
158 CASUALTY ACTUARIAL SOCIETY VOLUME 5/ISSUE 2

On the Importance of Dispersion 
Modeling for Claims Reserving: 

An Application with the 
Tweedie Distribution

by Jean-Philippe Boucher and Danaïl Davidov

AbSTRACT

We consider Tweedie’s compound Poisson model in a claims 

reserving triangle in a generalized linear model framework. We 

show that there exist practical situations where the variance, as 

well as the mean of the costs, needs to be modeled. We opti-

mize the likelihood function through either direct optimization 

or through double generalized linear models (DGLM). We also 

enhance the estimation of the variance parameters within the 

DGLM by using the restricted maximum likelihood (REML). 

Having a flexible variance structure allows the model to repli-

cate the underlying risk more appropriately and shrinks the gap 

between the predicted variances of different models.
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ible variance structure in order to capture the under-
lying risk appropriately. These occur mainly when 
the frequency and severity trends move in opposite 
directions. An example of such a situation is shown 
in Section 3.

We then show that a flexible variance structure 
can be incorporated with a direct MLE estimation or 
with a double generalized linear model (DGLM). In 
a known frequency framework, both approaches give 
the exact same results. In an unknown frequency 
framework, there is little difference originating in 
the �2 approximation for the DGLM. Finally, we 
also introduce a variance correction that takes into 
account the downward bias of the maximum likeli-
hood estimators.

As a starting point, we consider the constant dis-
persion model from Wüthrich (2003), which is de-
scribed in Section 2. Section 3 depicts potential 
flaws of this model in some practical situations. Two 
types of models that incorporate variance modeling 
are presented in Section 4. Finally, an application of 
these models is illustrated in Section 5, followed by 
a discussion.

2. Tweedie’s distribution

This section closely follows Wüthrich (2003). 
Assume that the data is displayed in a triangle, the 
accident years are denoted by i � I, and the develop-
ment periods are denoted by j � J. Let C

i, j
 denote 

the random variable that represents the incremental 
payments for claims with origin in accident year i 
during the development period j. Suppose that w

i, j
 is 

the exposure of cell (i, j ). There are several ways to 
choose an appropriate exposure: the premium vol-
ume of the accident year, the number of policies, etc. 
We are interested in modeling the normalized incre-
mental payments, denoted by Y

i, j
 � 

C

w
i j

i j

,

,
. Addition-

ally, suppose that

1.  The number of payments R
i, j

 are independent and 
Poisson distributed with mean �

i, j
w

i, j
. We will de-

note r
i, j

 the realization of R
i, j

.

1. Introduction

Setting an appropriate claims reserve is one of the 
main tasks of non-life actuaries. Many methods have 
been developed for such purposes, among which 
the most extensively used are the chain-ladder, the 
Bornhuetter-Ferguson, and generalized linear mod-
els (GLMs). One can refer to Wüthrich and Merz 
(2008) and England and Verrall (2002) for a com-
plete survey of the topic.

The establishment of claims reserves comprises 
two main objectives: determining a good point es-
timate, and evaluating the uncertainty around that 
point. The literature is littered with a wide vari-
ety of models. Even though some might agree on 
similar point estimates, it is not uncommon to find 
models that predict significantly different reserve 
uncertainty levels. In this context, choosing the right 
model might become problematic for the practi-
tioner as his decision might greatly affect the finan-
cial statements of the company, especially since the 
introduction of Solvency II. In order to better under-
stand the variance of the model and reduce the gap of 
the predicted variances between models, this paper 
proposes ways to model both the mean of the costs 
and their dispersion.

In a GLM framework, when a model focuses only 
on the mean of the costs, the predicted variance is 
usually considered in a left-over calculation that only 
depends on the corresponding predicted mean, up to 
a constant. Consequently, depending on the mean-
variance relationship and the dispersion parameter, 
two different models can attribute different variances 
to the same predicted mean. Therefore, the overall 
predicted variances from model to model can be sig-
nificantly different, while the overall point estimate 
remains relatively similar. However, if a flexible 
variance structure is introduced, different models 
will tend to agree a little more on the variance of 
each observation, thus reducing the gap in the re-
serve uncertainty levels between models.

Moreover, and more importantly, there is a strong 
indication that some practical cases require a flex-
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Jørgensen (1997), the mean and variance of Y
i, j

 are 
given by
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We say that Y
i, j

 has mean �
i, j

, exposure w
i, j

, disper-
sion parameter �

i, j
, and the power of the variance 

function is p. The boundary cases p → 1 and p → 
2 correspond to the overdispersed Poisson and the 
gamma models, respectively. Hence, Tweedie’s 
compound Poisson model with p � (1,2) can be seen 
as a bridge between the Poisson and the gamma mod-
els. Although the Tweedie class of models is defined 
on almost all the real values of p, this paper considers 
only p � (1,2).

2.1. Likelihood function

Using the density of Equation (2.1), we get the fol-
lowing log-likelihood function:
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2.2. Dispersion parameter

The dispersion parameter can be estimated in at 
least two ways. The first approach is the maximum 
likelihood estimator. Setting the first derivatives of 
the log-likelihood (2.2) equal to 0, one gets (for �

i, j
 

constant):
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The second approach uses the deviance principle. 
This measure compares the likelihood of a model  

2.  The individual payments Xi j
k
,
( )  are independent 

and gamma distributed with mean �
i, j

 and shape 
parameter � � 0.

3.  R
i, j

 and Xm n
k
,

( )  are independent for all indices.

4. C
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 � 1 0 1{ } ,
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As shown in Appendix A of Wüthrich (2003), 

Y
i, j

 follows a Tweedie’s compound Poisson model. 
Moreover, the distribution of Y

i, j
 can also be repa-

rametrized in such a way that it takes the form of the 
exponential dispersion family:
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 has a probability weight at 0 given by
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We also suppose that the means follow a multiplica-
tive structure so that

� �i j i jX, ,exp{ },

where � are the mean parameters and X
i, j

 are the cell 
coordinates of observation (i, j ). Then, as shown in 
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Tweedie models in Peters, Shevchenko, and Wüt-
hrich (2009). Using the same approach as described 
in Wüthrich (2003), the MSEP of a Tweedie com-
pound Poisson model as defined previously can be 
approximated by

MSEP[ ] , ,
( , )

R wi j i j
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where R is the total reserve, which is the sum of the 
future predicted incremental claims, and � repre-
sents the cell coordinates of future claims. Also, �

i, j
 

� X
i, j

� and Cov( , )� �i j i j1 1 2 2
 denotes the sum of the 

covariance matrix elements intersecting the two sets 
of parameters. One can refer to England and Verrall 
(2002) for more details.

3. Variance modeling

Although dispersion modeling has seen many 
applications (see Smyth and Jørgensen 2002), it is 
not yet thoroughly covered in the context of claims 
reserving. Still, there are a few discussions on this 
topic, namely section 8.1 of Taylor (2000), albeit 
that heteroscedasticity is treated there by means 
of weights. In a chain ladder framework, Mack’s 
(1993) model has a natural tendency to have a flex-
ible variance structure since the � j

2  are estimated for 
each column. In a Tweedie model context, there is 
some evidence in Wüthrich (2003) that this topic has 
been attentively considered, yet, there has not been a 
follow-up work to support that idea. This notion also 
emerges once again a few years later in England and 
Verrall (2006), when an estimator of the dispersion 
parameter for each column in the bootstrap algorithm 
is developed. As of late, there are two more papers 
on the Tweedie model that apply a varying disper-
sion parameter: Taylor (2007) Section 4, Equation 
(4.1), and Meyers (2008) Section 3, Equation 4, and 
footnote 1. Still, there might be indications that vari-

resulting in means (�
i, j

) to an unrestricted full model 
(y

i, j
), as shown below:
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where N is the number of observations and Q is the 
number of parameters used to estimate the means.

2.3. Optimizing p

Regardless of which principle one uses to deter-
mine �, the variance parameters (p and �) need to 
be estimated at the same time. As shown in Wüthrich 
(2003), the variance parameters have a limited im-
pact on the mean parameters and vice-versa. Indeed, 
p, �, and to some extent w

i, j
, tend to have their main 

influence on the variance of the model, and less so 
on the means. Similarly, the means have only an in-
direct impact on the variances.

When using the likelihood principle for estimating 
�, one can replicate the algorithm shown in Wüthrich 
(2003), which alternates the optimization between 
the means and the variances. However, there is an 
even quicker approach: one can use the built-in opti-
mization algorithms of statistical computer programs 
to estimate both the mean and the variance parame-
ters at the same time.

2.4. Mean squared error of prediction

The reserve uncertainty level is typically measured 
by the mean squared error of prediction (MSEP). It is 
common to decompose this statistic in two:

MSEP � Process risk � Parameter estimation error.

The process risk describes the fluctuation of ran-
dom variables getting various outcomes for each real-
ization. The parameter error reflects the uncertainty 
in the reliability of the estimates of the parameters. 
One can find a good explanation about the MSEP for 
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where N is Poisson distributed, X
k
 is gamma distrib-

uted, and X
k
 and N are independent for all indices. 

One can calculate the first two moments of C as 
shown in Table 1 (Case 1). Now, we are interested 
in what happens if we double the frequency as op-
posed to doing the same to the severity. Without any 
surprises, in both cases, the mean of the total costs 
doubles. However, the variance quadruples in Case 3 
while it only doubles in Case 2. This situation forces 
a Tweedie model with constant dispersion factor to 
choose a predicted variance that has the potential to 
be correct at most in only one of the two scenarios. 
Therefore, depending on the information on the fre-
quency and the severity, the total claims model might 
need additional parameters in order to be correctly 
adjusted for its variance.

In the same spirit, the optimization of p helps the 
variance structure to better replicate the uncertainty 
of the risk without affecting the means noticeably. It 
is a known feature that the p parameter is strongly 
correlated with the overall importance of the severity 
in the model. If there are many small claims (pre-
dominant frequency), p will be closer to 1 (Poisson 
model). Inversely, if there are a few large gamma-
distributed claims, p will tend towards 2 (gamma 
model). Finally, one should keep in mind that the p 
parameter is deeply related to the dispersion parame-
ters and has an important impact on the variance of 
the model.

One could argue that we could incorporate a flex-
ible model structure p

i, j
 instead of using a flexible 

variance structure �
i, j

. Indeed, this could be explored; 
however, one first needs to prove that the flexible 
variance structure is insufficient. Second, develop-

ance modeling can be explored further in a Tweedie 
model framework.

Before introducing a GLM structure that accounts 
for both the mean and the dispersion, one needs to 
understand the phenomenon encountered in practice 
that triggers this need. To begin, it is not uncommon 
to come upon situations where most of the claims 
are declared early in the development years. In this 
case, we say that there is a decreasing tendency for 
the frequency throughout the development years. On 
the other hand, there exist situations where the aver-
age cost of claims tends to get bigger throughout the 
development periods. For example, in the automo-
bile business line, when an accident benefit1 claim 
goes to court, the longer the trial lasts, the greater the 
potential size of the claim. Hence, claim severity can 
have a positive trend. The modeling key is to recog-
nize a situation where the frequency has one trend, 
and the severity has the opposite trend, regardless of 
which is going up or down. These are the situations 
where models with constant dispersion are most 
prone to mishandling the variance of the risk.

A good way to deal with such situations is to 
model separately the frequency and the severity and 
to combine them only in the end. This observation 
has already been made by Adler and Kline (1978), 
which incorporates these notions by the use of a 
deterministic approach. Similar approaches can be 
also found in De Jong and Zehnwirth (1983), Reid 
(1978), and Wright (1990).

Alternatively, one can argue that a Tweedie’s 
compound Poisson model is by definition a good 
way to take into account both the frequency and the 
severity. Indeed, the model has a good structure; 
however, the number of parameters used to describe 
the risk can be insufficient. To picture this, one can 
analyze the following typical situation. Suppose that 
the aggregate losses C follow a standard compound 
Poisson model:

C Xk
k

N

=
=
∑ ,

1

1Injury to the body.

Table 1. Mean and variance of C for 3 cases 

Case 1 Case 2 Case 3

E[N]   10   20   10

Var[N]   10   20   10

E[Xk]   10   10   20

Var[Xk]  100  100  400

E[C]  100  200  200

Var[C] 2000 4000 8000
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are obtained through direct optimization of the like-
lihood function. This can be done with the use of a 
statistical package or by setting the first derivatives 
of the likelihood function equal to zero. 

A DGLM comprises two distinct general linear 
submodels that are calibrated successively until 
global convergence is met. We usually define one 
submodel for the means and the other submodel 
for the variances. Both submodels communicate 
to each other through response variables. Depend-
ing on whether we know the frequency or not, the 
required response variables can be different. When 
the frequency is unknown, we have a joint mean- 
variance model that is part of the exponential disper-
sion family. This allows the use of the unit deviances 
of the means as a response for the variance sub-
model, which in turn generates the dispersion used 
to calibrate the exposures of the mean submodel. 

On the other hand, when the number of claims 
is known, the joint mean-variance likelihood func-
tion simplifies in such a way that it unfortunately 
excludes the model from the exponential dispersion 
family. This disallows the use of straight unit de-
viances as response variables and thus triggers the 
need of a clever transformation to restore the DGLM 
framework (see Section 4.2.2).

Since the ML and the DGLM aim for the same 
objective, their optimal parameters are usually very 
alike or even exactly the same. In fact, in an unknown 
frequency framework, since an approximation for 
the likelihood is required, the results might not be 
exactly the same as the ML. On the other hand, when 
the number of claims is known, the ML and DGLM 
give exactly the same results, as there is no approxi-
mation at all (see Section 4.2.2).

Models with a flexible variance structure are more 
prone to have technical difficulties such as over- 
parametrization, as foreshadowed in Wüthrich 
(2003) (Section 4.2). For example, one often cannot 
use explicit variance parameters near the ends of the 
triangle because the observations get scarce. There-
fore, one should either regroup the last few lines to-
gether, or use tendency parameters instead (Hoerl’s 
curve). Additionally, one should be aware of the pos-

ing an analytic formula for a flexible p
i, j

 can be very 
hard, even impossible, and it is needless to say that 
numerical approximations could have convergence 
problems. Third, the Tweedie class of models tends 
to be quite different for p � (1,2), which might trig-
ger additional difficulties. For all of the above rea-
sons, we suppose that p is constant (but still needs to 
be estimated).

4. Dispersion models
4.1. Defining a flexible variance 
structure

A dispersion model has a flexible variance struc-
ture denoted by

� �i j i jZ, ,exp{ },

where �
i, j

 is the dispersion factor of cell (i, j )  and Z
i, j

 
is the (i, j ) t h row of the design matrix with the cor-
responding vector of parameters �. We use rows and 
columns to explain the dispersion just as we would 
for the means.

To establish a flexible variance structure in the 
model, we insert �

i, j
 in the likelihood function (2) 

instead of �. Unfortunately, this procedure differs 
somewhat, depending on whether we know the under-
lying frequency or not. When the number of claims 
is known, the infinite sum in the likelihood function 
reduces to one term only (the observed frequency), 
which greatly simplifies the calculations. In the lat-
ter case, the presence of the infinite series makes the 
procedure complex. One way to approximate it is by 
recognizing a generalized Bessel function as shown 
in Peters, Shevchenko, and Wüthrich (2009). An al-
ternate approach would be to use the saddle-point ap-
proximation as suggested in Jørgensen (1997). This 
paper’s main focus is the application of dispersion 
models in a known frequency framework, and thus 
the technical difficulties emerging from an unknown 
frequency framework are not discussed here.

Two approaches are explored to maximize the 
likelihood: direct estimation through the maximum 
likelihood estimators (ML) and the double general-
ized linear model (DGLM). First, the ML estimators 
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which supposes that the d
i, j

 are approximately dis-
tributed, as � �i j, 1

2  for �
i, j

 is reasonably small. Since 
this distribution is a particular case of the gamma 
distribution (with its own dispersion parameter equal 
to 2), we can therefore use the gamma model to find 
a good estimation of �

i, j
. Finally, the dispersion-

prior exposures are inserted back again in the mean 
submodel for the next iteration of the algorithm.

For the mean parameters �, the Fisher scoring up-
date equation is

 �k T TX WX X Wz+ −=1 1( ) ,  (4.2)

where �k�1 is a function of the preceding iterations: 
�k and �k. Also, W is a diagonal matrix of working 
exposures:
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where g() = log() is the link function (chosen to be 
multiplicative in this case). The scoring iteration 
(4.2) is used by many standard statistical GLM pack-
ages for mean parameter optimization.

For the dispersion parameters �, we have

 � k T
d

T
d dZ W Z Z W z+ −=1 1( ) ,  (4.3)

where �k�1 is a function of the preceding iterations: 
�k and �k. Equation (4.3) is the variance counterpart 
of the mean GLM directed by Equation (4.2). 

Also, W
d
 is a diagonal matrix of working exposures
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Standard errors for � and for � are obtained from 
(XTWX)�1 and (ZTWd Z )�1 respectively. Since � and 

sible bias created when regrouping the last lines of the 
triangle together. Since the means are disproportion-
ably well estimated near the ends of the triangle, the 
dispersion might be somewhat flawed in these regions.

4.2. Estimation with a known frequency

4.2.1. Maximum likelihood estimation
The maximum likelihood estimates are obtained 

through direct optimization of the likelihood func-
tion. Using Equation (2.2) and known frequency r

i, j
, 

the log-likelihood function becomes:
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Although the log-likelihood function (4.1) is no lon-
ger part of the exponential family (Smyth and Jør-
gensen 2002), the optimization is easier to obtain 
because there is no infinite series to approximate. 
Also, it is important to note that knowing the fre-
quency impacts mostly the variances of the claim 
costs since the means were already well modeled.

4.2.2. DGLM estimation
We closely follow the methodology described 

in Smyth and Jørgensen (2002) which contains the 
complete demonstration for all the results presented 
in this section. In order to be able to use the DGLM 
when the frequency is known, we need to define dis-
persion-prior exposures as:
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For each submodel, the Fisher scoring equations are 
used to find the optimal parameters. First, the mean 
gets optimized using a Tweedie model with a fixed 
deviance and fixed p. Then the deviance-responses 
are optimized using the saddle-point approximation 
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 are the diagonal elements of the matrix:

W X X WX X WT T1 2 1 1 2/ /( ) .−

One can refer to Smyth and Verbyla (1999) and 
Dunn (2001) for a discussion of this adjustment. It 
is also shown that the scoring iteration (4.4) approxi-
mately maximizes with respect to � the penalized 
log-likelihood:

l y p l y p X WXT*( , , , ) ( , , , ) log ,� � � �= +
1

2
 (4.5)

where l y p( , , , )� �  is the log-likelihood (4.1) and 
1
2 log X WXT  is the REML adjustment. Hence, 

approximately unbiased estimation of p can be ob-
tained by maximizing the saddle-point profile log-
likelihood for p in Eq. (4.5).

5. Applied example
5.1. Data used

We consider Swiss Motor Industry data as ana-
lyzed in Wüthrich (2003). We have observations of 
incremental paid losses and the number of payments 
for nine accident years on a horizon of up to 11 de-
velopment years. We also suppose that the exposure 
is the number of reported claims for each accident 
year (we suppose that it is sufficiently developed af-
ter two years). We use the same exposure throughout 
all observations of the same accident year.

5.2. Setting up the models

We applied several models, all four with the use of 
the number of payments:

1.  A constant dispersion model (Model I) (Section 2);

2.  A model that directly optimizes the log-likelihood 
function (Model II) (Section 4.2.1);

� are orthogonal, alternating between (4.2) and (4.3) 
typically results in a fast convergence. Also, score 
tests and estimated standard errors from each GLM 
are correct for the combined model (Smyth 1989).

To find p optimal, we can use the likelihood func-
tion (Eq. 4.1) evaluated at a defined set of DGLM-
estimated parameters � and �. We then repeat this 
procedure for several different fixed p and compare 
the likelihood.

As explained in Smyth and Jørgensen (2002), in 
insurance applications, we will almost always have 
w

d
 � 1, in which case we interpret (w

d
 � 1)/(2V

d
(�)) 

as the extra information about � arising from obser-
vation of the number of claims r. If w

d
 � 1, then 

the saddle-point approximation which underlines the 
computations is poor, and true information arising 
from y is less than that indicated from an unknown 
frequency framework.

4.2.3. Approximation with restricted 
deviance (REML)

It is well known that the maximum likelihood 
variance estimators are biased downwards when the 
number of parameters used to estimate the fitted val-
ues is large compared with the number of observa-
tions. In normal linear models, restricted maximum 
likelihood (REML) is usually used to estimate the 
variances, and this produces estimators which are ap-
proximately and sometimes exactly unbiased. Note 
that this correction only targets the estimation of 
the variances, and thus has a residual effect on the 
means. 

When using the REML, the variance parameters 
are approximated by

 � k T
d

T
d dZ W Z Z W z+ ∗ − ∗ ∗=1 1( ) .  (4.4)

Put simply, Equation (4.4) is exactly like the standard 
variance scoring Equation (4.3), but with weights 
Wd

∗  and vector components zd
∗ adjusted.
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of these models, we estimated a variance parameter 
for each column except for the last one which was 
regrouped with the second to last column.

The � and � are parameterized in such a way that 
the first parameter represents the base level, defined 
as cell (1,1). The subsequent parameters represent 
the difference of the corresponding row or column 
with the base level in a multiplicative structure. In 
order to replicate the exact same chain ladder model 
structure as in Wüthrich (2003), a different mean pa-
rameter was used for every line and column. This 
may render the model overparametrized, and perhaps 
the parameters should be tested for significance, but 
this possibility is not considered here any further.

5.3. Analyzing the parameters

The parameters for all models are shown in Table 
4. First, for Model I, we get p � 1.1741, which is sig-

3.  A double generalized linear model (Model III) 
(Section 4.2.2);

4.  A double generalized linear model with REML 
(Model IV) (Section 4.2.3).

For the constant dispersion model (Model I), we 
replicate the procedure in Wüthrich (2003) by using 
a direct maximum likelihood estimation for �

i, j
, �, 

and p, with:

� �i j i jX, ,exp{ }.

For the variance models (Models II, III, and IV), 
using:

� �i j i jZ, ,exp{ },

we believe that the Swiss Motor data might have dif-
ferent trends for the frequency and severity over the 
development periods, but not in the accident year 
direction. Hence, we suppose that only the columns 
have a direct effect on the dispersion. For all three 

Table 2. Incremental payments

AY 1 2 3 4 5 6 7 8 9 10 11

1 17841110 7442433  895413 407744 207130  61569  15978  24924  1236 15643 321

2 19519117 6656520  941458 155395  69458  37769  53832 111391 42263 25833

3 19991172 6327483 1100177 279649 162654  70000  56878   9881 19656

4 19305646 5889791  793020 309042 145921  97465  27523  61920

5 18291478 5793282  689444 288626 345524 110585 115843

6 18832520 5741214  581798 248563 106875  94212

7 17152710 5908286  524806 230456 346904

8 16615059 5111177  553277 252877

9 16835453 5001897  489356

Table 3. Number of payments and exposure

AY 1 2 3 4 5 6 7 8 9 10 11 wi,j

1 6229 3500 425 134 51 24 13 12 6 4 1 112953

2 6395 3342 402 108 31 14 12  5 6 5 110364

3 6406 2940 401  98 42 18  5  3 3 105400

4 6148 2898 301  92 41 23 12 10 102067

5 5952 2699 304  94 49 22  7  99124

6 5924 2692 300  91 32 23 101460

7 5545 2754 292  77 35  94753

8 5520 2459 267  81  92326

9 5390 2224 223  89545
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Table 4. Optimal parameters

Parameter Effect Model I Models II & III Model IV

�0 Base Level 5.1435 5.1540 5.1530

�1 Line 2 0.03731 0.0334 0.0344

�2 Line 3 0.10070 0.0913 0.0921

�3 Line 4 0.08002 0.0677 0.0687

�4 Line 5 0.08620 0.0576 0.0584

�5 Line 6 0.04357 0.0370 0.0386

�6 Line 7 0.07003 0.0547 0.0557

�7 Line 8 0.02563 0.0137 0.0150

�8 Line 9 0.05388 0.0426 0.0442

�9 Column 2 –1.1153 –1.1144 –1.1144

�10 Column 3 –3.2200 –3.2208 –3.2207

�11 Column 4 –4.2223 –4.2209 –4.2208

�12 Column 5 –4.5580 –4.5585 –4.5583

�13 Column 6 –5.4936 –5.4959 –5.4958

�14 Column 7 –5.8798 –5.8838 –5.8835

�15 Column 8 –5.9238 –5.9246 –5.9245

�16 Column 9 –6.8404 –6.8522 –6.8519

�17 Column 10 –6.8463 –6.8574 –6.8569

�18 Column 11 –11.0067 –11.0172 –11.0163

�0 Base Level 7.3010 5.4798 5.4809

�1 Column 2 0 0.5304 0.5159

�2 Column 3 0 2.3016 2.2598

�3 Column 4 0 3.3337 3.2792

�4 Column 5 0 4.1655 4.1076

�5 Column 6 0 4.6665 4.5982

�6 Column 7 0 5.3468 5.2785

�7 Column 8 0 5.6223 5.5585

�8 Column 9 0 5.8686 5.8062

�9 Columns 10 & 11 0 6.0888 6.0724

p All 1.1741 1.8112 1.7981

�i,1 Column 1 1482 240 240

�i,2 Column 2 1482 408 402

�i,3 Column 3 1482 2396 2300

�i,4 Column 4 1482 6724 6375

�i,5 Column 5 1482 15449 14596

�i,6 Column 6 1482 25497 23840

�i,7 Column 7 1482 50342 47070

�i,8 Column 8 1482 66310 62280

�i,9 Column 9 1482 84830 79786

�i,10 Column 10 1482 105725 104120

�i,11 Column 11 1482 105725 104120
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per cell are shown in Table 5. We can see that the 
predicted means are very similar.

As explained in Section 4, the parameters for the 
ML models (Models II and III) are exactly the same. 
We also note that all the parameters of the REML 
model (Model IV) are very close to that of the ML 

nificantly different from p � 1.8111 and p � 1.7981 
in the variance models. Apparently, allowing for a 
flexible variance structure can impact p significantly. 
Also, this change in p leads to a small difference in 
the mean parameters �. Nevertheless, this impact is 
still relatively minimal. The reserve point estimates 

Table 5. Reserve point estimates per cell for Models I, II, III, and IV

Model I

AY 1 2 3 4 5 6 7 8 9 10 11

1

2 326

3 21,233 331

4 20,260 20,141 314

5 49,511 19,798 19,682 307

6 50,747 48,563 19,419 19,305 301

7 71,608 48,663 46,569 18,622 18,512 289

8 170,099 66,743 45,357 43,405 17,356 17,255 269

9 237,410 169,703 66,588 45,251 43,304 17,316 17,215 269

Models II & III

AY 1 2 3 4 5 6 7 8 9 10 11

1

2 324

3 21,024 328

4 19,989 19,885 310

5 48,591 19,217 19,118 298

6 50,747 48,720 19,268 19,169 299

7 71,099 48,238 46,311 18,316 18,221 284

8 169,789 66,495 45,115 43,313 17,130 17,041 266

9 237,577 169,502 66,383 45,039 43,239 17,101 17,012 266

Model IV

AY 1 2 3 4 5 6 7 8 9 10 11

1

2 325

3 21,029 328

4 19,997 19,897 311

5 48,584 19,219 19,123 299

6 50,792 48,751 19,285 19,189 300

7 71,108 48,254 46,315 18,321 18,230 285

8 169,880 66,527 45,145 43,331 17,141 17,055 266

9 237,745 169,638 66,432 45,080 43,269 17,116 17,031 266
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MSEP was calculated using Formula (2.3). The co-
variance matrix we used is the inverse of the Fisher 
information matrix, which for Models III and IV is 
(XTWX)�1. Interestingly, the covariance matrix of the 
variance models is roughly four times that of Model 
I. Results of the MSEP in Table 7 show that disper-
sion modeling has a great impact on the estimation 
of the uncertainty of the reserve for this particular 
example.

In attempting to recognize that a constant disper-
sion with the likelihood principle was perhaps not 
enough, Wüthrich (2003) used an artificially esti-
mated deviance-based dispersion parameter (with p 
fixed at 1.1741) that was 19 times bigger (Model V), 
where the parameter � went from 1482 to 29,281. 
This Model V uses exactly the same parameters as 
Model I, but its dispersion parameter is estimated by 
the deviance principle. Table 7 illustrates the results. 
Still, it is unclear what methodology is best; we can 
just observe that the modeler’s decisions may im-
pact the uncertainty level. Thus, in order to replicate 
exactly the model in Wüthrich (2003), the MSEP 
shown in Table 6 supposes that � has been changed 
to 29,281. Yet, looking at the results, we do not see 
significantly different reserve uncertainty levels be-

models. For example, for p, Figure 1 illustrates the 
profile log-likelihood for the ML and REML models.

It seems that the variance models indicate that the 
dispersion should be increasing as the development 
years mature. These results match perfectly the ini-
tial hypothesis described in Section 3. Moreover, the 
dispersion parameters are increasing monotonically, 
which indicates that there is no reversion in the sever-
ity trend: the more you wait, the bigger the variance 
of the outcome. Also, the change in dispersion from 
240 to roughly 105,000 indicates that the slope of the 
overall trend is very steep, evidencing the force of 
the variance change that is required to calibrate the 
model to the data. We also note that only the first two 
columns have a dispersion smaller than the constant 
dispersion. All of the remaining columns have a dis-
persion parameter that is noticeably bigger.

5.4. Estimating the point reserve and 
the uncertainty level

The reserve point estimates and the mean squared 
error of prediction (MSEP) for all models are dis-
played in Table 6. First, all four models agree on 
similar reserve point estimates since the mean pa-
rameters were already very close. For all models, the 

Figure 1. Penalized log-likelihood for varying p, for ML (Models II and III) and REML DGLM (Model IV)
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5.5. Further discussion

It is important to note that allowing for a flexible 
variance structure does not guarantee that the overall 
variance in the model will be different, nor any of the 
reserve uncertainty levels per accident year. How-
ever, it is strongly suggested that variance modeling 
be considered when the modeler has reasons to be-
lieve that the underlying tendency of the frequency 
is different from the tendency of the severity. These 
tendencies can usually be uncovered by a direct one-
way analysis. However, once the model is set up, the 
authors recommend an analysis of the pattern of the 
variance parameters in order to determine if a flex-
ible variance structure is reasonable or not.

Note that Model IV (REML) produces generally 
somewhat lower estimates than Models II and III for 
this particular example. This seems contrary to the 
fact that REML tends to correct the ML tendency to 
underestimate dispersion. It turns out that Model IV 
has also different mean estimates which slightly alter 
the variance parameters. Had the mean parameters 
been the same, then the variance parameters would 
have been higher with the REML procedure. Thus, 
it should be noted that the REML procedure might 
prove useful as it corrects both the mean parameters 
(slightly) and the variance parameters.

Unfortunately, the REML procedure is not readily 
available in a direct maximum likelihood optimiza-
tion. Recall that the REML scoring iteration (4.4) 

tween Models II, III, and IV compared to Wüthrich’s 
model, at least on the aggregate accident year basis. 
There might be greater differences on a cell-by-cell 
basis because Models II, III, and IV allow for more 
flexibility.

Table 6. Reserve point estimates and MSEP decomposition 
for Models I, II, III, and IV

Model I

AY (i) Ri Estimation Process MSEP1/2

1 — — — —

2 326 420 418 593

3 21 565 3505 4897 6022

4 40 716 4301 6732 7989

5 89 298 5836 10 457 11 975

6 138 335 6868 13 157 14 841

7 204 262 7917 16 365 18 180

8 360 484 10 263 22 979 25 167

9 597 056 13 778 30 761 33 706

Total 1 452 042 40 489 45 761 61 102

Models II & III

AY (i) Ri Estimation Process MSEP1/2

1 — — — —

2 324 546 550 775

3 21 352 16 978 24 517 29 822

4 40 185 19 994 31 771 37 538

5 87 224 28 118 52 617 59 659

6 138 203 32 871 64 695 72 567

7 202 469 34 772 73 968 81 733

8 359 148 40 833 96 159 104 470

9 596 118 47 064 113 899 123 239

Total 1 445 023 183 285 190 409 264 289

Model IV

AY (i) Ri Estimation Process MSEP1/2

1 — — — —

2 325 563 568 800

3 21 357 17 044 24 601 29 928

4 40 205 19 914 31 569 37 325

5 87 224 27 665 51 600 58 549

6 138 317 32 261 63 294 71 041

7 202 512 34 032 72 155 79 777

8 359 344 39 826 93 538 101 663

9 596 578 45 830 110 665 119 780

Total 1 445 862 180 470 185 670 258 926

Table 7. Reserve point estimates and MSEP decomposition 
for Model V, with � estimated by the deviance principle

AY Ri Estimation Process MSEP1/2

1 — — — —

2 326 1 869 1 861 2 638

3 21 565 15 601 21 795 26 804

4 40 716 19 144 29 962 35 556

5 89 298 25 976 46 538 53 297

6 138 335 30 564 58 556 66 052

7 204 262 35 230 72 833 80 906

8 360 484 45 664 102 268 111 999

9 597 056 61 307 136 903 150 003

Total 1 452 042 180 126 203 658 271 886
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the model might be marginally lower as the number 
of variance parameters increase.

6. Conclusion

It has been shown that there exist situations in 
claims reserving where the variance needs to be 
modeled. We establish a flexible variance structure 
through direct maximum likelihood estimation and 
through double generalized linear models. We also 
use a restricted maximum likelihood as a correction 
to the variance parameters in the double generalized 
linear models. Having a flexible variance structure 
allows the model to replicate the underlying risk 
more appropriately and shrinks the gap between the 
predicted variances of different models.
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