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Minimum Bias, Generalized Linear 
Models, and Credibility in the 

Context of Predictive Modeling
by Chris Gross and Jon Evans

ABSTRACT

When predictive performance testing, rather than testing model 

assumptions, is used for validation, the need for detailed model 

specification is greatly reduced. Minimum bias models trade 

some degree of statistical independence in data points in exchange 

for statistically much more tame distributions underlying indi-

vidual data points. A combination of multiplicative minimum 

bias and credibility methods for predictively modeling losses 

(pure premiums, claim counts, average severity, etc.) based on 

explanatory risk characteristics is defined. Advantages of this 

model include grounding in long-standing and conceptually 

lucid methods with minimal assumptions. An empirical case 

study is presented with comparisons between multiplicative 

minimum bias and a typical generalized linear model (GLM). 

Comparison is also made with methods of incorporating cred-

ibility into a GLM.
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to implement credibility adjustments. Brosius and 
Feldblum (2003) provide a modern practical guide to 
minimum bias methods, and Anderson et al. (2007) 
offer a similar practical guide to GLM. Fu and Wu 
(2007) demonstrate that a generalized weighting 
adjustment of minimum bias iteration equations could 
be used to produce the same numerical estimates as 
an MLE-estimated GLM with a likelihood function 
other than Poisson. Note that this paper will use 
only the standard weighting of multiplicative mini-
mum bias iteration equations. A demonstration of 
predictive model fitting and testing can be found 
in Evans and Dean (2014), particularly the predic-
tive testing methods that will be used in this paper. 
“Gibbs sampling” is a term we will use for Markov 
chain Monte Carlo (MCMC) methods as they are 
implemented using Gibbs sampling software, such as 
BUGS (Bayesian Inference Using Gibbs Sampling), 
WinBUGS, or JAGS (Just Another Gibbs Sampler). 
Scollnik (1996) introduced MCMC. Particularly 
relevant to this paper is the recent book on predictive 
modeling for actuaries by Frees, Derrig, and Meyers 
(2014), which contains very detailed information on 
GLM, particularly incorporating Gibbs sampling. 
This paper represents, in a certain sense, an opposite 
perspective from that of Frees, Derrig, and Meyers 
(2014) and of Scollnik (1996), by emphasizing very 
simple models combined with rigorous predictive 
testing, as described in Evans and Dean (2014). Some 
more information about the research context of this 
paper is included in Appendix C.

1.2. Outline

The remaining sections of this paper are as follows:

2. Predictive performance as the modeling objective

3. Multiplicative minimum bias iteration

4. Incorporating credibility

5. Anchoring and iteration blending for practical 
iterative convergence

6. Testing of individual explanatory variables

7. Empirical case study

1. Introduction

As predictive models that relate losses (pure 
premiums, claim counts, average severity, etc.) to 
explanatory risk characteristics become ever more 
commonplace, some of the practical problems that 
frequently emerge include the following:

• Models often use complex techniques that are 
effectively “black boxes” without a lucid concep-
tual basis.

• Models may require very detailed parametric or 
distributional assumptions. Invalid assumptions 
may result in biased parameters.

• A highly frequentist approach, usually involving 
maximum likelihood estimation (MLE), can lead 
to overfitting sparsely populated data bins.

Some long-standing methods can be combined to 
overcome these problems:

• Minimum bias iterative fitting of parameters is sim-
ple, long-standing in practice, and nonparametric 
in specification.

• Credibility methods are similarly simple and long-
standing; moreover, credibility directly solves the 
sparse bin problem.

Most important, properly done predictive test-
ing, in contrast with testing model assumptions, 
makes highly detailed model specification generally 
unnecessary.

1.1. Research context

The minimum bias criteria and iterative solution 
methodology were introduced by Bailey (1963) and 
Bailey and Simon (1960). Brown (1988) substi-
tuted the minimum bias criteria with MLE of gen-
eralized linear models (GLMs), an approach further 
explored by Mildenhall (1999). Venter (1990) fur-
ther discussed credibility issues related to minimum 
bias methods. The basic contemporary reference on 
credibility methods is Klugman, Panjer, and Willmot 
(2012). Nelder and Verrall (1997) and Klinker (2001) 
discuss incorporating random effects into GLM 
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be fitted to the points (xi, yi), i = 1, . . . , k, using  
any method, and then tested on the points (xi, yi),  
i = k + 1, . . . , n. The test would be concerned only 
with how well ŷi = m̂xi + b̂  predicts yi for the test set. 
A bootstrap quintile test might be used, whereby the 
validation points are sorted by the value ŷi into five 
equal-sized groups. The average value of yi should 
ascend with the quintile groups, and for each group 
the average value of yi should be close to the average 
value of ŷi.

Figure 2.1 is a hypothetical example of a quintile 
test, with bootstrap confidence intervals added, as 
described by Evans and Dean (2014), for the valida-
tion of rating factors. Note that the assumption that 
x ∼ normal(0, s2) and other implicit assumptions of 
linear regression are unnecessary here.

In practice, predictive modelers often split data 
into three or more sets (i.e., training, testing, and vali-
dation), but only the distinction between two separate 
data sets for fitting and validation will be covered in 
this paper.

In the predictive framework, detailed model 
assumptions are not necessary. A model, even if its 
assumptions seem unjustified or erroneous, is valid 
as long as it performs well at predicting outcomes 
for data that were not used to fit its parameters. This 

8. Summary discussion

 Appendix A. Details of empirical case study

 Appendix B. Gibbs sampling model code

 Appendix C. Response to a reviewer comment  
  about the research context of this paper

2. Predictive performance  
as the modeling objective

Traditionally, statistical models tend to use the same 
data for both fitting and validation. Validation tends to 
involve testing the model assumptions. For example,  
a linear regression of the form Y = m X + b + x, where 
x ∼ normal(0, s2), might be fitted, using least squares, 
to a set of data points (xi, yi), i = 1, . . . , n. Validation 
tests would check to verify that the residuals xi are 
normally distributed with constant variance s2 and 
are independent of xi, yi, and each other. Hypothesis 
tests would then be performed to confirm that the 
probability is sufficiently remote that the actual data 
set would result in m = 0 or b = 0 (null hypotheses). 
This framework relies on detailed assumptions, with-
out which validation testing would not be possible.

Modern predictive models split available data into 
multiple sets for separate fitting and validation. In 
the previous example, the parameters m and b might 
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Figure 2.1. Hypothetical example of bootstrap quintile test predictive validation  
of rating factors

14989-01_Gross-2ndPgs.indd   15 11/1/18   11:04 AM



Variance Advancing the Science of Risk

16 CASUALTY ACTUARIAL SOCIETY VOLUME 12/ISSUE 1

in each year, as well as when the years are combined. 
However, this pattern clearly seriously violates many 
of the previously mentioned standard assumptions 
for linear regression:

• x is clearly not normal.
• s2 is not constant.
• x is dependent on X.

Figure 2.5 shows a bootstrap quintile test using 
the regression line from Year 1 to predict Year 2. 
Despite violating the assumptions, predictive perfor-
mance for the expected loss rate in Year 2 based on 
the explanatory variable is excellent, and the model 
would be very useful in practice.

Figures 2.6 and 2.7 show an alternative compo-
sition by Year 1 and Year 2 of the same combined 

comes with the caveat that care must be taken that 
both the fitting and the validation data be represen-
tative of—effectively random samples of—the loss 
process. For example, predictive testing might be 
misleading if both the fitting data and the validation 
data occurred in a single year that was influenced by 
a somewhat rare catastrophe, such as a hurricane.

2.1. A hypothetical example contrasting 
predictive performance validation  
versus assumption-testing validation

The following hypothetical example illustrates 
how predictive performance may be high even in 
a situation where the assumptions of linear regres-
sion are seriously violated. Additionally, an alterna-
tive situation is shown to illustrate how relying on 
testing the assumptions of linear regression may 
lead to missing a high predictive value that might be 
obtained from a linear regression, or possibly even 
using a regression estimate that results in very poor 
predictive performance.

Example 1
Figure 2.2 displays a data cloud in which the verti-

cal axis is the actual loss per exposure subsequent to 
information available about an explanatory variable 
shown by the horizontal axis, along with a dotted 
regression line. Figures 2.3 and 2.4 show the cor-
responding data clouds for Year 1 and Year 2, respec-
tively. It is clear that the same forked pattern appears 
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Figure 2.2. Two-year data cloud
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Figure 2.3. Data cloud for first year
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Figure 2.4. Data cloud for second year
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Note that in a real-world application of a predic-
tive framework, the performance of the regression 
line from the first year to predict the second year 
would be tested. If it performed well, then the regres-
sion line for the second year would be used to forecast 
a third year. So predictive performance testing would 
result in utilizing the regression line in the first case 
but discarding it in the alternative case. The real- 
world loss process would most likely lead to the 
third year resembling the second year in the first situ-
ation, but having a different slope from that of the  
second year in the alternative situation. Consequently, 

data shown in Figure 2.2. In this alternative situa-
tion, both Year 1 and Year 2 demonstrate patterns 
that are clearly consistent with the assumptions of 
linear regression, but the slope has changed signifi-
cantly from Alternative Year 1 to Alternative Year 2.  
Figure 2.8 shows a bootstrap quintile test using the 
regression line from Alternative Year 1 to predict 
Alternative Year 2. Despite obeying the linear regres-
sion assumptions in each year, the model’s predictive 
performance is terrible. In fact, it is so bad that it 
would be much better to simply predict a 0 slope for 
Alternative Year 2.

5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

Before Rating Factors

After Rating Factors

75%

100%

125%

150%

1 2 3 4 5 1 2 3 4 5

R
el

at
iv

e 
P

u
re

 L
o

ss
 R

at
io

s

Quantiles Based on Expected Rate Relativity

Figure 2.5. Predictive performance using Year 1 to predict Year 2
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Figure 2.6. Alternative data cloud for first year
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Figure 2.7. Alternative data cloud for second year
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classification dimension. Also, the total exposure in 

any class is positive, 
i kj

∑
=

Pi1,..,in
 > 0; otherwise it would 

make sense to exclude the class entirely from esti-
mating rating parameters. A multiplicative minimum 

bias model assumes that Li1,..,in
 = Bi1,..,in

 + Pi1,..,in 
X j i

j n
j

j

,
1,...,
∏

=
.  

The parameters Xj,ij
 are fitted with the goal of minimiz-

ing some bias function, or functions, of the residual 
errors Bi1,..,in

.
The minimum bias goal is that the sum of the 

residual errors for each class 
i kj

∑
=

Bi1,..,in
 should be 0. 

A corresponding iterative sequence of parameter esti-
mates can be formed whose convergence corresponds 
to convergence toward that goal:

1
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The effective sample is now nj
j n1,...,
∑

=
 data points with 

values 
i kj

∑
=

Li1,..,in
, which reduces to nj

j n1,...,
∑

=
 – (n − 1) 

linearly independent numbers. There is a correspond-
ing (n − 1) dimensional degeneracy in the parameters. 

predictive performance testing would work well by 
obtaining predictive value when it is available but 
avoiding the pitfall of a poor prediction.

In contrast, in a more traditional statistical frame-
work, typically the combined first- and second-year 
data would be tested for the assumptions of linear 
regression. The assumption testing would obviously 
fail, and the regression would be discarded. This 
would avoid the poor predictive performance in the 
alternative case but also miss the high predictive 
value for the first case. However, if it so happened 
that the assumption testing were performed only on 
the second-year data in the alternative situation, in 
which the assumptions would be valid for that year, 
the regression would be used, resulting in poor pre-
dictive performance for the third year.

3. Multiplicative minimum  
bias iteration

Suppose the basic data available consist of aggre-
gated actual losses Li1,...,in

 ≥ 0 and exposures Pi1,...,in
 ≥ 0, 

(Pi1,..,in
 = 0 ⇒ Li1,..,in

 = 0), where ij = 1, . . . , nj indexes 
the individual classes within the classification dimen-
sion j, and i1,..,in denotes the cell corresponding to 
the intersection of a single class selected in each 
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Figure 2.8. Predictive performance using alternative Year 1 to predict alternative Year 2
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leads to equations for MLE that correspond to a fixed 
limit point of the minimum bias iteration, as pointed 
out by Brown (1998).

However, the Poisson distributional assumption 
is usually unrealistic and not a part of the minimum 
bias model. Data are generally not restricted to inte-
ger values. The Poisson coefficient of variation is not 
scale independent (e.g., it is 10 times greater when 
applied to dollar amounts than when applied to the 
same amounts measured as pennies) and implodes 
for large nominal means (e.g., a mean of 1 million 
implies a coefficient of variation of 0.1%). So the 
Poisson assumption is important only in the optimi-
zation equations it implies for MLE.

4. Incorporating credibility

Credibility adjustments, 0 ≤ Zj,ij
 ≤ 1, can be easily 

and directly incorporated into the iteration equations:
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Note that, other than the constraint of the interval 
[0, 1], nothing has been specified about the deter-
mi nation of Zj,i. There are many possibilities for  
Zj,ij

, including functions of the sum of exposure, 

Pj,k = 
i kj

∑
=

Pi1,..,in
. The ultimate test will be the predictive 

performance of the final model regardless of whether 
Zj,i itself satisfies any traditional goals of credibility 
theory, such as limiting fluctuation or having the 
greatest accuracy.

For GLM, the basic and common protection against 
fitting parameters to data that are not credible is to 
throw away explanatory variables whose parameters 
are not statistically distinct from 0, those variables 
with high p-values.

If the parameters Xk,ik
 are multiplied by a constant  

c > 0 and the parameters Xl,il
 are divided by c, where 

0 ≤ k < l ≤ n, then X j i
j n

j

j

,
1,...,
∏

=
 will be unchanged.

The central limit theorem implies that the distri-

bution of 
i kj

∑
=

Li1,..,in
 can be expected to more closely 

resemble a normal distribution, with a generally lower 
coefficient of variation than the individual cell values  
Li1,..,in

. However, whereas the cellular values Li1,..,in
 can 

reasonably be assumed to be statistically independent 

of each other, the further aggregated values 
i kj

∑
=

Li1,..,in
 

include many statistical dependencies, since there is  
an overlap of cells between classes in different dimen-
sions. So a trade-off is made for a minimum bias iter-
ation model. Statistical independence of sample data 
points, a desirable property, is partially sacrificed in 
exchange for the benefit of a more normal distribu-
tion, generally having a lower coefficient of variation 
than the distributions underlying each sample data 
point. This taming of the distribution of data points 
means that it becomes less necessary to specify the 
distribution of the individual cellular loss values or, 
as may be the case, the distributions of individual loss 
observations within the cells, as would be necessary 
for a GLM.

Example 2
Suppose there are three classification dimensions, 

each with 10 classes, resulting in 1,000 individual 
cells. We can expect about 100 times as much data 
volume underlying each class as for each cell, and 
correspondingly an average coefficient of variation 
by class that is only about 10% as much as by cell. 
Two classes in different dimensions overlap in 10 cells, 
and thus actual losses between them will have a cor-
relation coefficient of about 10%.

Multiplicative minimum bias effectively aims 
toward the same parameter estimates as a GLM with 
a logarithmic link function and Poisson likelihood 
function. The logarithmic link converts the sum of 
linear explanatory factors into a multiplicative prod-
uct of their exponentials. The Poisson likelihood 
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of (n − 1) classification dimensions to the value of 1.0, 
or to fix such a parameter in each of n dimensions 
and add a single overall base rate parameter. Another 
approach is to use a single overall base rate and rescale 
the parameters in each dimension to a weighted aver-
age of 1.0 at the end of each iteration.

Example 3

If P = 
1 1
1 1





  and L = 

1 2
3 4





 , then parameter 

iterations will oscillate back and forth between the 

values X = 
1.5 3.5
2.0 3.0





  and X = 

0.6 1.4
0.8 1.2





 . How-

ever, if we anchor one parameter at 1.0, the iterations 

will converge to X = 
1.000 2.333
1.200 1.800





 .

Iteration blending can be implemented to accel-
erate convergence by modifying the iterative equa-
tions to be 
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where 0 < α < 1 is a selected constant blending 
parameter.

As an extreme illustration of correlation, let one 
classification dimension be replicated or made once 
redundant. Setting α = 0.5 will allow the model to 
converge. Each one of the replicated dimensions 
will end up sharing equally in the observed predic-
tive relationship, combining together to provide the 
appropriate prediction. In the case of full credibility, 
they will exactly reproduce the result obtained from 
not replicating the dimension. With less than full 
credibility, the result will not be exactly the same as 
that obtained from not replicating the dimension, but 
it will be similar.

To add true credibility, or “shrinkage,” adjustment 
is complicated. The two main approaches are these:

1. General linear mixed models. At least some rating 
factors are assumed to be random rather than fixed 
effects, but an MLE-like fitting method is still 
used. Numerical solution is rather difficult and, in 
practice, functions in R or procedures in SAS are 
used, effectively as black boxes. See Frees, Derrig, 
and Meyers (2014); Klinker (2001); and Nelder 
and Verrall (1997) for background.

2. Bayesian networks and Gibbs sampling. Rating 
factors in each class dimension follow a prior dis-
tribution. The parameters of the prior distributions 
follow distributions that are very diffuse. Numeri-
cal solution is performed using a Gibbs sampling 
program, such as JAGS or WinBUGS. The model 
itself is elaborately specified and lucid to an audi-
ence sophisticated enough read the specification. 
See Frees, Derrig, and Meyers (2014) and Scollnik 
(1996) for background.

In Section 7, we will demonstrate an example of 
the second approach.

5. Anchoring and iteration 
blending for practical  
iterative convergence

In practice, the convergence of the iterative algo-
rithms can be a problem even after the application 
of credibility. For one thing, there is still the prob-
lem of (n − 1) dimensional degeneracy previously 
mentioned. Also, highly correlated dimensions can 
contribute to nonconvergence or slow convergence 
in practice. Other than the automatic degeneracy, 
we will not attempt to deal in a precise mathematical 
way with the more general convergence issue, which 
appears to be an open problem for multiplicative min-
imum bias. From a practical point of view, anchoring 
and iteration blending can effectively provide timely 
convergence.

Anchoring directly eliminates the degeneracy. One 
approach is to fix one of the class parameters in each 
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3. Initially we will ignore credibility considerations, 
aside from reviewing p-values, and later we will 
use Gibbs sampling to incorporate credibility.

4. The GLM will be fitted, as is customary, to the 
individual data records without aggregation into 
cells based on intersections of the explanatory 
variables, as happens for the minimum bias model.

7.2. Comparison of GLM and  
minimum bias model results

Figures 7.1 and 7.2, and Table 7.1, show the boot-
strap quantile testing results of the fitting and the 
performance testing models. Optimal noise-to-signal 
estimates along the lines described in Evans and 
Dean (2014) suggested using 20 quantiles. Also, see 
Evans and Dean (2014) for details on the definitions 
of the test statistics. The “old statistic” test measure 
is the ratio of the variance of the relative average 
payments after rating factors are applied, to the same 
variance before rating factors are applied, lower being 
better. For example, an “old statistic” value of 0.200 
can be intuitively interpreted as indicating that the 
rating factor has eliminated or “flattened out” 80% 
of the difference in relative losses that it detected. The 
“new statistic” test measure is essentially the square 
root of the difference between these two variances, 
higher being better. For example, a “new statistic” 
value of 0.300 can be intuitively interpreted as indi-
cating that the rating factor has typically reduced the 
relative differences between quantiles (or, if appli-
cable, categories) by 30% (e.g., two cate gories with 
relative loss ratios of 80% and 130% might have 
something closer to 90% and 110%, respectively, for 
relative loss ratios after the rating factor is applied).

Although Figures 7.1 and 7.2 correspond only to 
the minimum bias fits, Table 7.1 demonstrates that 
the log-Poisson GLM was identical to the minimum 
bias approach, and the best-fitting model. In fact, we 
checked the individual predicted values and verified 
that they were numerically identical. Log-Gaussian and 
log-gamma were almost as good. The MLE for our 
run of log–inverse Gaussian failed to converge, almost 
certainly driven by its unrealistic variance assumption.

6. Testing of individual  
explanatory variables

Sometimes predictive modeling techniques are 
used specifically to determine whether or not indi-
vidual explanatory variables, or equivalent classi-
fication dimensions, are statistically significant. As 
mentioned earlier, when using GLM techniques, it 
is common to consider the p-values of the estimated 
parameters. These p-values are calculated under the 
distributional and other assumptions, such as inde-
pendence of the GLM model being used.

Whether distributional assumptions are made (as 
with GLM) or not (as with minimum bias), tests of 
predictive performance can be performed and com-
pared, with and without a given classification dimen-
sion. In cases where the improvement is insignificant, 
the dimension should be removed for the sake of 
parsimony.

7. Empirical case study

The empirical data used in this case study consist 
of 371,123 records of medical malpractice payments 
obtained from the National Practitioner Data Bank. 
Three explanatory variables will be used for model-
ing payment amounts: Origination Year, Allegation 
Group, and License Field. The records will be ran-
domly split into two sets, for model fitting and vali-
dation, respectively. Further details are included in 
Appendix A.

7.1. GLM model specifications

For our GLM model, we will consider the 
following:

1. The logarithmic link function, which causes the 
fit factors to act multiplicatively.

2. Several likelihood functions: Gaussian, Poisson, 
gamma, and inverse Gaussian. These correspond 
to assumptions that variance s2 is related to 
mean µ as s2 = constant, s2 ∝ µ, s2 ∝ µ2, and  
s2 ∝ µ3, respectively.
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Figure 7.1. Bootstrap 20-quantiles test validation of minimum bias rating factors
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Figure 7.2. Allegation group: Bootstrap test validation of minimum bias rating factors
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independence assumptions, etc. The optimal perfor-
mance of minimum bias / log-Poisson is likely due to 
the general validity of its implicit connection to the 
central limit theorem, as discussed earlier.

The GLM assumption that all risks are identically 
distributed is potentially problematic when taken 
together with the log-link function.

Figures 7.5 through 7.7 illustrate the lack of distri-
butional consistency for this data set. We have broken 
the observations in the training data into 20 quantiles 
weighted by modeled values, sorted by actual versus 
modeled result. Using the same breakpoints, deter-
mined from the entire training data set, we then calcu-
lated the summed modeled values for each allegation 
group. If the errors were identically distributed for each 
allegation group, there should be only a random fluc-
tuation, around the 5% of total expected for each bin.

Figure 7.5 shows all allegation groups and, 
naturally, each bin demonstrates no differences in 
the weighted proportion. Figure 7.6 shows that the 
anesthesia-related allegation group has a much higher 
percentage of the error distribution in the lowest bin 
than what would be expected from the overall popu-
lation. Figure 7.7 shows that, while not as dramatic, 

Table 7.1. Predictive performance statistics  
for various models

20 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias 0.007 0.512 0.023 0.425

GLMs

Log-Gaussian 0.010 0.511 0.041 0.422

Log-Poisson 0.007 0.512 0.023 0.425

Log-Gamma 0.009 0.511 0.033 0.422

Log-InverseGaussian Failed to Converge Failed to Converge

Traditional 0.135 0.470 0.089 0.408
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Figure 7.3. Bootstrap 20-quantiles test validation of traditional rating factors

Figures 7.3 and 7.4 correspond to “traditional” 
univariate rate relativities for the three explanatory 
variables. Rating factors are calculated separately 
and independently in each classification dimension. 
The traditional method clearly performs much worse 
than minimum bias and the convergent GLMs, but it 
is still a great improvement over no adjustment.

At this point we have a clear picture of the rela-
tive predictive performance of the different models. 
However, we have not specifically tested the validity 
of any of the model assumptions, such as likelihoods, 
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Figure 7.4. Allegation group: Bootstrap test validation of traditional rating factors
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Figure 7.5. All allegation groups,  
20 value-weighted quantile bins
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Figure 7.6. Anesthesia-related allegation,  
20 value-weighted quantile bins
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the treatment-related allegation group shows greater 
variation than the overall error distribution, with 
more of the highest and lowest values.

This is far from uncommon with highly skewed 
insurance data. The problem is compounded by the 
multiple dimensions of data. Error distributions could 
be, and likely are, differently distributed across many 
of the dimensions, if not every dimension being ana-
lyzed. Without adjustment, the basic assumption in 
a GLM is that the errors are identically distributed. 
The use of the log-link function, in conjunction with 
maximum likelihood estimation, puts a great deal of  
faith in the distributional assumption, inferring con-
clusions about results in the tail, based on the more 
voluminous observations at the lower parts of the dis-
tribution. But it is the tail itself that is of primary inter-
est in most insurance questions, with the majority of 
the aggregate losses being caused by the minority of 
claims. Despite the unreasonable implied assumption 
of a log-Poisson GLM, because it happens to have 
effectively the same parameter estimation formulas 
as the multiplicative minimum bias approach, which 
has the advantages of the associated central limit 
theorem (as previously described), it is less vulner-
able to these distributional differences.

Table 7.2 shows a comparison of the model biases 
by allegation group on the validation data using 
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Figure 7.7. Treatment-related allegation,  
20 value-weighted quantile bins

Table 7.2. Bootstrapped (actual – modeled)/modeled by allegation group

Multiplicative Minimum Bias Log-Gaussian

Mean 5th % 95th % Mean 5th % 95th %

Diagnosis 1.0% 0.1% 2.0% 1.3% 0.4% 2.3%

Anesthesia 4.3% 0.0% 9.5% 7.1% 2.5% 11.9%

Surgery 0.8% –0.3% 2.1% 1.1% –0.2% 2.5%

Medication 0.9% –2.2% 4.0% 2.2% –0.6% 5.4%

IV & Blood Products 3.0% –11.3% 20.5% 3.6% –6.8% 15.9%

Obstetrics 0.1% –2.4% 2.8% –0.4% –2.3% 1.8%

Treatment –0.5% –2.0% 1.1% –2.5% –4.0% –1.0%

Monitoriing 0.2% –5.1% 6.2% 0.9% –4.3% 5.7%

Equipment/Product –3.4% –11.0% 5.4% 0.0% –9.3% 8.7%

Other –11.1% –15.8% –5.7% –14.3% –19.6% –8.9%

Behavioral Health 11.9% –6.5% 34.4% 13.2% –10.4% 40.9%

Blank –17.0% –38.8% 5.5% –20.7% –37.7% –0.6%
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tends only to erode overall predictive value for this 
large data set, with only truly predictive variables 
included.

To construct a smaller example in which cred-
ibility is more relevant, we will use a random set of 
only 5,000 records for fitting and another random set 
of 5,000 records for testing, shown in Tables 7.4 and 
7.5, and Figures 7.8 through 7.11. We will also do 
a full test using all the remaining 366,123 records 
not used for fitting, shown in Tables 7.6 and 7.7, and 
Figures 7.12 and 7.13.

As Tables 7.4 through 7.7 and Figures 7.8 
through 7.12 show, the incorporation of credibility 
was particularly important when distinguishing dif-
ferences between the allegation groups. Actuaries are 
regularly asked to provide estimates of the impact of 

multiplicative minimum bias with full credibility ver-
sus GLM with a log-Gaussian assumption. To do so, 
it compares actual aggregated results by allegation 
group with aggregated modeled results over a number 
of bootstrapped test sets. Despite the log-Gaussian 
assumption’s better characterizing the distribution 
of the data than does the log-Poisson assumption, it 
ultimately produces estimates that are more vulner-
able to distributional differences. The only allegation 
group with a worse log-Gaussian mean bias is that 
of equipment/product-related payments, and in that 
group, both sets of bootstrapped ranges contain 0, 
suggesting that the bias measure is inconclusive.

7.3. Incorporating credibility  
into minimum bias

Although the overall predictive performance with-
out any credibility adjustments was very good, there 
are reasons to explore credibility. In some sparsely 
populated classes for License Field, rating variables 
might be so unreliable as to lead to adverse selection 
problems in real-world applications.

In the previous example, the p-values for the rating 
factors in the log-Poisson were all infinitesimally low 
(the largest p-value ∼ 10–204). This is likely due to the 
problematic general phenomenon that p-values always 
tend to implode with very large volumes of data, such 
as the volume in the example. In stark contrast, most 
of the p-values for the log-Gaussian and log-gamma 
models were high, from 1% to approaching 100%. 
Whether these p-value results indicate that any of the 
likelihood selections are valid, or whether they do not, 
they demonstrate the generally awkward nature of try-
ing to use p-values and class consolidation to handle 
the lack of credibility in sparsely populated classes.

Rather than attempt a p-value-based class consoli-
dation, we will explore the impact of a very simple 
credibility adjustment for minimum bias. We select 

the very simple form Z
P

P K
j i

j i

j i
j

j

j

,
,

,

=
+

, where Pj,ij
 is the 

number of records in which the ij class for classifica-
tion dimension j and K ≥ 0 is a judgmental selection. 
Table 7.3 shows that this simple credibility adjustment 

Table 7.3. Predictive performance statistics for  
credibility-adjusted multiplicative minimum bias

20 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias

K = 0 0.007 0.512 0.023 0.425

K = 1 0.009 0.511 0.032 0.425

K = 10 0.010 0.511 0.030 0.423

K = 25 0.009 0.510 0.029 0.425

K = 50 0.010 0.511 0.022 0.424

K = 100 0.011 0.511 0.028 0.425

K = 200 0.013 0.509 0.031 0.423

K = 700 0.023 0.505 0.082 0.414

Table 7.4. Smaller-sample predictive performance statistics 
for various models

6 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias 0.021 0.463 2.216 –0.683

GLMs

Log-Gaussian 0.041 0.448 3.252 –0.785

Log-Poisson 0.021 0.463 2.216 –0.683

Log-Gamma 0.052 0.445 2.245 –0.704

Log-InverseGaussian Failed to Converge Failed to Converge

Traditional 0.524 0.302 2.419 –0.751
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 U1,j = 0    j = 1, 2, 3

 U1,4 = Uniform(0, 20)

 Ui,1 ∼ Normal(−s1
2/2, s1

2) i = 2, . . . , 83

 Ui,2 ∼ Normal(−s1
2/2, s1

2) i = 2, . . . , 12

 Ui,3 ∼ Normal(−s1
2/2, s1

2) i = 2, . . . , 9

	 s1
2 ∼ Lognormal(0, 10)

	 s2
2 ∼ Lognormal(0, 10)

	 dk ∼ Normal(−s2
2/2, s2

2) k = 1, . . . , n

 Yk ∼  Poison(Exp(dk + U1,4 + Ui1,k,1
 + Ui2,k,2

 + Ui3,k,1
))  

k = 1, . . . , n

Yk are the individual actual claim amounts to  
be fitted. Ui,j are parameters in log space, with U1,4 
being a constant and the other j = 1, 2, or 3, cor-
responding to License Field, Allegation Group, and 
Origination Year, respectively. ij,k is an index of 
which class the Yk observation falls into in each clas-
sification dimension. dk is a random overdispersion 
for each observation, which itself has variance s2

2. s1
2 

is the parameter variance for each class parameter. 
Since U1,4, s1

2, and s2
2 follow highly diffuse distri-

butions, they will effectively be “fitted” parameters 
when Gibbs sampling is performed. s 1

2 and s 2
2  

conceptually correspond to parameter and process 
variances in credibility, respectively.

rating variables despite having less than fully cred-
ible data. While the overall result may appear to be 
relatively unaffected by increasing the credibility 
standard, the ability to differentiate between them 
more robustly is illustrated.

7.4. Incorporating credibility into GLM

We can incorporate credibility, or “shrinkage” of 
parameter estimates, into a GLM model by defining a 
hierarchical Bayesian network of random variables:

Table 7.5. Smaller-sample predictive performance statistics 
for credibility-adjusted multiplicative minimum bias

6 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias

K = 0 0.021 0.463 2.216 –0.683

K = 1 0.016 0.457 1.138 –0.419

K = 10 0.012 0.461 0.454 0.246

K = 25 0.022 0.458 0.394 0.316

K = 50 0.043 0.450 0.376 0.338

K = 100 0.068 0.449 0.373 0.345

K = 200 0.093 0.432 0.384 0.345

K = 700 0.255 0.387 0.479 0.319
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Figure 7.8. Smaller-sample bootstrap, six-quantiles test validation of minimum bias rating factors

14989-01_Gross-2ndPgs.indd   27 11/1/18   11:05 AM



Variance Advancing the Science of Risk

28 CASUALTY ACTUARIAL SOCIETY VOLUME 12/ISSUE 1

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

R
el

at
iv

e 
A

ve
ra

g
e 

P
ay

m
en

t

blank
Behavioral Health Related

Other M
iscellaneous

Equipm
ent/Product Related

M
onitoring Related

Treatm
ent Related

Obstetrics Related

IV & Blood Products Related

M
edication Related

Surgery Related

Anesthesia Related

Diagnosis Related

blank
Behavioral Health Related

Other M
iscellaneous

Equipm
ent/Product Related

M
onitoring Related

Treatm
ent Related

Obstetrics Related

IV & Blood Products Related

M
edication Related

Surgery Related

Anesthesia Related

Diagnosis Related

Before Rating Factors

After Rating Factors
5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

5th Percentile

95th Percentile

25th Percentile
75th Percentile

Figure 7.9. Smaller-sample allegation group: Bootstrap test validation of minimum bias rating factors
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Figure 7.10. Smaller-sample bootstrap, six-quantiles test validation of minimum bias (credibility K = 10) 
rating factors
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Figure 7.11. Smaller sample, allegation group: Bootstrap test validation of minimum bias  
(credibility K = 10) rating factors

Table 7.7. Full test of smaller-sample predictive performance 
statistics for credibility-adjusted multiplicative minimum bias

20 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias

K = 0 0.031 0.488 1.906 –0.403

K = 1 0.020 0.492 0.835 0.139

K = 10 0.012 0.494 0.169 0.380

K = 25 0.013 0.493 0.187 0.379

K = 50 0.026 0.489 0.215 0.372

K = 100 0.063 0.479 0.246 0.364

K = 200 0.117 0.460 0.289 0.355

K = 700 0.300 0.399 0.427 0.317

Table 7.6. Full test of smaller-sample predictive performance 
statistics for various models

20 Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Mult. Minimum Bias 0.031 0.488 1.906 –0.403

GLMs

Log-Gaussian 0.038 0.482 2.673 –0.556

Log-Poisson 0.031 0.488 1.906 –0.403

Log-Gamma 0.072 0.474 3.256 –0.653

Log-InverseGaussian Failed to Converge Failed to Converge

Traditional 0.489 0.350 2.158 –0.471
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Figure 7.13. Full test of smaller sample, allegation group: Bootstrap test validation of minimum bias 
(credibility K = 10) rating factors
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Figure 7.12. Full test of smaller-sample bootstrap six-quantiles test validation of minimum bias 
(credibility K = 10) rating factors
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and Ui,3, which is not unreasonable, as none of the cor-
responding classes in these dimensions are sparsely 
populated.

Unfortunately, although there was a credibility-like 
shrinkage effect, the predictive performance actually 
deteriorated. Figures 7.14 and 7.15 show the deterio-
rating situation when the Gibbs sampling with over-
dispersion is included in the large split of the data. 
Table 7.9 shows the deterioration in test statistics for 
both the large split and the smaller sample.

There are potential criticisms of the Bayesian 
network model as we have defined it—for example, 
anchoring the parameters for the first classes U1,j = 0 

We also defined a simpler form of this model, elim-
inating the overdispersion arising from s1

2 and s2
2. 

Running this simpler model numerically produced the 
same parameters as the MLE log-Poisson/minimum 
bias with no credibility adjustment, confirming that 
our Gibbs sampling model is constructed and coded 
on the right track up to the point of adding credibility 
adjustments.

When the model including the dk and s2
2 was run 

numerically, we observed a shrinkage effect in the 
set of parameters. Table 7.8 shows that the range of 
the Ui,1 contracted significantly with overdispersion. 
There was a slight broadening of the ranges for Ui,2 

Table 7.8. Shrinkage effect in range of Gibbs-sampled parameter fits

Ui,1 Ui,2 Ui,3

Min Max Min Max Min Max

Large Split

w/o overdispersion –4.103 0.775 –0.920 0.473 0.000 0.691

w overdispersion –2.173 0.550 –0.975 0.742 –0.040 0.494

Smaller Sample

w/o overdispersion –6.570 2.234 –1.405 0.432 0.000 0.742

w overdispersion –2.033 0.963 –1.992 0.318 –0.069 0.691

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Figure 7.14. Full test of smaller-sample bootstrap 20-quantiles test validation of Gibbs-sampled  
rating factors with shrinkage
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capture the impact of overdispersion of the Poisson 
more directly. In all cases, predictive performance 
deteriorated further or did not improve. The previ-
ously presented multiplicative minimum bias model 
with incorporated credibility would be vulnerable 
to similar or more extensive potential criticisms. Yet 
implementing it went quickly, and it easily produced 
desirable results.

j = 1, 2, 3; offsetting the prior distributions on param-
eters so as to have mean 1 after exponentiation  
Ui,1 ∼ Normal(−s1

2/2, s1
2) i = 2, . . . , 83; using the 

same parameter variance, s1
2, for all three classifica-

tion dimensions; etc. However, the authors experi-
mented with a myriad of alterations to the model 
definition, even going so far as to convert the likeli-
hood function into a negative binomial distribution to 
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Figure 7.15. Full test of smaller sample, allegation group: Bootstrap test validation of Gibbs-sampled 
rating factors with shrinkage

Table 7.9. Test statistics for Gibbs-sampled rating factors

Quantiles Allegation Nature

Old 
Statistic

New 
Statistic

Old 
Statistic

New 
Statistic

Large Split (20 Quantiles)

w/o overdispersion 0.007 0.512 0.023 0.425

w overdispersion 0.102 0.463 0.219 0.376

Smaller Sample (6 Quantiles)

w/o overdispersion 0.021 0.463 2.216 –0.683

w overdispersion 0.101 0.403 3.616 –0.943

Full Test Smaller Sample (20 Quantiles)

w/o overdispersion 0.031 0.488 1.906 –0.403

w overdispersion 0.098 0.448 4.723 –0.818
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without complete distributional specification, in prac-
tice may provide predictive value comparable to or 
better than that of a far more complex model, such 
as a typical GLM or, particularly, a GLM adjusted to 
incorporate credibility.

GLM models are fitted to individual data points 
and require specification of the distributions under-
lying each data point. Consequently, GLM models 
can be significantly vulnerable to inaccurate specifi-
cations, and their fundamental complexity makes the 
practical incorporation of credibility adjustments, 
such as including random effects or fitting param-
eters through Gibbs sampling, very complex.

Philosophically, simpler modeling is desirable. 
In practice, simpler models are beneficial in many 
ways, such as lower skill requirements for operational 
personnel and greater lucidity to a much wider audi-
ence. Some previous papers, such as those by Brown 
(1998) and Mildenhall (1999), have highlighted the 
sense in which minimum bias iteration is a special 
case of GLM and encouraged—at least implicitly—
minimum bias practitioners to switch to GLM as a 
richer framework. There is some irony that with the 
advent of the predictive framework, minimum bias 
may often be somewhat more advantageous, in prin-
ciple and practice. However, it should be emphasized 
that this does not mean that the detailed specifica-
tions of a particular GLM might not produce superior 
predictive performance in a situation where the pro-
cess underlying the data closely matches the particular 
assumptions of that GLM.

While GLM models are powerful and belong in the 
set of tools applied by actuaries, consideration should 
also be given to multiplicative minimum bias models 
and the traditional actuarial concept of partial cred-
ibility. Ultimately the test of any predictive model 
should be how it performs on out-of-sample data.
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This failed modeling experience in no way proves 
that a well-performing Gibbs-sampled Bayesian 
model cannot be defined in this context. Obviously, 
well-performing examples for much simpler situa-
tions, such as one classification dimension and an 
identity link function, are well known and easy to 
construct. Nor is the point that the theory behind these 
models does not provide deep insights into under-
standing modeling and statistical estimation. How-
ever, in this case, orders of magnitude more input of 
resources, both in time and sophistication of effort, 
than was used for minimum bias produced inferior 
predictive performance. Though neither author of this  
paper is a specialist in Gibbs sampling methods, one  
author (Evans) has used them occasionally for over 
10 years and informally consulted several specialists 
with more experience (in Acknowledgments). As  
of this writing, we have not been able to diagnose why 
the model as defined performs so much more poorly 
than a regular MLE GLM with no shrinkage effect. 
Whether the model is in some way poorly designed 
or, much less likely, one of the many technical choices 
made in running the Gibbs sampling software should 
be tuned differently does not alter the key conclu-
sion, namely, that the tremendous additional resource 
and intellectual burdens of such detailed and sophis-
ticated models may offer no advantage, or may even 
be disadvantageous, in many practical situations of 
predictive modeling.

8. Summary discussion

The predictive modeling framework greatly reduces 
the burdens of model specification, because models 
are validated based on their predictive performance 
rather than hypothesis testing of model assumptions. 
Minimum bias models transform basic data in such a 
way as to partially sacrifice sample independence in 
exchange for much tamer distributions of aggregated 
individual data points that are much less needy of 
detailed distributional specification. The combina-
tion of multiplicative minimum bias iteration with a 
generic incorporation of credibility, as presented in 
this paper, demonstrates that a very simple model, 
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Three explanatory variables were used for model-
ing payment amounts: Origination Year, Allegation 
Group, and License Field. Tables A.1 through A.3 
display record counts by each of the explanatory 
variables overall and for the individual predictive 
modeling splits.

Appendix A. Details of empirical 
case study

The empirical data used in this case study consist 
of 371,123 records of medical malpractice payments 
obtained from the National Practitioner Data Bank. 

Table A.1. Counts of records by license field

Large Split Smaller Sample

License Field Total Fit Test 5,000 Fit 5,000 Test Full Test

Allopathic Physician (MD) 271,443 135,514 135,929 3,644 3,661 267,799

Phys. Intern/Resident (MD) 2,113 1,063 1,050 34 28 2,079

Osteopathic Physician (DO) 17,612 8,829 8,783 237 244 17,375

Osteo. Phys. Intern/Resident (DO) 324 161 163 8 6 316

Dentist 46,516 23,425 23,091 623 596 45,893

Dental Resident 145 64 81 4 3 141

Pharmacist 1,890 952 938 24 20 1,866

Pharmacy Intern [available 9/9/2002] 2 1 1 0 0 2

Pharmacist, Nuclear 6 4 2 0 0 6

Pharmacy Assistant 19 12 7 0 0 19

Pharmacy Technician [available 9/9/2002] 12 7 5 0 1 12

Registered (RN) Nurse 5,715 2,885 2,830 91 80 5,624

Nurse Anesthetist 1,568 777 791 19 19 1,549

Nurse Midwife 873 431 442 18 8 855

Nurse Practitioner 1,288 598 690 19 24 1,269

Doctor of Nursing Practice [available 11/8/2010] 1 — 1 0 0 1

Advanced Nurse Practitioner [3/5/02 - 9/9/02] 4 3 1 0 0 4

LPN or Vocational Nurse 692 345 347 9 9 683

Clinical Nurse Specialist [available 9/9/02] 18 12 6 1 0 17

Certified Nurse Aide/Nursing Assistant [available 10/17/05] 36 18 18 0 1 36

Nurses Aide 78 39 39 2 2 76

Home Health Aide (Homemaker) 22 10 12 0 0 22

Health Care Aide/Direct Care Worker [available 10/17/05] 3 1 2 0 0 3

Psychiatric Technician 15 10 5 0 0 15

Dietician 22 11 11 0 1 22

Nutritionist 1 1 — 0 0 1

EMT, Basic 200 106 94 3 2 197

EMT, Cardiac/Critical Care 28 17 11 0 0 28

EMT, Intermediate 26 13 13 1 2 25

EMT, Paramedic 59 32 27 0 1 59

Clinical Social Worker 206 107 99 2 0 204

Podiatrist 7,654 3,809 3,845 92 113 7,562

Clinical Psychologist [last use 9/9/02] 875 436 439 15 15 860

Psychologist [available 9/9/02] 352 174 178 2 5 350
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School Psychologist [available 9/9/02] 1 — 1 0 0 1

Audiologist 39 23 16 2 1 37

Art/Recreation Therapist 2 1 1 0 0 2

Massage Therapist 82 54 28 3 1 79

Occupational Therapist 85 43 42 0 0 85

Occup. Therapy Assistant 11 7 4 0 0 11

Physical Therapist 1,094 545 549 14 14 1,080

Phys. Therapy Assistant 94 48 46 0 3 94

Rehabilitation Therapist 9 3 6 0 0 9

Speech/Language Pathologist 14 9 5 0 0 14

Hearing Aid/Instrument Specialist [available 10/17/05] 2 1 1 0 0 2

Medical Technologist [changed to 501(6/15/09)] 64 28 36 0 0 64

Medical/Clinical Lab Technologist [available 6/15/09] 1 1 — 0 0 1

Medical/Clinical Lab Technician [available 6/15/09] 2 — 2 0 0 2

Surgical Technologist [available 6/15/09] 7 4 3 0 0 7

Surgical Assistant [available 6/15/09] 1 — 1 0 0 1

Cytotechnologist [available 11/22/99] 11 7 4 0 0 11

Nuclear Med. Technologist 14 5 9 0 0 14

Rad. Therapy Technologist 12 5 7 0 0 12

Radiologic Technologist 169 89 80 1 0 168

X-Ray Technician or Operator [available 6/15/09] 5 2 3 0 0 5

Acupuncturist 58 22 36 0 0 58

Athletic Trainer [available 11/22/99] 6 3 3 1 0 5

Chiropractor 5,834 2,928 2,906 78 87 5,756

Dental Assistant 15 8 7 1 1 14

Dental Hygienist 41 22 19 1 2 40

Denturist 27 8 19 0 0 27

Homeopath 6 5 1 1 0 5

Medical Assistant 33 14 19 1 0 32

Counselor, Mental Health 167 84 83 1 2 166

Midwife, Lay (Non-Nurse) 22 14 8 0 0 22

Naturopath 17 9 8 0 0 17

Ocularist 25 12 13 0 1 25

Optician 17 10 7 0 0 17

Optometrist 715 367 348 6 11 709

Orthotics/Prosthetics Fitter 9 5 4 1 0 8

Phys. Asst., Allopathic 1,713 847 866 26 22 1,687

Phys. Asst., Osteopathic 137 71 66 3 3 134

Perfusionist [available 11/22/99] 8 2 6 1 0 7

Podiatric Assistant 14 9 5 0 0 14

Table A.1. Counts of records by license field (continued)

Large Split Smaller Sample

License Field Total Fit Test 5,000 Fit 5,000 Test Full Test

(continued on next page)
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Prof. Counselor 209 109 100 4 3 205

Prof. Cnslr., Alcohol 9 2 7 0 1 9

Prof. Cnslr., Family/Marriage 177 96 81 4 5 173

Prof. Cnslr, Substance Abuse 23 13 10 0 0 23

Marriage and Family Therapist [available 9/9/02] 27 15 12 1 0 26

Respiratory Therapist 48 24 24 1 0 47

Resp. Therapy Technician 14 4 10 0 0 14

Other Health Care Pract, Not Classified [available 11/22/99] 45 31 14 0 0 45

Unspecified or Unknown 170 86 84 1 2 169

Total 371,123 185,562 185,561 5,000 5,000 366,123

Table A.1. Counts of records by license field (continued)

Large Split Smaller Sample

License Field Total Fit Test 5,000 Fit 5,000 Test Full Test

Table A.2. Counts of records by allegation group

Large Split Smaller Sample

Allegation Nature Total Fit Test 5,000 Fit 5,000 Test Full Test

Diagnosis Related 105,674 52,516 53,158 1,409 1,388 104,265

Anesthesia Related 10,974 5,421 5,553 127 153 10,847

Surgery Related 88,763 44,538 44,225 1,176 1,211 87,587

Medication Related 20,197 10,047 10,150 259 268 19,938

IV & Blood Products Related 1,259 625 634 14 16 1,245

Obstetrics Related 25,988 13,081 12,907 384 345 25,604

Treatment Related 100,666 50,517 50,149 1,380 1,372 99,286

Monitoring Related 7,313 3,594 3,719 103 106 7,210

Equipment/Product Related 2,037 989 1,048 32 24 2,005

Other Miscellaneous 7,404 3,791 3,613 106 106 7,298

Behavioral Health Related 677 361 316 7 9 670

blank 171 82 89 3 2 168

Total 371,123 185,562 185,561 5,000 5,000 366,123

Table A.3. Counts of records by origination year

Large Split Smaller Sample

Origination Year Total Fit Test 5,000 Fit 5,000 Test Full Test

1990–1992 40,574 20,306 20,268 568 515 40,006

1993–1994 39,016 19,480 19,536 570 529 38,446

1995–1996 37,048 18,557 18,491 516 509 36,532

1997–1998 35,689 17,838 17,851 490 493 35,199

1999–2000 38,036 19,045 18,991 469 516 37,567

2001–2002 39,277 19,650 19,627 491 533 38,786

2003–2004 36,565 18,256 18,309 472 508 36,093

2005–2007 47,519 23,756 23,763 659 646 46,860

2008–2012 57,399 28,674 28,725 765 751 56,634

Total 371,123 185,562 185,561 5,000 5,000 366,123

14989-01_Gross-2ndPgs.indd   36 11/1/18   11:05 AM



Minimum Bias, Generalized Linear Models, and Credibility in the Context of Predictive Modeling

VOLUME 12/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 37

Appendix C. Response to a 
reviewer comment about the 
research context of this paper

The following question by a reviewer of this paper 
and the authors’ response may help readers under-
stand the research context of the paper.

Reviewer Comment:
Having reviewed this paper and the referenced 

papers, my sense is that the paper is not present-
ing a novel method or novel comparison, but rather 
providing a case study as a reason for preferring the 
minimum bias model (optionally with credibility) to 
a Bayesian method of incorporating credibility con-
cerns. If I have misunderstood the authors’ intent in 
this matter, then the remainder of my review may be 
a little off.

Authors’ Response:
The reviewer correctly understands that we do use 

a case study, and other points of discussion, to argue, 
with particular emphasis on practical considerations, 
that a credibility-adjusted minimum bias model may 
be preferable to a Bayesian method of adjusting a 
GLM in some situations. However, the paper involves 
much more than that. Also, we view the content of the 
paper as being significantly novel in several respects 
that are either completely absent or minimally treated 
in Casualty Actuarial Society (CAS) and other actu-
arial literature:

1. The paper emphasizes the importance of predictive 
performance testing rather than assumption test-
ing for model validation. This is a general point, 
but minimum bias is a specific example of a model 
less specified than GLM that nevertheless may be 
preferable when predictive performance valida-
tion is implemented. Note that we have added an 
extensive example in a new Section 2.1 that deals 
with this point.

2. The paper also highlights that although multi-
plicative minimum bias happens to correspond to 
log-Poisson GLM regarding numerical estimates, 
it can be justified by a much simpler and less 

Appendix B. Gibbs sampling  
model code

With Poisson overdispersion

model
{
  U[1,4]∼dunif(0,20)
  U[1,1]<-0
  U[1,2]<-0
  U[1,3]<-0
  Tau[1] ∼ dlnorm(0,0.1)
  Mu<- -pow(Tau[1],-1)/2
  Tau[2] ∼ dlnorm(0,0.1)
  Mu2<- -pow(Tau[2],-1)/2
  Tau[3]<-Tau[1]/Tau[2]
  for(i in 2:N1) { U[i,1]∼dnorm(Mu,Tau[1]) }
  for(i in 2:N2) { U[i,2]∼dnorm(Mu,Tau[1]) }
  for(i in 2:N3) { U[i,3]∼dnorm(Mu,Tau[1]) }
  for(i in 1:N) {
    ProcError[i]∼dnorm(Mu2,Tau[2])
     lambda1[i]<-exp(min(20,ProcError[i]+U[1,4]+	

	 	 U[X[i,1],1]+U[X[i,2],2]+U[X[i,3],3]))
    Y[i]∼dpois(lambda1[i])
    }
}

Without Poisson overdispersion

model
{
  U[1,4]∼dunif(0,20)
  U[1,1]<-0
  U[1,2]<-0
  U[1,3]<-0
  Tau[1] ∼ dlnorm(0,0.1)
  Mu<- -pow(Tau[1],-1)/2
  for(i in 2:N1) { U[i,1]∼dnorm(Mu,Tau[1]) }
  for(i in 2:N2) { U[i,2]∼dnorm(Mu,Tau[1]) }
  for(i in 2:N3) { U[i,3]∼dnorm(Mu,Tau[1]) }
  for(i in 1:N) {
    lambda1[i]<-exp(min(20,U[1,4]+U[X[i,1],1]+	
      U[X[i,2],2]+U[X[i,3],3]))
    Y[i]∼dpois(lambda1[i])
    }
}
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spec ified argument. That is to say, it can be justi-
fied in terms of a basic trade-off that sacrifices 
some degree of sample independence for greater 
sample volume to benefit from the central limit 
theorem.

3. We are not aware of any significant treatment of 

credibility-adjusted minimum bias models in CAS 

or other actuarial literature, but only some brief 

mention of the possibility of employing credibility 

adjustments.

4. Additionally, although there has been some 

treatment of mixed-effects GLM (or GLMM) in 

the literature to handle the credibility problem, 

we believe there has been little treatment of the 

application of Bayesian methods (such as Gibbs 

sampling) to the credibility problems with GLM. 

Applications of Gibbs sampling to GLM have been 

focused more on determining estimates similar to 

those from MLE but with additional information 

on uncertainty in parameter estimates, rather 

than actual credibility adjustment of estimates.

5. Previous literature on minimum bias models has 

limited the number of factors (sometimes referred to 

as “classification dimensions” or “parameters”) 

to at most three. In contrast, our paper defines 

minimum bias models for arbitrarily many fac-

tors (“classification dimensions”) so as to make 

a direct comparison with GLM, which allows an 

arbitrary number of factors.

6. Compounding this, to the best of our knowledge, 

previous comparisons have been made only 

between minimum bias and GLM without any 

credibility adjustments.
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