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The Log-Gamma Distribution 
and Non-Normal Error

by Leigh J. Halliwell

ABSTRACT

Because insured losses are positive, loss distributions start from 

zero and are right-tailed. However, residuals, or errors, are 

centered about a mean of zero and have both right and left 

tails. Seldom do error terms from models of insured losses 

seem normal. Usually they are positively skewed, rather than 

symmetric. And their right tails, as measured by their asymptotic 

failure rates, are heavier than that of the normal. As an error 

distribution suited to actuarial modeling this paper presents and 

recommends the log-gamma distribution and its linear combi-

nations, especially the combination known as the generalized 

logistic distribution. To serve as an example, a generalized 

logistic distribution is fitted by maximum likelihood to the 

standardized residuals of a loss-triangle model. Much theory 

is required for, and occasioned by, this presentation, most of 

which appears in three appendices along with some related 

mathematical history.
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The fact that the errors resul-
tant in most actuarial models are 
not normally distributed raises 
two questions. First, does non- 
normality in the randomness affect 
the accuracy of a model’s predic-

tions? The answer is “Yes, sometimes seriously.” 
Second, can models be made “robust,”2 i.e., able to 
deal properly with non-normal error? Again, “Yes.” 
Three attempts to do so are 1} to relax parts of BLUE, 
especially linearity and unbiasedness (robust esti-
mation), 2} to incorporate explicit distributions into 
models (GLM), and 3} to bootstrap.3 Bootstrapping  
a linear model begins with solving it convention-
ally. One obtains â and the expected observation 
vector ŷ = Xâ. Gleaning information from the 
residual vector ê = y − ŷ, one can simulate proper, or 
more realistic, “pseudo-error” vectors ei

* and pseudo-
observations yi = ŷ + ei

*. Iterating the model over 
the yi will produce pseudo-estimates âi and pseudo- 
predictions in keeping with the apparent distribution 
of error. Of the three attempts, bootstrapping is the 
most commonsensical.

Our purpose herein is to introduce a distribution 
for non-normal error that is suited to bootstrapping in 
general, but especially as regards the asymmetric and 
skewed data that actuaries regularly need to model. 

1. Introduction

Since the late 1980s actuarial 
science has been moving gradu-
ally from methods to models. The 
movement was made possible by 
personal computers; it was made necessary by insur-
ance competition. Actuaries, who used to be known 
for fitting curves and extrapolating from data, are 
now likely to be fitting models and explaining data.

Statistical modeling seeks to explain a block of 
observed data as a function of known variables. 
The model makes it possible to predict what will 
be observed from new instances of those variables. 
However, rarely, if ever, does the function perfectly 
explain the data. A successful model, as well as 
seeming reasonable, should explain the observations 
tolerably well. So the deterministic model y = f (X) 
gives way to the approximation y ≈ f (X), which is 
restored to equality with the addition of a random 
error term: y = f (X) + e. The simplest model is the  
homoskedastic linear statistical model (LSM) with 
vector form y = Xβ + e, in which E[e] = 0 and 
Var[e] = s2I. According to LSM theory, â = (X′X)–1X′y 
is the best linear unbiased estimator (BLUE) of β, 
even if the elements of error vector e are not normally 
distributed.1

1For explanations of the linear statistical model and BLUE see Judge 
[1988, §§5.5 and 5.7] and Halliwell [2015]. Although normality is not 
assumed in the model, it is required for the usual tests of significance, the 
t-test and the f-test. It would divert us here to argue whether randomness 
arises from reality or from our ignorance thereof. Between the world 
wars physicists Niels Bohr and Albert Einstein argued this at length– 
technically to a stalemate, although most physicists give the decision 
to Bohr. Either way, actuaries earn their keep by dealing with what 
the insurance industry legitimately perceives as randomness (“risk”). 
One reviewer commented, “From a Bayesian perspective, there is no 
real concept of randomness in the sense of an outcome that is not the 
result of a cause-effect relationship.” This pushes conditional prob-
ability too far, to the tautology that Prob[X = a|X = b] = δab. Informa-
tion about some variables from a group of jointly distributed random 
variables can affect the probability distribution of the others, as in the 
classic case of the positive-definite multivariate normal distribution. 
Such information tightens or narrows the “wave function,” without 
altogether collapsing it. The reviewer’s comment presumes the notion 
of Einstein’s hidden variables. Bayes is neither here nor there, for a 
variable that remains hidden forever, or ontologically, really is random. 
The truth intended by the comment is that modelers should not be lazy, 
that subject to practical constraints they should incorporate all relevant 

The errors resultant in most 
actuarial models are not  

normally distributed.

information into their models, even the so-called “collateral” infor-
mation. Judge [1988, Chapter 7] devotes fifty pages to the Bayesian 
version of the LSM. Of course, whether randomness be ontological  
or epistemological, the goal of science is to mitigate it, if not to  
dispel it. This is especially the goal of actuarial science with regard  
to risk.
2“Models that perform well even when the population does not conform 
precisely to the parametric family are said to be robust” (Klugman [1998, 
§2.4.3]). “A robust estimator . . . produces estimates that are ‘good’ (in 
some sense) under a wide variety of possible data-generating processes” 
(Judge [1988, Introduction to Chapter 22]). Chapter 22 of Judge contains 
thirty pages on robust estimation.
3For descriptions of bootstrapping see Klugman [1998, Example 2.19  
in §2.4.3] and Judge [1988, Chapter 9, §9.A.1]. However, they both 
describe bootstrapping, or resampling, from the empirical distribution 
of residuals. Especially when observations are few (as in the case of our 
example in Section 6 with eighty-five observations) might the modeler 
want to bootstrap/resample from a parametric error distribution. Not to 
give away “free cover” would require bootstrapping from a parametric 
distribution, unless predictive errors were felt to be well represented 
by the residuals. A recent CAS monograph that combines GLM and 
bootstrapping is Shapland [2016].
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are obviously infinite, and the curve itself is skewed 
to the left (negative skewness).

The log-gamma moments can be derived from its 
moment generating function:
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Even better is to switch from moments to cumu-
lants by way of the cumulant generating function:7
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The scale factor q affects only the mean.8 The alter-
nating inequalities of k2, k3, and k4 derive from the 
polygamma formulas of Appendix A.3. The variance, 
of course, must be positive; the negative skewness 
confirms the appearance of the log-gamma density in 
Figure 1. The positive excess kurtosis means that the 
log-gamma distribution is “platykurtic;” its kurtosis 
is more positive than that of the normal distribution.

As useful candidates for non-normal error, Sections 2 
and 3 will introduce the log-gamma random variable 
and its linear combinations. Section 4 will settle on a 
linear combination that arguably maximizes the ratio 
of versatility to complexity, the generalized logistic 
random variable. Section 5 will examine its special 
cases. Finally, Section 6 will estimate by maximum 
likelihood the parameters of one such distribution 
from actual data. The most mathematical and theo-
retical subjects are relegated to Appendices A-C.

2. The log-gamma random 
variable

If X ∼ Gamma(α, q), then Y = ln X is a random 
variable whose support is the entire real line.4 Hence, 
the logarithm converts a one-tailed distribution into 
a two-tailed. Although a leftward shift of X would 
move probability onto the negative real line, such a 
left tail would be finite. The logarithm is a natural 
way, even the natural way, to transform one infinite 
tail into two infinite tails.5 Because the logarithm 
function strictly increases, the probability density 
function of Y ∼ Log-Gamma(α, q) is:6
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Figure 1 contains a graph of the probability 
density functions of both X and Y = ln X for X ∼ 
Gamma(1, 1) ∼ Exponential(1). The log-gamma tails 

4Appendix A treats the gamma function and its family of related 
functions.
5Meyers [2013], also having seen the need for two-tailed loss distri-
butions, is intrigued with skew normal and “mixed lognormal-normal” 
distributions, which in our opinion are not as intelligible and versatile as 
log-gamma distributions.
6With Leemis [“Log-gamma distribution”], we use the ‘log’ prefix for  
Y = ln(Gamma), rather than for ln(Y) = Gamma. Hogg [1984, j2.6] 
defines his “loggamma” as Y = eGamma, after analogy with the lognormal.

7Moments, cumulants, and their generating functions are reviewed in 
Appendix B. The customary use of ‘y’ for both the cumulant generating 
function and the digamma function is unfortunate; however, the presence 
or absence of a subscripted random variable resolves the ambiguity.
8See footnote 16 in Appendix A.1.
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Since the logarithm is a concave downward func-
tion, it follows from Jensen’s inequality:

[ ]
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Because the probability is not amassed, the 
inequality is strict: y(α) < ln(α) for α > 0. However, 
when E[X ] = αq is fixed at unity and as α → ∞, the 
variance of X approaches zero. Hence, 

α→∞
lim (ln(α) – 

y(α)) = ln 1 = 0. It is not difficult to prove that 

α→ +
lim

0
 (ln(α) – y(α)) = ∞, as well as that ln(α) − y(α) 

strictly decreases. Therefore, for every y > 0 there 
exists exactly one α > 0 for which y = ln(α) – y(α).

The log-gamma random variable becomes an error 
term when its expectation equals zero. This requires 
the parameters to satisfy the equation E[Y ] = y(α) +  
ln q = 0, or q = e−y(α). Hence, the simplest of all 
log-gamma error distributions is Y ∼ Log-Gamma 
(α, e−y(α)) = ln(X ∼ Gamma(α, e−y(α))).

3. Weighted sums of log-gamma 
random variables

Multiplying the log-gamma random variable by 
negative one reflects its distribution about the y-axis. 
This does not affect the even moments or cumulants; 

but it reverses the signs of the odd ones. For example, 
the skewness of –Y = −ln X = ln X−1 is positive.

Now let Y be a γ-weighted sum of independent 
log-gamma random variables Yk, which resolves into 
a product of powers of independent gamma random 
variables Xk ∼ Gamma(αk, qk):
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So the nth cumulant of a weighted sum of inde-
pendent random variables is the weighted sum of the 
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Figure 1. Probability densities
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γ > 0 should be a useful form 
of intermediate complexity.  
Let the parameterization for 
this purpose be X1 ∼ Gamma 
(α, 1) and X2 ∼ Gamma(β, 1). 
Contributing to the usefulness 
of this form is the fact that  

X1/X2 is a generalized Pareto random variable, whose 
probability density function is:10
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Hence, the cumulant generating function and its 
derivatives are:
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cumulants of the random vari-
ables, the weights being raised 
to the nth power.9

Using the cumulant formu-
las from the previous section,  
we have:

Y Y

C

Y Y

Y Y

Y Y

k k k k
kk

k k
k

k k
k

k k k k
kk

k k k k
kk

k k k k
kk

∑∑ ∑

∑

∑∑

∑∑

∑∑

( ) ( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( )

κ = γ κ = γ ψ α + γ θ

= γ ψ α +

κ = γ κ = γ ′ψ α

κ = γ κ = γ ′′ψ α

κ = γ κ = γ ′′′ψ α

ln1 1

2
2

2
2

3
3

3
3

4
4

4
4

In general, km+1 (Y ) = ∑
k

γ k
m+1y[m](αk) + IF(m = 0, 

C, 0). A weighted sum of n independent log-gamma 
random variables would provide 2n + 1 degrees of  
freedom for a method-of-cumulants fitting. All the  
scale parameters qk would be unity. As the parameter 
of an error distribution, C would lose its freedom, 
since the mean must then equal zero. Therefore, with 
no loss of generality, we may write Y = ln∏

k
X k

γ k + C 
for Xk ∼ Gamma(αk, 1).

4. The generalized logistic  
random variable

Although any finite weighted sum is tractable, 
four cumulants should suffice in most practice. So 
let Y = γ1lnX1 + γ2lnX2 + C = ln(X 1

γ1X2
γ2) + C. Even 

then, one gamma should be positive and the other 
negative; in fact, letting one be the opposite of the 
other will allow Y to be symmetric in special cases. 
Therefore, Y = γ lnX1 − γ lnX2 + C = γ ln(X1/X2) + C for 

9The same is true of all the ordinary, or non-central, moments. It is true 
also of the first three central moments, but only because they are iden-
tical to the first three cumulants. Halliwell [2011, §4] explains why the 
fourth and higher central moments of independent random variables 
are not additive.

10Hogg [1884, §2.6] derives this by the change-of-variable technique. 
Venter [1983, Appendix D] uses the mixing technique, since Gamma (α, 1)/ 
Gamma (β, 1) ∼ Gamma (α, q = 1/Gamma (β, 1)). See also Klugman 
[1998, §2.7.3.4 and Appendix A.2.2.1]. Our formulation assumes a scale 
factor of unity in the generalized Pareto.

The not overly complicated  
“generalized logistic” distribution 
is versatile enough for modeling 

non-normal error.
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Z ∼ ln(Gamma(α, 1)/Gamma(β, 1)) is a “general-
ized logistic” random variable (Wikipedia [Generalized 
logistic distribution]).

The probability density functions of generalized 
logistic random variables are skew-symmetric:
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In Figure 2 are graphed three generalized logistic 
probability density functions.

The density is symmetric if and only if α = β; the 
gray curve is that of the logistic density, for which  
α = β = 1. The mode of the generalized-logistic (α, β)  
density is umode = ln α/β. Therefore, the mode is posi-
tive [or negative] if and only if α > β [or α < β]. 
Since the digamma and tetragamma functions y, y″ 
strictly increase over the positive reals, the signs of 
E[Z ] = y(α) – y(β) and Skew[Z ] = y″ (α) – y″(β) 
are the same as the sign of α − β. The positive mode 
of the orange curve (2, 1) implies positive mean and 
skewness, whereas for the blue curve (1, 4) they are 
negative.
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The three parameters α, β, γ could be fitted to 
empirical cumulants k2, k3, and k4. For an error dis-
tribution C would equal γ(y(β) – y(α)). Since k4 > 0, 
the random variable Y is platykurtic.

Since Y = γ ln(X1/X2) + C, Z = (Y − C)/γ = ln(X1/X2)  
may be considered a reduced form. From the gener-
alized Pareto density above, we can derive the  
density of Z:
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Figure 2. Generalized logistic densities
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5. Special cases

Although the probability density function of the 
generalized logistic random variable is of closed form, 
the form of its cumulative distribution function is not 
closed, save for the special cases of α = 1 and β = 1. 
The special case of α = 1 reduces X1/X2 to an ordi-
nary Pareto. In this case, the cumulative distribution 

is ( ) = −
+
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1
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1
F u

e
Z u . Likewise, the special case of 

β = 1 reduces X1/X2 to an inverse Pareto. In that case, 
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1
. It would be easy to simulate  

values of Z in both cases by the inversion method 
(Klugman [1998, Appendix H.2]).11

Quite interesting is the special case α = β. For 
Z is symmetric about its mean if and only if α = β, 
in which case all the odd cumulants higher than the 
mean equal zero. Therefore, in this case:
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tion. Its mean and skewness are zero. As for its even 
cumulants:12
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Instructive also is the special case α = β = ½. Since 
G(½) = π , the probability density function in this 

case is ( ) =
π +
1
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a connection with the Cauchy density 
π +
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(Wikepedia [Cauchy distribution]). Indeed, the 
density function of the random variable W = eZ/2 is:
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This is the density function of the absolute value 
of the standard Cauchy random variable.13

6. A maximum-likelihood example

Table 1 shows eighty-five standardized14 error 
terms from an additive-incurred model. A triangle  
of incremental losses by accident-year row and  

11Workable Excel formulas are Z = LN (−1 + (1 − RAND( ))^(−1/β)) and  
Z = −LN(RAND( )^(−1/α) − 1). To simulate the generalized Pareto and 
logistic random variables requires gamma or beta inverse functions. Two 
equivalent forms are Z1 = LN(GAMMA.INV(RAND(), α, 1)) – LN(GAMMA.
INV(RAND(), β, 1)) and Z2 = −LN(−1 + 1/BETA.INV(RAND(), α, β)). 
Mathematically, Z1 ∼ Z2; but the Z2 formula overflows when RAND() ≈ 1.
12See Wikipedia [Logistic distribution] and Wikipedia [Riemann zeta 
function]. Often cited is the coefficient of excess kurtosis: γ2 = k4/k2

2 = 
(2p4/15)/(p2/3)2 = 1.2. Havil [2003, Chapter 4] shows how Euler in 1735 

proved that k
k
∑

=

∞
1 2

1

 converges to the value p2/6. Since the mid-1600s, 

determining the value of k
k
∑

=

∞
1 2

1

 had eluded Wallis, Leibniz, and the 

Bernoullis. Because the latter lived in Basel, it became known as the 
Basel problem.

13Another derivation is:
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The Gamma (½, 2) ∼ c1
2 random variable is the square of the standard 

normal. Wikipedia [Cauchy distribution] and Hogg [1984, pp. 47, 49] 
show that the standard Cauchy random variable is the quotient of two 
independent standard normals.
14The generic model of the observations is y = Xβ + e, where  
Var[e] = s2F. The variance of the residuals is Var[ ê] = Var[y − Xâ] = 
s2(F – X(X′F–1X)–1X′), as derived by Halliwell [1996, Appendix D]. 
The standardized residual of the ith element is then ê i / eVar ii[ ]ˆ .  
Usually the estimate r̂2 must be used for s2.
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evaluation-year column was modeled from the 
exposures of its thirteen accident years. Variance by 
column was assumed to be proportional to exposure. 

A complete triangle would have ∑ =
=

91
1

13

k
k

 observa-

tions; but we happened to exclude six.
The sample mean is nearly zero at 0.001. Three of 

the five columns are negative, and the positive errors 
are more dispersed than the negative. Therefore, 
this sample is positively skewed, or skewed to the 
right. Other sample cumulants are 0.850 (variance), 
1.029 (skewness), and 1.444 (excess kurtosis). The 
coefficients of skewness and of kurtosis are 1.314 
and 1.999.

By maximum likelihood we wished to explain  
the sample as coming from Y = γ Z + C, where Z =  
ln(X1/X2) ∼ ln(Gamma(α, 1)/Gamma(β, 1)), the gener-
alized logistic variable of Section 4 with distribution:

f u
e

e e
Z

u

u u( )( )
( )

( )
( )

= Γ α + β
Γ α Γ β +





 +

α β

1

1

1

So, defining z(u; C, γ) = (u − C)/γ, whereby  
z(Y ) = Z, we have the distribution of Y:

f u f z u z u

e

e e

Y Z z Y

z u

z u z u( )
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( )

( ) ( )( )

( )

= ′

= Γ α + β
Γ α Γ β +





 + γ

( )
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=

α β

1

1

1

1

The logarithm, or the log-likelihood, is:

( )

( ) ( )

( )

( ) ( )

( )

= Γ α + β − Γ α − Γ β

+ α − α + β + − γ( )

f u

z u e

Y

z u

ln ln ln ln

ln 1 ln

This is a function in four parameters; C and γ are 
implicit in z(u). With all four parameters free, the 
likelihood of the sample could be maximized. Yet it 
is both reasonable and economical to estimate Y as 
a “standard-error” distribution, i.e., as having zero 
mean and unit variance. In Excel it sufficed us to let 
the Solver add-in maximize the log-likelihood with 
respect to α and β, giving due consideration that  
C and γ, constrained by zero mean and unit variance, 
are themselves functions of α and β. As derived in 
Section 4, E[Y ] = C + γ (y(α) – y(β)) and Var[Y ] = 
γ2(y′(α) + y′(β)). Hence, standardization requires 
that ( ) ( )( )γ α β = ′ψ α + ′ψ β, 1  and that C(α, β) =  
γ (α, β) • (y(β) – y(α)). The log-likelihood maximized 
at `̂ = 0.326 and â = 0.135. Numerical derivatives of 
the GAMMALN function approximated the digamma 
and trigamma functions at these values. The remain-
ing parameters for a standardized distribution must 
be Ĉ = −0.561 and f̂ = 0.122. Figure 3 graphs the 
maximum-likelihood result.

The maximum absolute difference between the 
empirical and the fitted, |max| = 0.066, occurs at  
x = 0.1. We tested its significance with a “KS-like” 
(Kolmogorov-Smirnov, cf. Hogg [1984, p. 104])  
statistic. We simulated one thousand samples of 
eighty-five instances from the fitted distribution, 
i.e., from the Y distribution with its four estimated 
parameters. Each simulation provided an empirical 
cumulative distribution, whose maximum absolute 
deviation we derived from the fitted distribution over 
the interval [−4, 4] in steps of 0.1. Figure 4 contains 
the graph of the cumulative density function of |max|.

Table 1. Ordered error sample (85 = 17 ë 5)

–2.287 –0.585 –0.326 –0.009 0.658

–1.575 –0.582 –0.317 0.009 0.663

–1.428 –0.581 –0.311 0.010 0.698

–1.034 –0.545 –0.298 0.012 0.707

–1.022 –0.544 –0.267 0.017 0.821

–1.011 –0.514 –0.260 0.019 0.998

–0.913 –0.503 –0.214 0.038 1.009

–0.879 –0.501 –0.202 0.090 1.061

–0.875 –0.487 –0.172 0.095 1.227

–0.856 –0.486 –0.167 0.123 1.559

–0.794 –0.453 –0.165 0.222 1.966

–0.771 –0.435 –0.162 0.255 1.973

–0.726 –0.429 –0.115 0.362 2.119

–0.708 –0.417 –0.053 0.367 2.390

–0.670 –0.410 –0.050 0.417 2.414

–0.622 –0.384 –0.042 0.417 2.422

–0.612 –0.381 –0.038 0.488 2.618
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The actual deviation of 0.066 coincides with the 
thirty-first percentile, or about with the lower tercile. 
The dashed line in Figure 3 (legend “NormS”) 
repre sents the cumulative standard-normal distrib u-
tion. The empirical distribution has more probability 
below zero and a heavier right tail. Simulations with 
these logistic error terms are bound to be more accu-
rate than simulations defaulted to normal errors.15

7. Conclusion

Actuaries are well schooled in loss distribu-
tions, which are non-negative, positively skewed, 
and right-tailed. The key to a versatile distribution 
of error is to combine logarithms of loss distribu-
tions. Because most loss distributions are transfor-
mations of the gamma distribution, the log-gamma 
distribution covers most of the possible combina-
tions. The generalized logistic distribution strikes 
a balance between versatility and complexity. It 
should be a recourse to the actuary seeking to boot-
strap a model whose residuals are not normally 
distributed.
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Figure 3. Empirical and fitted CDFs

15Taking trigamma and tetragamma values from www.easycalculation.
com/statistics/polygamma-function.php, we calculated the higher cumu-
lants: k3 = Skew[Y] = 1.496 and k4 = XsKurt[Y] = 4.180. Since Y is 
standardized, these values double as coefficients of skewness and 
kurtosis. That they, especially the kurtosis, are greater than the empirical 
coefficients, 1.314 and 1.999, is evidence for the inferiority of the method 
of moments.
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Appendix A  
The gamma, log-gamma,  
and polygamma functions
A.1. The gamma function as an integral

The modern form of the gamma function is G(α) = 

x
∫
=

∞

0
e−xxα−1dx. The change of variable t = e−x (or  

x = −ln t = ln 1/t) transforms it into:

∫ ∫( )Γ α = 





−





= 



=

α−

=

α−

t
t

dt

t t
dt

t t

ln
1

ln
1

1

0 1

0

1 1

According to Havil [2003, p. 53], Leonhard Euler 
used the latter form in his pioneering work during 
1729–1730. It was not until 1809 that Legendre 
named it the gamma function and denoted it with the 
letter ‘G’. The function records the struggle between 
the exponential function e−x and the power function 
xα−1, in which the former ultimately prevails and forces 
the convergence of the integral for α > 0.

Of course, e dxx

x
∫( )Γ = =−

=

∞

1 1
0

. The well-known 

recurrence formula G(α + 1) = αG(α) follows from 
integration by parts:

e x dx e d x e x

x d e e x dx

x x x

xx

x x

xx
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αΓ α = α = =

− = + = Γ α +

− α− − α − α ∞

=

∞
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α − − α+ −

=

∞

=

∞
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1
0

00
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00

It is well to note that in order for e−xxα |0
∞ to equal 

zero, α must be positive. For positive-integral values  
of α, G(α) = (α − 1)!; so the gamma function extends 
the factorial to the positive real numbers. In this 
domain the function is continuous, even differen-

tiable, as well as positive. Although ( )Γ α = ∞
α→ +
lim

0
,
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( ) ( )( )αΓ α = Γ α + = Γ =
α→ α→+
lim lim 1 1 1

0 0
. So ∼( )Γ α

α
1

 as
  

α → 0+. As α increases away from zero, the func-
tion decreases to a minimum of approximately 
G(1.462) = 0.886, beyond which it increases. So, over 
the positive real numbers the gamma function is ‘U’ 
shaped, or concave upward.

The simple algebra 
∫( )

( ) ( )
= Γ α

Γ α
=

Γ α
=

− α−

=

∞

e x dxx

x1

1

0

 

e x dx
x

x∫ ( )Γ α=

∞
− α−1

0

1  indicates that ( )
( )

=
Γ α

− α−1 1f x e xx

 

is the probability density function of what we will 
call a Gamma(α, 1)-distributed random variable, or 
simply Gamma(α)-distributed with q = 1 understood.16 
For k > −α, the kth moment of X ∼ Gamma(α) is:

E X x e x dx

k

k
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k k
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∫
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=
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∞
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1
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0
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1

Therefore, for k = 1 and 2, E[X] = α and E[X2] = 
α(α + 1). Hence, Var[X] = α.

A.2. The gamma function  
as an infinite product

Euler found that the gamma function could be 
expressed as the infinite product:

x
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More over, the recurrence formula is satisfied:
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Hence, by induction, the integral and infinite-
product definitions are equivalent for positive-integral 
values of x. It is the purpose of this section to extend 
the equivalence to all positive real numbers.

The proof is easier in logarithms. The log-gamma 

function is ∫( )Γ α = − α−

=

∞

ln ln 1

0

e x dxx

x

. The form of its 

recursive formula is lnG(α + 1) = ln(αG(α)) = lnG(α) + 
ln α. Its first derivative is:

�
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So the first derivative of lnG(α) is the expectation 
of Y ∼ Log-Gamma(α), as defined in Section 2. The 
second derivative is:

�
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d
( ) ( )

( )
( )

( ) ( ) ( ) ( )
( ) ( )

Γ ′′ α =
α

′Γ α
Γ α
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Γ α Γ α

ln

16Similarly, Venter [1983, p. 157]: “The percentage of this integral reached 
by integrating up to some point x defines a probability distribution, i.e., 
the probability of being less than or equal to x.” The multiplication of this  
random variable by a scale factor q > 0 is Gamma(α, q)-distributed with 

density f x e
x

Gamma

x

( )
( )

=
Γ α θ





 θ( )α θ

−
θ

α−
1 1

,

1

, as found under equivalent 

forms in Hogg [1984, p. 226] and Klugman [1998, Appendix A.3.2.1]. 
Because this paper deals with logarithms of gamma random variables, 
in which products turn into sums, we will often ignore scale factors.
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This string of inequalities, in the middle of which 
is ln G(x), is true for n ∈{2, 3, . . .}. As n approaches 

infinity, 
n→∞
lim[x ln(n) – x ln(n − 1)] x
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 = xln1 = 0. So lnG(x) is sandwiched 

between two series that have the same limit. Hence:
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If the limit did not converge, then lnG(x) would 
not converge. Nevertheless, Appendix C constructs a 
proof of the limit’s convergence. But for now we can 
finish this section by exponentiation:
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The infinite-product form converges for all com-
plex numbers z ∉ {0, −1, −2, . . .}; it provides the 
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Because the second derivative is positive, the log-
gamma function is concave upward over the positive 
real numbers.

Now let n ∈ {2, 3, . . .} and x ∈ (0, 1]. So 0 < n − 1 <  
n < n + x ≤ n + 1. We consider the slope of the log-
gamma secants over the intervals [n – 1, n], [n, n + x],  
and [n, n + 1]. Due to the upward concavity, the 
order of these slopes must be:
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Using the recurrence formula and multiplying by 
positive x, we continue:
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trigamma function, but stop at the second derivative 
of ln G(α). The remainder of this appendix deals with 
the derivatives of the log-gamma function.

According to the previous section:
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x n
k x

n
k x x

x
x

n k

n

n k

n

∑

∑

( )

( )

ψ + = −
+ +









= −
+









+
+

= ψ +

→∞ =

→∞ =

1 lim ln
1

1

lim ln
1 1

0

1

0

0

Also, n
kn k

n

n
∑( )ψ = −

+








=
→∞ = →∞

1 lim ln
1

1
lim

0

n
k k

n
k

n

n k

n

∑ ∑{ } { }− = − − = −γ
=

+

→∞ =
ln

1
lim

1
ln

1

1

1

. Euler was 

the first to see that ∑{ }−
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1

ln
1 k
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n k

n

 converged.18 

He named it ‘C’ and estimated its value as 0.577218. 
Eventually it was called the Euler-Mascheroni con-
stant γ, whose value to six places is really 0.577216.

analytic continuation to the integral form. 17 With the 
infinite-product form, Havil [2003, pp. 58f ] easily 
derives the complement formula G(x)G(1 − x) = p/
sin(px). Consequently, G(½)G(½) = p/sin(p/2) = p.

A.3. Derivatives of the log-gamma 
function

The derivative of the gamma function is G′(α) = 
d

d
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Because the derivative of ln G(α) has proven  
useful, mathematicians have named it the “digamma” 

function: ( ) ( )ψ α =
α

Γ αln
d

d
. Therefore, E[ln X ] = 

y(α). Its derivatives are the trigamma, tetragamma, 
and so on. Unfortunately, Excel does not provide 
these functions, although one can approximate them 
from GAMMALN by numerical differentiation. 
The R and SAS programming languages have the 

17Here is an example of the increasing standard of mathematical rigor. 
Euler assumed that the agreement of the integral and the infinite product 
over the natural numbers implied their agreement over the positive reals. 
After all, the gamma function does not “serpentine” between integers, 
for it is concave. Only later was proof felt necessary, especially after 
Cantor demonstrated that 0 + 0 = 0. This implies that the agreement 
of two analytic functions at 0 points does not require the 0 derivatives 
in their Taylor series to be identical. (It would if 0 of those points were 
contained within a finite interval. But here the points of agreement are  
at least one unit distant from one another.) According to Wikipedia 
[Bohr–Mollerup theorem], when Harald Bohr and Johannes Mollerup 
published a proof of the integral/infinite-product equivalence in their 
1922 textbook on complex analysis, they did not realize that their proof 
was original. Harald Bohr was the younger brother of Niels Bohr.  
A decade later, in the preface to his classic monograph on the gamma 
function, Emil Artin [2015 (1931)] acknowledged the fundamental nature 
of this theorem.
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So the series increases, but is bounded by k
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,
 

where z is the zeta function [Wikipedia, Riemann zeta function]. See 
also Appendix C.
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Obviously, MX(0) = E[1] = 1. It is called the moment 
generating function because its derivatives at zero,  
if convergent, equal the (non-central) moments  
of X, i.e.:

M
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The moment generating function for the normal 
random variable is MN(µ,s2)(t) = eµt+s2t2/2. The mgf of 
a sum of independent random variables equals the 
product of their mgfs:
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The cumulant generating function (cgf ) of X, or 
yX(t) is the natural logarithm of the moment gener-
ating function. So yX(0) = 0; and for independent 
summands:
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The nth cumulant of X, or kn (X), is the nth deri-
vative of the cgf evaluated at zero. The first two 
cumulants are identical to the mean and the variance:
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One who performs the somewhat tedious third 
derivative will find that the third cumulant is iden tical 
to the skewness. So the first three cumulants are equal 
to the first three central moments. This amounts to a 
proof that the first three central moments are additive.

The successive derivatives of the digamma func-
tion are:
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The general formula for the nth derivative is y[n](x) = 

(−1)n−1n!
k x n

k
∑ ( )+ +

=

∞ 1
1

0
 with recurrence formula:

x n
k x

n
k x

n

x

x
n

x

n n
n

k

n
n

k

n

n

n
n

n

∑

∑

( ) ( )
( )

( )
( )

( )

( )

( )

ψ + = −
+ +

= −
+

− −

= ψ + −

[ ]

[ ]

−
+

=

∞

−
+

=

∞ −

+

+

1 1 !
1

1

1 !
1 1 !

1 !

1
1

0

1
1

0

1

1

1
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1 . A graph of the  

digamma through pentagamma functions appears in 
Wikipedia [Polygamma function].

Appendix B  
Moments versus cumulants19

Actuaries and statisticians are well aware of 
the moment generating function (mgf ) of random  
variable X:

M t E e e f x dxX
tX tx

X
∫[ ]( ) ( )= =

19For moment generating functions see Hogg [1984, pp. 39f ] and  
Klugman [1998, §3.9.1]. For cumulants and their generation see Daykin 
[1994, p. 23] and Halliwell [2011, §4].
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two functions y = x and y = ln(1 + x) are tangent to 
each other at x = 0, f (0) = f ′(0) = 0. Otherwise, the 
line is above the logarithm and f (x ≠ 0) > 0. Since 
f ″(x) = 1/(1 + x)2 must be positive, f (x) is concave 
upward with a global minimum over (−1, ∞) at x = 0.

For now, let us investigate the convergence of 
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. Obviously, 

j(x = 0) = 0. But if x ≠ 0, for some x ∈ (min(n, n + x), 
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The lower bound reduces to zero; the upper to 

x
x

n n x

x

n n x

x

n n x( )+
=

+
=

+

2 2

. But n + x must 

be positive, since x > −1. Therefore, for x ≠ 0:
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For x = 0, equality prevails. And so for all x > −1:
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However, the fourth and higher cumulants do not 
equal their corresponding central moments. In fact, 
defining the central moments as µn = E[(X − µ)n], the 
next three cumulant relations are:

κ = µ − µ = µ − σ

κ = µ − µ µ

κ = µ − µ µ − µ + µ

3 3
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4 4 2
2

4
4

5 5 2 3
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2
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The cgf of a normal random variable is yN(µ, s2)(t) =  
lneµt+s2t2/2 = µt + s2t2/2. It first two cumulants equal µ 
and s2, and its higher cumulants are zero. Therefore, 
the third and higher cumulants are relative to the zero 
values of the corresponding normal cumulants. So 
third and higher cumulants could be called “excess 
of the normal,” although this in practice is done only 
for the fourth cumulant. Because µ4 = E[(X − µ)4] 
is often called the kurtosis, ambiguity is resolved by 
calling k4 the “excess kurtosis,” or the kurtosis in 
excess of µ4 = E[N(0, s2)4] = E[N(0, 1)4] • s4 = 3s4.

Appendix C  
Log-gamma convergence

In Appendix A.2 we proved that for real α > 0:
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There we argued that the “real-ness” of the left 
side for all α > 0 implies the convergence of the limit 
on the right side; otherwise, the equality would be 
limited or qualified. Nevertheless, it is valuable to 
examine the convergence of the log-gamma limit, as 
we will now do.
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ln 1  for natural number n  

and real number x. To avoid logarithms of negative 
numbers, x > −1, or x ∈ (−1, ∞). The root of this 
group of functions is f (x) = x – ln(1 + x). Since the 
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Returning to the limit in the log-gamma formula 
and replacing ‘α’ with ‘x’, we have:
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Thus, independently of the integral definition,  
we have proven for α > 0 the convergence of 

n
kn k

n

∑( )Γ α = − α + α − + α











→∞ =

ln ln lim ln ln 1 .
1

21

This is but one example of a second-order con-
vergence. To generalize, consider the convergence 

of x f
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. As with the specific f (x) =
  

x – ln(1 + x) above, the general function f must be 
analytic over an open interval about zero, a < 0 < b.  
Likewise, its value and first derivative at zero must 
be zero, i.e., f (0) = f ′(0) = 0. According to the  
second-order mean value theorem, for x ∈ (a, b), 
there exists a real x between zero and x such that:
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Thus have we demonstrated the convergence of 
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As a special case:20
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20See also Appendix A.3 on the Euler-Mascheroni constant γ.

21Actually. we proved the convergence of the second term, the one with 
the limit, for α > −1. It is the first term, the logarithm, that contracts the 
domain of ln G(α) to α > 0. As a complex function ln G(z) converges 
for all complex z ∉ {0, −1, −2, . . .}. However, ln z is multivalent, or 
unique only to an integral multiple of 2pi. That exponentiation removes 
this multivalence is the reason why elnG(z) = G(z) is analytic, except at z ∉ 
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converges, unless some factor in the denominator equals zero, i.e., unless 
z = {0, −1, −2, . . .}.
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Consequently, f
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number for every function f that is analytic over some 
domain about zero and for which f (0) = f ′(0) = 0. The 
convergence must be at least of the second order; 
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The same holds true for analytic functions over com-
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then j(x) converges. But every xk belongs to the 
closed interval Ξ between 0 and x. And since f is ana-
lytic over (a, b) ⊃ Ξ, f ″ is continuous over Ξ. Since a 
continuous function over a closed interval is bounded, 
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