-convex function f and K ∈ (jm, Al). 
The general distribution forms of K(m+1)-min and K(m+1)-max 

are given in Prékopa (1990) (see also Courtois et al. 
(2006, Section 4)), and are repeated here:

in (jm, Al) (and ext(jm, Al)) with jm as defined in 
(9) corresponds to a mixed Erlang distribution  
in  (lm, Al, b) (and  ext(lm, Al, b)). This is a 
one-to-one correspondence (e.g., De Vylder 1996, 
part 2).

Remark 6. Because of this one-to-one correspon-
dence between (jm, Al) and  (lm, Al, b), condi-
tions under which  (lm, Al, b) is not empty can 
be found from its discrete counterpart (jm, Al). We 
refer the reader to, e.g., De Vylder (1996), Marceau 
(1996), or Courtois and Denuit (2009).

This allows us to make use of the theory devel-
oped in Prékopa (1990), Denuit and Lefèvre (1997), 
Denuit, Lefèvre and Mesfioui (1999), and Courtois 
et al. (2006) to derive bounds/approximations for 
E[f(S)] when S ∈ (lm, Al, b).

First, we briefly recall the definitions of s-convex 
function and s-convex order introduced by Denuit 
et al. (1998).

Definition 7. Denuit, Lefèvre and Shaked (1998, 
2000). Let  be a subinterval of R or a subset of N, 
and f a function on . For a positive integer s and x0 
< x1 < . . . < xs ∈ , we recursively define the divided 
differences as

x x x
x x x x x x

k

k

0 1

1 2 0 1, , . . . ,
, , . . . , , , . . . ,[ ] = [ ] −

φ
φ kk

k

i

i j
j j i

k
i

k

x x

x

x x
k

−

= ≠

=

[ ]
−

=
( )

−( )
=

∏
∑

1

0

0

1

1

φ

φ

,

, ,, , . . . , ,2 s

where [xk]f = f(xk) for k = 0,1, . . . , s. The function f 
is s-convex if [x0, x1, . . . , xs]f ≥ 0 for all x0 < x1  
< . . . < xs ∈ .

m + 1 even m + 1 odd

support of K(m+1)-min j j j jm m+ +







+ +, 1, . . . , , 11 1 1
2

1
2

+ +







j j j jm m1, , 1, . . . , , 11 1
2 2

support of K(m+1)-max + +







− −j j j j lm m1, , 1, . . . , , 1,1 1 1
2

1
2

+ +







j j j j lm m, 1, . . . , , 1,1 1
2 2 (10)
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bound, we define the corresponding rv Km-down on Al 
via the df

j

j
F k

E K k

E K k

k l

k l

K

K A

K A

m down

m l

m l

[ ]

[ ]
( )

( )

( )
=

−
−

− − −













= −

=














( )

( )

∈ +

∈ +

−

D

D

1
inf

inf 1
,

1, 2, . . . , 1,

1,

(12)

,

,

for k ∈ Al. Similarly, Km-up is defined as in (12) by 
replacing ‘inf’ by ‘sup’ in the definition. Given that, 
for K ∈ (jm, Al),

[ ] [ ] ( )( ) ( )− ≤ − ≤ − − + + − +E K k E K k E K km down m up ,

for all k ∈ Al, it implies that Km-down(up) is smaller 
(larger) than K under the increasing convex order, 
namely Km-down icx Kicx Km-up (see, e.g., Courtois 
and Denuit 2009). Note that Km-down and Km-up do not 
belong to (jm, Al), but both have first moment k1. The 
increasing convex order is stable under compounding, 
and thus

W W WK icx K icx Km down m up− −
. (13)≺ ≺

Then, from Denuit et al. (2005, Proposition 3.4.8), it 
follows that

TVaR TVaR

TVaR , (14)

W W

W

K K

K

m down

m up( )

( ) ( )≤

≤

κ κ

κ

−

−

for k ∈ (0, 1). Clearly, the rv’s WKm-down
 and WKm-up

 
will most likely not belong to  (lm, Al, b).

Remark 10. Note that, when neither of the two 
aforementioned approaches are applicable, we pro-
pose to derive approximate bounds for E[f(S)] with 
S ∈  ext(lm, Al, b) by calculating E[f(W)] for all 

W ∈  ext(lm, Al, b) and choosing

ME
[ ] [ ]( ) ( ) ( )φ = φ

( )
( )

∈ β
E W E W

W Aext
m l

inf sup .min max
, ,l

Obviously, E[f(S)] does not necessarily lie between 
E[f(W)]min and E[f(W)]max. However, the ‘interval’ 

where 1 < j1 < j1 + 1 < j2 < . . . < l. From (10), it 
is clear that the support of K(m+1)-min(max) has at most  
m + 1 elements.

Let WK = ∑K
j=1Cj be a mixed Erlang rv, i.e., {Cj}j ≥1 

are a sequence of iid exponential rv’s with mean 1/b, 
independent of K. The following result of Denuit, 
Lefèvre and Utev (1999, Property 5.7) relates to the 
stability of the s-convex order under compounding.

Lemma 9 If KAl
s-cx K′, then WKR+

s-cxWK′.

We apply Lemma 9 to define the mixed Erlang 
rv’s WK(m+1)-min

 and WK(m+1)-max
, which are the (m + 1)- 

extremum rv’s on  (lm, Al, b). It is immediate 
that, for W ∈  (lm, Al, b),

W W WK m cx m cx Km m( ) ( )+ −
+

+ −
+

( ) ( )+ − + −
≺ ≺ . (11)1 11 min 1 max

R R

For instance, using (11), the (m + 1)-convex func-
tions f(x) = x m+1+j ( j ∈ N) and f(x) = exp(cx) (c ≥ 0) 
yield

E W E W E WK
m j m j

K
m j

m m[ ] [ ][ ]≤ ≤+ + + + + +
( ) ( )+ − + −

1 1 1
1 min 1 max

and

E cW E cW

E cW

K

K

m

m

[ ]
[ ]

( )

( )

[ ]( )≤

≤

( )

( )

+ −

+ −

exp exp

exp ,

1 min

1 max

respectively.

4.3. Moment bounds on discrete 
expected stop-loss transforms

Extrema on the (m + 1)-convex order yield bounds for 
E[f(W)] when f is (m + 1)-convex and W ∈ (lm, Al, 
b). However, this approach is not appropriate to derive 
bounds on TVaR and the stop-loss premium when the 
number of known moments is greater than 2. It is well 
known that two rv’s with the same mean and variance 
cannot be compared under the convex order.

Consequently, we use an approach inspired from 
Courtois and Denuit (2009) (see also Hürlimann 2002) 
to derive bounds on TVaR and the stop-loss premium. 
We consider (jm, Al) and determine lower and upper 
bounds for E[(K - k)+] for all k ∈ Al. From the lower 
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( )

=

+
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+

−
F x H x

H x

H x

H x

H x

H x

WK
0.5322 ;1,1

0.2264 ; 2,1

0.2110 ; 3,1

0.0004 ; 5,1

0.0299 ; 6,1

0.0000 ; 20,1 .

6 max

Let XK(m+1)-min(max)
 be a rv with df FXK(m+1)-min(max)

 (x) = 1 - p 
+ pFWK(m+1)-min(max)

 (x) for x ≥ 0. It follows from Section 4.2 
that lower (upper) bounds for the higher-order 
moments E[Sj] ( j = 4, 5, . . .) and the exponential 
premium principle defined as jh(S) = (ln E[ehS])/h 
(h > 0) can be found from their counterparts for 
XK(m+1)-min(max)

. A few numerical values are provided in 
Tables 5 and 6, respectively.

As expected, the bounds get sharper as the number 
of moments involved increases.

As for the second approach based on moment 
bounds with discrete expected stop-loss transforms, 
Table 7 presents the values of TVaR for XKm-down(up)

  
(m = 4, 5) with df FXKm-down(up)

(x) = 1 - p + pFWKm-down(up)
(x) 

for x ≥ 0.

estimate [E[f(W)]min, E[f(W)]max] may give an idea 
of the variability of all solutions on (lm, Al, b).

4.4. Example: Portfolio of dependent risks

We consider a portfolio of n dependent risks as 
described in the common mixture model of Cossette 
et al. (2002). Let S = X1 + . . . + Xn be the aggregate 
claim amount with Xi = BiIi. Conditional on a common 
mixture rv Q with pmf aj = P(Q = j) for j = 1, 2, . . . , 
{Ii}

n
i=1 are assumed to form a sequence of independent  

Bernoulli rv’s with P(Ii = 1Q = j) = 1 - (ri)
j for ri ∈  

(0, 1). As for the Bi’s, they are assumed to form a 
sequence of iid exponential rv’s of mean 1, indepen-
dent of {Ii}

20
i=1 and Q.

In this context, it is clear that S is a two-point mix-
ture of a degenerate rv at 0 and a mixed Erlang rv of  
the form (1) with l = n and b = 1, i.e., its Laplace 
transform is given by

E e p pE e

a r r
t

t

tS tY

j i
j

i
j

i

n

j
∏∑

[ ] [ ]

( )( ) ( )

≡ − +

= + −
+















≥

− −

=
=

∞

1

1
1

1
, 0,

1
1

where p = 1 - ∑∞
j=1 aj∏

n
i=1(ri)

j. We perform the moment-
based approximation on the rv Y = (S S > 0) rather 
than S.

For illustrative purposes, we assume n = 20 and a 
logarithmic pmf for Q, namely aj = (0.5) j/( j ln 2) for  
j ≥ 1. Also, the constants ri are set such that the (uncon-
ditional) mean of Ii is qi = 1 - E[(ri)

Q] with q1 = . . .  
= q10 = 0.1 and q11 = . . . = q20 = 0.02. Under the above 
assumptions, the first five moments of Y are found to be 
l5 = (1.7999, 6.2270, 31.4785, 208.1258, 1693.7077).

Using the approach on discrete (m + 1)-convex 
extremal distributions, the dfs FWK(m+1)-min

 and FWK(m+1)-max 

for m = 4, 5 are:

( ) ( )

( )

( )

( )

( )

=

+

+

+

+

−
F x H x

H x

H x

H x

H x

WK
0.5365 ;1,1

0.2127 ; 2,1

0.2232 ; 3,1

0.0245 ; 6,1

0.0030 ; 7,1 ,

5 min
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Also, the spread between the minimal and maxi-
mal values of VaR are reduced when we go from  
4 to 5 moments. An identical exercise for the TVaR 
risk measure resulted in the same conclusions.
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