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ABSTRACT

This paper proposes a method for the continuous random
modeling of loss index triggers for cat bonds. Under the
premise that the total incurred loss of the hedged catas-
trophe consists of the amount of reported losses plus the
amount of incurred-but-not-yet-reported losses, our basic
hypothesis is that the latter decreases in time proportionally
to a real-value function named “claim reporting rate.” To
account for randomness in the reporting process, the claim
reporting rate is considered to follow a Wiener process.
Within this framework, it is quite straightforward to quan-
tify the amount of reported losses by merely subtracting
the amount of incurred-but-not-yet-reported losses from
the total catastrophic incurred loss, and accordingly cal-
culating the loss index as the amount of reported losses
multiplied by an indicator which varies according to the
occurrence of the specified catastrophe. The estimation of
parameters and the verification of the goodness-of-fit have
been conducted in order to test the validity of the model.
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1. Introduction
In recent years, catastrophe bonds (cat bonds,

hereafter) have become a widespread and highly
developed form of securitization, and have no-
tably enhanced the insurance industry’s capacity
for covering risk. The origin of these products, as
well as that of the “extinct” catastrophe options
and futures (D’Arcy and France 1992; Cox and
Schwebach 1992), was the industry’s response
to the extremely hard market conditions brought
by the occurrence of several, unexpectedly fre-
quent and severe, natural catastrophes in the mid-
1990s (Hurricanes Hugo and Andrew in 1992;
the earthquake in Northridge in 1994).
Cat bonds have considerably evolved since the

early days of the market (McGhee, Clarke, and
Collura 2007; McGhee, Faust, and Clarke 2006;
McGhee, Faust, and Clarke 2005; McGhee 2004;
McGhee and Eng 2003). The initial indemnity-
based arrangements have given way to a grow-
ing preference for loss-index-triggered contracts,
whose underlying index tracks the development
of specified catastrophic damages. In these trans-
actions, principal and/or coupon payoffs are con-
tingent upon the selected loss index exceeding
a certain attachment point, where, should dam-
ages be lower, the investor recovers at maturity
the whole principal plus a high return, and in
the other case the sponsor receives as much as
the investor loses from a Special Purpose Ve-
hicle (i.e., an offshore reinsurer that issues the
bonds to the investors, and enters into a reinsur-
ance agreement with the ceding entity). As sig-
nificant advantages, loss index triggers make cat
bonds more readily understandable to investors,
reduce moral hazard, and save the insurer from
having to disclose confidential underwriting in-
formation. Hence, an accurate modeling of the
evolution of the selected index becomes of prime
importance.
Several pieces of research have focused on

the subject. Cummins and Geman (1995) discuss
the pricing of the first generation of catastrophe

derivatives traded at the Chicago Board of Trade
(CBOT), and model the instantaneous claim pro-
cess as a geometric Brownian motion, combined
with a Poisson process with constant jump size.
Geman and Yor (1997) follow a similar approach
with regard to the underlying loss index process
of Property Claim Services (PCS) options. Aase
(2001) prices cat futures and options by model-
ing catastrophic loss indexes through a stochas-
tic Markov process. Loubergé, Kellezi, and Gilli
(1999) draw on Cummins and Geman’s approach
to valuate index-triggered cat bonds. Lee and Yu
(2002) introduce default risk by means of a
Wiener process, and formulate practical remarks
on moral hazard and basis risk. Lastly, Cox and
Pedersen (2000) suggest a cat bond pricing meth-
od under an incomplete market setting, relying
on a modeling of the interest rate’s term struc-
ture and a probability structure for catastrophic
risk.
The use of geometric Brownian motion, al-

though frequent in the literature, assumes ex-
ponential growth of the instantaneous claim re-
porting rate, while the empirical evidence sug-
gests it being a time-uniform rate. In view of
such inconsistency Alegre, Pérez-Fructuoso, and
Devolder (2003) developed a stochastic discrete
model, where a catastrophe’s total incurred loss
is defined as the sum of the amount of reported
losses and the amount of incurred-but-not-yet-
reported losses, with the latter decreasing propor-
tionally to a constant value called “nominal claim
reporting rate.” A discrete stochastic process of
Bernoulli variables, each displaying two differ-
ent claim reporting speeds, accounts for random-
ness. Finally, a demonstration of this construc-
tion’s convergence in law to a geometric Brow-
nian motion-based continuous modeling is pro-
vided.
In searching for methods that can more eas-

ily and accurately calculate catastrophic loss in-
dexes, and thus more precisely price loss index-
triggered cat bonds, our model extends to con-
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tinuous time that of Alegre, Pérez-Fructuoso, and
Devolder (2003). This paper does not focus,
however, on measuring the basis risk of cat
bonds, but rather on elaborating indexes which
faithfully reflect catastrophic damages hedged
with loss-indexed cat bonds. This certainly im-
proves the bonds’ efficiency and, as a logical
consequence, reduces their associated basis risk.
Under these circumstances, the general option
pricing theory becomes applicable, thereby pro-
viding a close-form solution to the valuation of
cat bonds.
Our analysis categorizes catastrophes under

three severity levels, the first for events which are
quickly reported, and the other two for longer-
term, more severe disasters. As in Alegre, Pérez-
Fructuoso, and Devolder (2003), the total incur-
red loss of the bond-specified catastrophe is as-
sumed to comprise the amount of reported losses
and the amount of incurred-but-not-yet-reported
losses. But as a key modeling hypothesis, we
consider that the latter decreases proportionally
to a real-value function, called “claim reporting
rate,” for which we formulate three possible def-
initions: constant, asymptotic, and hybrid.
Using this hypothesis, which remarkably elim-

inates the need for a stochastic differential equa-
tion, we obtain the reported loss amount by sim-
ply subtracting the amount of the incurred-but-
not-yet-reported loss from the specified catastro-
phe’s total incurred loss, and then readily calcu-
late the loss index as the amount of reported loss
multiplied by a variable indicator depending on
the event occurring.
The remainder of the paper is organized as fol-

lows: Upon definition of the basic hypotheses on
the occurrence of catastrophes and claim report-
ing, Section 2 establishes a method for calcula-
tion of loss indexes, and a general solution to
obtain both the amount of reported loss and the
amount of the incurred-but-not-yet-reported loss.
Section 3 adapts the general model to the partic-
ular case, most generalized in academic research,

of a constant claim reporting rate. Section 4 val-
idates that adaptation by estimating the model’s
core parameters. Section 5 summarizes our prin-
cipal findings and concludes.

2. Determination of the loss index
trigger: general case

We set in this section the basic hypotheses on
the occurrence of catastrophes and claim report-
ing, in order to develop a general expression en-
abling calculation of the catastrophic loss index.

2.1. Hypotheses on the occurrence of
catastrophes

Let [0,T]½ [0,T0] be the cat bond risk period,
where T0 ¸ T stands for the bond maturity, and
let ¿ 2 [0,T] denote the time of the catastrophe
occurring.
Define K (¢,i)¿ as the random variable “sever-

ity of the catastrophe (¢, i) occurring at time ¿ ,”
where the super-index (¢) represents the concrete
class of the specified catastrophic event,

(¢) =

8>>>>>>>><>>>>>>>>:

H: Hurricane

E: Earthquake

TS: Tsunami

F: Flood
...

and i = 1,2,3 expresses its low (i = 1), medium
(i = 2), or major (i = 3) incurred loss, as appro-
priate (Alegre, Pérez-Fructuoso, and Devolder
2003).
Finally, define ±i,¿ as a Bernoulli variable (i.e.,

an indicator variable), with a value of either 0 if
an event of incurred loss i does not occur at time
¿ 2 [0,T], or 1 otherwise.

2.2. Hypotheses on claim reporting

We consider that the occurrence of a catastro-
phe (¢, i) at time ¿ 2 [0,T] triggers the associated
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claim reporting process until the bond’s maturity,
T0, and assume that, for any valuation moment
t 2 (¿ ,T0]½ [0,T0], the total incurred loss, K(¢,i)¿ ,
is the sum of two random variables,

K (¢,i)¿ = R(¢,i)¿ (t)+ S(¢,i)¿ (t) (2.1)

where R(¢,i)¿ (t) represents the incurred-but-not-
yet-reported loss amount (hereafter, IBNRL), and
S(¢,i)¿ (t) stands for the reported loss amount (RL,
hereafter).
Both R(¢,i)¿ (t) and S(¢,i)¿ (t) are subject to the fol-

lowing boundary conditions:

² Initial boundary condition, t = ¿ : if the cat
bond’s valuation moment coincides with that
when the catastrophe occurs

R(¢,i)¿ (¿ ) = K(¢,i)¿ and S(¢,i)¿ (¿ ) = 0

(2.2)

the IBNRL equals the total catastrophe incur-
red loss, and then the RL is obviously zero.

² Final boundary condition t!1: if the cat
bond’s valuation moment tends to infinity,

lim
t!1R

(¢,i)
¿ (t) = 0 and lim

t!1S
(¢,i)
¿ (t) = K (¢,i)¿

(2.3)

then the catastrophe incurred loss is reported
and, also obviously, the IBNRL is zero.

A simple glance at catastrophic data suffices
to realize that the intensity of the claim report-
ing is closely related to each disaster’s specific
features (class of catastrophic event, moment and
area of occurrence). Most attempts at modeling
the underlying loss ratio of catastrophe insurance
derivatives define the claim reporting as an in-
stantaneous process following a geometric Brow-
nian motion, and hence assume an exponential
growth in the instantaneous claims average
(Cummins and Geman 1995; Geman and Yor
1997). However, there is strong empirical ev-
idence indicating the contrary to be the case:
when a catastrophe occurs, the largest proportion
of total claims are reported almost immediately,

and the rest of the reported claims decrease over
time.
We regard the assumption of the exponential

growth in the instantaneous claim average as the
single most important limitation of the literature
to date. Accordingly, our model relies on the hy-
pothesis that each catastrophe has its own par-
ticular evolution, and assumes the instantaneous
claims process not only as growing over time,
as previous models do, but also as being propor-
tional to the IBNRL.
We represent this latter variable by means of

the following stochastic differential equation,

dR(¢,i)¿ (t) =¡®(¢,i)¿ (t¡ ¿ )£R(¢,i)¿ (t)£ dt+¾(¢,i)¿

£R(¢,i)¿ (t)£ dw(¢,i)¿ (t¡ ¿ ), (2.4)

where ®(¢,i)¿ (t¡ ¿) is a real-value function, refer-
red to as claim reporting rate, to express the re-
ported claims process drift; ¾(¢,i)¿ is a constant
value denoting the reporting process volatility;
and w(¢,i)¿ (t¡ ¿) is a standard Wiener process
which introduces randomness into our mod-
eling.
Equation (2.4) states that the IBNRL decreases

in time proportionally to the claim reporting
rate, which we estimate by assuming that claims
from medium-scale catastrophes (i = 2) are
reported faster than those from major ones
(i = 3), i.e., ®(¢,2)¿ (t¡ ¿)> ®(¢,3)¿ (t¡ ¿). As regards
small-scale catastrophes (i= 1), we hold the
view that they are instantaneously reported, i.e.,
if ®(¢,1)¿ (t¡ ¿)!1, then R(¢,1)¿ (t) = 0 and S(¢,1)¿ (t)
= k(¢,1)¿ .
Since catastrophes are thought of as having

their own specific evolution, we do not formu-
late a single definition of the claim reporting rate
function, but propose three definitions to pick out
the one best fitting to the empirical data avail-
able:

1. Constant,

®(¢,i)¿ (t¡ ¿ ) = ®(¢,i)¿ ; (2.5)

256 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 2



Modeling Loss Index Triggers For Cat Bonds: A Continuous Approach

2. Asymptotic (exponential growth),

®(¢,i)¿ (t¡ ¿ ) = ®(¢,i)¿ £ (1¡ e¡¯(¢,i)¿ £(t¡¿));

(2.6)

3. Hybrid (increasing linearly until s(¢,i)m , and con-

stant from then on),

®(¢,i)¿ (t¡ ¿)

=

8>><>>:
®(¢,i)¿

s(¢,i)m

£ (t¡ ¿) 0· (t¡ ¿)· s(¢,i)m

®(¢,i)¿ (t¡ ¿)> s(¢,i)m

:

(2.7)

Notice that the ¾i,¿ -amplified white noise dis-
turbance of the claim reporting rate might turn

this variable into a negative one, and accordingly
render a growing IBNRL, unlike our assumption.

That could happen if losses are eventually priced

below the estimated range. Therefore, as a nec-
essary condition to our modeling, ¾(¢,i)¿ should be

of such value as to eliminate any scenario of a
growing IBNRL.

2.3. General solution to the IBNRL and
the RL

Applying Itô’s Lemma (Friedman 1975;
Malliaris and Brock 1991; Arnold 1974) in Equa-
tion (2.4), we get the following expression for the
IBNRL:

R(¢,i)¿ (t) = K (¢,i)¿ £ exp
"
¡
μZ t¡¿

0
®(¢,i)¿ (s)ds

+
(¾(¢,i)¿ )2

2
£ (t¡ ¿)

!

+¾(¢,i)¿ £w(¢,i)¿ (t¡ ¿)
#
:

(2.8)

The relation between R(¢,i)¿ (t) and S(¢,i)¿ (t), as es-
tablished in Equation (2.1), allows us to easily

obtain the RL as the difference between the
IBNRL and the catastrophe’s total incurred
loss:

S(¢,i)¿ (t) =K(¢,i)¿ ¡R(¢,i)¿ (t)

=K(¢,i)¿ £
(
1¡ exp

"
¡
ÃZ t¡¿

0
®(¢,i)¿ (s)ds

+
(¾(¢,i)¿ )2

2
£ (t¡ ¿ )

!

+¾(¢,i)¿ £w(¢,i)¿ (t¡ ¿ )
#)
:

(2.9)

Then, it is straightforward to see that if ¾(¢,i)¿ = 0,
we draw as a result the expression for both the
IBNRL, R(¢,i)¿ (t), and the RL, S(¢,i)¿ (t), in a deter-
ministic model:

R(¢,i)¿ (t) =K(¢,i)¿ £ exp
·
¡
μZ t¡¿

0
®(¢,i)¿ (s)ds

¶¸
(2.10)

S(¢,i)¿ (t) =K(¢,i)¿ £
½
1¡ exp

·
¡
μZ t¡¿

0
®(¢,i)¿ (s)ds

¶¸¾
:

(2.11)

2.4. Calculation of the catastrophic loss
index

Catastrophic loss indexes can be defined as the
quotient of the total loss amounts of one or more
disasters occurring over a specified period and a
constant value, which may be, for instance, either
the sum of the premiums earned throughout the
risk period, or, alternatively, a fixed value that
translates losses into capital market basis points,
as PCS do.
Index-triggered cat bonds cover a single catas-

trophe, with their payoffs being contingent upon
the value taken by the specified index at maturity,
LI(T0). This value can be obtained by aggregation
of losses from the hedged catastrophe until T0,
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LI(T0) = ±(¢,i)¿ £ S(¢,i)¿ (T0)

=

(
0 if ±(¢,i)¿ = 0

S(¢,i)¿ (T0) if ±(¢,i)¿ = 1
, (2.12)

where LI(T0) is random because S(¢,i)¿ (T0) is a ran-
dom variable. At the bond’s issuance, the speci-
fied catastrophe occurring, its time of occurrence
(if any) and severity are all unknown.
Obviously, the same boundary conditions as

those governing the random variable S(¢,i)¿ (t) hold

for the loss index. Then, at the issuance t = 0,
LI(0) = 0 (S(¢,i)¿ (0) = 0), and at maturity, we
have

LI(T0) = ±(¢,i)¿ £ S(¢,i)¿ (T0) = ±(¢,i)¿ £K(¢,i)¿

£
(
1¡ exp

"
¡
ÃZ T0¡¿

0
®(¢,i)¿ (s)ds+

(¾(¢,i)¿ )2

2
(T0 ¡ ¿ )

!

+¾(¢,i)¿ £w(¢,i)¿ (T0 ¡ ¿ )
#)
: (2.13)

Equation (2.13) has been formulated at the start-
ing point of the claim reporting process. So we
now turn to analyze how the loss index proba-
bility distribution changes as the time t 2 [¿ ,T0]
is reached, and data available on the RL are in-
troduced.
Let the filtration Ft denote the RL potential his-

tory over the time interval [¿ , t]; that is to say,
Ft
»= LI(t). And let LI¤(T0) = LI(T0) j Ft be an Ft-

conditioned random variable expressing the total
reported loss amount until T0. In order to obtain
LI¤(T0) = LI(T0) j Ft, we first calculate the restric-
tion of LI(T0), given by the total RL at any time

t 2 [¿ ,T0], LI(t), as follows:
LI(t) = ±(¢,i)¿ £ S(¢,i)¿ (t) = ±(¢,i)¿ £K(¢,i)¿

£
(
1¡ exp

"
¡
ÃZ t¡¿

0
®(¢,i)¿ (s)ds+

(¾(¢,i)¿ )2

2
(t¡ ¿)

!

+¾(¢,i)¿ £w(¢,i)¿ (t¡ ¿)
#)
: (2.14)

The conditioned loss index can be then derived
by introducing LI(t) into LI(T0):

LI¤(T0) = (±(¢,i)¿ j Ft)£

2666664
LI(t)+ (k(¢,i)¿ j Ft)£

(
1¡ exp

"
¡
Z T0¡¿

t¡¿
®(¢,i)¿ (s)ds¡ (¾

(¢,i)
¿ )2

2
£ (T0 ¡ t) +¾(¢,i)¿ £w(¢,i)¿ (T0 ¡ t)

#)

£
½
exp

·
¡
Z t¡¿

0

®(¢,i)¿ (s)ds¡ (¾
(¢,i)
¿ )2

2
£ (t¡ ¿ ) +¾(¢,i)¿ £w(¢,i)¿ (t¡ ¿)

¸¾
3777775 :

(2.15)

LI¤(T0) behaves exactly as LI(t), for the growing
exponential term counterbalances the decreasing
one. In this manner, the closer the valuation time,
the larger the LI¤(T0), and hence the higher prob-
ability of the bond payoffs being delivered.

3. A particular case: Solutions for
a constant claim reporting rate

Assuming a constant drift in the Wiener pro-
cess (Cummins and Geman 1995), we define in
this section the expressions of both the IBNRL
and the RL for a constant claim reporting rate
(i.e., for what is called here the “instantaneous
claim reporting rate”), ®(¢,i)¿ (s) = ®(¢,i)¿ .
In order to do so, it is first necessary to solve

the integral in Equation (2.8) asZ t¡¿

0
®(¢,i)¿ (s)ds=

Z t¡¿

0
®(¢,i)¿ ds= ®(¢,i)¿ £ (t¡ ¿):

(3.1)

Then, the IBNRL at t can be obtained by substi-
tuting into Equation (2.8) the outcome of (3.1),

258 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 2



Modeling Loss Index Triggers For Cat Bonds: A Continuous Approach

that is

R(¢,i)¿ (t) =K(¢,i)¿ £ exp
·
¡
μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
(t¡ ¿ )

+¾(¢,i)¿ w(¢,i)¿ (t¡ ¿)
#
, (3.2)

and therefore the expression of the RL at t turns
out to be

S(¢,i)¿ (t) =K(¢,i)¿ £
(
1¡ exp

"
¡
μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
(t¡ ¿)

+¾(¢,i)¿ w(¢,i)¿ (t¡ ¿ )
#)
:

(3.3)

Given that the distribution of R(¢,i)¿ (t) is dependent
on the probability distribution of the catastrophe
severity, K(¢,i)¿ , if the latter is a constant value (the
usual hypothesis in actuarial literature), the dis-
tribution of R(¢,i)¿ (t) is lognormal, with the asso-
ciated normal distribution (Feller 1968) being:

N

μ
lnK(¢,i)¿ ¡

μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
(t¡ ¿),¾(¢,i)¿

p
t¡ ¿

¶
:

(3.4)

This implies that the average IBNRL decreases
asymptotically to the abscises axis, and hence
that the RL increases K(¢,i)¿ -asymptotic,

E[R(¢,i)¿ (t)] = K(¢,i)¿ £ e¡®(¢,i)¿ £(t¡¿)

E[S(¢,i)¿ (t)] = K(¢,i)¿ £ [1¡ e¡®(¢,i)¿ £(t¡¿)]:
(3.5)

Once the RL is calculated, the conditioned loss
index, LI¤(T0), under an instantaneous claim re-
porting rate setting, results as

LI¤(T0) = (±(¢,i)¿ j Ft)£

266664
L(t) + (K(¢,i)¿ j Ft)£

½
1¡ exp

·
¡
μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
£ (T0 ¡ t)+¾(¢,i)¿ £w(¢,i)¿ (T0 ¡ t)

¸¾
£exp

·
¡
μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
£ (t¡ ¿) +¾(¢,i)¿ £w(¢,i)¿ (t¡ ¿)

¸
377775 :

(3.6)

Determined in this way, a loss index allows us
to easily price loss-index-triggered cat bonds at
any time t 2 (¿ ,T0] as in Loubergé, Kellezi, and
Gilli (1999), or in Cummins and Geman (1995).
Before we end this section, we illustrate the

performance of our catastrophic loss index with
a simple example. Following Loubergé, Kellezi,
and Gilli (1999) and Geman and Yor (1997),
consider a zero-coupon bond issued at time 0
with face value N, and maturity T0. The bond
payoffs are contingent upon both the value taken
by our loss index at maturity, i.e., LI(T0), and a
trigger value C specified in the contract.
Denoting the bond value at maturity as B(T0),

the resulting states of nature are:

² If LI(T0)· C, the catastrophic losses tracked
by the index do not exceed the specified trigger
value. Therefore B(T0) =N , and the investors
recover the whole principal at maturity.

² If C < LI(T0)<C+N, the investors lose part
of the principal, which goes to cover the ex-
cess of loss index above the trigger, and hence
B(T0) =N ¡ (LI(T0)¡C)¸ 0.

² Finally, if LI(T0)¸ C+N , the investors lose
the whole principal, and the bond value at ma-
turity is obviously null (B(T0) = 0).

These expressions naturally lead us to write the
bond value at maturity as

B(T0) =N ¡max(0,LI(T0)¡C)
+max(0,LI(T0)¡ (C+N)): (3.7)

Equation (3.7) reflects the gain profiles gener-
ated by the purchase of a reverse call spread
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(namely, the combination of a long position in a
riskless zero-coupon bond, a short position in a
catastrophic call option with strike price C, and
a long position in a catastrophic call option with
strike price N +C).
Then, under a risk-neutral approach, and as-

suming a constant interest rate r over the interval
[0,T0], the bond price at any time t can be easily
obtained as a martingale (i.e., as the discounted
price process under a risk-adjusted probability
measure Q):

B(t) = e¡r(T
0¡t)EQ[B(T

0) j Ft], (3.8)

with Ft representing the information available on
reported claims at time t.
Equation (3.8) can be written alternatively as

B(t) =Ne¡r(T
0¡t)¡ e¡r(T0¡t)

£EQ[max(0,LI¤(T0)¡C)
+max(0,LI¤(T0)¡ (C+N))]

(3.9)

whose explicit solution can be simply derived by
applying the Black-Scholes pricing model,

B(t) =N £ e¡r(T0¡t)£ [1¡N(d02)]¡LI¤(T0)
£ [N(d1)¡N(d01)]+C£ e¡r(T

0¡t)

£ [N(d2)¡N(d02)] (3.10)

with:

d1 =

ln(LI¤(T0))
C

+

Ã
r+

(¾(¢,i)¿ )2

2

!
£ (T0 ¡ t)

¾(¢,i)¿ £ (T0 ¡ t)
,

d2 = d1¡¾(¢,i)¿ £ (T0 ¡ t),

and,

d01 =

ln(LI¤(T0))
C+N

+

Ã
r+

(¾(¢,i)¿ )2

2

!
£ (T0 ¡ t)

¾(¢,i)¿ £ (T0 ¡ t)
,

d02 = d
0
1¡¾(¢,i)¿ £ (T0 ¡ t):

Table 1. Data series Alcira (Spain) Oct. 1, 1991

Real Reported Real IBNRL
Period Claims Percentage Percentage
(Week) (Real RL) (Real IBNRL)

0 0 100
1 15.06 84.94
2 46.35 53.65
3 65.04 34.96
4 75.95 24.05
5 81.14 18.86
6 86.64 13.36
7 89.47 10.53
8 91.96 8.04
9 93.06 6.94

10 94.77 5.23
11 95.92 4.08
12 96.29 3.71
13 96.44 3.56
14 97.40 2.60
15 98.25 1.75
16 98.70 1.30
17 99.23 0.77
18 99.71 0.29

4. Estimation of the constant
model
The instantaneous claim reporting rate and the

volatility of the Wiener process are the funda-
mental parameters to be estimated in our model.
To this end, we use historical data on the RL
in week-aggregated percentage (Real RL in
Tables 1, 2, and 3) from three major floods that
occurred in Spain: Alcira (1991), Barcelona
(1999), and Valencia (2000). Tables 1, 2, and 3
display these data series, provided by the Rein-
surance and Technique Department of the Con-
sorcio de Compensación de Seguros (a public
body, dependent on the Spanish Ministry of
Economy and Finance, in charge of the cover-
age of extraordinary risks), as well as the IBNRL
(Real IBNRL in Tables 1, 2, and 3), calculated
for each period as 100 minus the respective real
RL.
Spain has been our choice because the Con-

sorcio de Compensación de Seguros is currently
interested in analyzing this kind of instrument
as a possible alternative hedge tool to cover
catastrophic perils and risks from terrorist at-
tacks.
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Table 2. Data series Barcelona (Spain) Sept. 14, 1999

Real Reported Real IBNRL
Period Claims Percentage Percentage
(Week) (RL%) (IBNRL%)

0 0 100
1 9.32 90.68
2 31.62 68.38
3 49.32 50.68
4 58.58 41.42
5 68.42 31.58
6 74.57 25.43
7 80.44 19.56
8 83.32 16.68
9 86.72 13.28

10 89.46 10.54
11 91.85 8.15
12 93.20 6.80
13 93.87 6.13
14 96.59 3.41
15 96.59 3.41
16 97.39 2.61
17 98.19 1.81
18 98.74 1.26
19 99.44 0.56

The next subsection is devoted to adjusting
these data to our Wiener process-based loss in-
dex model.

4.1. Parameters estimation

As discussed in Section 3, the assumption of
the total catastrophe incurred loss as being a con-
stant value means that the IBNRL follows a
lognormal distribution, whose expected value is
coincident with that under the deterministic
model,

R(¢,i)¿ (t) = k(¢,i)¿ exp

"
¡
Ã
®(¢,i)¿ +

¾(¢,i)
2

¿

2

!
(t¡ ¿ )+¾(¢,i)¿ w(¢,i)¿ (t¡ ¿)

#

» Lognormal
Ã
lnk(¢,i)¿ ¡

Ã
®(¢,i)¿ +

¾(¢,i)
2

¿

2

!
(t¡ ¿),¾(¢,i)¿

p
t¡ ¿

!
) E[R(¢,i)¿ (t)] =K(¢,i)¿ e¡®

(¢,i)
¿ (t¡¿):

Taking this fact into account, as well as the claim
reporting patterns of the sample data available,
the IBNRL may be written as

Table 3. Data series Valencia (Spain) Oct. 20, 2000

Real Reported Real IBNRL
Period Claims Percentage Percentage
(Week) (RL%) (IBNRL%)

0 0 100
1 2.46 97.54
2 19.82 80.18
3 39.85 60.15
4 56.84 43.16
5 68.04 31.96
6 72.45 27.55
7 80.46 19.54
8 84.71 15.29
9 85.24 14.76

10 85.30 14.70
11 88.94 11.06
12 91.54 8.46
13 93.02 6.98
14 93.79 6.21
15 94.83 5.17
16 95.78 4.22
17 96.50 3.50
18 97.28 2.72
19 97.74 2.26
20 98.12 1.88
21 98.31 1.69
22 98.39 1.60
23 99.10 0.90
24 99.46 0.54
25 99.64 0.36
26 99.81 0.19

R(¢,i)¿ (t) = R(¢,i)¿ (t¡ 1)

£ exp
"
¡
μ
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

¶
+¾(¢,i)¿ w(¢,i)¿ (1)

#
:

(4.1)

which means that the variation of R(¢,i)¿ (t) is a
lognormal distribution whose associated normal
distribution has the following trend and disper-
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Table 4. ML Estimated instantaneous claim reporting rate

Series ®̂ML

Alcira 0.304681167
Barcelona 0.25781368
Valencia 0.228231668

Table 5. Volatility of the Wiener process

Estimated Standard
Series Estimated Variance Deviation

Alcira 0.042209827 0.2054503
Barcelona 0.031633167 0.177857154
Valencia 0.025430441 0.159469247

sion parameters:

ln
R(¢,i)¿ (t)

R(¢,i)¿ (t¡ 1)
»N

Ã
¡
Ã
®(¢,i)¿ +

(¾(¢,i)¿ )2

2

!
,¾(¢,i)¿

!
:

(4.2)

Estimating these parameters by maximum likeli-
hood, we obtain the estimated instantaneous
claim reporting rate as

®̂(¢,i)¿ = X̄ ¡ (¾̂
(¢,i)
¿ )2

2
(4.3)

where

X̄ =
1
n

nX
i=1

¡ ln
Ã
Real IBNRLi
Real IBNRLi¡1

!

and

(¾̂(¢,i)¿ )2 =
1
n

nX
i=1

Ã
¡ ln

Ã
Real IBNRLi
Real IBNRLi¡1

!
¡ X̄

!2

are, respectively, the sample mean and the sample
variance.
Since the quasi-variance is an unbiased esti-

mator of a normal distribution variance, we can
use it to estimate our model’s variance

S2 =
1

n¡ 1
nX
i=1

Ã
¡ ln

Ã
Real IBNRLi
Real IBNRLi¡1

!
¡ X̄

!2
:

(4.4)

The estimated results of the instantaneous claim
reporting rate, as well as those of the Wiener pro-

Table 6. Â2 Goodness-of-fit test

Series P-values

Alcira 0.253551
Barcelona 0.153309
Valencia 0.105621

Figure 1. Prediction intervals for Alcira data series

cess volatility, are listed, respectively, in Tables
4 and 5.
The P-values resulting from applying the Â2

goodness-of-fit test for a significance level of 5
percent are displayed in Table 6.
The Â2 test divides the range of data series

(Alcira, Barcelona, Valencia) into equally prob-
able classes (12, 12, 14, respectively), and com-
pares the number of observations in each class
to the number expected. In the light of these
P-values, it is straightforward to conclude that
the null hypothesis of the variables ln(R(¢,i)¿ (t)=
R(¢,i)¿ (t¡ 1)) being normally distributed is not to
be rejected.

4.2. IBNRL prediction intervals

On the basis of the estimation of both the in-
stantaneous claim reporting rate and the volatility
of the Wiener process, we check in this subsec-
tion the goodness-of-fit by calculating the 90 per-
cent and 99 percent prediction intervals for the
IBNRL by means of a normal two-tailed distri-
bution, assuming the catastrophe’s total incurred
loss equals 100 (Tables 7, 8, and 9, and Figures
1, 2, and 3).
As Figures 1, 2, and 3 show, the prediction

intervals are not symmetrical with respect to the
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Table 7. Data series Alcira: 90% and 99% prediction intervals

Lower Int. 90% Upper Int. 90% Real IBNRL Expected IBNRL Lower Int. 99% Upper Int. 99%

55.48368136 93.94215892 84.94 73.73584308 44.76538704 116.43497700
35.91813935 75.63760698 53.65 54.36974555 26.51408876 102.46484920
23.84969321 59.37376920 34.96 40.08999026 16.44432131 86.11156116
16.04561411 45.99883991 24.05 29.56069231 10.44504927 70.66310703
10.88617801 35.33894633 18.86 21.79682570 6.73631882 57.10924177
7.42991868 26.98800445 13.36 16.07207319 4.39172827 45.65826160
5.09395281 20.51756046 10.53 11.85087867 2.88675708 36.20515394
3.50492939 15.54272531 8.04 8.73834529 1.90987534 28.52340851
2.41865109 11.73975482 6.94 6.44329257 1.27029458 22.35258744
1.67313143 8.84561424 5.23 4.75101610 0.84865912 17.43912818
1.15982838 6.65104870 4.08 3.50320178 0.56912579 13.55425315
0.80545820 4.99190896 3.71 2.58311536 0.38292112 10.50026700
0.56024950 3.74070959 3.56 1.90468189 0.25838151 8.11099307
0.39023927 2.79917665 2.60 1.40443325 0.17479247 6.24940333
0.27216173 2.09199202 1.75 1.03557069 0.11851579 4.80408696
0.19002726 1.56169773 1.30 0.76358678 0.08052379 3.68543436
0.13281648 1.16462664 0.77 0.56303715 0.05481305 2.82198491
0.09291724 0.86769715 0.29 0.41516019 0.03737532 2.15714604
0.06506019 0.64591435 0 0.30612186 0.02552501 1.64635786

Table 8. Data series Barcelona: 90% and 99% prediction intervals

Lower Int. 90% Upper Int. 90% Real IBNRL Expected IBNRL Lower Int. 99% Upper Int. 99%

60.55831636 95.53312413 90.68010076 77.27391954 50.28879602 115.04202950
41.91163848 79.85845543 68.37645981 59.71258641 32.22582116 103.86077350
29.65075709 65.30516502 50.67552095 46.14225597 21.49091283 90.10076025
21.21657894 52.80022015 41.42431875 35.65592975 14.63087328 76.56686083
15.29223110 42.38068880 31.57774216 27.55273447 10.09286479 64.21321406
11.07919225 33.84219611 25.42935654 21.29107786 7.02793958 53.35051508
8.05831117 26.91847022 19.55575910 16.45245038 4.92861784 44.01181350
5.87928920 21.34505890 16.68193268 12.71345327 3.47587004 36.10427688
4.30035882 16.88283045 13.28142890 9.82418364 2.46261790 29.48172710
3.15213421 13.32517822 10.54499657 7.59153176 1.75146239 23.98153129
2.31467355 10.49822193 8.15204946 5.86627414 1.24976874 19.44356255
1.70237366 8.25806659 6.80100756 4.53309996 0.89432020 15.71955433
1.25376650 6.48700723 6.12548660 3.50290402 0.64156323 12.67714855
0.92450101 5.08957390 3.41195329 2.70683123 0.46126030 10.20099967
0.68245074 3.98882773 3.41195329 2.09167459 0.33228570 8.19228267
0.50426846 3.12307603 2.61048775 1.61631893 0.23980133 6.56738950
0.37294041 2.44305183 1.80902221 1.24899299 0.17333820 5.25627206
0.27603906 1.90954261 1.25944584 0.96514584 0.12548118 4.20069640
0.20446831 1.49142581 0.56102588 0.74580602 0.09096027 3.35255518
0.15155859 1.16405871 0 0.57631354 0.06601882 2.67231518

Figure 2. Prediction intervals for Barcelona data
series Figure 3. Prediction intervals for Valencia data series
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Table 9. Data series Valencia: 90% and 99% prediction intervals

Lower Int. 90% Upper Int. 90% Real IBNRL Expected IBNRL Lower Int. 99% Upper Int. 99%

64.06224790 96.40820978 97.54051910 79.59398450 54.23043884 113.88671690
46.25901308 82.45861221 80.17681061 63.35202368 36.54813381 104.36795600
34.06783391 69.15189014 60.14960898 50.42439991 25.52789247 92.28553084
25.34664835 57.40427404 43.15992293 40.13478905 18.16362093 80.10550060
18.98131098 47.34288899 31.96191772 31.94487777 13.07755150 68.71547006
14.28044875 38.86469805 27.55298651 25.42620106 9.49509014 58.45182301
10.78153444 31.79309227 19.53983906 20.23772653 6.93803538 49.40567473
8.16253601 25.93608537 15.28958404 16.10801292 5.09521831 41.54958979
6.19377033 21.11011659 14.75688541 12.82100931 3.75731782 34.79908272
4.70879832 17.14951456 14.70021535 10.20475216 2.78029364 29.04499152
3.58565882 13.90942411 11.06199705 8.12236885 2.06338908 24.17113169
2.73424621 11.26566122 8.45517398 6.46491700 1.53524785 20.06392085
2.08757083 9.11316593 6.98175224 5.14568503 1.14484564 16.61741862
1.59558186 7.36389517 6.21103933 4.09565575 0.85541389 13.73568713
1.22073453 5.94458649 5.16831010 3.25989560 0.64028867 11.33357870
0.93477232 4.79460933 4.21625298 2.59468080 0.48003138 9.33661490
0.71637033 3.86400496 3.50221013 2.06520983 0.36040728 7.68036221
0.54939694 3.11175371 2.72016321 1.64378279 0.27095225 6.30955437
0.42162439 2.50427444 2.25546866 1.30835222 0.20394822 5.17711401
0.32376758 2.01414379 1.88144622 1.04136966 0.15368583 4.24316582
0.24876500 1.61901454 1.68876799 0.82886761 0.11593069 3.47409425
0.19123876 1.30070943 1.60942990 0.65972875 0.08753503 2.84167457
0.14708817 1.04446684 0.89538706 0.52510440 0.06615397 2.32229023
0.11318291 0.83831598 0.54403264 0.41795151 0.05003746 1.89623987
0.08713101 0.67256151 0.36268843 0.33266426 0.03787716 1.54713171
0.06710305 0.53935992 0.19267823 0.26478074 0.02869340 1.26135958
0.05169866 0.43237233 0 0.21074954 0.02175157 1.02765318

expected IBNRL, since data have been exponen-
tially transformed. For either case (namely, 90
and 99 percent intervals), both the real and the
expected data remain within the calculated pre-
diction limits. This is a good fit for the IBNRL
normal distribution, which demonstrates that our
modeling accurately captures the uneven behav-
ior of the claim reporting process over time.

5. Concluding remarks

The continuous model proposed in this pa-
per allows for an easy calculation of catastrophic
loss indexes, thus facilitating the pricing of loss
index-triggered cat bonds. Unlike previous mod-
els [for instance, Cummins and Geman (1995)
and Geman and Yor (1997)], we hold the view
that the severity of a catastrophe is a random vari-
able resulting from the sum of two other random
variables: the IBNRL and the RL.
Previous contributions presuppose a growing

RL, which is accordingly represented by means

of a geometric Brownian motion. This paper co-

incides on the first point, but uses the Wiener

process to explain the decreasing dynamics of

the IBNRL, rather than to describe the evolution

of the RL, which is obtained by mere subtrac-

tion of the former from the total severity of the

specified catastrophe. The loss index is then the

RL multiplied by an indicator which varies ac-

cording to the likelihood of the catastrophic event

occurring, thus notably simplifying both the cal-

culation of the index and the estimation of the

parameters.
For validation, we have estimated the reporting

rate (by maximum likelihood) and the volatility
of the model (through calculation of the quasi-
variance), and concluded that the null hypothesis
of the IBNRL log-variations being normally dis-
tributed cannot be rejected. To test the goodness-
of-fit, finally, we have determined the predic-
tion intervals for both the real and the expected
IBNRL, and found that our continuous random
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model properly describes the behavior of the ca-
tastrophic claim reporting process.
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