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ABSTRACT

Insurance claims fraud is one of the major concerns in the insur-
ance industry. According to many estimates, excess payments
due to fraudulent claims account for a large percentage of the
total payments affecting all classes of insurance. In this study,
we develop a model framework based on a costly state verifica-
tion setting in which, while policyholders observe the amount
of loss privately, the insurance company can decide to audit
incoming claims at some cost. In particular, optimization prob-
lems are formulated from both stakeholders’ positions consider-
ing that for each of them willing to sign an insurance contract,
certain participation constraints need to be fulfilled. Besides
deriving analytical solutions regarding optimal auditing strate-
gies, we provide a numerical approach based on Monte Carlo
methods. The simulation results illustrate the acceptance range
that consists of all valid fraud and auditing probability com-
binations that both stakeholders are willing to tolerate. We dis-
cuss the impact of different valid probability combinations on
the insurance company’s and policyholder’s objective quanti-
ties respectively and analyze the sensitivity of the acceptance
range with respect to different input parameters.
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1. Introduction

Insurance claims fraud has been one of the major
concerns in the insurance industry for a long time and
has attracted much attention in both the scientific and
firm-level environments. There exist many research
papers and studies on the detection and deterrence of
fraudulent activities and the optimal design of insur-
ance contracts (see, e.g., Viaene and Dedene 2004;
Picard 2009; Dionne, Giuliano, and Picard 2009;
GDYV 2011). Nevertheless, the Association of British
Insurers (2012) reports the uncovering of 139,000 dis-
honest claims in the UK in 2011 alone, adding up to
almost £1 billion in illegitimate loss reports; the esti-
mated number of unrevealed cases is assumed to be
substantially higher. In this study, we show that with
the goal of minimizing insurance companies’ costs,
the complete elimination of fraudulent activities is
not always desirable. We derive acceptance ranges
that comprise all valid fraud and auditing probabil-
ity combinations under which contract conditions
remain attractive enough for both insurer and policy-
holder to adhere to the insurance relationship. The
actual strategies are chosen based on the respective
market power.

Insurance claims fraud is a multi-layered phenom-
enon. While it is often associated with criminal activ-
ities, only a minority of illegitimate claims is said to
contain outright fraud (see, e.g., Viaene and Dedene
2004, Tennyson 2008). This observation is probably
due to the fact that for a case to be declared criminal
fraud it needs to be proven that it is “a willful act of
obtaining money or value from an insurer under false
pretenses or material misrepresentations” (Derrig
2002). The more common and frequent type of insur-
ance claims fraud is referred to as soft fraud. Even
though there exists no clear definition of the term, it
is generally associated with the attempt to exaggerate
the magnitude of an otherwise legitimate claim (see,
e.g., Weisberg and Derrig 1991; Viaene and Dedene
2004; Tennyson 2008). This form of inflation is also
called build-up. In the context of our study, we use the
term insurance claims fraud in the sense of soft fraud
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or build-up, i.e., fraud-prone policyholders claiming
loss amounts exceeding their actual value.

The appearance of insurance claims fraud is based
on information being asymmetrically distributed
between the policyholder and the corresponding
insurance company (e.g., Derrig 2002). Since the indi-
viduals observe the amount of loss privately after the
time of occurrence, they may decide to misrepresent
the magnitude. In a costly state verification envi-
ronment as applied by researchers (e.g., Townsend
1979; Mookherjee and Png 1989; Bond and Crocker
1997; Picard and Fagart 1999), the insurer has the
opportunity to perform verification processes to
determine the truthfulness of an incoming claim.
Any detected engagement in fraudulent activities can
be charged with a penalty payment. However, since
this auditing comes at some cost, the insurance com-
pany has to weigh the benefits against the accom-
panying expenses. Another component that needs to
be considered in this calculation is the policyholder
perspective. Viaene and Dedene (2004) found that
policyholders who had negative experiences in the
insurance relationship, such as delayed indemnifica-
tions or underpayment, were more likely to engage in
fraudulent activities.

While costly state verification is based on the insur-
ance company being able to detect attempts of mis-
representation, the costly state falsification approach
focuses on the policyholder incurring some cost
to manipulate the magnitude of loss such that it
becomes unverifiable. The general setting was intro-
duced by Lacker and Weinberg (1989) and transferred
to the specific features of the insurance environment
by Crocker and Morgan (1998) and Crocker and
Tennyson (2002).

A different approach in the fight against insurance
claims fraud was taken by Dionne and Vanasse (1992)
and Moreno, Vazquez, and Watt (2006). Instead of
engaging in cost-intensive auditing, the insurance
company raised the insurance premium in the con-
secutive period whenever the policyholder filed some
claim. This strategy is often applied in the automo-
bile insurance sector where contract renewals are a
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common standard. As a result, illegitimate claims
when no insured loss occurred may be prevented.

In this study, we consider an alternative approach
on the subject of claims handling, especially when
fraud is present. For this purpose, we focus on the
parties’ behavioral strategies, i.e., from the insurance
company perspective, we consider the verification
scheme. It is characterized by the probability of per-
forming an audit, whereas from the policyholder point
of view, the defrauding strategy is taken into account
as represented by the probability of engaging in fraud-
ulent activities. The aim is to identify and analyze all
conditions under which the insurance relationship is
attractive for the insurance company and the policy-
holder, i.e., both stakeholders are willing to adhere
to the insurance contract. Particularly, for any fraud
strategy, i.e., the probability of filing an inflated loss
amount, we determine the set containing all valid cor-
responding auditing probabilities, given some con-
stant cost per audit and vice versa.

Previous research has focused on deriving optimal
contracts such that at equilibrium, the policyholders
have an incentive to always report their losses truth-
fully (e.g., Townsend 1979; Picard and Fagart 1999).
However, the question arises as to how the two stake-
holders representing two opposing groups of inter-
est can be brought together in the first place. Which
behavioral patterns, i.e., defrauding and auditing prob-
abilities, is the respective other willing to accept
without being worse off than in the situation when
no insurance contract was signed prior to the occur-
rence of loss? From the insurance company perspec-
tive, one can assume that, given some fixed cost per
audit, it is not appealing to enter an insurance rela-
tionship with individuals who engage in build-up on
a large scale in terms of frequency and severity. From
the policyholder point of view on the other side,
it appears to be intuitive to assume that delayed or
reduced indemnification due to extensive auditing
might curtail the attractiveness of insurance.

In D’Arcy, Derrig, and Weisberg (2010), it is
assumed that the behavior of competing insurance
companies facing insurance fraud follows one of
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several Nash equilibria.! If the insurance companies
consider claims savings caused by their auditing strat-
egy as a portion of the total claims, the authors can
show that inefficiencies may arise. Beside a Nash equi-
librium, the authors derive alternative cooperative
and non-cooperative agreements between the insur-
ance companies in order to reduce the mentioned
incentives and inefficiencies in the insurance market.
In addition, empirical results are provided for no-fault
auto bodily injury liability claims from the state of
Massachusetts.

Obtaining the resulting set of all acceptable fraud
and auditing probability combinations, we make a cru-
cial observation. In the context of cost-minimizing
insurance companies, a mutual acceptance between
both stakeholders can be reached for any fraudulent
behavior the policyholder might exhibit. In particular,
even in the case when the loss amount is inflated in
most of the incoming claims, there may exist auditing
strategies such that the insurer is willing to adhere to
the insurance relationship and even be able to opti-
mize its objective quantity. This result underlines the
expectation expressed by Watt (2003) and shows that
for cost-minimizing insurance companies it is not nec-
essarily desirable to undercut all fraudulent activities.

Based on the results of the acceptance range, we
analyze all valid fraud and auditing probability com-
binations with respect to their optimality for the stake-
holders’ respective objective quantity. As expected,
we are able to show that the best possible outcome can
never be achieved for both the insurance company
and the policyholder at the same time. Which one out
of all valid behavioral strategy combinations they
settle on depends on their respective market power.

'A Nash equilibrium (cf. Nash 1950, 1951) is a solution concept of a non-
cooperative game, in which each participant acts in a rational way and
holds the correct expectation about the players’ behavior (cf. Osborne
and Rubinstein 1994, p. 14). Whenever no participant can profit from a
strategy chance while all other participants keep their strategy, the cho-
sen strategies and the benefits to the participants exhibit a Nash equilib-
rium. The formal description of a Nash equilibrium and the requirements
for its existence can be found, e.g., in Osborne and Rubinstein (1994,
pp. 14f. and 19f.).
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We want to emphasize that the acceptance range is
not to be understood as a cooperative agreement that
both parties decide upon. It intends to demonstrate
the range of all possibilities attractive enough so that
both insurer and policyholder are willing to maintain
the insurance relationship.

The model derived in this study is based on the
costly state verification environment, considering
the insurance company’s net present value of future
cash flows and the policyholder’s expected utility
of his terminal wealth position. To make sure that
both stakeholders are willing to sign an insurance
contract, we include participation constraints. We
derive and analyze some analytical solutions to the
optimization problems. Due to the complexity of
the model, however, it is not always possible to
obtain closed-form solutions. Therefore, we present
a numerical approach using Monte Carlo methods.
The simulation results and their implications for
both stakeholders’ optimal strategies are discussed
and illustrated graphically.

The remainder of this study is organized as follows:
we start by presenting the model framework and first
analytical results in Section 2. Thereafter, the numeri-
cal approach and the corresponding program are
introduced in Section 3. In Section 4, we discuss the
simulation results before concluding in Section 5.

2. Model framework

An individual with initial wealth W, is offered
the possibility to sign an insurance contract with a
fixed premium P due by the time of inception of
insurance cover in ¢ = f,. At the same time, he faces
some uncertain loss 6 of stochastic amount which, by
the time of occurrence ¢ = t,, is observed privately.
In case he signed the insurance contract earlier, the
policyholder can then choose to file a claim of some
size 0. In the case of honest behavior, the amount
of that claim will equal the actual loss, i.e., 0=01If
the policyholder decides to commit fraud, he reports
some finite § > 0. The probability of the policyholder
choosing to report a fraudulent claim is denoted by p.
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In order to check if fraud takes place, the insurer
audits incoming claims with some probability ¢ and at
the constant cost of k per audited claim (to be paid in
t = t,). Depending on whether auditing took place or
not and the outcome in case of an audit, a payment R
is made from the insurance company to the policy-
holder. Considering the different possible combina-
tions of fraud and auditing probabilities p and g, the
stochastic payment R in time f, can be defined as
follows:

R(6,0)=(1-p)6+pl1-9)8+q06-B)], (1)

with B being the penalty payment deducted from the
claim amount ©.

Equation (1) can be interpreted as an indemnity
payment if R is positive, whereas a negative R rep-
resents the payment made from the insured to the
insurance company in case of detected fraud when
B> 0. There are several possible cases: if the reported
loss is not checked, the insured receives the payment
of 6. In the case of auditing, the payment depends
on whether the policyholder committed fraud or not.
Proven honesty leads to a payment of 6 = 6. If a mis-
representation of loss is determined, the policyholder
faces some penalty B. In our numerical example
(reference setting), we choose B such that 6 — B =0.2
In this setting, we take audits to be perfect, i.e., if a
fraudulent claim is made, it will surely be detected in
the case of auditing.

In our analysis, we assume the fraud probability p
to be constant for all policyholders in the portfolio.
The insurer only knows the fraud probability p, which
is an average figure for the (sub-)portfolio in focus.
This figure may be based on the insurer’s past expe-
rience or results from general industry knowledge.

’In general, many deviations from this assumption can take place depend-
ing on the concrete jurisdiction in force. In Germany, e.g., the penalty is
typically much larger than the pure fraudulent add-up 6 — 6. The reason for
this is that in the case of a detected fraud, the insurer is allowed to charge
the policyholder the auditing and administration costs coming along with
this particular fraud case. In addition, the policyholder may face court and
further law costs and will often not get insurance coverage at that particular
insurer again. Given these aspects, B could even exceed 6 in some cases.
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The fraud probability p typically varies substantially
between different lines of business and different
sub-portfolios. The estimation of the fraud probability
is not necessarily based on (a part of the) policy-
holders which are currently in the portfolio. Hence,
even if the insurer provides no coverage for all policy-
holders that do possess a history of fraud, p would
still be positive, as new policyholders typically have
a tendency to commit fraud, too. The auditing prob-
ability ¢ is a decision variable for the insurer and the
optimal value for g results from the target functions
and the optimization procedure shown in the next three
sections. In this respect and taking the equal claims
distributions for the policyholders into account, we
refer to the homogeneous portfolio case only.

In Section 2.1 we introduce the setting as well as
the objective quantity and the participation constraint
from the insurance company perspective. The same
is done from the policyholder point of view in
Section 2.2. Based on this information, we state
the resulting optimization problems for both stake-
holders in Section 2.3. Assumptions about the dis-
tribution of information among the policyholder and
the insurance company are given in Section 2.4
before presenting analytical results in Section 2.5.

2.1. Insurance company:
Cash flow, net present value
and participation constraint

In the framework introduced above, we observe
the future cash flows from the insurance company
perspective at the time of insurance inception in ¢ = 1,
and the time of loss realization and settling in 7 = ¢,
and analyze their resulting present value. In the case
of an insurance contract coming into existence, the
insurance company receives the premium payment P
in t = t,. An incoming claim in ¢ = ¢, that is audited
with probability ¢ and at some given cost k(> 0) per
analyzed claim, results in —R(0, é) — gk.

The insurance company’s net present value NPV
of its future incoming and outgoing cash flows is
denoted by

NPV =P-PV(R(0,0))- PV(gk), (2)
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where PV stands for the present value of the cash
flows payable in ¢ = 7, and R(6, é) denotes the indem-
nity payment as defined in (1). Assuming a risk-
neutral insurance company and a risk-free interest
rate r, = 0, PV can be replaced by the expected
value [ in (2).

Condition 1. The insurance company is willing to
participate in an insurance contract if its net present
value is positive. Hence, one obtains the following
participation constraint:

NPV >0. 3)

Applying Equation (2), participation constraint (3)
can be formulated as

P>E(R(0,0)) + gk. 4)

Apparently, the expression on the right-hand side
represents a lower bound for the premium payments
the insurance company is willing to accept. Its value
depends on the expected value of the indemnity pay-
ments that will be made and a loading that reflects
the auditing effort.

2.2. Policyholder: Wealth position, utility
function and participation constraint

From the policyholder perspective, we analyze his
wealth position and the corresponding expected util-
ity at the time of inception of insurance cover ¢ = ¢,
and the time of loss realization and claiming 7 =t, for
the framework introduced above.

An individual initially owns some wealth W,. Its
consecutive development depends on whether he signs
an insurance contract prior to the occurrence of loss
or not. In a situation without an insurance contract,
the individual holds the unchanged wealth position

Wi =W, o)

at time ¢ = #,. At the time of loss occurrence in ¢ =1,
this amount decreases to

wi=wf-0=w,-6. (6)
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The decision to sign an insurance contract is accom-
panied by the payment of an insurance premium P.
Consequently, when signing the contract at time
t = t,, the individual owns the wealth position

Wi=Ww,— P. 7

Assuming a loss 0 of some stochastic level occurs
and therefore a claim is filed at time ¢ = ¢,, the policy-
holder’s wealth at that point in time is denoted by

Wi=w:-0+R(0,0)=W,-P-0+R(6,8) (8

with R(8, 8) as defined in (1).

We assume the policyholder’s utility being described
by a standard mean-variance utility function of his
individual wealth. For a given wealth position W and
the risk aversion parameter a(= 0) of the individual,
this utility function is given by

U(W):E(W)—gVar(W), ©)

where E(W) denotes the expected value of the stochas-
tic variable W.

In the case where no insurance contract was signed
prior to the occurrence of loss, using Equation (6)
and definition (9), the final utility is written as

U(W?)=E(W,-0)- %Var(WO— 0)

=W0—[E(9)—%Var(9). (10)

For the setting in which an insurance contract was
signed by applying the definition in (9) to Equation (8),
we obtain

UWi)=E(W,— P-0+R(6,6))
- %Var(WO— P-06+ R(G, é))

=W,-P-E(6-R(8,6))

Comparing Equations (10) and (11), one sees the
difference in influencing factors for the final expected
utility for each situation. In a setting without the exis-
tence of an insurance contract, the final expected
utility U(W¥) solely depends on the extent of the
actual loss 0 and the policyholder’s risk aversion
parameter a. However, in a situation in which insur-
ance coverage exists, the value of the corresponding
expected utility U(W#) is not only influenced by 6,
P and a. In addition, the policyholder’s fraud strategy p
and the insurer’s auditing strategy ¢ have an impact
on that value due to the payment of R (see (1)). More-
over, if the insured decides to commit fraud, the size
of © that he chooses to claim is relevant, as well as
the enforced penalty payment B (see (1)), in case the
fraudulent claim gets detected.

Condition 2. The individual’s decision to get insur-
ance coverage in the first place depends on whether
his utility by the time of loss occurrence is greater
with having insurance than without it. In other words,

uwi)zu(w?). (12)

Using (11) and (10), this participation constraint
(12) can be written as

~P+E(R(0,0)) - %Var(e— R(8,8)) 2—%Var(9)

o P-E(R(8,8)) < —gVar(R(G, 6))

+aCov(e,R(6,0)). 13)

Based on the representation P < E(R(O, é)) - %

Var(R(6, 8)) + a Cov(0, R(8, 0)), the inequality in
(13) can be interpreted as an upper bound for the
insurance premium the potential policyholder is
willing to pay for his insurance coverage. It depends
on the utility of the payment R and the covariance
between actual loss 6 and R. Furthermore, the indi-

a A vidual’s risk aversion parameter a has an influence
~ = var(6 - R(6.9)). (1 S P
2 on his willingness to pay.
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2.3. Optimization of positions

So far, the model framework and the participation
constraints for both the policyholder and the insur-
ance company have been presented. Based on this
information, we state the corresponding optimization
problems.

The insurance company is aiming to maximize the
net present value of the incoming and outgoing future
payments with respect to its audit strategy such that
both stakeholders are still willing to participate, i.e.,
Equations (12) and (3) hold. Again, it is assumed that
the other parameters are given. This objective func-
tion can be written as:

Insurance company’s optimization problem
Find the audit strategy ¢ s.t. NPV is maximized and
Equations (12), (3) hold. (14)

At the same time, the policyholder’s aim is to
maximize his final expected utility with respect to his
fraud strategy such that both participation constraints
(12) and (3) hold, i.e., an insurance contract exists. It
is assumed that all the other parameters are given. We
will denote this optimization problem by:

Policyholder’s optimization problem
Find the fraud strategy p s.t. U (WIA) is maximized
and Equations (12), (3) hold. (15)

Both stakeholders try to optimize their own respec-
tive position. Our aim is to analyze these conflicting
objectives and participation constraints from both the
insured’s and insurer’s perspective and find a common
acceptance range for the resulting fraud and auditing
strategies.

Given a particular fraud probability p for the port-
folio in focus, the insurer can calculate a) auditing
probabilities ¢ that are acceptable for the policy-
holder and b) an optimal value for ¢ in order to maxi-
mize his NPV. For instance, if ¢ = 10% is a valid
outcome of the optimization procedure, the insurer
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should audit every 10th claim; the auditing costs for
checking this particular claim are given by k.

Under the target function assumed for the insurer
and the policyholder respectively, we show later that in
general no p — g combination exists that maximizes
the position of both stakeholder groups, i.e., the
insurer’s NPV and the policyholder’s utility. Even
though ¢ cannot be freely chosen by the insurer for
a given value of p, the concrete value of ¢ finally
depends on the market conditions (competition/market
power) of the two stakeholder groups. If the market
power would be solely by the policyholders, g should
be a value that maximizes policyholder’s utility; the
insurer’s NPV, however, would be non-negative.

In addition, it should be noted that the insurer
could improve the optimization procedure described
in this section. For instance, the insurer could derive
an optimal threshold value for the claim amount 6.
Claims handed to the insurer below 6 would not be
subject to fraud auditing; claims exceeding  should
be checked with probability ¢. In this context, 6
depends strongly on the auditing costs k. However,
the problem with such a procedure is that the auditing
strategy becomes very ineffective if the policyholder
or a third party (like a car repair station in the case of
motor insurance) receives some knowledge about
the trigger value (see Miiller et al. 2015).

2.4. Assumptions about the distribution
of information

Before presenting the results of our analytical analy-
ses, we summarize the assumptions regarding the
distribution of information among the stakeholders.

2.4.1. Insurance company perspective

The choice of the insurance company’s feasible
auditing strategies depends on the policyholder’s
prevalent defrauding behavior, i.e., the potential fraud
amount and the probability of an incoming claim to be
inflated. The insurance company is assumed to have
full information about the distribution of the reported
losses B due to having observed incoming claims to
date. In particular, this information can be specified
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for each insurance segment or even loss type. Fur-
thermore, we expect that it has an adequate estimate
for the distribution of the actual losses 6 based on
the outcomes of previous auditing processes. Conse-
quently, the insurer is able to deduce the deviation
from the magnitude that is to be expected for the
particular loss type o == 6/0, i.c., the potential fraud
amount in case fraudulent behavior occurs. Since the
optimal auditing strategy also depends on the second
component of the policyholder’s defrauding strategy,
the prevalent fraud probability p, the insurance com-
pany has to estimate this value as well. For this pur-
pose, whole catalogs consisting of criteria, so-called
red flags, have been derived and implemented, aiming
to estimate the probability of a claim being illegitimate
as accurately as possible (see, e.g., Belhadji, Dionne,
and Tarkhani 2000 and Bermudez, Pérez, Ayuso,
Go6mez, and Vazquez 2008). Such indicators can be
targeted at the individuals’ characteristics, such as
gender, nationality or place of residence, as well as
the attributes associated with the loss event. Combin-
ing this information, one is able to obtain a precise
predictor for the fraud probability p (e.g., Dionne,
Giuliano, and Picard 2009). It then chooses the cor-
responding optimal audit probability that maximizes
its NPV in response.

2.4.2. Policyholder perspective

We assume that fraud-prone policyholders do not
have sufficient information about the insurance com-
pany’s auditing process itself, i.e., he or she does not
know the exact criteria for a claim to undergo verifica-
tion. As a consequence, the individual cannot manipu-
late the claim in a way such that the insurer would not
be able to identify the fraud attempt. This assumption
is essential and not unrealistic. Waiving it would make
auditing of any kind redundant, since the insurance
company would never be able to detect loss inflation
or other kinds of manipulation regardless of how the
verification process is designed.

For the purpose of our analysis, we assume the
policyholder to be able to estimate the probability
of being audited by the insurance company when
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submitting a claim. This assumption is not in con-
flict with the one made before. The knowledge of
the probability of one’s claim being audited does
not imply an ability to manipulate the verifiability.
Rather, it provides the policyholder with the possi-
bility to become aware of which fraud behavior is
advantageous in this particular situation and maybe
choose the optimal one.

In the context of our study, we consider one obser-
vation period and determine all potentially feasible
behavioral strategies from both the insurance com-
pany and the policyholder perspectives. Based on their
decisions, however, other behavioral strategies may
become more favorable for one or the other party in the
consecutive periods. Therefore, the potential behav-
ioral options need to be reconsidered by both stake-
holders at the beginning of each observation period.

2.5. Analytical results

In the course of this subsection, we derive analyti-
cal results for the presented optimization problems
assuming different conditions. The proofs can be
found in the Appendix.

In the first proposition, we derive fraud and audit-
ing strategies p and ¢ for a special setting of the model
framework. The crucial assumption in this case is con-
cerning the policyholder’s risk aversion parameter a
that is set a = 0, i.e., we assume the policyholder to
be risk-neutral. This implies optimizing the insured’s
objective function from a present value perspective.

Proposition 1. For a =0 and 6, 0 such that 0< 0
<0, the optimal fraud and auditing strategies from

both stakeholders’ perspectives are p =1 and g = 0.
This results in P = [E(é).

This proposition implies that, under the given
assumptions, the insurance company should waive
auditing incoming claims and allow fraudulent behav-
ior instead. In return, the expected amount of fraud
will be added to the insurance premium. Furthermore,
the proposition confirms a characteristic behavior that
risk-neutral policyholders show. They are assumed
to have no interest in insuring a potential loss at a

CASUALTY ACTUARIAL SOCIETY 211



Variance Advancing the Science of Risk

premium which exceeds its expected value.® Since in
this specific setting all policyholders claim the fraudu-
lent amount © at all times, the premium cannot be set
higher than the expected value of 6. On the other hand,
for the insurance company to be willing to participate
in the insurance relationship, this premium must be
below this value. Hence, the insurance premium equals
exactly E(é). If administration and/or frictional costs
need to be taken into account, Proposition 1 can (even
for risk-neutral insurers) not be fulfilled.

In the remainder of this subsection, optimal fraud
and auditing strategies will be derived for the policy-
holder and insurance company respectively in a more
general setting. First of all, the policyholder is assumed
to be risk-averse, i.e., the risk aversion parameter a is
strictly positive, a > 0. This means his objective func-
tion is actually given as an expected utility function,
i.e., the variance of the difference between indem-
nity payment R(6, 6) and actual loss 0, denoted by
Var(6 — R(O, é)), has an impact on the final result.

Furthermore, whenever the policyholder decides to
make a fraudulent claim, he reports 0 = 00 for some
given finite o0 > 1 to the insurance company. This set-
ting implies that the relative amount of fraud is con-
stant. We deem it likely to assume that fraud-prone
policyholders take the actual loss amount into con-
sideration when trying to inflate it, i.e., they regard
the relative fraud amount as a percentage surcharge.
In this way, the filed claim does not deviate sub-
stantially from the loss amounts that can be expected
related to the corresponding loss type. Consequently,
the inflated claim is not perceived as illegitimate by
the insurance company, which makes it less probable
to undergo verification. This assumption is in line
with the observations stated by Viaene and Dedene
(2004). They found that in the context of soft fraud,
the excess amounts tend to be relatively small.

We will derive fraud and auditing strategies, namely
p° and ¢°*, for the setting introduced above. Other
than in Proposition 1, the potential policyholder is
assumed to be risk-averse.

3See, e.g., Kirstein (2000).
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Proposition 2. Assume p, g to be in the acceptance
range, i.e., an insurance contract exists. For a > 0,
B =0, 06 =06 with some given o > 1, the respective

optimal strategies p*', g’ are given by:

(i) Insurance company perspective
Let some p be given. In order for the net pres-
ent value NPV to be maximized, choose

as large as possible if p> p*
opt __
as small as possible if p < p*
where p* = L
aE(0)

(ii) Policyholder perspective
Let some q be given. In order for the final
expected utility UW?) to be maximized, choose

(as large as possible such that
—E(6)
ap(1-o(1-q))Var(6)
p'= . an
as small as possible such that
—E(6)
lap(1-a(1-q))Var(6)

For the case 0 < mit) <1 no
ap(1-a(l—g))Var(0)

general statement can be made.

Proposition 2(i) looks at the optimization problem
from the insurance company perspective. It states
the optimal auditing strategy with respect to a given
fraud probability. The insurance company has two
general strategies to choose from. It can either decide
to audit the incoming claims with the maximal prob-
ability possible, i.e., such that the participation con-
straints of both policyholder and insurance company
hold true, or the auditing probability can be chosen
as small as possible. This decision depends on an
estimate of the policyholder’s behavior p. Based
on whether it exceeds or falls short of the threshold

k
oc[E—(G)’ the insurance company opts for a high or low
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auditing probability, respectively. According to Propo-
sition 2(i7), the exceed of the threshold is influenced by
the costs per audit k. The lower these are, given some
fixed o and 0, the more likely it is for the fraud prob-
ability to exceed the resulting threshold. In this case, it
becomes optimal for the insurance company to ver-
ify the incoming claims with a high probability. The
opposite relationship holds true for the expected loss
amount 0 and the degree of fraud that is represented
by o. The higher their values are, the lower the thresh-
old becomes and the more likely it is for the estimated
fraud probability to exceed the latter. For the insurance
company, this implies auditing the incoming claims
with the highest probability possible as well. For an
illustration of the results obtained in Proposition 2(i),
see Figure 1(a) and the discussions in Section 4.1.

Proposition 2(ii) considers the policyholder point
of view in this optimization problem. In this case,
the decision whether to choose the fraud probability
as large or small as possible, given a certain auditing
strategy, is not as clear as in the previous situation
described in Proposition 2(i), especially since there
are situations for which no forecast can be made.
Furthermore, difficulties arise when trying to inter-
pret the impact of single model parameters on the
value of the threshold that determines the optimal
auditing behavior in the known cases. However, see
Figure 1(b) and the discussions in Section 4.1 for an
illustration of the optimal fraud probability from the
policyholder perspective.

The challenges that occur with finding a closed-
form analytical solution to the introduced maximi-
zation problem emphasize the need for a numerical
approach. In Section 3, we therefore present a method
for deriving the acceptance range for both policy-
holder and insurance company. Furthermore, the
impact of valid p — g combinations on the objective
quantities U(W¢) and NPV is analyzed and illustrated.

3. Computational aspects

As discussed in the previous section, simple ana-
Iytical solutions to the optimization problem cannot be
derived for all general settings. Moreover, the results
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may be hard to interpret both graphically and econom-
ically. In this section, we will approach these chal-
lenges by using numerical methods and Monte Carlo
simulation. The aim is to compute the acceptance
range with respect to the fraud and auditing strategies
for various parameterizations of the model. After hav-
ing introduced the procedure, the results of the simu-
lations will be analyzed and presented graphically.

3.1. Monte Carlo simulation
and numerical methods

We use the Monte Carlo technique to find the
optimal acceptance range regarding the fraud and
auditing strategies of the policyholder and the
insurance company, respectively. The main idea
behind this approach is to generate a sufficiently
large number of loss realizations N (we will use
N = 100,000) of the random variable 6. Further-
more, we consider all fraud and auditing probabili-

1
ties p and ¢ that are represented by /- i for [ =0,

1, ..., M where M denotes the number of discreti-
zation points on the interval [0, 1]. Based on these
assumptions, the resulting indemnity payments R,
the policyholder’s wealth positions with and with-
out having signed the insurance contract W¢ and
W#and the insurance company’s value V are calcu-
lated for each outcome of the simulation and each
fraud and auditing probability combination.

Using Equations (1), (6) and (8) for R, W¥ and
W¢ respectively, this can written as follows:

R[n,i, j]=(1- p[i]) 6[n]
(I-glj)ab )
+ pli (18)
P [l](+ gLj1(8[n] - B[n])
Wiln,i, j]=W,—6[n] (19)
Wiin, i, jl=W,— P8[n]+ R[n,i, j], (20)

where 0[n] denotes the nth realization of the random
variable 0 and p[i] and ¢[j] are the considered fraud

and auditing probability represented by i % and ji
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fori,j=0,1,...,M,respectively. Consequently, the
term [n, i, j] indicates for which combination of loss
realization and fraud and auditing probabilities the
quantities R, W} and W} are evaluated.

The next step to determining the acceptance range
is to derive the objective quantities, i.e., the policy-
holder’s final utility depending on whether he signed
the insurance contract prior to the loss or not and
the insurance company’s present value based on the
corresponding wealth and value positions calculated
before. For this purpose, we use arithmetic averaging
with respect to the realizations of the random variable 6
for each possible combination of p and q. Regard-
ing the individual’s final utility when having decided
against insurance coverage, we use the following
formula, derived from Equation (10):

UW?) j1=1, (W [n,i, j1)

—géi(wf[n,i,j]), @21

where [1, denotes the estimator for the expected value
with respect to all realizations n =1, ..., N and G2
the estimator for the variance with respect to all real-
izations n =1, . . ., N. The same procedure applies
for the case when an insurance contract was signed,
this time using Equation (11):

U(Wili j1= i, (Wi[n. i, j])
o

-3 5, (Win,i, j1).  (22)

From the insurance company point of view, the net
present value of its future incoming and outgoing cash
flows depending on the fraud and auditing probability
can be derived as follows, based on Equation (2):

NPVIi, jl=P -, (R[n,i, j) - qljlk. (23)

We are now in the position to check for the participa-
tion constraints of both the policyholder and the insur-
ance company. Only if this holds true, an insurance
contract will be offered by the insurance company and
purchased by the policyholder. In addition, our optimi-
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zation problem is only well defined under these con-
ditions. The idea here is to systematically analyze the
participation constraints given in Equations (12) and
(3) for each combination of fraud and auditing prob-
abilities. In case these are verified, we consider the cor-
responding p — g combination as valid. At the end of
this procedure, we obtain the acceptance range.

The actual aim is to find the optimal strategies p and
q such that the objective quantities, i.e., the policy-
holder’s final wealth position U(W¢) and the present
value of the insurance company’s future incoming
and outgoing cash flows NPV, are maximized from
each of the participants’ perspectives. For these to be
determined, we calculate the results for U(W{) and
NPV evaluated with respect to the valid p — g combi-
nations, respectively. Once the maximal values have
been found, we can retrace the corresponding fraud
and auditing probabilities under which the maximum
was attained. This procedure is performed separately
for the two participants.

3.2. Choice of parameters

We analyze the implementation of the model for dif-
ferent parameterizations. The aim here is to study the
influence of certain model parameters on the accep-
tance range regarding the valid fraud and auditing
probabilities.

We make assumptions concerning the distribution
of the loss variable 0, the policyholder’s initial wealth
position W, and the penalty payment B that remain
fixed throughout the whole analysis. For instance, the
policyholder’s wealth position is set to W,,=0. Since his
participation constraint that is given by Equation (12) is
independent of this parameter, our choice will not have
any influence on whether he signs the insurance contract
or not. Furthermore, we assume the random variable 0
to follow a log-normal distribution. This assumption is
commonly used, as mentioned in Marlin (1984), since
it guarantees positive values for the realizations of the
random variable. In particular, the parameters of the
log-normal distributed random variable 6 are set such
that £(0) = 1 = p and Var(0) = 0.4> = 62

This entails that the parameters for the log-normal
distribution are 0.0742 and 0.3853 (for the mean
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and standard deviation of the distribution on the log
scale). Regarding the penalty payment B, we take it to
be of the same value as the corresponding realization
of the loss 0 such that in the case of detected fraudulent
behavior the indemnity payment is 0. Additionally, we
will not consider exogenously given penalties. Viaene
and Dedene (2004) claim that in practice insurance
companies tend to negotiate with allegedly suspicious
policyholders since substantial legal evidence is needed
to prosecute insurance claim fraud successfully.

In this subsection, we analyze the influence of the
policyholder’s risk aversion g, the amount of fraud
that is represented by o, the insurance premium P and
the cost per audit k on the acceptance range, respec-
tively. For this purpose, we use the ceteris paribus
assumption in the analysis, i.e., we study the change
in the acceptance range caused by one isolated factor
while keeping all the others constant. Unless noted
otherwise, the policyholder is taken to be risk averse.
Hence, to start with, his risk aversion parameter a is
set 6. Furthermore, we first assume that in the case of
fraudulent behavior the policyholder always decides
to claim an amount that is 20% higher than the actual
loss. According to Derrig, Johnston, and Sprinkel
(2006), this value seems reasonable. In an auto injury
insurance claim study from 2002, they revealed that
the average payments that were made related to bodily
injury claims added up to approximately $7,872 if
no buildup or fraud was detected, whereas in cases
where fraudulent behavior appeared, the amount rose
up to $9,559 on average. The last assumption that
we have to make concerns the insurance premium.
It can be split up into the fair premium and an appro-
priate loading factor. The fair premium corresponds
to the expected loss. Hence, having set the expected
value of the loss variable 6 to pu = 1, it implies a fair
premium of 1 as well. However, the loss ratio in the
automobile insurance in many industrialized coun-
tries over the last years averaged out to approximately
70%.* Using this observation and the assumption of

since the insurance company faces additional costs
due to the auditing process with positive probability,
it will add a corresponding loading factor to the fair
premium. However, as mentioned in Cummins and
Mahul (2004), the loading factor cannot be chosen
too big since potential policyholders would not sign
the insurance contract under such conditions. For the
purpose of starting our analysis, we will assume the
total insurance premium to be P=1.45. The last param-
eter whose influence on the acceptance range will be
analyzed is the cost per audit k. It is set k = 0.1 which
corresponds to 10% of the expected value of the loss 6.
For the purpose of our analysis and in order to keep
focused, we will disregard costs other than the ones
due to auditing.

The multiplicative relationship 6 = 08 for fraud-
prone policyholders accounts for the built-up case
only. Hence, the variable 0 needs to be positive in this
context. However, an extension of the model setup
could be provided for fraud cases where no claim had
occurred or a claim has taken place which is not cov-
ered by the policyholder’s policy. For such a case, an
additive relationship and information about the aver-
age distribution of the two fraud cases—build-up”
fraud and fraud without an underlying claim—within
the portfolio is needed.

Table 1 sums up the choices for the input parameters
for the reference setting as introduced. In the course
of this study, we base our simulations and studies on
these values.

Unless otherwise noted, the simulation results are
based on N = 100,000 realizations of the loss variable 6
and M = 50 discretization points in the interval [0, 1].

Table 1. Input parameters for the reference setting

Input parameter Reference level

Initial wealth position W, 0
Insurance premium P 1.45

InA s.t. E(0) = p, Var(®) = o?
withp=1lando=0.4

Occurred loss

u =1, we set the fair premium to 1.4. Furthermore, Fraud amount o 1.2
Risk aversion parameter a 6
Auditing cost k 0.1
“See, e.g., U.S., German or Swiss market supervisory data. Penalty payment B realization of &
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4. Simulation results

This section contains the results based on the numer-
ical simulation. First, we discuss the reference set-
ting and the impacts on the objective quantities and
the corresponding optimal strategies. Furthermore,
a sensitivity analysis of the relevant parameters is
performed.

4.1. Reference setting

Before discussing the effects of different param-
eterizations regarding the policyholder’s risk aver-
sion, the amount of fraud, the insurance premium and
the cost per audit on the acceptance range, we will
first illustrate the results given the input parameters
as summarized in Table 1.

Figure 1 shows the acceptance range from both
the policyholder and the insurance company per-
spective based on the values for the input param-
eters that were presented above. Each point in the
graphic represents a valid fraud and auditing prob-
ability combination.

To illustrate the dimension of the objective quan-
tities U(W¢) and NPV that result from the current
parameter choice and a certain p — ¢ combination,
the points in Figure 1 are displayed in different shades
according to the value. For this purpose, given that
the input parameters are fixed, the p — g combina-

tions that lead to the lowest third of outcomes are
presented in the lightest shade, whereas those com-
binations that result in the highest third of outcomes
are shown in the darkest shade. The remaining points
are displayed in a medium shade. This implies that
the darker the shade of a point, the higher is the
relative value of the corresponding U(W+#) or NPV.

4.1.1. Insurance company perspective

From the insurance company point of view, we are
interested in deriving all feasible and, in particular,
the optimal verification strategies characterized by the
probability of auditing ¢ when the prevalent defraud-
ing probability p is known.

For this purpose, let some constant fraud behavior
that is characterized by p be given. The choice regard-
ing the optimal corresponding auditing strategy ¢ from
the insurance company perspective depends on the
value of the fraud probability p. As already proven in
Proposition 2, there exists a threshold p* that deter-
mines whether it is optimal to audit the incoming
claims with the highest probability possible or the
lowest valid probability, i.e., the highest and lowest ¢
respectively contained in the acceptance range. Con-
sidering the choice of the input parameters for the
reference setting, the value of this threshold is given
by p* = k/0E(8) = 0.083. This implies that in the
case p > 0.083, it is best for the insurance company

Figure 1. Acceptance range from both stakeholders’ perspectives. All parameters are chosen as
presented in Table 1. p — g combinations which result in the highest third of NPV and U(W?%) respectively
are displayed in the darkest shade, the ones which result in the lowest third of NPV and U(W?) in the
lightest shade and the remaining ones in a medium shade.
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to audit the incoming claims with the highest valid
probability, whereas if p < 0.083, the optimal strategy
is to chose g as small as possible. These relationships
can be observed in Figure 1(a).

Another interesting observation can be made when
considering p = 1. In this specific setting, the fraud-
prone policyholders decide to inflate their claims by
20% each time they incur an insured loss. Intuition
would tell us that such an extensive case of build-
up cannot be acceptable from the insurance company
point of view, i.e., it would not be possible to find
feasible auditing strategies in this context. However,
we are able to observe the opposite in our analyses
due to the circumstance that the insurer in our ref-
erence setting has to incur relatively low costs to
detect fraudulent attempts. Additionally, in the case
of proven build-up, no indemnity payments are made
to the policyholder, i.e., neither the excess nor the loss
amounts are paid out. As a consequence, it is possible
to have the savings from detected fraud outweigh the
additional costs from indemnifying inflated losses
such that the net present value NPV is positive.
Thereby, the best result from the insurance company
point of view is achieved when performing audits
with the highest feasible probability g.

4.1.2. Policyholder perspective

Similarly to the case above, we determine all accept-
able and especially optimal defrauding strategies p
from the policyholder perspective, given that they
have knowledge of the current insurance company’s
auditing scheme ¢. The former are defined by the
probability of filing an inflated loss amount.

Hence, we assume the insurance company to be
committed to some constant auditing strategy g. From
the policyholder perspective, it is always optimal
to correspond with reporting fraudulent claims at the
highest valid probability p. Figure 1(b) supports this
result.

This finding appears to be rather intuitive. The
premise in this context is the insurance company
having committed itself to some constant verification
scheme expressed by some constant probability g.
However, this implies that the share of incoming
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claims that does not have to undergo the auditing
process remains constant as well. In this case, it is
advisable for the policyholder population to increase
the probability p of exaggerating their loss amounts,
1.e., the share of build-up among the claims that are
indemnified instantly rises as well, leading to higher
payouts for the individuals.

Figure 1(b) can be interpreted in the following way
too: If we have some fixed level for p (with 1 > p > 0)
within the portfolio, the utility of the fraudulent act-
ing policyholders will ceteris paribus be reduced if
g increases, because such policyholders get caught
more often and need to pay the penalty B (> 0). Since
we have no utility change for those policyholders
that are honest in respect to different levels of g, the
overall utility level of the group of policyholders in
the portfolio is reduced if g increases. As p denotes
the (ex-ante) probability that a policyholder in the
portfolio will commit an insurance fraud and the util-
ity is measured for the group of policyholders (and
not on the individual level), we can see that for a
positive value of p one can derive levels for ¢, result-
ing in a situation in which the policyholders are not
willing to purchase insurance any more. However,
there could be some “educational effects” if the policy-
holders assume that for some level of p the insurer
may choose an auditing probability ¢ leading to a situ-
ation in which the policyholders would be better off
without insurance. Acting in a rational way, the policy-
holders should rather reduce p, expecting the insurer
via signaling to reduce g to a level that results in a
valid p — g combination. However, the insurer has a
strong incentive, too, to choose only levels of ¢ which
are acceptable for the policyholders in order to be able
to sell insurance and hence achieve a positive NPV.

As indicated in Section 1, Figure 1 illustrates that in
the setting of our model framework, it is impossible
to find a feasible p — g combination that maximizes
the objective quantities of both stakeholders at the
same time. The prevalent behavioral strategies result
in an optimum of either the insurance company’s
net present value NPV or the policyholder’s utility
U(W?) of having signed an insurance contract prior
to the occurrence of loss. Which one of these events

CASUALTY ACTUARIAL SOCIETY 217



Variance Advancing the Science of Risk

will be observed depends on the market power of the
respective parties. Assuming a highly competitive
market, it is likely for those defrauding and auditing
probability combinations to be applied that maximize
the policyholders’ objective while the insurer is still
willing to adhere to the insurance relationship. How-
ever, if the insurance company is in the position of
possessing the position of power, other probability
combinations become of interest, since the insurer will
be able to maximize its own objective while making
sure to keep contract conditions attractive enough for
its policyholder population.

Furthermore, it seems possible for defrauding and
auditing strategies that have once been optimal for
the respective stakeholder to become unattractive in
the consecutive observation period. Consequently, the
insurance company and the policyholders need to
identify all acceptable probability combinations p — g
at the beginning of each period, and possibly realign
their strategies on this basis.

4.2. Sensitivity analysis
of relevant parameters

In the remainder of this section, we present and
discuss the resulting acceptance ranges, i.e., all valid
p — g combinations based on different choices regard-
ing the input parameters of risk aversion a, fraud
amount 0., insurance premium P and cost per audit .
Since the effects of the different valid p — g combina-

tions on the policyholder’s final utility position U(W+)
and on the insurance company’s present value NPV
have been presented and analyzed, we restrict our-
selves to showing the acceptance range itself with-
out the impacts on the objective quantities.

4.2.1. Influence of policyholder’s
risk aversion

In this subsection, we will analyze the impact of
different risk aversion parameters on the acceptance
range of the fraud and auditing probabilities. For this
purpose, we chose different values for a while keep-
ing all the other input parameters as given in Table 1.
In particular, Figure 2 shows the acceptance range
for the risk aversion parameters a =5 and a = 10.

Comparing the two graphics for the acceptance
range, we find that the upper bound shifts in an upward
direction when increasing the policyholder’s risk aver-
sion parameter. This implies that the higher the risk
aversion of the policyholder is, the broader the accep-
tance range becomes, assuming all the other input
parameters to be constant.

In other words, the more risk averse the policy-
holder is, the higher the auditing probability ¢ can
be chosen for each fraud strategy p while the policy-
holder is still willing to participate in the insurance
contract.

It seems reasonable to assume that policyholders’
risk aversion a and the fraud probability p are not

Figure 2. Acceptance range for different risk aversion parameters a. The remaining parameters are

chosen as presented in Table 1.
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independent from each other. In particular, we would
assume that very risk-averse policyholders (cf. Fig-
ure 2(b) with a = 10) would rather exhibit a lower
fraud probability p compared to policyholders with
a lower degree of risk aversion (cf. Figure 2(a) with
a=15). However, for both cases in our numerical exam-
ple, there still exist acceptable p — g combinations for
the policyholders and the insurer.

4.2.2. Influence of fraud amount

In Figure 3, the acceptance range is displayed for
the fraud amounts oo = 1.1 and o0 = 1.8, i.e., in the
case of fraudulent behavior, the claimed loss is given
by 6=11-00r6=18"-6. Again, the remaining
input parameters are chosen as displayed in Table 1.

Comparing the graphics for the different choices
of o, we find that the upper bound of the accep-
tance range as well as part of the lower bound shift
in an upward direction when increasing the fraud
amount. To be more precise: while the number of
valid p — g combinations with high auditing prob-
abilities ¢ increases for all fraud strategies p, the
change in the lower bound occurs only in the area
of high fraud probabilities p. Summing up these
effects, we can state that the higher the amount of
fraud, the wider the acceptance range becomes.
However, a change from o = 1.2 in the reference
setting to o0 = 1.1 results in marginal modifications
within the acceptance range.

This outcome can be interpreted in the following
way: the higher the amount of fraud o per claim, the
more likely it is for the policyholder to accept higher
auditing probabilities ¢, given that his own fraud
probability p is fixed. In these cases, even though the
auditing activity increased, the gain in final utility
U(W$) due to excessive claiming is still positive,
despite the higher chance of being convicted and
imposed with a penalty payment. On the other hand,
it becomes unattractive from the insurance company
perspective to audit the incoming claims with a low
probability ¢ when the amount of fraud is increased,
assuming a high fixed fraud behavior p. Such a strat-
egy would imply that the majority of fraudulent claims
remained undetected, which consequently leads to
an increase in outgoing cash flows due to excessive
fraud amounts. This increase, however, is not covered
by incoming positions like insurance premiums or
penalty payments. Therefore, if the fraud amount o
goes up, p — g combinations with higher values for g
become acceptable to both stakeholders, whereas no
insurance contract will come into existence with indi-
viduals who are expected to commit excessive fraud
frequently.

4.2.3. Influence of insurance premium
Insurance premiums are another common way to

influence the willingness of both the potential policy-

holder and the insurance company to participate in an

Figure 3. Acceptance range for different fraud amounts o. The remaining parameters are chosen as

presented in Table 1.
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insurance contract. In Figure 4, the acceptance range
is presented for two different values of the insurance
premium, i.e., P = 1.35 and P = 1.55, while the other
input parameters are chosen as in the reference setting.

A comparison of the acceptance ranges when choos-
ing P =1.35 and P = 1.55 shows that the upper bound
shifts in a downward direction when increasing the
value of the insurance premium. This means that
the higher the insurance premium is, the smaller the
acceptance range gets while keeping the remaining
input parameters unchanged.

In other words, the lower the insurance premium P
is, the more willing the policyholder is to accept
higher audit probabilities ¢ when keeping his own
fraud probability p constant. However, if the insurance
premium is set too high, i.e., it exceeds the expected
loss amount by far, potential policyholders will have
no benefit from signing such an insurance contract.

The effect of shrinking acceptance ranges due to
high insurance premiums can be weakened by offer-
ing such contracts to potential policyholders whose
risk aversion is assumed to be high as well. As we
have seen in Figure 2, the increase in risk aversion
has the opposite effect on the acceptance range as
the choice of the insurance premium.

It needs to be pointed out that the insurance premium
seems to have a significant impact on the acceptance
range. Even though the values of P have been varied
only marginally throughout the analysis, i.e., = £7%

of the reference level, the resulting number and posi-
tions of the valid p — ¢ combinations differ markedly.

4.2.4. Influence of cost per audit

The last input parameter that can be adjusted easily
is the cost per audit k. Its value can give an indica-
tion of what type of auditing is being performed by
the insurance company. Auditing procedures in which
standard techniques are applied require minor costs,
whereas investigative processes that are initiated to
verify major claims result in high costs.

Figure 5 displays the acceptance ranges when the
cost per audit is chosen to be k = 0.01 and k = 1.0,
respectively, while keeping the remaining input param-
eters as in the reference setting.

When comparing the graphic where the cost per
audit is set k = 0.01 to the one with £ = 1.0, we find
that the upper boundary of the acceptance range
shifts in a downward direction in the case of low
fraud probabilities p while there appears to be no
change in the remaining valid p — g combinations.
This implies that the higher the cost per audit, the
smaller the acceptance range becomes when keeping
the other input parameters constant. However, only
marginal changes within the acceptance range can be
observed when choosing k = 0.01 instead of k = 0.1
as given in the reference setting.

This observation can be explained in the follow-
ing way: the higher the cost per auditing process,

Figure 4. Acceptance range for different insurance premiums P. The remaining parameters are chosen

as presented in Table 1.
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Figure 5. Acceptance range for different costs per audit k. The remaining parameters are chosen as

presented in Table 1.
o

-

@
o

Auditing probability q
0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraud probability p
(a) Acceptance range: k = 0.01

the less willing the insurance company becomes to
verify those incoming claims for which a low fraud
probability is assumed. Such a strategy would lead to
high expenses for the insurer that are not likely to be
covered. The policyholder rarely commits fraud and
even in case he does, the additional amount claimed
is not excessive. Therefore, relatively high auditing
costs and comparably low expenses resulting from
undetected fraudulent claims are opposing each other.
As a consequence, no insurance contracts will come
into existence with policyholders whose fraud prob-
ability p and amount o are expected to be low while
the cost per audit & is set at a high level.

A way to avoid this effect is to adjust the effort put
into the auditing process to each specific case.

Depending on the type of loss and the corresponding
amount claimed, the insurance company can decide
whether to apply a basic procedure at low cost or an
extensive process that leads to high expenses.

As indicated by the very extreme choice of the
parameters, i.e., in the first case k =0.01 corresponds to
1% of the expected loss and in the second one k= 1.0
equals the expected loss, the cost per audit k does not
have a significant influence on the acceptance range.
However, the results imply that extensive auditing in
the form of high values for ¢ is not sustainable for the
insurance company if the cost per audit « is high.

For simplification reasons we decided to assume
that any detection is successful from the point of view
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(b) Acceptance range: k= 1.0

©
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o

of the insurance company. In practice, this is gener-
ally not the case. However, the introduction of non-
successful detections is comparable with additional
auditing costs k and hence lead to the effect shown
above.

4.2.5. Influence of the penalty

In our basic setting we assumed that B = 6. How-
ever, B strongly depends on the concrete jurisdiction
in force. In Germany, e.g., the penalty is typically
much larger than the pure fraudulent add-up - 0.
The reason for this is that in the case of a detected
fraud, the insurer is allowed to charge the policy-
holder the auditing and administration costs coming
along with this particular fraud case. In addition, the
policyholder may face court and further law costs
and will often not get insurance coverage at that par-
ticular insurer again. In any case, we would expect B
to be positive. This is due to the fact that for B = 0,
at least rational policyholders would always commit
fraud because they could never be worse off com-
pared to the situation without fraud. In our sensitiv-
ity analysis in Figure 6 we reduced the penalty to
B=0.5:0and B=0.1"-0, respectively. We can see
that one gets a larger range of acceptable p — g com-
binations if the penalty is reduced. The interpreta-
tion is straightforward: policyholders would accept
an increase of the auditing probability, because the
penalty is less severe whenever a fraud is detected.
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Figure 6. Acceptance range for different levels of the penalty B. The remaining parameters are chosen

as presented in Table 1.
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(a) Acceptance range: B=0.5-0

4.2.6. Influence of the loss size
standard deviation

In Figure 7 we illustrate the influence of an increase
of the standard derivation of the loss size distribu-
tion on the range of acceptable p — g combinations.
Again, we used a ceteris paribus analysis. There-
fore, we assumed in particular that the same premium
is charged for the different cases (the influence of dif-
ferent premium levels has been analyzed in Figure 4).
Hence, the insurer does not consider the individual
loss size volatility for pricing purposes in these exam-
ples. This is—for instance—the case, if an expected
premium principle is used (in this case, the premium
loading is a percentage of the expected indemnity

1.0

Auditing probability g
0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraud probability p
(b) Acceptance range: B=0.1 - 0

payment). The interpretation of the results can be
done in the following way: For risk-averse policy-
holders, insurance coverage gets more attractive giv-
ing an increasing loss size volatility if everything else
stays unchanged. Hence, policyholders would accept
higher auditing probabilities leading to an increasing
range of acceptable p — g combinations.

5. Conclusive remarks
and outlook

In this study, we build and analyze a model frame-
work that depicts the handling of insurance claims
fraud based on a costly state verification approach.

Figure 7. Acceptance range for different levels of the loss size standard deviation 6. The remaining

parameters are chosen as presented in Table 1.
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We present analytical solutions as well as numerical
methods for solving the resulting optimization prob-
lems that take both the insurance company and the
policyholder perspectives into account. Our focus is
set on deriving an acceptance range consisting of all
valid fraud and auditing probability combinations
and analyzing their optimality regarding both stake-
holders’ objective quantities. In addition, we discuss
the impact of different relevant input parameters on
the size of the acceptance range. Furthermore, we
are able to calculate a threshold value for incoming
claims based on which the insurance company can
decide whether to perform auditing or not.

One of our main findings is the derivation of optimal
auditing and fraud strategies from the stakeholders’
perspectives. Especially from the insurance company
point of view, it seems intuitive: the optimal answer
to low fraud probabilities is to perform auditing with
a small probability as well, whereas medium and high
fraud probabilities require the largest valid audit prob-
ability to maximize the net present value. An inter-
esting observation in this regard is that the insurance
company benefits from the existence of insurance
contracts (almost) regardless of the policyholders’
defrauding strategy. This finding demonstrates that
in the context of cost-minimizing insurers, it is not
essential to completely prevent all defrauding attempts
ventured by the policyholder population.

Based on our numerical approach, we present and
analyze the acceptance range for different parameter-
izations as well as the optimality of different audit-
ing and fraud probability combinations regarding the
stakeholders’ respective objective quantities. While a
relatively high risk aversion, a high relative amount of
fraud, and low insurance premiums result in broaden-
ing the acceptance range, the latter becomes smaller
whenever the value of these input parameters is cho-
sen the opposite way. We also find that the cost per
audit merely influences the number of valid fraud
and auditing probability combinations. Furthermore,
the simulation results support and illustrate our ana-
Iytical findings regarding optimal fraud and audit-
ing strategies.
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The model that we present in this study can be
extended for future research. On the one hand, another
type of auditing could be introduced that, while less
costly than the perfect one, detects fraud only with
some probability less than one. On the other hand,
insurance premiums could depend on the auditing
probability, since more strict auditing policies require
a longer period to process incoming claims and policy-
holders might not be willing to pay the original insur-
ance premium due to possible delays in indemnity
payments. Another topic for further research is to
back test the results derived in this study with insur-
ance company data and profiling experience.

Our model is in many ways a simplification of
real auditing processes in the insurance industry. We
assume that all other indicators for fraudulent policy-
holders’ behavior—e.g., individual claims history
or loss description—had been used already and par-
ticular risks that are suspicious had been selected
and reviewed separately. Hence, we are left with an
approximately homogeneous (sub-)portfolio with no
particular indication for fraud. In this respect, the
insurer auditing procedure is rather a multilayered
process.

However, we do know that this portfolio still faces
on average a positive fraud probability denoted by p.
The insurer can only perform one auditing process
with fixed costs k; the auditing process is thereby
certain to determine a fraud. Both aspects are sim-
plifications of real-world behavior. In general, the
insurer can perform different costly auditing pro-
cesses and a less expensive monitoring will typically
be less accurate in respect to policyholders’ fraudulent
activities. In the context of a homogeneous portfolio,
however, only one auditing process (of a finite num-
ber of different monitoring activities with different
costs and efficiencies) with costs k and a given prob-
ability of a “false positive” / “false negative” would
be optimal for the insurer to use. A combination
of different monitoring activities can be expected
in the context of a heterogeneous portfolio. From
the modelling point of view, it would be possible
to introduce an additional variable indicating the
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probability of a “false positive.” However, the results
are quite straightforward: the effects on the outcomes are
ceteris paribus, very similar to an increase in the audit-
ing costs k (which is shown via numerical examples in
the sensitivity analysis in Section 4.2).

In our model setup, insurance fraud is carried out
by the policyholder. This is not necessarily the case
in insurance practice. In motor insurance, it is often
the repair station that provides very costly and exten-
sive repairing (at least on the invoice) whenever the
claim is insured. The optimization procedure derived
in this paper needs to be revised if a second party can
commit fraud, too. This is due to the fact that the par-
ticipating constraint by the policyholder will in gen-
eral be influenced by the behavior of an additional
group (for instance, a repair station in the case of
motor insurance).

Appendix

In the Appendix, we state the propositions and the
corollary presented in the main part of the paper once
again and provide their respective proofs.

Proposition 1. For ¢ = 0 and 6, § such that 0 < 0
<0, the optimal fraud and auditing strategies from
both stakeholders’ perspectives are p = 1 and g = 0.
This results in P = [E(é).

Proof of Proposition 1
By setting a = 0, the policyholder’s participation
constraint given in Equation (13) can be written as

A

P<E(r(0,9)). (24)

Since both participation constraints have to be
met for an insurance contract to come into existence,
(4) and (24) result in

E(R(0,8))+ gk <P <E(R(0,8)) @ g=0 Vk>0,

In this case, the policyholder’s objective function
(15) can be written as U(W?) =W, — P +p[E(é) —[E@©)].
Due to the assumption of 0 < 6, it attains its maxi-
mum at p = 1.

Furthermore, setting ¢ = 0 and p = 1 in Equation
(1), we get E(R(H, 6)) = E(6). At the same time, one
can conclude from (25) that P = E(R(6, é)). This
leads to P = E(9). |

Proposition 2. Assume p, g to be in the acceptance
range, i.e., an insurance contract exists. For a > 0,
B=0, 6 =00 with some o.> 1, the respective opti-
mal strategies p°', g°* are given by:

(i) Insurance company perspective
Let some p be given. In order for the net pres-
ent value NPV to be maximized, choose

as large as possible if p > p*
= { (26)

as small as possible if p < p*’

k
oE(8)

where p* =

(i1) Policyholder perspective
Let some g be given. In order for the final
expected utility U(W#) to be maximized, choose

[as large as possible such that
—E(0)
ap(1—a(l-gq))Var(6)
= ey
as small as possible such that
—£(0)
Lap(1-ou(1-¢))Var(6)

-E(0)
ap(1-oa(l—gq))Var(6)

eral statement can be made.

For 0 < < 1 no gen-

(25) Proof of Proposition 2
(i) Using Equations (1), (2) and the assumptions
i.e., for any k > 0, ¢ = 0 is the only solution. B=0, 0 = 00 with o, > 1, we get
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P-(1-p)E(©)

- pl-)E@) + gE(® - B)] - gk

P (1= p)E®) - p(1 - q)0E(8) - gk

P—E(0)+ p(1—)E(B) + g[opE(®) — k].
(28)

Deriving (28) with respect to ¢ leads to

9 NPV = opE(0) -k, (29)
dq

which can be distinguished into two cases with

respect to its sign.

(a)

(b)

k
oE(0)
holds, the NPV as defined in (2) has a posi-
tive slope with respect to the parameter g.

If for the given fraud strategy p >

Consequently, the optimal auditing strategy
g™ has to be chosen as large as possible in
order to maximize the value of NPV,

If the given fraud strategy p is given such that

p < m holds, the NPV has a negative

slope with respect to the parameter ¢g. Hence,
the optimal auditing strategy ¢°™ has to be
chosen as small as possible for the NPV to
be maximized.

(i) Applying the assumptions a # 0, B = 0, 6 =00
with a0 = 1 to Equations (1) and (11), we obtain

u(wi')

=W,— P—E(0)+(1- p)E(®)

+ p[(l - q)[E(é) +gE(6— B)]

- §Var[—e+ (1= p)0+ p(1—q)b + pq(6— B)]

=W,

—P—E0)+(1—- p)E®) + p(1- q)E(D)

—%Var[—9+ (I-p)6+p(1- Q)é]

=W,

— P— pE(B) + palE(6) — pgolE(0)

- %Var(—pﬂ + poB — pgod)

=W,

—P-p(l—o+qga)E(O)

Deriving (30) with respect to p results in

O y(Wi)=—(1- 0+ q)E(®)
dp

—ap(1—o.+ qo)* Var(8). (31)

Based on (31), three cases can be identified:
—E(8)
ap(1-o(1-gq))Var(0)

(a) For

> 1, the policy-

holder can choose any fraud strategy p € [0, 1],

especially any p in the acceptance range, such

-E(9)
a(l1-o(l—g))Var(0)

that p <

Applying

this inequality to Equation (31), we obtain

ai U(W¢) 2 0. From this can be concluded
4

that U(W?) has a positive slope. Consequently,
the optimal fraud strategy p°** has to be cho-

sen as large as possible in order to maximize

the value of U(W?Y).
—[E(0)
ap(1—o(1-gq))Var(8)

(b) Similarly, for

<0, the

policyholder can choose any fraud strategy
p € [0, 1], especially any p in the acceptance

—E(9)

range, such thatp >

a(l—o(1-g))Var(0)

For Equation (31) this implies that ai UW?)
p

< 0. This means that in this case U(W+) has a
negative slope, and hence the optimal fraud

strategy p° needs to be chosen as small as

possible for U(W+) to be maximized.
—E(6)

(¢c) ForO<
a(l—o(l1-gq))Var(0)

<1, no gen-

eral statement about the corresponding opti-

mal fraud strategy p°™ can be made.
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