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ABSTRACT

As the level of competition increases, pricing optimization  

is gaining a central role in most mature insurance markets, 

forcing insurers to optimize their rating and consider customer 

behavior; the modeling scene for the latter is one currently 

dominated by frameworks based on generalized linear models 

(GLMs). In this paper, we explore the applicability of novel 

machine learning techniques, such as tree-boosted models, to 

optimize the proposed premium on prospective policyholders. 

Given their predictive gain over GLMs, we carefully analyze 

both the advantages and disadvantages induced by their use.
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applied to policyholder behavior can be found in 
Dutang (2012).

From a machine learning perspective, the estima-
tion of retention and conversion represents a super-
vised classification problem, traditionally solved in 
the actuarial practice with a logistic regression. A key 
advantage offered by logistic regression is the easy 
interpretability of fitted parameters combined with 
a reasonable computational speed. Nevertheless, 
machine learning techniques such as regression and 
classification trees, random forests, gradient-boosted 
machines, and deep learners (Kuhn and Johnson 2013) 
have recently acquired increasing popularity in many 
business applications.

The interest of actuarial practitioners in machine 
learning models has grown in recent years (Frees, 
Derrig, and Meyers 2014; Frees, Meyers, and Derrig 
2016). Dal Pozzolo, Moro, and Bontempi (2011) 
used various machine learning algorithms to predict 
claim frequency in the Kaggle Allstate competition. 
In addition, Guelman (2012) showed the benefits of 
applying gradient-boosting methodologies instead 
of classical Poisson GLMs for predicting claim fre-
quency. While machine learning techniques appear 
to outperform classical logistic regression in many 
applications, two issues hamper their widespread 
adoption in actuarial science. First, their param-
eters are often relatively more difficult to interpret 
(the “black box” issue). Second, the computational 
time required can be overwhelming, compared with 
the time required to fit a GLM. To the authors’ 
knowledge, a systematic review of machine learning 
techniques comparing predictive performance gain 
on logistic regression, interpretability, and compu-
tational time to model policyholders’ retention and 
conversion is still lacking in actuarial literature. It will 
be presented here.

The rest of the paper is organized as follows: 
Section 2 provides a brief overview of business 
considerations. In Section 3, we review predictive 
models and methodologies for binary classification 
problems. In Section 4, the presentation of a data 
set is followed by the estimation and comparison of 

1.  Introduction

Policyholder retention and conversion has received 
increasing attention within the actuarial practice in the 
last two decades. In particular, the widespread diffu-
sion of Web aggregators has eased the comparison of  
different insurers’ quotes for customers. Therefore, 
it is now popular for an insurance company to model 
not only the cost of the coverage offered but also 
the insurance demand. Indeed, the likelihood of a pro-
spective customer’s accepting a given quotation and 
the probability of retaining a current customer are 
key drivers of maintaining and enhancing the profit-
ability of an insurer’s portfolio. Such probabilities  
depend not only on the classical ratemaking variables 
used to determine expected loss costs, but also on 
competitive market variables (e.g., distance between 
insurer’s quote and best/average market price), cus-
tomer behavior, and demographics. Actuarial rate-
making, current policyholder retention modeling, 
and prospective policyholder conversion probabilities 
modeling all aim at so-called pricing optimization 
(PO). Specifically, this paper aims to investigate 
how machine learning methodologies can improve 
policyholder retention and conversion estimation over 
classical generalized linear models (GLMs).

Few academic papers have used or compared  
predictive models different from logistic regression,  
as far as the authors know. On the other hand, tele
communication firm customer retention has been 
a classical topic of business analytics for at least 
a decade (see, for example, Hung, Yen, and Wang  
2006). More precisely, Milhaud, Loisel, and Maume-
Deschamps (2011) focused on the life insurance 
context by using random forests, and Fu and Wang 
(2014) applied survival analysis techniques to model 
policyholders’ time to cancellation in a property  
and casualty portfolio. Further, Guelman, Guillen, 
and Perez-Marin (2012) used random forests to  
model lapse probabilities, while Yeo et al. (2001) used  
neural networks to model retention considering pre
mium variations (see also Guillen and Guelman 
2014). Finally, a survey of classical regression models  
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the policyholders’ loss propensity and the business 
environment in which the insurer operates. In fact, 
in almost every country, policyholders can com-
pare quotes being offered by multiple competing 
insurance carriers, making it crucial for the insurer  
to maximize the gain associated with current and 
potential policyholders. As a consequence, PO should 
not only model the prospective cost associated with 
the coverage provided but also consider the likeli-
hood of preventing a customer from accepting deals 
coming from the competition. More specifically, a 
conversion analysis should take into account factors 
such as the individual customer’s demographics, 
the monetary variation among proposed premiums,  
and the relative rank of the premium with respect to 
what is currently offered on the market. A similar 
analysis, the retention analysis, can be performed 
in order to estimate the probability of retaining 
customers.

In practice, performing PO requires four elements: 
a risk premium model, in order to obtain the expected 
burning cost; a competitive market analysis to model 
the competitors’ premiums, given the characteristics 
of a policyholder; a customer price elasticity model 
to predict the volume of new business and renewals, 
reflecting market competition in business analysis; 
optimization models to integrate all the aforemen-
tioned models and predict the profit volume given 
a change in prices, and to identify the best price 
changes for a given financial objective. Santoni 
and Gomez Alvado (2007) and Marin and Bayley 
(2010) provide a general overview from an insurance 
perspective.

A review of recent practitioners’ presentations has 
drawn a few key points to attention. The personal 
motor business is one in which such techniques have 
been applied the most, facilitated by policy port-
folio sizes and the large volume of data collected. 
For instance, Guven and McPhail (2013) and Guven 
(2013) model retention and conversion in U.S.  
markets using nonlinear GLMs. Another example of 
PO based on customer value metrics for direct busi-
ness can be found in Bou Nader and Pierron (2014). 

models previously presented, along with an example 
of PO. Finally, Section 5 concludes the paper.

In order to achieve these tasks, a real data set 
coming from a direct insurer will be used in our 
study. More precisely, the database used is from 
two recent months of personal motor vehicle liability 
coverage quotations. Distinct sets of data will be used 
for the model fitting, the performance assessment, 
and the PO steps mentioned above. We underline 
that the methodologies used to model conversions 
can be transposed to retention modeling without any 
difficulty. To allow easy replicability of the analy-
sis, open source software has been used, such as the 
R environment (R Core Team 2017) and H2O data 
mining software (H2O.ai Team 2017).

2.  Business context overview

The Casualty Actuarial Society (CAS) defines PO 
as “the supplementation of traditional actuarial loss 
cost models to include quantitative customer demand 
models for use in determining customer prices. The 
end result is a set of proposed adjustments to the cost 
models by customer segment for actuarial risk classes” 
(CAS Committee on Ratemaking 2014, p. 4).

The PO approach includes considerations of both 
customer behavior and the market environment, thus 
departing slightly from traditional loss cost–based 
ratemaking. Although the methodology is innovative, 
consumer advocates are raising concerns, and there is 
some initial scrutiny from regulators. For instance, 
the National Association of Insurance Commissioners 
(2015) and Baribeau (2015) question to what extent 
the explicit inclusion of price elasticity in the pro
cess of setting rates makes insurance prices unfair. 
PO has been extensively treated by actuarial practi-
tioners in numerous forms—see, for example, Duncan 
and McPhail (2013), Guven and McPhail (2013), 
and Guven (2013)—and to a lesser extent, by aca-
demics within insurance science (Rulliere, Loisel, and 
Mouminoux 2017).

PO can help increase the profitability of current 
and prospective business by taking into account both 
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where the performance needs to be measured by 
methods different from those suggested by classi-
cal statistics. Specifically, whereas in classical sta-
tistics we define a model in order to better explain 
a phenomenon, in predictive modeling we look at 
how well a model can make a prediction on unseen 
data. Moreover, a predictive model emphasizes the 
importance of assessing predictive performance on 
a subsample of data different from the one used to 
calibrate the model.

Regarding the model building process, Kuhn and 
Johnson (2013) list the following steps:

1.	 Data preprocessing: This task consists of clean-
ing the data, and possibly transforming predictors 
(feature engineering) and selecting those that will 
be used in the modeling stage (feature selection).

2.	 Data splitting: The data set is divided into a train-
ing, a validation, and a test set, thereby reducing 
the “overfitting” that occurs when a model appears 
to perform extremely well on the same data used 
for finding the underlying structure (e.g., the train-
ing set), while showing significantly less perfor-
mance on unseen data.

3.	 Fitting the selected models on the training set: 
Most families of models need one or more tuning 
parameters to be set in advance to uniquely define 
the model; these parameters cannot be derived  
analytically and their class is also known as hyper­
parameters. A grid search (or an optimized variant) 
can be employed to find the optimal combination 
of parameters with respect to a specific perfor-
mance metric. For binary classification, perfor-
mance metrics include the area under the curve 
(AUC), the Gini index, the logarithmic loss, and 
the kappa statistic.

4.	 Model selection: This step involves assessment of 
which model among the ones tested performs best 
on a test set, making the results generalizable to 
unused data.

3.2.  Data preprocessing

Data preprocessing techniques generally include 
the addition, deletion, and transformation of the data. 

Duncan and McPhail (2013) present four different 
approaches that can be used to perform PO:

1.	 Individual policy optimization: The final price 
proposed to the policyholder is recalculated at an 
individual level.

2.	 Individual policy optimization re-expressed in rate 
book form: Individually fitted prices are modeled  
as target variables within a standard predictive 
model (e.g., a GLM). A traditional rate book struc-
ture is thereby obtained.

3.	 Direct rate book optimization: Very similar to the 
above method.

4.	 Real-time optimization: This method stresses the 
importance of continuously “refreshing” the con-
sumer behavior and loss models with data updated 
in real time.

Although individual policy optimization provides  
the best performance as judged by revenue maximi-
zation, it is worth noting that regulation or operational 
constraints could lead one to choose less refined 
approaches.

The current paper focuses its attention on applying 
predictive modeling to perform conversion modeling 
as an alternative to standard GLMs. To illustrate, a 
conversion model targets the dichotomous variable 
Convert, which can take two values: Convert (Yes), 
Reject (No). A logistic regression within the GLM 
family has been traditionally used to address such 
analysis (Anderson et al. 2007), and it is currently 
easily applied by taking advantage of actuarial pricing 
software, e.g., Emblem, Pretium, Earnix, etc.

3.  Predictive modeling  
for binary classification

3.1.  Modeling steps

This section presents a brief overview of predic-
tive models based on books by Kuhn and Johnson 
(2013), Breiman (2001), and Bett (2014). Predictive 
modeling involves the application of various math-
ematical techniques to a data set composed of a vari-
able and a set of predictors. This process aims to find 
the best model in terms of predictive performance, 
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dictors may be removed to improve interpretability 
without loss of predictive performance. Many pre-
dictive models already contain intrinsic measures of 
variables’ predictive importance, so they perform an 
implicit feature selection. Models without feature 
selection may be negatively affected by uninformative 
predictors. To avoid this pitfall, specific methodolo-
gies have been built in to perform an initial screening 
of predictors: “wrapper methods” and “filter methods.” 
Wrapper methods conduct a search of the predictors 
to determine which, when entered into the model, 
produce the best result. Filter methods perform a 
bivariate assessment of the strength of the relation-
ship between each predictor and the target.

Further, degenerate or “near-zero-variance” vari-
ables (predictors characterized by few distinct values 
whose frequencies are severely disproportionate) 
may create computational issues in some models.  
Principal component analysis and independent com-
ponent analysis transformations can be used to reduce 
the number of input variables, i.e., by using a smaller 
set of generated variables that seeks to capture the 
majority of the information, leading to more par-
simonious models. Such approaches also prevent 
multicollinearity, but at the cost of less interpretable 
variables.

Finally, some predictors require recoding in order 
to be handled conveniently. For example, encoding 
nominal or categorical variables into multiple dummy 
variables is always a necessary step before fitting any 
model. Manual binning of continuous variables is a 
widely used approach to overcome marginal non-
linearity between the outcome and any continuous 
variable. However, Kuhn and Johnson (2013) iden-
tify three drawbacks of this approach: loss of perfor-
mance (since many predictive models are able to find 
complex nonlinear relationships between predictors, 
and binning may reduce this feature), loss of preci-
sion, and an increase in the false positive rate.

3.3.  Model training, tuning,  
and performance assessment

Model training consists of fitting a model through 
an iterative update of variables and/or parameters. 

This part of the process is crucial for determining the 
success or failure of the entire analysis, since most 
machine learning techniques are sensitive to the 
format and scale of the predictors.

First, several modeling techniques require pre-
dictors to have a common scale of measure. Center 
scaling is the most commonly used transformation 
for achieving this objective, helping improve the 
stability of numerical calculations at the expense of 
reduced interpretability. In some cases it can also be 
useful for removing the skewness of the predictors, 
achieved by taking advantage of methods such as the 
Box and Cox transformation (Box and Cox 1964).

Second, a proper analysis of outliers is required in 
many instances. Outliers are observations that appear 
exceptionally far from the rest of the data and can 
impact the final performance of the model by intro-
ducing a global bias. Usually, a visual inspection of 
a variable’s distribution is the first step for dealing 
with this issue, and once the suspect points have been 
identified, their values should be questioned with 
care in order to ensure that they indeed belong to the 
data-generating process. With the exception of some 
predictive models that are naturally insensitive to 
outliers (e.g., tree-based models and support vector 
machines), in all other instances outliers should be 
removed. In this regard, special techniques such as 
the spatial sign transformation (Serneels, De Nolf, 
and Van Espen 2006) can help.

Third, missing values, or observations with no 
value for some or all variables, should be treated 
appropriately. As with outliers, a careful exploration 
into potential structural reasons for such phenomena 
may be needed. The intuition is that missing data  
can be caused by a different process underlying data 
creation, and the simple removal of these data points 
may negatively affect overall performance. Never-
theless, whenever the proportion of missing values is 
too large to be ignored, methods such as imputation 
(e.g., k-nearest neighbor model imputation or regres-
sion with auxiliary variables) can be used.

Increasing the number of variables is not always 
beneficial. Thus, an initial selection of predictors 
might be useful. For example, highly correlated pre-
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step relies neither on a random step nor on a subjec-
tive discrete list of hyperparameters, but instead on a 
probabilistic model.

Since our work dedicates most of its efforts to 
the analysis of a binary response, we offer a special 
note on how to assess the predictive performance of 
competing models in such environments. As a pre-
liminary step, it is necessary to define a threshold 
for the probabilities given as predictive outputs by a  
model in order to determine whether an observa-
tion is to be considered an “event” or a “nonevent.” 
The default threshold is 0.5 (50%), as for a totally 
random classification. The resulting cross-tabulation 
of actual and predicted events/non-events after the 
cutoff has been applied generates a confusion matrix 
(CM), which becomes the starting point for assessing 
binary classifier performance.

The structure of a generic CM is given in Table 3.1. 
Let the total sample size be N = TP + TN + FP + FN. 
A first measure of classifier precision is the model’s 

accuracy Acc: Acc
TP TN

N
= +

. Nevertheless, alter-

native measures are generally more appropriate when 
the outcome distribution is severely unbalanced, as  
in the conversion-related data set treated in this work. 

For example, the kappa statistic, K
O E

E1
= −

−
, can be 

used, where E is the accuracy of the uninformative 
classifier (the relative frequency of the greatest class), 
and O is the observed predictive model’s accuracy.

From the CM, two additional statistics for assess-
ing binary classification problems can be derived: 
sensitivity and specificity. Sensitivity is the proba
bility that a sample is correctly classified, given that 

it is a true event sample: Se
TP

TP FN
=

+
. Conversely, 

specificity is the probability that a true nonevent is 

Through this process, the modeler should be mind-
ful of overfitting, which can appear when a model 
is excessively complex. This is due to a modeling 
strategy that overemphasizes patterns unique to the 
specific data set on which the model has been fitted. 
Overfitted models have poor predictive performance. 
Thus, it is necessary to obtain a reliable way for esti-
mating models’ predictive performance.

Hence, subdividing the data set between a train-
ing part, where models are fitted and tuned, and a 
test part, used to estimate the models’ performance, 
is fundamental. As further detailed in Kuhn and 
Johnson (2013), the use of resampling techniques 
can help one obtain a less biased estimate of model 
performance. For instance, one approach commonly 
used is k-fold cross-validation, whereby the training 
data set is split into k roughly equal-sized subsamples 
during the estimation process. Once the k models are 
estimated, the out-of-fold observations are used as a 
validation set on which the performance metrics fig-
ures are computed. Consequently, the overall model 
fit is obtained by averaging the k cross-validated 
performance fit estimates.

In addition, when estimating models within a 
given model family, it must be noted that the vast 
majority of current machine learning techniques 
identify models by specifying one or several hyper-
parameters. As introduced in the previous section, 
the optimal values of hyperparameters cannot be 
directly estimated from data, and hence they require 
a grid search to tune the final model. The perfor-
mance metrics obtained on several models with dif-
ferent sets of hyperparameters cannot be (generally) 
compared with the Cartesian product of all possible 
combinations. As the computation time or dimen-
sionality increases, a random search becomes more 
appealing. Recently, Bayesian optimization has been 
gaining popularity as an alternative (Kuhn 2016). 
Specifically, the Bayesian approach includes a first 
cycle of random searching to explore the space of 
the hyperparameters, with a consequent second cycle 
of numerical optimization based on a Gaussian pro-
cess. The advantage of this approach is that every 

Table 3.1.  CM notation

Predicted Observed: Event Observed: Nonevent

Event True Positive (TP) False Positive (FP)

Nonevent False Negative (FN) True Negative (TN )
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the midpoint of the probability bucket on the x-axis 
and the observed empirical event rate on the y-axis. 
Given a well-performing model, the resulting points 
would lie on the midline. Lift charts are created by 
sorting estimated event probabilities in decreasing 
order. Then the cumulative percentage of samples is 
plotted on the x-axis, while the cumulative percentage 
of true events is shown on the y-axis. Lift charts are 
specifically tailored to compare the discriminating 
performance of binary classifiers, and they allow one 
to answer questions such as “What is the expected 
percentage of total events considering the top per-
centage of observations, scored by probability?” 
Being close to the 45-degree line indicates absence of 
discriminating advantage, while a perfect classifier 
would be represented by the hinge function.

Finally, one can decide to apply resampling tech-
niques to mitigate instances in which the frequency 
of binary classes is not even. For example, “down
sampling” reduces the frequency of the most repre-
sented class, while “upsampling” randomly draws 
additional samples from the minority class. Both 
downsampling and upsampling (and other derived 
methods) aim to even out the frequency of classes as 
much as possible.

3.4.  Common predictive models  
for binary classification

Kuhn and Johnson (2013) organize classification 
algorithms into three main categories. Linear classi­
fication models are based on a scoring function that 
can be expressed as a linear combination of predic-
tors. In addition to the classical GLMs introduced by 
McCullagh and Nelder (1989), the following algo-
rithms merit mention:

•	 Penalized logistic regression (elastic net): The elas-
tic net introduces two forms of penalties into the 
GLM formula, namely the ridge and lasso penalties, 
which permit better handling of feature selection, 
overfitting, and multicollinearity (see, e.g., Zou 
and Hastie 2005).

•	 Linear discriminant analysis (LDA): LDA finds 
a linear combination of features characterizing or 

correctly classified: Sp
TN

FP TN
=

+
. The specificity’s 

complement to 1 is known as the false classification 
rate. For a given predictive precision, increasing the 
sensitivity (i.e., lowering the cutoff probability to 
identify new samples as events) lowers the specificity.

It is possible to graphically display the trade-off 
between the two measures by the so-called receiver 
operating characteristic (ROC) curve, which displays 
the relation between sensitivity (y-axis) and the false 
classification rate (x-axis). A model with no discrimi-
natory power has an ROC curve along the 45-degree 
line in the unit square, while a better-performing 
model exhibits a curve moving toward the top left 
corner. The ROC curve allows one to obtain a syn-
thetic measure of classification power for a given 
predictive model. The AUC for the ROC curve is 
a measure bounded between 0.5 (uninformative of 
the 45-degree line) and 1.0 (perfect discriminatory 
capability of the Heaviside curve). Finally, the Gini 
index is a commonly used linear transformation of 
the AUC: Gini = 2 p AUC − 1.

In practice, the AUC and Gini are certainly  
the most used metrics to solve binary classification 
problems. However, while they stress the discrimi-
nating power of a predictive model, they are not 
able to measure how correct the predicted prob-
abilities are. Since we want to assess the prediction 
power, it is also worth exploring different metrics. 

Therefore our analysis will use the log loss metric, 

logloss
N

y p y pi
N

i i i iΣ( )( )( ) ( ) ( )= − + − −=�
1

log 1 log 1 ,1  

which targets the discrepancy between actual and 

estimated probabilities, jointly with the AUC and Gini.

In most cases, a graphical representation can also 

help one interpret the results, both within and between 

models. Calibration charts and lift charts are used for 

this purpose. Calibration charts help in assessing the 

predictive performance of different models. Once 

observations are scored, estimated event probabilities  
are assigned to buckets of estimated probability 
ranges, i.e., by dividing the probability domain (0–1) 
into numerous buckets. Calibration charts display 
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•	 The C5.0 algorithm is one of the most significant 
representatives of a classical tree-based approach for 
performing classification (see, e.g., Quinlan 2004).

•	 Random forest blends tree-based logic with the 
bootstrap aggregation approach (“bagging”) by 
creating a so-called forest of trees, rather than a 
single tree. Each of these trees is a weak learner 
built on a subset of rows and columns. The classifi-
cation from each tree can be seen as a vote, and the 
most votes determines the classification (see, e.g., 
Liaw and Wiener 2002). This endeavor successfully 
reduces variance in the final set of predictions.

•	 A gradient-boosted machine (GBM) applies the 
boosting concept on either a regression or a clas-
sification tree model. Similarly to bagging, the 
boosting approach combines the results of multiple 
models. The key difference is that each subsequent 
model is recursively applied on the results of the 
previous one. In particular, as the previous model 
misclassifies the sample more frequently, more 
weight starts being given to the subsequent model 
(see, e.g., Friedman 2001). A notable extension 
of classical GBM is extreme gradient boosting 
(XGBoost) (see, e.g., Chen and Guestrin 2016), 
which has been chosen as the preferred algorithm 
by winners of many Kaggle competitions.

•	 Finally, ensembling models of different families 
often provides higher predictive accuracy than 
can be obtained by any of the individual models. 
Such a technique can be based on a super learner,  
a machine learning algorithm that finds the opti-
mal combination of predictions generated by the 
original constituents (see, e.g., LeDell, Sapp, and 
van der Laan 2014).

In our numerical experiments, we fitted all of these 
models. This paper discusses only the most common 
and best predictive models, a brief outline of which 
follows.

3.5.  GLMs and their elastic net extension

The following section is based on Nykodym et al.  
(2015), to which the interested reader is directed 
for details. GLMs extend the standard linear model 

separating two or more classes of objects or events 
(see, e.g., Fisher 1940).

Nonlinear classification models are a heteroge-
neous group of techniques, including the following 
relevant elements:

•	 Neural networks (and in particular, deep learning, 
or DL): A DL model consists of multiple strata 
of “neurons” that collect inputs, transform a linear  
combination of such inputs into a nonlinear trans-
formation through the so-called activation functions, 
and return the output to the subsequent stratum. 
DLs have been successfully implemented in a 
myriad of applications, including image recogni-
tion and natural language processing.

•	 Flexible discriminant analysis (FDA): FDA com-
bines ideas from LDA and regression splines. The 
classification function of FDA is based on a scor-
ing function that combines linear hinge functions 
(see, e.g., Hastie, Buja, and Tibshirani 1995).

•	 k-nearest neighbor (KNN): A KNN model classifies 
each new observation according to the most fre-
quent class of its k nearest neighbors, according to a 
specified distance metric. KNN is one of the oldest 
and most important classifiers found in statistical 
literature (see, e.g., Fix and Hodges Jr. 1951).

•	 Naive Bayes classifier (NB): NB is based on 
the Bayes rule of probability calculus assuming  
independence among predictors, that is, Pr(Ck| x1, 
| x2, . . . ) ∝ pr(Ck)Π n

i=1Pr (xi|Ck). Despite the strong 
assumption, predictive performance is often high 
and computational resources are relatively low 
(see, e.g., Rish 2001).

•	 Support vector machines (SVMs): An SVM per-
forms classification tasks by creating hyperplanes 
defined by linear or nonlinear functions (see, e.g., 
Cortes and Vapnik 1995).

Tree-based approaches consist of treelike nested 
if-then statements for the predictors that partition the 
data. This approach generates a structure of “nodes” 
and terminal “leaves,” within which a model is used to 
predict the outcome. The following tree-based models 
will be explored:
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expresses the overall amount of regularization in the 
model, and its optimal value is usually estimated by 
a grid search.

Finally, regarding model interpretation, the linear 
relationship of the explanatory variables underlying 
a GLM allows one to quickly assess the importance 
of any terms within the model. The standardized 
coefficient (the raw coefficient estimate divided by 
the standard error of estimate) represents a raw mea-
sure of the relative importance associated with that 
variable. The standardized coefficient also serves to 
determine the p-values of test statistics.

3.6.  Random forest

Tree models consist of a series of (possibly nested) 
if-then statements that partition the data into subsets. 
The if-then statements define splits that eventually 
define terminal nodes, also known as “children” or 
“leaves,” depending on predictors’ values. Given a 
tree, any new observation has a unique route from the 
root to a specific terminal node. Trees can be used for 
either classification or regression problems, and hence 
they are also known as classification and regression 
trees (CARTs) (see, e.g., Breiman 2001). Regression  
trees are used to predict continuous responses, while 
classification trees are used to predict class proba-
bilities. Furthermore, it is possible to convert binary 
trees into “rules” that are independent sets of if-then 
statements; this practice can often be advantageous,  
as pointed out by Kuhn and Johnson (2013). Both tree- 
and rule-based approaches belong to the family of 
general partitioning-based classification algorithms.

A number of characteristics explain their popu-
larity: (1) They are very interpretable and communi-
cable to a non-technical audience; (2) they can handle 
both numeric and categorical predictors without any 
preprocessing; and (3) they perform feature selection  
and can handle missing values explicitly, and any 
missing value is used as another level/numeric value. 
However, there are known drawbacks worth mention-
ing, such as model instability, possibly leading to big 
changes in the tree structure given a small change 
in the data, and suboptimal performance due to their 

by relaxing the normality and the constant variance 
assumptions. The components of a GLM are a random 
component (from the exponential family and, in our 
case, the Bernoulli distribution), a systematic com-
ponent (that is, a linear combination of explanatory  
variables and the regression coefficients β, called the 
linear predictors), and a link function between the 
mean of the response variable and the linear predic-
tors. GLMs are fitted by maximizing log-likelihood, as 
Anderson et al. (2007) show, using iterative numerical 
methods. The variable selection task is performed by 
a chi-square test, as in classical GLMs.

Nevertheless, the extension of GLMs through the 
elastic net penalty approach has achieved widespread 
use in machine learning for variable selection and 
regularization. Here the function to be optimized is 
max(LogLik − Pen), the penalty1 being l p (α  p ||β||1 + 

(1 − α) p 
1

2
||β||2. In particular, l > 0 controls the 

penalty strength while α represents the relative weight 
of the ridge and lasso components (Nykodym et al. 
2016) within the elastic net penalty. The elastic net 
regularization reduces the variance in the predictions  
and makes the model more interpretable. In fact, 
imposing a penalty on coefficient size leads to a sparse 
solution (throwing off nonsignificant variables) and 
shrinks coefficients.

The α parameter controls the penalty weight 
between the l1 (the lasso, that is, the “least absolute 
shrinkage and selection operator”) and l2 (the ridge 
regression) penalties. If the l tuning parameter is 
sufficiently large, it brings coefficient values toward 0,  
starting from the less relevant ones. As a conse-
quence, the lasso has proven to be a good selection 
tool in many empirical applications. The l2 term  
is the ridge penalty component, which controls the 
coefficients’ sum of squares. It is easier and faster 
to compute than the lasso, but instead of leading to 
null coefficients, it yields shrunken values. Its advan-
tage is that it increases numerical stability and has a 
grouping effect on correlated predictors. The l value 

1||β||1 = ∑ p
k=1|βk| and ||β||2 = 1

2
k
p

kΣ β= .
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able predictors in order to achieve independence 
among trees; this parameter controls for overfitting. 
Suggested values for this parameter are the square 
root of predictors for classification problems and 
one-third of predictors for regression problems.

2.	 Number of independent trees to fit (ntrees): 
Increasing this value builds more trees, making 
the set of predictions more accurate but yielding 
diminishing returns and requiring more training 
time. A suggested starting value for this parameter 
is 1,000.

3.	 Minimum rows (min_rows): This represents the 
minimum number of rows to assign to terminal 
nodes, and it can help against overfitting. The 
default value for this parameter is 10.

4.	 Maximum depth of a tree (max_depth): This speci-
fies the complexity of interactions for each tree. 
Increasing the value of this parameter will make 
the model pick up higher-order interactions and 
hence can lead to overfitting. A reasonable range for 
this parameter is [4,14], and the default value is 6.

5.	 Histogram type (histogram_type): This parameter 
determines which type of histogram should be used 
for finding the optimal split of points in the trees.

6.	 Row subsample rate (sample_rate): The ratio of 
rows that should be randomly collected by the  
algorithm at every step. A lower value makes the 
algorithm faster and less prone to overfitting. A 
reasonable range for this parameter is (0,1], and 
the default value is 0.632.

Although ensemble methods return a better- 
performing algorithm overall, they are often con-
sidered less interpretable than those of a standard 
CART. In order to deal with this issue, it is possible 
to estimate the relative importance of each variable 
in the regression/classification process.

3.7.  The boosting approach:  
GBM and XGBoost

A GBM is an ensemble (combination) of regression 
or classification trees. Unlike random forest models, 
in which all trees are built independently from one 

naturally defined rectangular regions. Further, stan-
dard trees are prone to overfitting, since they may 
find splits in the data that are peculiar to the specific 
sample being analyzed. Tree pruning techniques have 
been developed to overcome this specific drawback.

In order to overcome the remaining deficiencies  
and increase model performance, the endeavor of 
combining many trees into one model (model ensem-
bling) has become the best practice. Specifically, 
two main algorithms can be used: “bootstrap aggre-
gation” (bagging) and “boosting.” Broadly speaking, 
the bagging approach refers to fitting different trees 
on bootstrapped data samples, while boosting consists 
of sequentially fitting trees and giving more weight 
to the observations misclassified at the previous step. 
In this paper, both standard and advanced tree-based 
models will be employed. The C5.0 model (Kuhn  
et al. 2015) is probably the most prominent example  
of a standard CART model, but another relevant 
method known in the literature is the conditional infer-
ence tree (Zeileis, Hothorn, and Hornik 2008).

The random forest model (Breiman 2001) takes 
advantage of the bagging methodology and can be 
used for both classification and regression problems. 
Further, it is computationally attractive, since a high 
number of independent decision trees on different 
bootstrapped data samples can be built at the same 
time during the training phase, and the final predic-
tions are obtained by averaging the individual scores 
of each tree. The trees are ideal for bagging, since 
they can capture the complex structures of interaction 
in the data, and if developed in sufficient depth, they 
have a relatively low distortion and, as the trees are 
notoriously noisy, benefit greatly from averaging.

Our analysis made use of the H2O implementation 
of the random forest, which introduces some method-
ological additions to the original algorithm, as well as 
a computational optimization achieved by parallelized 
calculation. Specifically, the main tuning parameters 
used in this paper for the random forest algorithm are 
the following:

1.	 Predictors’ random sample (mtries): Each tree uses 
predictors of m-sized random samples of all avail-
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learning rate, more trees are required to reach the 
same overall error rate (nround and learning rate 
are inversely related). A reasonable range for this 
parameter is [0.10,0.01], and the default value  
is 0.03.

3.	 Maximum depth of a tree (max_depth): Same as 
random forest

4.	 Minimum child weight (min_child_weight): 
The minimum sum of instance weight (Hessian) 
needed to create a final leaf (child). A larger value 
corresponds to a more conservative model, and 
it hence helps against overfitting. A reasonable 
range for this parameter is [1,20], and the default 
value is 1.

5.	 Row/column subsample ratio (subsample/ 
colsample_bytree): The ratio of rows/columns 
that should be randomly collected/selected by the 
algorithm at every step. A lower value makes the 
algorithm faster and less prone to overfitting. A 
reasonable range for this parameter is [0,1], and 
the default value is 0.5.

6.	 Gamma (gamma): The minimum loss reduction 
for creating a further partition in a given tree. This 
is a very important parameter that can ease prob-
lems related to overfitting. A reasonable range is 
[0,1], and the default value is 0.

7.	 Alpha (alpha): The L1 regularization term for 
weights. It can be used to make a model less 
aggressive, similarly to gamma. A reasonable 
range is [0,1], and the default value is 0.

8.	 Maximum delta step (max_delta_step): In a binary 
class setting with unbalanced classes (as in our 
study), it is important to include a constraint in the 
weight estimation, in order to control every update 
in a more conservative way. In such instances, a 
reasonable range is [1,10when enabled]. A value 
of 0, the default value, means that no constraint 
is set. i

For simplicity, since the XGBoost parameters out-
lined above are very similar to those included in the 
H2O GBM routine (see, for detail, Jain 2016), we will 
not relist them in detail for the GBM implementation. 

another, a GBM sets up a sequential learning proce-
dure, in which every new tree tries to correct the errors 
of previously built trees, to improve accuracy.

This endeavor, formally known as boosting, sequen-
tially combines weak learners (usually CARTs) into  
a strong learner using an additive approach, ŷ i

(t) = 
Σ t

k=1 fk(xi) = ŷ i
(t–1) + ft(xi), where each ft(xi) is a tree-based 

prediction. The peculiarity of the boosting approach  
is that at every step, the objective function to be 
optimized aims to reduce the discrepancy between 
the outcome and the prediction at the previous step, 
obj(t) = Σ n

i=1l(yi, ŷi
(t)) + Σ t

i=1W( fi) = Σ n
i=1l(yi, ŷ i

(t–1) + ft(xi)) 
+ W( ft) + constant, a regularization function. The loss 
function can be any generic loss function and does 
not have to be only the classical mean square error. 
The above formula gives more weight to samples 
badly predicted at previous steps. A gradient-based 
numerical optimization is used to obtain the model 
loss. Furthermore, GBM algorithms can be parallel-
ized to deliver computationally attractive methods.

Currently, two main variants of classical tree 
boosting have been proposed, namely Friedman’s 
GBM (Friedman 2001) and extreme gradient boost-
ing (XGBoost) (Chen and Guestrin 2016). Recently, 
XGBoost has gained popularity among data scien-
tists for its faster and better-performing boosting 
algorithm. In particular, the function to be optimized 
allows for regularization, algorithms can be naturally 
parallelized, and cross-validation can be performed 
at each step.

A number of hyperparameters that need to be tuned 
are required for the model to be fully specified. Spe-
cifically, XGBoost has four possible types of boosters 
(in our case, trees), and each one comes with dedi-
cated parameters. Since our study is taking advantage 
of the tree booster, the connected employed hyper
parameters are briefly outlined as follows:

1.	 The number of trees (nround): The maximum 
number of trees to be built during the iterative 
boosting process

2.	 Learning rate (eta): Controls how much each tree 
influences the improvement of prediction. It is a 
form of regularization for the process. For a lower 
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3.	 Regularization parameters (l1, l2): It is possible to 
apply regularization techniques that resemble the 
lasso and ridge approaches.

4.	 Loss function (stopping_metric): This is the chosen 
loss function to be optimized by the model.

5.	 Adaptive learning parameters (adaptive rate): 
When set to True, the following parameters 
control the process of weight updating and are 
useful for avoiding local minima: r controls how 
the memory of prior weights updates and is  
usually set between 0.900 and 0.999; e takes into 
account the learning rate annealing and momen-
tum, allowing forward progress, and is usually set 
between 10–10 and 10–4.

6.	 Number of iterations (epochs): This is the number 
of passes over the complete training data set to be 
iterated.

7.	 Input dropout rate (input_dropout_ratio): This 
determines what percentage of the features for 
each training row are to be omitted from training 
in order to improve generalization.

8.	 Hidden layers’ dropout rate (hidden_dropout_
ratios): This is the fraction (default set to 0.5) of 
the inputs for each hidden layer to be omitted from 
training in order to improve generalization.

9.	 Maximum sum of the squared weights into neurons 
(max_w2): This parameter is helpful whenever the 
chosen activation function is not bounded, which 
can occur with maxout and rectifier.

4.  Numerical evidence

In this section, we present the data set used for the 
numerical illustration. Then, we fit a standard GLM 
to model policy conversion, which will serve as a 
benchmark against the competing machine learning 
algorithms. Second, we apply nonlinear and tree-
based machine learning techniques to predict policy 
conversion, and we compare all the methods by  
accuracy and discriminating power. Finally, we per-
form a PO in order to assess the benefits of machine 
learning techniques compared with the standard 
approach.

If desired, readers can refer to the H2O booklet for 
more details (Nykodym et al. 2016). Finally, a grid 
search approach is necessary to obtain the best con-
figuration of the parameters (Peck 2016).

3.8.  Deep learning

Neural networks belong to the class of machine 
learning algorithms used for both classification and 
regression problems. Lately, they have been success-
fully attracting attention in image recognition and 
natural language processing for their competitive 
results (see, e.g., Wiley 2016). Neural networks are 
generally used for detecting recurring patterns and 
regularities. Those that are characterized by more 
than one hidden layer are known as deep neural net-
works. We will focus our attention on feed-forward 
deep neural networks, in which signals go from the 
input layer to the output layer by flowing through the 
hidden layers, without any feedback loop.

Such a model has a logical structure based on inter-
connected processing units (neurons) structured 
in one input layer, one or more hidden layers, and 
an output layer. Outputs (signals) from one layer’s 
neurons to the subsequent layer’s neurons are linearly 
weighted and then passed to an activation function 
that can take several forms. Specifically, α = Σ n

i=1wi × 
xi + b is the weighted combination of input signals 
in a generic neuron that is passed to an activation 
function f (α), where wi is the weight for the xith 
observation, while b represents the bias node, which 
behaves in a way similar to the intercept within a 
linear regression setting.

Given a network structure, the model is fitted by 
finding the optimal combination of weights, w, and 
bias, b, that minimizes a specified loss function, and 
the resulting performance is extremely sensitive to the 
hyperparameter configuration. Specifically, the main 
parameters in the framework to be tuned (described 
in more detail by Arora et al. 2015) are as follows:

1.	 Network architecture (hidden): This is the num-
ber and size of the hidden layers.

2.	 Activation function (activation): Common choices 
include the rectifier, tanh, and maxout functions.
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are calculated as the ratio and the difference 
between the company premium and market pre-
mium, respectively.

•	 Vehicle characteristics: vehicleMake, vehicleModel,  
vehiclePower, vehicleFuelType, vehicleAge, vehicle­
PurchaseAge, vehicleKm, and vehicleUsage are 
brand, model, engine characteristics, age, and usage 
style variables. In addition, vehicleMakeandModel 
groups the most frequent combinations of vehicle 
makes and models.

•	 Demographics: policyholderTerritory and territory­
BigCity indicate the policyholder’s region of 
residence and whether it is a high-density city. 
Policyholder’s age, gender, marital status, and 
occupation are recorded in the policyholderAge, 
policyholderGender, policyholderMaritalStatus, and 
policyholderOccupation variables, respectively.

•	 Insurance and claim history variables: bonus malus 
and policyholderPreviousClaims indicate attained 
bonus-malus level and whether any claims have been 
filed within the past five years. quoteTimeToPolicy 
indicates the difference (in years) between the quote 
and the effective date. Finally, the previousCompany 
variable indicates whether the previous company 
was a direct company or a traditional one.

Our analysis focuses on the key variables (the con-
version rate and premium variables), as well as other 
variables. A classical bivariate analysis representing 
the relationship between conversion rate and selected 
predictor variables is reported in the appendix.

4.2.  Model comparison and selection

The previously fitted models have been used to 
predict the conversion probability within the test 
data set. They have been ranked according to perfor-
mance metrics, and the best-performing one will be 
used to predict prospects’ conversion on the test data 
set and the PO data set. Finally, the obtained results 
will be compared with those of a GLM model.

Table 4.1 shows the total predicted converted poli-
cies in the test data set, along with the log loss and 
the AUC measure for each model, while the observed 
total number of converted policies is shown at the top. 

4.1.  Brief description of the data set

In our study of conversion, we use a database of 
1.2 million quotes for fitting and model selection. 
Furthermore, an additional 100,000 records (the opti-
mization data set) are used for the PO exercise. More 
precisely, we fit the models on the training data set  
and compare them in terms of predictive performance 
on the test set. The relevant models have been applied 
on the PO data set to perform the optimization exer-
cise. Table 4.1 shows models’ performance on the 
training data set, while Table 4.2 shows PO perfor-
mance on the optimization data set. Tables display 
descriptive statistics of the training data set.

The available variables used as predictors are listed 
below:

•	 ID and conversion status: quoteId is the database 
key and converted is a binary variable.

•	 Premium- and competitive position–related vari-
ables: premiumCompany, premiumMarket, and 
burningCost represent the company’s premium, the  
market best price (average of the three lowest pre-
miums), and the pure premium (loss cost), respec-
tively. ratioCompanyMkt and deltaCompanyMkt 

Table 4.1.  Models’ performance metrics comparison

Model
N. of predicted  

converted Log loss AUC

Observed 6,800 NA NA

XGBoost 6,826 0.0890 0.9064

GBM 6,314 0.0896 0.9050

Random forest 6,817 0.0923 0.8955

Deep learning 7,438 0.0936 0.8925

GLM 6,831 0.0940 0.8896

Note: NA = not applicable.

Table 4.2.  PO exercise, summary of results

Model
No. of 

conversions
Baseline 
margin

Optimized 
margin PO gain

Observed 2,522 −88,203 NA NA

GLM 2,409 −73,000 749.5 73,749

GBM 2,492 −76,341 2,384.8 78,726

XGBoost 2,654 −86,815 2,298.3 89,114

Note: NA = not applicable.
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It is indeed difficult to compare the models in 
term of computational requirements. Using the H2O 
package infrastructure, fitting a GLM (even using 
an elastic net approach) takes a fraction of the time 
needed to select a model within the cited machine 
learning approaches. The subjectivity of a hyper
parameter search (grid depth, use of Bayesian opti-
mization, etc.), in addition to the time required to fit 
a hyperparameter-definite machine learning model, 
explains the difficulty of such comparisons.

The total estimated number of converted policies 
is calculated as the sum of quote-level estimated 
conversion probabilities. Clearly, the best model is 
the one that is able to predict the number of con-
verted policies with the highest degree of accuracy, 
such that the log loss is minimized and the AUC is 
maximized.

One can observe that all model predictions are 
quite close to the observed one in terms of num-
ber of quotes, with the exception of deep learning. 
Conversion modeling requires precise assessment of 
underlying conversion probabilities, which are mea-
sured by log loss. By ranking the models according 
to increasing log loss, it is clear that boosted models 
(GBM and XGBoost) show the highest performance 
in terms of predictive accuracy.

Interestingly, GBM and XGBoost show higher pre-
cision in terms of estimated probability when com-
pared with a GLM model, even though the underlying 
conversion probability of most quotes is very low, 
as the calibration chart (Figure 4.1) shows. Also, they 
keep estimating the conversion rate unbiasedly at 
levels of expected outcome higher than in the GLM 
model. The lift chart (Figure 4.2) shows that there 
is not much difference between the three predictive 
models (GLM, GBM, and XGBoost), even if the last 
two are slightly superior in terms of lift.
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The individual PO is carried out as follows:

•	 The insurer calculates an initial technical premium, 
p i

0, for the ith prospect, without competitive mar-
keting considerations, e.g., adding a fixed loading 
to the estimated cost, Li.

•	 On a discretized grid ranging in [p i
0 (1 − e), p i

0(1 + e)],
– � it computes the conversion probability, pi(pi), 

and the expected underwriting result, uwi(pi) 
(this step also reevaluates the competitive posi-
tion for each scenario), and

– � it chooses the individual customer’s premium 
variation to maximize the underwriting result 
from within the grid.

This approach is known as individual optimization, 
since it assumes that the insurer is able to target any 
single prospect with an individual quote. The pres-
ence of any marketing and regulatory restrictions 
would hence lead the insurer to less refined strate-
gies, as previously discussed. In addition, this deter-
ministic analysis on one period does not take into 
account any solvency considerations, as well as the 
renewals of prospects beyond the first period. Also,  
it assumes no structural changes in the market (e.g., 
no reactions from competitors) during the process of 
its implementation.

Thus, it is possible to compare the actual quote 
number and the observed margin (computed on con-
verted quotes) with the amount predicted by each pre-
dictive model, as shown in Table 4.2 for the selected 
elastic net GLM, GBM, and XGBoost models. The 
final column, “PO gain,” calculated as the differ-
ence between the optimized margin and the baseline 
one, shows the advantage of using an individual PO 
approach. As previously anticipated, the PO exercise 
has been carried out on a data set (the optimization 
data set) that contains quotes used neither to train nor 
to test the machine learning models.

In Table 4.2, we observe that all boosted models 
are closer to the observed number of estimated con-
versions than is GLM. In particular, the GBM figure 
is the closest. On the other hand, the estimated margin 
shows that the XGBoost estimate is very close to the 

4.3.  Application to PO

The PO process considers knowledge of consumer 
behavior vital to maximizing expected profit. In our 
application, the company’s knowledge of consumer 
behavior is represented by a risk premium model that 
estimates the expected cost of the insurance cover-
age that will be provided, as well as by a conversion 
model, which estimates the probability of a prospect’s 
entering the portfolio. Also, information on the com-
petitive environment, such as the distance between 
market price and the company’s premium, should be 
taken into account.

From a mathematical point of view, we assume 
that the insurer sets the best premium, p, for each 
prospect, which maximizes the expected under-
writing result, weighted by the conversion prob-
ability. That is, uw(p) = p(p) × (p − L), where p(p) 
is the conversion probability given p, the proposed  
premium, and L, the expected cost. In the sub
sequent part of the analysis, we will assume that the 
insurer can modify the proposed premium without 
any restriction.

The following hypotheses were used to perform 
the PO exercise:

•	 The insurer follows an individual optimization 
approach.

•	 The individually quoted premium can vary between 
−10% and +10% (e) around the baseline.

•	 The company is able to estimate the expected cost 
of providing coverage at policy level, Li, thanks to 
a risk premium model.

•	 The company calculates the expected underwriting 
result, uw(pi) = pi − Li.

We use the notation pi(pi), pi, Li to refer to the  
ith quote’s conversion probability, premium, and burn-
ing cost, respectively. Therefore, the expected number 
of conversions is simply E(Q) = Σipi(pi), the expected 
gross premium volume is E(PR) = Σipi(pi)pi, and the 
expected underwriting margin is E(UW) = Σiuwi(pi). 
The Li expected cost per quote is considered known 
and given by the risk premium model.
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fraction of the computational time required by most 
machine learning models. This is because a GLM 
approach does not require any hyperparameter tuning, 
unlike the vast majority of machine learning algo-
rithms. Precisely since it is not generally possible to 
find a priori the optimal configuration of the hyper-
parameter space, a grid search approach is necessary. 
The subjectivity of defining the grid space and depth 
adds another level of complexity when comparing the 
tuning process and the timing requirements across 
different families of models.
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Appendix

A.1.  Infrastructure

The R software (R Core Team 2017) has been used 
for this analysis, taking advantage of the packages 
tidyverse and data.table, as well as the H2O (H2O.
ai team 2017) and caret (Wing et al. 2016) machine 
learning infrastructures.

Parallelization of computing tasks is available for 
both infrastructures, either on multicore processors 
or on clusters of computers. Furthermore, the H2O 
infrastructure permits an easy interface to the Apache 
Spark framework (Zaharia et al. 2016), specifically 
devoted to performing parallel processing on big data. 
Finally, all the software used in the project is open 
source, making our analysis easily replicable. It is 

actual figure. It is worth pointing out that the margin  
figure should be compared with the total gross pre-
mium of around 600,000. After the individual opti-
mization exercise has been performed, the “PO gain” 
column shows that the difference between the base-
line and the optimized underwriting margin varies 
between 74,000 (GLM) and 89,000 (XGBoost).

5.  Conclusion

Our work has applied recent predictive modeling 
methodologies with the goals of taking into account 
customers’ behavior and of optimizing underwriting 
margins. The size of the considered data set is rela-
tively large compared with the market size, leading 
to reasonably generalizable results.

We observed that machine learning models may 
offer higher accuracy and discriminating power when 
compared with classical GLM models. Our exercise 
also confirmed the excellent performance of boosted 
tree-based models. It is still an open question whether 
the predictive performance gain of machine learning 
methods is enough to suggest their widespread adop-
tion. Interestingly, we found that both the GLM and 
XGBoost approaches produced very similar results in 
terms of optimized premium volume. Nevertheless, 
competitive results of the logistic regression can be 
explained by the fact that the marginal conversion 
rate observed for variables that have been found to 
be extremely important, such as distance between 
premiums and time to policy, seem monotonic and 
can be approximately linear (e.g., in the log scale).

Furthermore, we noted that the performance dif-
ference between machine learning approaches and 
classical GLM is relatively higher on the AUC scale 
than on the log loss scale. This difference can also 
be visualized by observing the lift curve. Therefore, 
it is suggested that machine learning models can 
offer more of a competitive advantage when used for 
actively marketing to prospective customers, rather 
than when optimizing the premium amount.

Regarding the requisite computational resources,  
it is clear that fitting a GLM takes a very small 
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A.3.2.  Random forest
H2O Distributed Random Forest can be initial-

ized using the code provided in the github reposi-
tory. The model was tuned using a random discrete 
grid search approach and log loss as the criterion. 
We used two sets of grids: The first one runs over 
a relatively wide range set of each parameter, the 
second one on a narrower range. The second grid’s 
ranges were defined on the basis of the best models 
found in the previous step.

Precisely, each grid was set to run for both a 
maximum number of models (200 models) and a 
maximum amount of time (4 hours). In addition, we 
judiciously selected the ranges of the tuning param-
eters. In the second grid, we used max_depth (8–12), 
min_rows (10–20), sample_rate (60%–80%), and 
ntrees (100–300).

A.3.3.  Boosting (GBM and XGBoost)
Regarding GBM, we adopted the H2O infrastruc-

ture to perform the required preprocessing, as well 

saved in the following GitHub repository: https://
github.com/spedygiorgio/CasProject2016.

A.2.  Tables and figures for  
the descriptive section

The overall conversion rate (actual conversions 
divided by number of quotes) is around 2.5% as shown 
in Table A.1. Tables from A.2 to A.4 display the con-
version rate by each level of key predictors that Fig-
ures A.1, A.2, and A.3 graphically depict.

A.3.  Models’ specific  
implementation notes

A.3.1.  GLM
The elastic net approach was used in this analysis, 

since it allows one to perform variable selection and 
prevent overfitting and collinearity among predictors, 
with no dramatic increase in computational time.

Two models were tested:

1.	 A model with an unbinned coefficient (thus assum-
ing marginal linearity of categorical predictors)

2.	 A model with a binned one. Bins were constructed 
on continuous covariates based on deciles.

The log loss criterion identified the unbinned model 
to be the best-performing one.

Table A.1.  Conversion rate summary

Converted Num. Freq.

N 103,027 0.9761

Y 2,522 0.0239

Table A.2.  Conversion by competitiveness (ratio)

ratioCompanyMkt Num. Conversions Ratio

[0.476,0.900) 104,876 13,106 0.1250

[0.900,0.969) 94,077 5,813 0.0618

[0.969,1.027) 99,795 3,624 0.0363

[1.027,1.084) 101,219 2,146 0.0212

[1.084,1.142) 101,721 1,249 0.0123

[1.142,1.209) 102,093 734 0.0072

[1.209,1.292) 102,538 396 0.0039

[1.292,1.405) 101,433 211 0.0021

[1.405,1.603) 99,236 97 0.0010

[1.603,8.502] 74,727 24 0.0003

Table A.3.  Conversion by policy effective date delay

quoteTimeToPolicy Num. Conversions Ratio

[0.00000,0.00822) 119,750 4,253 0.0355

[0.00822,0.02466) 122,738 5,826 0.0475

[0.02466,0.04658) 153,243 5,510 0.0360

[0.04658,0.06575) 136,130 3,310 0.0243

[0.06575,0.08767) 153,873 3,322 0.0216

[0.08767,0.10959) 176,746 3,175 0.0180

[0.10959,0.37260] 119,235 2,004 0.0168

Table A.4.  Conversion by policyholder’s age

policyholderAge Num. Conversions Ratio

[17,32) 111,121 1,436 0.0129

[32,36) 101,780 1,384 0.0136

[36,39) 96,184 1,652 0.0172

[39,42) 102,495 2,240 0.0219

[42,45) 91,612 2,667 0.0291

[45,49) 110,358 3,780 0.0343

[49,52) 76,675 2,818 0.0368

[52,57) 94,735 3,526 0.0372

[57,66) 107,900 4,314 0.0400

[66,99] 88,855 3,583 0.0403
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ing of the network (the number and individual size of 
hidden layers). Some tips can be found in Wpengine 
(2015). We decided to perform a random discrete 
search across a hyperparameter space, assuming the 
following:

1.	 No more than three hidden layers

2.	 Size calculated as the number of continuous pre-
dictors plus the number of distinct values per each 
categorical predictor

3.	 Scoring of the model during training: (1%, 10,000) 
samples

4.	 Activation function in each node. All available 
activation functions were tested (rectified, tanh, 
maxout, and the corresponding functions “with 
dropout”).

5.	 r and e as well as l1 – l2 ranges chosen according 
to the suggestion of Arora et al. (2015).

We launched a first grid to find a more narrow 
combination of tuning parameters and defined a 

as the training and prediction. For hyperparameter  
tuning, a grid search was carried out, adopting the 
random discrete strategy included in H2O, by training 
up to 100 models for a maximum of 4 hours during 
the first cycle. Further, we performed a second and 
finer grid search on the same parameters. In contrast, 
we used the dedicated library to implement XGBoost 
models: As a preliminary step, we one-hot encoded cat-
egorical variables and simultaneously created a sparse 
matrix to improve computational efficiency. Next, we 
performed an initial Cartesian grid search on param-
eters of main importance. Then we carried out a more 
refined tuning grid search on some parameters, and 
we included max_delta_step to take into account the 
presence of unbalanced classes. Finally, we optimized 
the learning rate and the number of rounds jointly.

A.3.4.  Deep learning
Generally there are no definite rules for optimal 

architecture design, in particular regarding the layer-
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