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Model of Reserving  

with Robust Estimation
by Przemyslaw Sloma

ABSTRACT

In this paper we consider the problem of stochastic claims reserv-

ing in the framework of development factor models (DFM). More 

precisely, we provide the generalized Mack chain-ladder (GMCL) 

model that expands the approaches of Mack (1993; 1994; 1999), 

Saito (2009) and Murphy, Bardis, and Majidi (2012). Our general 

flexible tool of reserving provides the solution to the one of the 

major challenges of day-to-day actuarial practice, which is quantify-

ing the variability of reserves in the case where different methods of 

selecting loss developments factors (LDFs) are applied. We develop 

the theoretical background to estimate the conditional mean square 

error of prediction (MSEP) of claims reserves that is consistent with 

actuarial practice in selecting the LDFs.

Moreover, we present an example of GMCL’s application in 

which we indicate how to bridge the estimation of parameters in 

the chain-ladder framework with the robust estimation techniques. 

Finally, we show how our approach can be used in validation of the 

reserve risk evaluation in the Solvency 2 context.
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15080-07_Sloma-2ndPgs.indd   226 4/25/19   10:46 AM



Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation  

VOLUME 12/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 227

The adjustments to make data more homogeneous 
are often justified for number of reasons: unstable 
run-off triangles, outliers, inaccurate and incomplete 
data, etc.,). Most actuaries use somewhat arbitrary 
rules of thumb in selecting the loss development  
factors (LDFs). Blumsohn and Laufer (2009) describe 
this topic in great detail. In this project, a group of 
actuaries were asked to select LDFs for an incurred 
run-off triangle. The important number of ways of 
LDFs selection was provided by the participants. 
The approaches proposed to evaluate the estimation 
of expected value of reserves varied widely and the 
additional information about the error of prediction of 
this estimation could be helpful in decision making. 
That is why it is extremely important from a practi-
cal point of view to have a method that provides the 
estimation of conditional MSEP of ultimate claims 
(or reserves) in the context of LDFs selection by 
actuaries. In the present study we provide such a tool 
embedded in the theoretical framework to quantify 
the standard error of prediction of the claims reserves 
in the case where some factors have been excluded 
from the estimation of model parameters. However, 
we do not judge whether these ad hoc approaches 
of selecting factors are correct or wrong. We rather 
assume that the expert judgment taken by an actuary 
could always be justified by his specific knowledge 
of considered business.

Measuring the variability of the reserves in this 
context is poorly developed in the literature. That 
is why in practice actuaries and reserving software 
developers often use the proxy methods based on 
formula for MSEP derived in Mack (1993). The 
approximations mainly consist of replacing the main 
parameters by theirs estimators computed by the other 
approach without changing the main formula. This 
procedure is incorrect because in the chain-ladder 
framework the formula for MSEP depends among 
others on the standard error of chain-ladder factors 
and it is not accurate to simply plug-in the new esti-
mators in the old formula. The other proxy method 
often used in practice consists on applying the coeffi-
cients of variation of ultimate loss from Mack (1993) 

1.  Introduction and motivation

The provision for outstanding claims is one of the 
main components of technical provisions of insur-
ance company’s liabilities. Measuring the deviation of 
the true amount of reserves from its estimation is one 
of the major actuarial challenge. Senior managers, 
shareholders, rating agencies, and insurance regula-
tors all have an interest in knowing the magnitude of 
these potential variations (reserve uncertainty) since 
companies with large potential deviations need more 
capital or reinsurance.

One of the most known method of reserving used 
in practice is the approach called chain-ladder. This 
method belongs to the family of development factor 
models (DFM). The first stochastic approach based 
on the chain-ladder technique was proposed by Mack 
(1993; 1994). In these studies, Mack proposed the 
estimation of the mean square error of prediction  
(MSEP) of claims reserves based upon all-year  
volume-weighted average of loss development factors 
(also called: link ratios, age-to-age factors, report-to-
report factors). The variance structure was supposed 
to be proportional to the development period’s initial 
loss. This assumption is sufficient for the weighted 
average development factors to have optimal statisti-
cal properties (BLUE-best linear unbiased estimate). 
Some authors (see Murphy 1996, p. 188; Mack 1999, 
p. 15) pointed out that the estimation of chain-ladder  
factors is connected with the estimation in the frame-
work of linear model by weighted least squares 
(WLS) regression approach. They also observed that 
by modifying the original variance assumption from 
Mack (1993) the corresponding estimators of chain-
ladder development factors keep their BLUE property 
(see Murphy 1996; Barnett and Zehnwirth 2000; 
Saito 2009). It is worth underlying that the modi-
fication of variance assumption leads to different 
point estimators for development factors (arithmetic 
average, slope of regression etc.; see Remark 3.1 for 
more details).

One of the major challenges in everyday actuarial 
practice is selecting the loss development factors. 
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type stochastic reserving methods to determine the 
economic capital corresponding to the reserve risk. 
The bootstrap method allows estimation of a whole 
claims reserves distribution via resampling tech-
niques and Monte Carlo simulations. It seems to  
be crucial for non-life insurance companies to be 
able to validate the results given by the industrial 
software where we do not have access to the code 
and when the number of shortcuts may be applied. 
Our approach can be used to validate the estimation 
of the first two moments of the loss distribution in 
the case where selection of development factors was 
employed and the different weights in estimation of 
chain-ladder factors and volatility parameters were 
used (see Section 6.3 for more details).

Second, our general Mack chain-ladder (GMCL) 
model can be used to construct the proxy solutions  
to overcome the limits of Mack’s (1999) approach, 
i.e., the use of the same weights for parameters esti-
mation (see discussion in Section 3.6). This means 
that, for the methods where we eliminate the consid-
erable number of observations, we reduce as well the 
data for variability of the reserves. This mechanically 
impacts the estimation of MSEP of loss liabilities, 
which in such cases is generally underestimated. We 
propose then the possible solution to overcome this 
kind of difficulty (see Section 6.1 for more details).

Finally, the third and really important application  
from a practical point of view consists of bridg-
ing the point estimation of chain-ladder parameters 
with the theory of robust statistics. As mentioned 
above, the point estimators of chain-ladder factors 
can be obtained in the linear regression framework 
by applying the weighted least squares procedure. It 
is well known that the OLS estimators are fragile to 
the outliers. That is why we propose using the robust 
techniques of estimation such as: M-estimators,  
Lp-estimators, etc (see Section 6.2).

The reminder of this paper is organized as follows.  
In Section 2 we present our notations and definitions. 
We review in Section 3 the MCL and its main limi-
tations. In Section 4, we present the (GMCL) and 
the main results are derived in Section 5. Finally, 

(ratio of square root of MSEP of ultimate loss over 
ultimate loss) in order to derive the MSEP estimators  
of a new approach. It turns out that in general these 
approximations are highly inappropriate (see exam-
ple in Section 6.3).

We think that, in some simple cases (no curve 
fitting for LDFs, for example) the approximations 
mentioned above are the consequences of bad under-
standing of the main formula for estimation of MSEP 
in Mack (1993). Moreover, the approximations used 
by actuaries and actuarial software developers could 
be avoided by using the more appropriate existing 
models. One such model was proposed by Mack 
(1999). To our knowledge, this was the first study that 
showed how to measure the uncertainty of reserves 
in the situation when an actuary selects the LDFs. 
In our opinion, the important results obtained in this 
paper are not always used in practice because, instead 
of explicit formula, the recursive equation is given 
there for estimation of MSEP of ultimate loss.

Mack (1999) is an important paper that allows  
the fully understanding of the MSEP formula and 
avoid the inappropriate approximation when it is not 
necessary. We summarize the details of this method 
in Section 3. One of the major limitations of this 
method is the underestimation the MSEP of ultimate 
loss in the case where the number of excluding  
data is important. We discuss this topic in detail in 
Section 3.5. One possible solution to overcome this 
difficulty is to extend the existing approach proposed 
by Mack (1999).

Therefore, we propose a general approach for 
stochastic claims reserving in the framework of chain-
ladder model, extending the model proposed by Mack 
(1999) and Murphy, Bardis, and Majidi (2012). This 
extension is three fold. First, our general tool has a 
educational role and makes it possible to validate the 
results from other approaches. More precisely, our 
general formula for estimation of MSEP of outstand-
ing loss liabilities can be used to fully understand the 
Mack (1993), Mack (1994), and Mack (1999) model. 
Furthermore, under new solvency requirements of 
Solvency II, insurance companies use the bootstrap-
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, (2.1), , 1R C Ci i I i I i= − − +

and the total outstanding loss liabilities for all acci-
dent years,

R Ri
i

I

. (2.2)
1

∑=
=

We use the term claims reserves to describe the pre-
diction of the outstanding loss liabilities. Hence, let  
R̂i and R denote the claims reserves for accident year i,  
R̂i = Ĉi,I – Ci,I–i+1, i ∈ {1, . . . , I}, and the total claims 
reserves for aggregated accident years, R̂ = ∑ I

i=1R̂i, 
respectively, where Ĉi,I is a predictor for Ci,I.

2.3.  (Conditional) mean square error  
of prediction (MSEP)

As already stated above, finding suitable pre
diction of ultimate loss is rather the beginning of  
the process of reserving, and insurers need to assess 
the variability of these amounts. We are interested then 
in the quantification of the prediction uncertainty of 
the ultimate loss, i.e., Ĉi,I and ∑ I

i=1Ĉi,I, (or equivalently 
of claims reserves, i.e., R̂i and R̂ = ∑ I

i=1R̂i). For that, 
we have to choose an appropriate risk measure which 
determines a conception of measuring the “distance” 
between the prediction and the actual outcomes. 
In this paper, following the actuarial literature, we 
quantify the prediction uncertainty using the most 
popular such measure, the so-called mean-square 
error of prediction (MSEP).
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where

{ }= + ≤ +: 1 , (2.5),D C i j II i j

denote the claims data available at time t = I.

Section 6 introduces the numerical applications of 
GMCL. All proofs are provided in the Appendix. 
The related topics such as: tail factor, curve fitting, 
diagnostics and validation of the main model hypoth-
esis, are out of scope of this paper and will be treated 
elsewhere.

2.  Notations and definitions

2.1.  Run-off triangle

Let Ci,j denote the random variables (cumulative  
payments, inccured, reported claims numbers, etc.) 
for accident year i ∈ {1, . . . , I} until development year 
j ∈ {1, . . . , J}, where the accident year is referred 
to as the year in which an event triggering insurance 
claims occurs. We assume that Ci,j are random vari-
ables observable for calendar years i + j ≤ I + 1 and 
non-observable (to be predicted) for calendar years 
i + j > I + 1. The observable Ci,j are represented by 
the so-called run-off trapezoids (I > J) or run-off tri-
angles (I = J ). Table 1 gives an example of a typical 
run-off triangle. In order to simplify our notation,  
we assume that I = J (run-off triangle). However, all 
the results we present here can be easily extended to 
the case when the last accident year for which data 
is available is greater than the last development year, 
i.e., I > J (run-off trapezoid).

2.2.  Outstanding reserves

Let Ri et R denote the outstanding claims liabilities 
for accident year i ∈ {1, . . . , I},

Table 1.  Run-off triangle (I = J )

Accident 
Year i

Development Year j

1 2 3 4 j . . . J

1

2 Ci,j 

(observations)3

I – j

I – 2 Ci,j 

(to be predicted)I – 1

I
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The parameters sk are referred here as variance 
parameters (LDF).

3.	 The accident years (Ci,1, . . . , Ci,I)1≤i≤I are independent.

3.2.  Estimation of parameters  
in the MCL model

•	 Given the information DI and for 1 ≤ k ≤ I – 1, the 
factors fk are estimated by

∑
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•	 Given the information DI and for 1 ≤ k ≤ I – 2, the 
variance parameters s k

2 are estimated by
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where Ik represents the number of weights wi,k different 
from 0, namely, Ik := card{i: wi,k ≠ 0}.

Formula (3.4) does not yield an estimator for ŝ 2
I–1 

because it is not possible to estimate this param-
eter from the single observation CI,I /CI,I–1. Follow-
ing Mack (1993; 1994; 1999), if fI–1 = 1 and if the 
claims development is believed to be finished after 
I – 1 years we can put ŝ 2

I–1 = 0. If not, the simple 
formula of extrapolation can be applied by requir-
ing ŝI–3/ŝI–2 = ŝI–2/ŝI–1. This leads to the following 
definition

I I I I Iˆ : min ˆ ˆ , min ˆ , ˆ . (3.5)1
2

2
4

3
2

3
2

2
2( )( )σ = σ σ σ σ− − − − −

Remark 3.1. The parameter α determines the 
different ways of estimation of fk. For the sake of 
simplicity, let us assume that wi,j = 1 for all i, j.  

3.  Mack chain-ladder (MCL) model

A major everyday challenge of actuarial work is 
selecting loss development factors for number of 
reasons (outliers in triangle, inaccurate data, incom-
pleteness, etc). Most actuaries use somewhat arbi-
trary rules of thumb in selecting the loss ratios. In 
Blumsohn and Laufer (2009), a group of actuaries 
were asked to select age-to age factors for a 12-years 
triangle of umbrella business. The important number 
of ways of selecting loss ratios was provided by the  
participants. It is important, then, from practical point 
of view to have a method that provides the estima-
tion of conditional MSEP of ultimate claims in the 
context of factor selection of actuaries.

To the best of our knowledge, the paper by Mack 
(1999) is one of the first studies dealing with factors 
selection and variability of reserves estimation in the 
framework of the chain-ladder method. This paper is 
an extension of Mack (1993).

In the remaining part of this section we recall 
the assumptions of the Mack chain-ladder (MCL) 
model from Mack (1999). Afterwards, we present 
the numerical example illustrating the limits of this 
approach. Finally, we indicate the possible expansion 
of MCL method and its potential applications.

3.1.  Model assumptions of MCL method

Let define the individual development factors, for 
1 ≤ i ≤ I – 1 and 1 ≤ k ≤ I – 1,

F C Ci k i k i k . (3.1), , 1 ,= +

Following Mack (1999), we assume [(MCL.1)]

1.	 There exist constants fk > 0 such that

E F C C fi k i i k k( ) =, . . . , ., ,1 ,

The parameters fk are often called loss devel-
opment factors (LDF), link ratios or age-to-age 
factors.

2.	 There exist constants s k
2 > 0 such that for all  

1 ≤ i ≤ I and 1 ≤ k ≤ I – 1 we have
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This implies, together with the fact that f̂ k are 
uncorrelated, that Ĉi,I is unbiased estimator of 
E(Ci,IDI).

	 v.	 The expected values of the estimator

C C fi I i I i k
k I i

I
ˆ ˆ ,, , 1

1

1

∏= + −
= + −

−
i

for the ultimate claims amount and of the true ulti-
mate claims amount Ci,I are equal, i.e., E(Ĉi,I) = 
E(Ci,I), 2 ≤ i ≤ I.

The proof is postponed to Appendix A.3.

3.4.  Estimators of conditional MSEP  
in MCL model

3.4.1.  Single accident years
Under assumptions of the MCL model we have the 

following estimator for the conditional estimation 
error of a single accident year i ∈ {2, . . . , I}:

∑
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where, for i + k > I + 1, we define ŵi,k : = 1 and f̂ j and 
ŝ j

2 are given in (3.3) and (3.4)–(3.5) respectively.

3.4.2.  Aggregated accident years
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where f̂ j and ŝ j
2 are given in (3.3) and (3.4)–(3.5) 

respectively.

3.5.  Numerical application  
of the MCL method

As mentioned above, the factors selection methods  
are an integral part of everyday actuarial practice. 

We present below the possible choices of α and their 
interpretation.

1.	 If α = 1 we get the classical chain ladder estimate 
of fk

f
C F
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C

C
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i k i k
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−

2.	 If α = 0 we get the model for which the estimators 
of the age-to-age factors fk are the straightforward 
average of the observed individual development 
factors Fi,j defined via (3.1), i.e.,

f
I k

F k Ik i k
i

I k
ˆ 1

, for 1 1.,
1

∑=
−

≤ ≤ −
=

−

3.	 If α = 2 we get the model for which the estima-
tors of the age-to-age factors fk are the results of 
an ordinary regression of {Ci,k+1}i∈{1,...,I–k–1} against 
{Ci,k}i∈{1,...,I–k} with intercept 0, i.e.,

f
C F

C

C C

C
k Ik

i k i k
i

I k

i k
i

I k

i k i k
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−

=

−

+
=

−

=

− −

3.3.  Properties of estimators  
from MCL model

Proposition 3.1

	 i.	� The estimators f̂ k given in (3.3) are unbiased and 
uncorrelated.

	ii.	� The estimators f̂ k of fk have the minimal variance 
among all unbiased estimators of fk which are the 
weighted average of the observed development 
factors Fi,k.

	iii. � The estimator ŝ2
k, given in (3.4) is the unbiased 

estimator of the parameter s 2
k.

	iv.	� Under the model assumptions (MCL.1) and 
(MCL.3) we have

i iE C D C f fi I I i I i i I i I( ) = + − + − −. . . ., , 1 , 1 1
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(5) � Median: f̂ k are computed as an arithmetic aver-
age of individual link ratios Fi,j in the way to 
obtain the sample median. More precisely, we 
put wi,j = 1 or wi,j = 0 in the way that the estima-
tors of the age-to-age factors fk are given by

f median F i I kk i k
ˆ : 1, . . . , .,{ }{ }= ∈ −

The median denotes the sample median that 
for the sample X1, . . . , Xn is computed by

{ }{ }∈

= +










+











+





: 1, . . . ,

:

if is odd

2
otherwise

.

1
2

2 2
1

median X i n

X n

X X

i

n

n n

where X(k) denotes the k – th order statistics of the 
sample X1, . . . ,Xn.

Remark 3.2. In the case where there is only 
one observation in estimation of parameter sk (odd 
number of data in sample median computation) we 
choose the additional Fi,k factor in order to have two 
observations and be able to apply the formula (3.4).

In Table 2, we present the estimation of total amount 
of claims reserves R̂ as well as the value of estimators  
of aggregated MSEP(R̂). Recall that R̂ := ∑I

i=1R̂i, 
where R̂i := Ĉi,I – Ci,I–i+1. We observe that to obtain R̂ it 
is enough to have the estimators Ci,I of ultimate claims 
Ĉi,I for all accident year i. In consequence MSEP(R̂) = 
MSEP(∑ I

i=1Ĉi,I) and we use the formula (3.7) to esti-
mate this quantity. We compute as well the coefficient 
of variation of R̂, given by CV(R̂) = R̂/MSEP(R̂)1/2. 
The last two lines of Table 2 indicate the relative 
proportion of R̂ and MSEP(R̂)1/2, for each of five 
methods considered, in comparison to the ALL AV 
method which is the reference method in our example.

3.6.  Limits of MCL method

As can be seen in Table 2, the four last methods 
(columns (2)–(5)) reduce significantly the estimation 

Here we choose from Blumsohn and Laufer (2009) 
several such methods where estimates are com-
puted as different averages using varying weights 
and varying number of accident years: all/3/5-years 
weighted average and all excluding higher and lower 
(AEHL) factor average. We consider as well other 
popular methods in actuarial practice based on sam-
ple median.

More precisely, for RAA run-off triangle (see 
Appendix B, Section B.8), we apply the MCL model 
from Mack (1999) with the following parameters. 
For all five methods described below we choose  
α = 0 ( f̂ k arithmetic averages of Fi,k) and we compute 
the estimators f̂ k and ŝ k

2 according to formula (3.3) 
and (3.4)–(3.5), respectively. This allows us to com-
pare the results with sample Median method which 
is rather consistent with straightforward average of 
development factors (see method number (5) below)

(1) � ALL AV: f̂ k are computed as arithmetic average 
of all individual link ratios Fi,j. More precisely, 
we define the weights in the following way:  
wi,j = 1 for all i, j.

(2) � AEHL: f̂ k are computed as arithmetic average of 
all individual link ratios, excluding the highest  
and the lowest values of Fi,j. More precisely, 
we define the weights in the following way: 
for fixed j, wi,j = 0 for i such that Fi,j = F(I–j),j and  
Fi,j = F(1),j, where F(k),j for k = 1, . . . , I – j denotes 
the order statistics of Fi,j. For remaining indices i, 
for fixed j, we take wi,j = 1

(3) � 5 Years AV: f̂ k are computed as an arithmetic 
average of individual link ratios Fi,j from five 
latest accidents years. More precisely, we define 
the weights in the following way: wi,j = 1 for  
i = I – j, . . . , I – j – 4. For remaining indices i, 
for fixed j, we take wi,j = 0

(4) � 3 Years AV: f̂ k are computed as an arithmetic 
average of individual link ratios Fi,j from three 
latest accidents years. More precisely, we define 
the weights in the following way: wi,j = 1 for  
i = I – j, . . . , I – j – 2. For remaining indices i, 
for fixed j, we take wi,j = 0
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for the expectation of f̂k and Var( f̂kBk) are not correct. 
Regarding the sample median method, the derivation  
of Var( f̂kBk) requires the computation of the moments 
of order statistics (see Jeng 2010) and those are 
strongly related to the distribution of Fi,j. To over-
come these difficulties we propose two solutions:  
the simple Proxy method (see Section 6.1) and the 
more complex one based on a robust estimation (see 
Section 6.2). The first approach is programmed to 
avoid artificial volatility increase and it is based on 
all link ratios in estimation of volatility parameters sk  
(scale parameters in linear regression). The second 
method consists on developing an approach that allows 
using any robust estimators of fk (location) and sk 
(scale) parameters.

4.  General Mack chain-ladder 
model

4.1.  Model assumptions

Before stating the main assumptions of our general 
approach, let us assume that functions gd,j:[0, ∞) →  
[0, ∞) are Borel measurable. Let di,j be the non-

negative random variables defined by, di,j: = gd,j(Ci,j).
Our model is formalized by the following 

assumptions:

(GMCL.1)  There exist constants fk > 0 such that

( ) =, . . . , ., ,1 ,E F C C fi k i i k k

of MSEP(R̂)1/2 comparing to the first method ALL AV. 
For the methods (3), (4) and (5), this is mainly due 
to the elimination of relatively significant number of 
development factors from estimation especially for 
the first development years which correspond to the 
columns of the run-off triangle. This phenomena is 
especially seen in the case of sample median method 
in which, for each development factor we keep at 
most two of link ratios Fi,j in estimation of fk. From 
statistical point of view, this is clearly not enough 
to perform the robust estimation. As a consequence, 
this kind of methods reduce unnaturally the variabil-
ity of reserves. This could be dangerous for exam-
ple in terms of evaluation of the economical capital 
for reserve risk required by the new Solvency II 
regime.

Beyond the limits stated above, there are some 
incoherences with application of weights wi,k for 
the AEHL and sample median methods. Indeed, the 
weights wi,k should be Ci,k measurable random vari-
ables in order to be able to derive the main results of 
MCL approach (see, for example, Proposition A.2). 
Although for the method 5 Year AV and 3 Years AV 
we can fix the weights without knowing the infor
mation DI (knowing all observation in the run-off 
triangle, see (5)), this is not a case for the AEHL and 
sample median methods. The reason is that we need 
to know the observation Fi,k in order to specify the 
corresponding weights for those two methods. That 
is why the weights wi,k are not Ci,k measurable but 
rather DI-measurable. This means that the formula 

Table 2.  Estimation of total amount of outstanding loss liabilities (R̂), value of estimator  
of aggregated MSEP(R̂)1/2 and coefficient of variation CV(R̂), for five methods

alpha=0

Item/method
ALL AV 

(1)
AEHL 
(2)

5 Years AV 
(3)

3 Years AV 
(4)

Median 
(5)

R̂ 93 643 65 868 75 886 68 645 54 059

MSEP(R̂ )1/2 92 549 21 015 27 486 29 493 14 786

CV(R̂ ) 99% 32% 36% 43% 27%

(1)/(1) (2)/(1) (3)/(1) (4)/(1) (5)/(1)

R̂ (%) 100% 70% 81% 73% 58%

MSEP(R̂)1/2 (%) 100% 23% 30% 32% 16%
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where Ik represents the number of weights di,k  
different from 0, namely, Ik := card{i:di,k ≠ 0}.

In the analogue way to (3.4) we define

( )( )σ = σ σ σ σ− − − − −ˆ min ˆ ˆ , min ˆ , ˆ . (4.5)1
2

2
4

3
2

3
2

2
2

I I I I I

Proposition 4.1.

	 (i)	� The estimators f̂k given in (4.2) are unbiased and 
uncorrelated.

	(ii)	� For k = 1, . . . , I – 1, if di,k = γi,k for all i, then  
the estimators f̂k of fk have the minimal variance 
among all unbiased estimators of fk which are 
the weighted average of the observed develop-
ment factors Fi,k.

For k = 1, . . . , I – 1, if di,k ≠ γi,k, for some i,  
then the relative efficiency of s.e. ( f̂ k

g≠dBk) with 
respect to s.e.( f̂ k

g=dBk), i.e., the ratio

∑

∑
( )
( )

( )
( )

= =

γ
δ

γ

{ }

{ }
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γ ≠δ

γ =δ

δ
=

−

δ
=

−

≠

≠

. . ˆ

. . ˆ :
ˆ

ˆ

1 2

1 2

,
2

,1

,
1

, 0

, 0

s e f B

s e f B

Var f B

Var f B

k k
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j k

i
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1

1

	(iii)	� For k = 1, . . . , I – 1, if di,j = γi,j for all i, then  
the estimator ŝk

2, given in (4.4) is the unbiased 
estimator of the parameter s k

2.
For k = 1, . . . , I – 1, if di,k ≠ γi,k, for some i, 

then the bias of the estimator ŝk
2 is given by the 

following formula

∑ ∑

∑
[ ]σ − σ = σ
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δ
γ
δ







γ





−



















{ }
=

−

δ
=

−

=

−

≠

ˆ
1

1 .2 2
2 ,

1

,
2

,1

,
1

2

, 0

E
I

Ek k
k

k

i k
i

I k
j k

j kj

I k

j k
j

I k

j k
i 1

	(iv)	� Under the model assumptions (GMCL.1) and 
(GMCL.3) we have

E C D C f fi I I i I i i I i I. . . ., , 1 , 1 1( ) = + − + − −i i

This implies, together with the fact that f̂k are 
uncorrelated, that Ĉi,I is unbiased estimator of 
E(Ci,IDI).

(GMCL.2)  There exist constants s k
2 > 0 such that 

for all 1 ≤ i ≤ I and 1 ≤ k ≤ I – 1 we have

Var F C C
a s

a s

i k i i k

k

i k
i k

i k

, . . . ,
if 0 . .,

if 0 . .,

(4.1)

, ,1 ,

2

,
,

,

( ) =

σ
δ

δ ≠

∞ δ =









where a.s. means almost surely.
(GMCL.3)  The accident years (Ci,1, . . . , Ci,J)1≤i≤I 

are independent

We observe that from the above assumptions the 
main difference between MCL and GMCL lies in 
the variance assumption. This modification allows 
us to introduce different weights in estimation of the 
parameters fk and sk.

4.2.  Model estimators

Suppose that functions gg,j:[0, ∞) → [0, ∞) are Borel 
measurable. Let γi,j be the non-negative random vari-
ables defined by, γi,j := gg,j(Ci,j).

•	 Given the information DI, the factors fk are esti-
mated by

f
F

k Ik

i k i k
i

I k

i k
i

I k
ˆ , for 1 1 (4.2)

, ,
1

,
1

∑

∑
=

γ

γ
≤ ≤ −=

−

=

−

It becomes obvious from assumption (GMCL.2) 
that in order to compute correctly the variance 
of f̂ k (see Proposition A.2 in Appendix) we have 
to assume that

i j i jif 0 then 0 . (4.3), ,{ }δ = γ =

•	 Given the information DI, the variance parameters 
s 2

k are estimated by

I
F f k Ik

k
i k

i

I k

i k kˆ 1

1
ˆ , for 1 2,

(4.4)

2
,

1
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where f̂j and ŝ j
2 are defined in (4.2) and (4.4)–(4.5), 

respectively.

6.  Applications of GMCL model

In our numerical example in Section 3.5 we have 
seen that the assumption about the same weights in 
estimation of parameters sk and fk yields for some 
methods to an artificial reduction of variability of 
reserves amounts (refer to Table 2). To overcome 
this difficulty, we introduced the different weights 
γi,j and di,j in computation of f̂k and ŝk, respectively. 
In the following application we indicate how one can 
possibly estimate the weights γi,j and di,j and we point 
out some other interesting applications.

6.1.  Method proxy for factors selection

In this section, we examine our general framework  
gg,j(Ci,j) := w γ

i,jC
α
i,j and gd,jCi,j := w d

i,jC
β
i,j which means 

that γi,j := w γ
i,jC

α
i,j and di,j := w d

i,jC
β
i,j. In this so called 

proxy method we impose using all link ratios Fi,j in 
estimation of parameters sk (w

d
i,j = 1, for all i, j). For 

all five methods presented, we take α = β = 0. We turn 
back to our numerical example from Section 3.5 and 
we evaluate the same estimators for the already-
presented five methods with the only difference in 
weights of sk estimation. More precisely:

(1) � ALL AV: The ŝ k
2 are estimated with w d

i,j = 1 for 
all i, j. Parameters f̂k are computed as a arithmetic  
average of all individual link ratios Fi,j. More 
precisely, we define the weights in the following 
way: w γ

i,j = 1 for all i, j.

	 (v)	 The expected values of the estimator

C C fi I i I i k
k I i

I
ˆ ˆ ,, , 1

1

1

∏= + −
= + −

−
i

for the ultimate claims amount and of the true 
ultimate claims amount Ci,I are equal, i.e.,  
E(Ĉi,I) = E(Ci,I), 2 ≤ i ≤ I.

The proof of this Proposition is postponed to the 
Appendix A.4.

Remark 4.1.
•	 If we set γi,j = di,j = wi,jC

α
i,j, for α ∈ {0,1,2}, in (4.2) 

and (4.4) we get the assumptions of MCL model 
from Mack (1999) (see also Mack (1993), Mack 
(1994) and Saito 2009).

•	 If we put γi,j = di,j = wi,jC
αj
i,j , for αj ∈ , in (4.2)  

and (4.4) we get the stochastic chain-ladder model 
from Murphy, Bardis and Majidi (2012).

5.  Main results

5.1.  Single accident years

Result 5.1 (Conditional MSEP estimator for a 
single accident year).

msep C CC D i I i I i I i Ii I I

ˆ ˆ ˆ , (5.1)ˆ , ,
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, ,,
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and f̂ j and ŝ j
2 are given in (4.2) and (4.4)–(4.5), 

respectively.

5.2.  Aggregation over prior accident year

Result 5.2 (Conditional MSEP estimator for 
aggregated years).
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where median denotes the sample median which, 
for the sample X1, . . . , Xn, is computed by

: 1, . . . ,

:

if is odd

2
otherwise

1
2

2 2
1

median X i n

X n

X X

i

n

n n

{ }{ }∈

= +
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
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
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



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+





and X(k) denotes the kth order statistics of the 
sample X1, . . . ,Xn.

In Table 3 we present the estimation of R̂ and 
MSEP(R̂) using the five methods described above. 
In terms of MSEP we see that, in general, we have 
the values greater than our reference method ALL AV 
from column (1), which stays unchanged compared 
to Table 2. This is not surprising because by selecting  
of the development factors we deacresed the estimated 
values of fk and by using all observations Fi,j in ŝk 
computation we mechanically increased the disper-
sion around the values of f̂k. In view of our results 
from Tables 2 and 3, the proxy method overestimates 
in general the real MSEP, and can then be treated  
as its upper bound. However, it can be useful as a 
tool to perform the sensitivity analysis for testing the 
impact on the reserve volatility of excluding the 
specific set of link ratios. Finally, it can be seen as 
a measure of relative prudence of other approach of 
measuring the variability of reserves by means of 
MSEP estimators.

(2) � AEHL: The ŝ k
2 are estimated with w d

i,j = 1 for all 
i, j. Parameters f̂k are computed as a arithmetic 
average of all individual link ratios excluding the 
highest and the lowest values of Fi,j. More pre-
cisely, we define the weights in the following way: 
for fixed j, w γ

i,j = 0 for i such that Fi,j = F(I–j),j and  
Fi,j = F(1),j, where F(k),j for k = 1, . . . , I – j denotes 
the order statistics of Fi,j. For remaining indices i, 
for fixed j, we take w γ

i,j = 1.

(3) � 5 Years AV: The ŝ k
2 are estimated with w d

i,j = 1  
for all i, j. Parameters f̂ k are computed as an 
arithmetic average of individual link ratios Fi,j 
from five latest accidents years. More precisely, 
we define the weights in the following way:  
w γ

i,j = 1 for i = I – j, . . . , I – j – 4. For remaining 
indices i, for fixed j, we take w γ

i,j = 0

(4) � 3 Years AV: The ŝ k
2 are estimated with w d

i,j = 1  
for all i, j. Parameters f̂k are computed as an arith-
metic average of individual link ratios Fi,j from 
three latest accidents years. More precisely, we 
define the weights in the following way: w γ

i,j = 1 
for i = I – j, . . . , I – j – 2. For remaining indices i, 
for fixed j, we take w γ

i,j = 0

(5) � Median: The ŝ k
2 are estimated with w d

i,j = 1 for all 
i, j. Parameters f̂k are computed as an arithmetic 
average of individual link ratios Fi,j in the way 
to obtain the sample median. More precisely, we 
put w γ

i,j = 1 or w γ
i,j = 0 in the way that the estima-

tors of the age-to-age factors fk are given by

ˆ : 1, . . . , ,,f median F i I kk i k{ }{ }= ∈ −

Table 3.  Estimators of R̂, ˆMSEP R( )  and CV(R̂)

alpha = 0

Item/method
ALL AV 

(1)
AEHL 
(2)

5 Years AV 
(3)

3 Years AV 
(4)

Median 
(5)

R̂ 93 643 65 868 75 886 68 645 54 059

MSEP(R̂ )1/2 92 549 88 105 101 643 113 904 105 786

CV(R̂ ) 99% 134% 134% 166% 196%

(1)/(1) (2)/(1) (3)/(1) (4)/(1) (5)/(1)

R̂ (%) 100% 70% 81% 73% 58%

MSEP(R̂)1/2 (%) 100% 95% 110% 123% 114%

15080-07_Sloma-2ndPgs.indd   236 4/25/19   10:47 AM



Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation  

VOLUME 12/ISSUE 2	 CASUALTY ACTUARIAL SOCIETY	 237

and Ṽar( f̃ k) respectively. These two quantities can 
be derived by numerous techniques described in 
the literature, such as: M-estimation, Lp estimation, 
etc. (Huber and Ronchetti 2009) or trimmed mean 
(Jeng 2010).

Step 2. For every k = 1, . . . , I – 1, we find αk 
by solving the following equation f̂k = f̃ k, where f̂k is 
given in equation (4.2), namely

∑

∑
=

α

=

−

α

=

− . (6.1)
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i k i k
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i

I k k

k
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The procedure to select the consistent αk together 
with the problem of existence of solution of equation 
(6.1) is treated in Murphy, Bardis, and Majidi (2012) 
(see Lemma 1 and the comments that follow it).

Step 3. For every k = 1, . . . , I – 2, we find βk by 
solving following equation: V̂ar( f̂k) = Ṽar( f̃ k), where 
V̂ar( f̂k) is given in (A.8), namely,

1

1
ˆ

(6.2)
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The parameters f̂k are given in equation (4.2) with 
αk estimated in Step 2. For k = I – 1, since only one 
observation is available in our data, βI–1 need to  
be estimated by other approaches. The limits for the 
values of Ṽar( f̃ k) for which the solution of equation 
(6.2) exists are presented in Appendix E.

6.2.2.  Numerical example
In the present example we consider only the median 

method already presented in previous numerical appli-
cations. We concentrate on that particular method 
because our goal is not to present the extensive case 
study but rather to illustrate the general principle and 
the main steps of this application. Observe that the 
method AEHL can be treated by the theory of robust 

6.2.  Robust estimation in GMCL model

From the previous two numerical examples (MCL 
vs. GMCL results), we observe that, in general, the first  
approach underestimates and second overestimates 
the MSEP of claims reserves (see Tables 2 and 3). 
In this section we present an intermediate solution 
for our general problem that allows us to evaluate the 
estimation of MSEP of reserves in case of develop-
ment factor selection. This go-between solution is 
based on the robust statistics in estimation of model 
parameters fk and sk. The term robust statistics is meant 
in the sense of Huber and Ronchetti (2009).

As already mentioned, the assumption GMCL.2 
about the conditional variance of Fi,j allows us to 
estimate the factors fk in the framework of linear 
regression obtained by the means of weighted least 
squares procedure (see Murphy, Bardis, and Majidi 
2012 and the references therein). Although these 
estimators are easy to compute and have excellent 
theoretical properties (see Proposition 4.1), they rely 
on quite strict assumptions, and their violation may 
lead to useless results.

One possible solution to overcome this difficulty 
is to use robust estimation techniques. The idea of 
robust statistics is to account for certain deviations 
from idealized model assumptions. Typically, robust 
methods reduce the influence of outlying observation 
on the estimator.

We take the following assumption in our general 
framework of GMCL model: gg,j(t) := tαj and gd,j(t) := 
t βj, with αj,βj ∈  to be estimated. This means that  
γi,j := Cαj

i,j and di,j := C βj
i,j.

The following algorithm shows how one can 
estimate the parameters αj for j = 1, . . . , I – 1 and 
βk for k = 1, . . . , I – 2. As can be seen, the presented 
method is based on a similar principle to the well 
known moment estimation method from point esti-
mation theory.

6.2.1.  Algorithm for fitting  
`k and ak parameters

Step 1. We select the robust estimators for fk  
and its variance. We denote these estimators by f̃ k 
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k = 4, and k = 8 the parameters αk and βk need to be 
specified in different way. This could be done using 
any other approach that is being judged appropriate 
by the actuary performing estimation. In our case,  
we put α3 = β3 = α6 = β6 = α8 = β8 = 0 to have from 
one hand the optimal properties (see Proposition 4.1) 
but also to be consistent with our choice of α = 0  
in our two previous numerical applications (see 
Sections 3.5 and 6.1).

The estimation of parameters αj and βj are stated 
in Table 5. The values of α̂j and β̂j for which we arbi-
trarily put 0 are indicated with bold font characters.

The MSEP and claims reserves amount estimators 
are stated in Table 6. Observe that the robust estima-
tion is a good compromise between the method with 
the same weights (see Section 3.5) and the method 
where we use all link ratios in sk estimation (see 
proxy method in Section 6.1).

6.3.  Validation of results  
from reserving softwares

The next interesting and extremely important 
application of our GMCL model is the possibility of 

estimation by means of trimmed mean estimators 
(Jeng 2010).

To apply the above fitting algorithm for sample 
median method, we use the LAD (least absolute 
deviation) estimation procedure. The theoretical 
framework of LAD is presented in Appendix D. 
The values of f̃ k are given by computing the sample 
median from Fi,k as described in Section 3.5. The 
standard errors of f̃ k are obtained via bootstrap tech-
niques. In Table 4 we present the numerical values 
of f̃ k, s.e(f̃ k) := Ṽar( f̃ k)

1/2 and CV( f̃ k) := s.e( f̃ k)/f̃ k. Note  
that the last value of s.e( f̃ k) cannot be estimated from 
the data for the reasons discussed in the case of sI–1 
estimation in Section 3.2 (only one observation avail-
able). This why we do not fit the parameter βI–1 via 
equation (6.2), but we put βI–1 := αI – 1.

The standard deviations of f̃ k from Table 4 were 
obtained by using the rq function integrated in free 
R software. Note that the value of f̃ k given by this 
function are slightly different from those presented 
in Section 3.2. This is probably due to the optimiza-
tion algorithm that is used in R. Given that these dif-
ferences are insignificant, we decided to present in 
Table 4 the same numerical values of the estimators 
f̃ k as given in Section 3.2. The corresponding R code 
is available on request from the author.

As mentioned in the algorithm and in Appendix E, 
the solutions of (6.1) and (6.2) are not always avail-
able. For instance, in our example, there is no solu-
tion of equation (6.1) for k = 3,4 and no solution of 
equation (6.2) for k = 8. This means that for k = 3,  

Table 4.  Estimation of f̃k and s.e(f̃k) using LAD technique corresponding to sample median method

k 1 2 3 4 5 6 7 8 9

f̃ k 4,2597 1,5992 1,1635 1,1657 1,1318 1,0335 1,0333 1,0180 1,0092

s.e(f̃ k) 1,7974 0,1686 0,1411 0,0270 0,0472 0,0251 0,0065 0,0129 —

CV(f̃ k) 42,2% 10,5% 12,1% 2,3% 4,2% 2,4% 0,6% 1,3% —

Table 5.  Estimation of parameters `̂ j and âj

j 1 2 3 4 5 6 7 8 9

α̂ j 0,5204 1,4073 0 1,5852 –0,3835 0 1,0022 0 0,0000

β̂j 0,6605 0,3120 0 0,7207 1,9501 0 –2,7733 0 —

Table 6.  Median method with robust estimation

Median

Item/method MCL Robust Proxy

R̂ 54 059 63 165 54 059

MSEP(R̂)1/2 14 786 40 312 105 786

CV(R̂) 27% 64% 196%
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results we used 100 000 simulations. We begin our  
analysis with the classic chain-ladder method in  
which the estimators of fk are the all volume weighted 
average and are consistent with Mack (1993). More 
precisely, with the hypothesis of the MCL method 
with α = 1, we compare the estimate of MSEP 
obtained by these two techniques: bootstrap from 
ResQ and explicit formula given in MCL approach. 
The corresponding numerical values are respectively: 
27 150 (see ResQ(Boot) (3) in Table 7) and 26 909 
(see ResQ(MCL) (4) in Table 7). We observe a good 
convergence for bootstrap (the relative error is less 
than 1%). We consider now the different estimator 
of fk computed as a simple arithmetic average of 
individual link ratios Fi,j. This is equivalent to taking  
α = 0 in the MCL framework. In that case, we 
observe that the estimates of MSEP for both methods 
become divergent: 75 656 (see ResQ(Mack) (2) in 
Table 7) and 58 475 (see ResQ(Boot) (1) in Table 7). 
This is due to the fact that the ResQ(Mack) method 
is obtained by approximation based on the MCL for-
mula with α = 1. In fact, according to the technical 
documentation, the ResQ estimates of parameters 
fk and sk in the bootstrap approach are of the form 
(up to multiplicative constant for bias reduction): 

f̂k = 
1

I k−
∑ i=1

I–kFi,k and s k
2 = 

1

1I k− −
∑ i=1

I–kCi,k(Fi,k – f̂k)
2. 

It is easily seen that these estimators are consistent 
with our general approach with α = 0 and β = 1 (see 
(4.2) and (4.4) in Section 4). The MSEP estimator 
is equal to 59 065 (see GMCL (5) in Table 7). This 
shows that GMCL method allows one to validate 
the results and detect the incoherences. Effectively, 
the choice of estimators in ResQ for the case α = 0 
is not optimal in sense of Proposition 4.1. It remains 

validating the results from industry reserving soft-
ware. The stochastic chain-ladder type methods are 
used to evaluate the economic risk capital required 
by Solvency II for so-called reserve risk. In fact, this 
capital requirement for reserve risk is computed as 
the 99.5th percentile (value at risk) of run-off result 
distribution (profit/loss on reserves over one year). 
This means that Solvency II defines the reserve risk 
in one-year time horizon, which is different from the 
standard approach considering the distribution of the 
ultimate cost of claims.

However, one of the methods to derive the one-year 
reserve risk is based on simple scaling of ultimate 
view. This technique is based on using the results 
of Merz and Wüthrich (2008), which is currently 
a popular methodology throughout the market and 
taken from the latest technical literature on this topic.

The empirical loss distribution in ultimate view is 
often derived by using the bootstrap techniques and 
Monte Carlo simulations. The first technique is used 
to evaluate the estimation error and the second to 
approximate the process variance. This kind of boot-
strap approach is also available in ResQ software, 
which is used worldwide within the P&C insurance 
market. The question is how to validate the results 
from bootstrap method provided by reserving tools 
such as ResQ. One of the possible solutions is to 
compare the estimation of the first two moments 
of loss distribution from bootstrapping (based on 
simulations) with the estimators of reserves and 
MSEP of reserves obtained by the explicit formulas. 
For the sake of simplicity, we assume that there is 
no factors selection (all weights wi,j are fixed to 1).  
We use the RAA run-off triangle and we present the  
numerical results in Table 7. For all bootstrapping 

Table 7.  Comparison of ResQ estimators of R̂ and MSEP(R̂) with MCL and GMCL models

alpha = 0 alpha = 1
alpha = 0, 
beta = 1

Item/method
ResQ(Boot) 

(1)
ResQ(Mack) 

(2)
ResQ(Boot) 

(3)
MCL 
(4)

GMCL 
(5)

R̂ 93 630 93 643 52 204 52 135 93 643

MSEP(R̂)1/2 58 475 75 656 27 150 26 909 59 065
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Appendix: Mathematical Proofs

We present here the proofs of our main results. 
Most of them are derived by simple rewriting the 
techniques applied in Mack (1993), Mack (1994).

A.1.  Proof of Result 5.1

Due to the general rule E(X – c)2 = Var(X) + (EX – c)2  
for any scalar c we have

ˆ

ˆ .

(A.1)

ˆ

2

2

msep C E C C D

Var C D E C D C

C D iI iI iI I

iI I iI I iI

iI I
( )

( )

( )

( ) ( )

= −





= + −

To estimate Var(Ci,IDI) we use the following

Lemma 9.1.  For i = 2, . . . , I, we have,

∑ ∏( ) =
δ







σ

= + −

−

= +

−
. (A.2),

,
2

,1

1
2 2

1

1

Var C D E
C

D fi I I
i l

i l
I

l I i

I

l k
k l

I

The proof of Lemma A.1 is postponed to  
Appendix A.5.

Note that the estimation of E ,
2

,

C
Di l

i l
Iδ







 from equa-

tion (A.2) is a crucial part of this proof. We choose 

to estimate this term by 
ˆ

ˆ
,
2

,

Ci l

i lδ
. This is due to the obvious 

observation that ,
2

,

Ci l

i lδ
 is an unbiased estimate of 

,
2

,

E
Ci l

i lδ






 and from the basic property of conditional 

expectation, namely: ,
2

,

,
2

,

E E
C

D E
Ci l

i l
I

i l

i lδ














 =

δ






.

It is worth noting here that, in the case where  
di,l := Cα

i,l with α ∈ , in Saito (2009), the author 
used the same technique of estimation without giving  
any justification or reason for that (see proof of 
Lemma 4 and Estimate 8). Similarly, in the case 
where di,l := wi,l • C

α
i,l with α ∈ {0, 1, 2} and wi,l  ∈ [0, 1],  

we find the same estimator in Mack (1999). More 
precisely, the author claims (without proving) that 

unknown whether this is deliberate or whether this is 
just a proxy approach that was judged correct.

In regards to the approximation ResQ(Mack) (2), 
this shows that in construction of the proxy methods  
we cannot just take the MSEP formula for α = 1 as 
a starting point. Indeed, the MSEP formula changes 
if we modify the estimates of fk because the variance  
of fk is not the same, so it is not enough to plug in 
the new estimators of Ci,I, fk and sk in the MSEP for-
mula (5.4) with α = β = 1. This lack of understanding 
of this principle could be a reason of taking the 
no optimal hypothesis in bootstrap ResQ(Boot) (1) 
method.

Finally, we observe that the results of ResQ(Boot) 
(1) method validate our explicit formula for estimation 
of MSEP of claims reserves in the framework of our 
GMCL model.

7.  Conclusion

In this paper we presented a general flexible tool 
for stochastic loss reserving and its variability. We 
developed our GMCL model to quantify the variabil-
ity of reserves in the context of selecting development 
factors in the framework of the stochastic chain-ladder 
method.

We provided the theoretical and flexible back-
ground which covers some practices of actuaries and 
industrial providers of reserving softwares.

Finally, we showed the way of bridging the chain 
ladder model and the robust estimation techniques. 
Our results can be applied in other approaches based 
on chain-ladder framework like: multivariate chain-
ladder, univariate and multivariate Bayesian chain-
ladder, etc. One can derive the similar results in 
the context of one-year reserve risk for Solvency II  
purposes. This topic will be treated in our forth-
coming paper. Some partial results can be found in 
Sloma (2014) and Sloma (2011).
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ˆ

. . . ˆ . . . ˆ . (A.4)
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As can be easily seen, this expression cannot be 
estimated by replacing fk with f̂ k. In order to esti-
mate the right hand side of (A.4) we use the same 
approach as in Mack (1993), Mack (1994). Saito 
(2009) followed the same technique of estimation. 
However, in Murphy, Bardis, and Majidi (2012) we 
can find different approach which was also presented 
in Buchwalder et al. (2006a). It is worth noting that 
in the paper of Mack, Quarg, and Braun (2006) the 
authors criticised the approaches of Buchwalder  
et al. (2006a) and showed that the estimate of estima-
tion error form Mack (1993) is hard to be improved 
(see also Buchwalder et al. 2006b). As the answer for 
the criticism of Mack on article of Buchwalder et al. 
(2006a), the authors provided the bounds for estima-
tion error and claimed that the Mack estimator, in 
some particular cases, is closed to these bounds (see 
Wüthrich, Merz, and Bühlmann 2008). This should 
be confirmed by performing the extensive simulation 
study to quantify the different approaches of error 
estimation in stochastic Chain-Ladder framework.

We define,
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∑ I–1
l=I+1–iVar(Ci,l+1DI)∏ I–1

k=l+1f k
2 can be estimated via the 

quantity Ĉi,I∑
I–1
l=I+1–i (s.e.(Fi,l))

2/f̂ l
2, where (s.e.(Fi,l))

2 is an 
estimate of Var(Fi,lCi,1,...,Ci,l). Indeed, this is achieved 

if we estimate ,
2

, ,

E
C

w C
Di l

i l i l
I







αi
 by 

ˆ

ˆ
,
2

, ,

C

w C
i l

i l i l
αi

.

However, in Murphy, Bardis, and Majidi (2012), 
the authors used different approach based on normal 
approximation.

Note that in the Section 6.3 we obtained that the 
above estimator of Var(Ci,l+1DI) is consistent with that 
provided by bootstrap technique from ResQ software. 
This is shown for the particular run-off triangle 
and the assumption that Ci,j are gamma-distributed 
random variables. It would be interesting to perform 
the extensive simulation study in order to examine 
the exactitude of this estimate with other data and 
probability distributions.

We apply now Lemma A.1 with ˆ
ˆ

ˆ
,
2

,

,
2

,

E
C

D
Ci l

i l
I

i l

i lδ






 =

δ  
and by replacing the unknown parameters fk et s k

2 
with their estimators f̂ k and ŝ k

2. Together with the 
equality Ĉi,l = CI+1–i∏ l–1

k= I+1–i f̂k (see Proposition 4.1 (v)) 
we conclude

ˆ

ˆ
ˆ ˆ
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We now turn to the second summand of the 
expression (A.1). Because of Proposition 4.1 (iv) 
and (v) we have,
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A.2.  Proof of result 5.2  
(overall standard error)

Following the definition in (2.4), we have
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The independence of accident years yields

∑ ∑ ( )



 =

= =
.,

1
,

1

Var C D Var C Di I I
i

I

i I I
i

I

where each term of the sum has already been calcu-
lated in the proof of the Result 5.1.
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We estimate F2 using the following

Proposition A.1 (Estimate of F2)  Let define, for 
1 ≤ k ≤ I, the set of observed Ci,j up to development 

year k, namely
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The proof of Proposition A.1 is postponed to 
Appendix A.5.

It remains to determine the estimate of Var( f̂kBk). 
We use the following

Proposition A.2  We assume (4.3). We have
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The proof of Proposition A.2 is postponed to 
Appendix A.5.

Finally, using (A.4) and Proposition A.2 we estimate 
E(Ci,IDI) – Ĉi,I)

2 by
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This completes the proof of Result 5.1. 
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We have, for 1 ≤ k ≤ I – 2,
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Since di,k are s(Ci,k) measurable, we have
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In the following derivation we use s(Ci,k)- 
measurability of γi,k and definition of f̂k from (4.2). 
Furthermore, the assumption GMCL.3 implies that Fi,k 
and Fj,k are independent for i ≠ j. From assumption 
GMCL.1 and GMCL.2 we easily see that E(F 2
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We can determine the estimator of Fi Fj in the analo-
gous way as for F2.

Proposition A.3. We have
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A.3.  Proof of Proposition 3.1

	 i.	 See Theorem 2 p. 215 in Mack (1993).

	ii.	� See discussion on p. 112, Corollary on p. 141 
and Appendix B on p. 140 in Mack (1994).

	iii.	 See Appendix E on p. 151 in Mack (1994).

	iv.	� See Theorem 1 p. 215 and discussion after 
the proof of Theorem 2 on page 216 in Mack 
(1993).

	 v.	 see Appendix C p. 142 in Mack (1994):

A.4.  Proof of Proposition 4.1

(i), (iv) and (v), see proofs of (i), (iv) and (v) respec-
tively in Proposition 3.1.

	(ii).	� The first part of the statement regarding to  
the minimal variance of parameters fk can be 
easily derived from the proof of (ii) in Propo-
sition 3.1. The rest of the proof is easily seen 
from the Proposition A.2.

(	iii).	� Without loss of generality and to avoid the 
complexity of notation we present the proof for 
Ik = I – k (for each k, all weights di,k are different 
from 0).
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A.5.  Proofs of auxiliary results

A.5.1.  Proof of Lemma 9.1
Let define, for 1 ≤ i ≤ I and 1 ≤ j ≤ I, the set of 

observed data Ci,j for accident year i and up to devel-
opment year j, namely

{ }= ≤ ≤: 1 ., ,A C k ji j i k
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We multiply the both sides by ∏ I–1
k=l+1 f k

2 with the con-
vention that an empty product equals 1. Taking the 
sum over l = I + 1 – i, . . . , I – 1, we obtain
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A.5.4.  Proof of Proposition A.3
We find the estimator F Fi j

� in the similar way to 
the estimator 2F� (see proof of Proposition A.1).
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we finally get the proof of Lemma A.1

A.5.2.  Proof of Proposition A.1
Following Mack (1993), Mack (1994), we replace 

Sk
2 with E(Sk

2Bk) and SjSk, with E(SjSkBk). This means 
that we approximate Sk

2 and SjSk by varying and aver-
aging as little data as possible so that as many values 
Ci,k from data observed are kept fixed. Due to Propo-
sition 4.1 (i) we have E( f̂k – fk) = 0 and therefore 
E(SjSkBk) = 0 for j < k because all fr, r < k, are scalars 
under Bk. Since E(( fk – f̂k)

2Bk) = Var( f̂kBk) we obtain 
from (A.6)
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Taken together, we have replaced F2 = ∑ I–1
k=I+1-iSk

2 
with ∑ I–1

k=I+1-iE(Sk
2Bk) and the unknown parameters 

are replaced by their estimators. Altogether, we esti-
mate F2 by
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A.5.3.  Proof of Proposition A.2
From definition of f̂k in (14), we have
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where the second equality is due to the Bk-measurability 
of γj,k, the assumption (4.3) and the convention that the 
product of 0 and ∞ equals to 0.
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B.  Data

We present in Table B.8 the triangle of RAA data analysed in Mack (1994) and Murphy, Bardis, and 
Majidi (2012).

Table B.8.  RAA run-off triangle (cumulative payments)

Accident 
Year i

Development Year j

1 2 3 4 5 6 7 8 9 10

1 5 012 8 269 10 907 11 805 13 539 16 181 18 009 18 608 18 662 18 834

2 106 4 285 5 396 10 666 13 782 15 599 15 496 16 169 16 704

3 3 410 8 992 13 873 16 141 18 735 22 214 22 863 23 466

4 5 655 11 555 15 766 21 266 23 425 26 083 27 067

5 1 092 9 565 15 836 22 169 25 955 26 180

6 1 513 6 445 11 702 12 935 15 852

7 557 4 020 10 946 12 314

8 1 351 6 947 13 112

9 3 133 5 395

10 2 063

C.  Individual link ratios of RAA run-off triangle

Table C.9.  Individual link ratios Fi,j (age-to-age factors) of run-off triangle RAA

AY 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

1 1,650 1,319 1,082 1,147 1,195 1,113 1,033 1,003 1,009

2 40,425 1,259 1,977 1,292 1,132 0,993 1,043 1,033

3 2,637 1,543 1,163 1,161 1,186 1,029 1,026

4 2,043 1,364 1,349 1,102 1,113 1,038

5 8,759 1,656 1,400 1,171 1,009

6 4,260 1,816 1,105 1,226

7 7,217 2,723 1,125

8 5,142 1,887

9 1,722

D. LAD estimator

The least absolute deviation (LAD) method or L1 
(also known as Least Absolute Value (LAV)) method 
is a widely known alternative to the classical least 
squares (LS) or L2 method for statistical analysis of 
linear regression models. Instead of minimizing the 
sum of squared errors, it minimizes the sum of abso-
lute values of errors. More precisely, in the context 
of linear regression model, estimates are found by 
solving the following optimisation problem

e y xi
i

n

i ij j
j

m

i

n

∑ ∑∑{ }{ } = − β
β = β =

min min ,
1 1

where ei := yi – ∑ j
mxijβj, i = 1, 2, . . . , n and j = 1,  

2, . . . , m. Unlike the LS method, the LAD method 
is not sensitive to outliers and produces robust esti-
mates. LAD method is reduced to a linear program-
ming problem and the computational difficulty is now 
entirely overcome by the availability of computing 
power and the effectiveness of linear programming. 
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Since ln(di,j) > 0 and ln(dj,i) < 0, the first derivative h′  
has a limit in –∞ and ∞ if β tends to –∞ and ∞ 
respectively. In addition, the second derivative h″ is 
given by
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Given that dβ
i,j and dβ

j,i are strictly positive functions 
and all coefficients are positive, the second derivative 
of h is strictly positive. This means that first deriva-
tive of h is increasing function. Together with the pre-
vious facts it implies that h has an absolute minimum. 
In consequence, the equation (23) has zero, one or 
two solutions.

In the case where two solutions of opposite sign 
exist, the actuary should decide which one cor
responds better to the considered line of business. 
In fact, as mentioned in Murphy, Bardis, and Majidi 
(2012), the choice of negative solution does not 
seem to be unreasonable in some situations. This 
issue is out of scope of this paper. In our numerical 
example the solution is determined by Excel tool 
called solver.
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