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ABSTRACT

We present an attribution analysis of residential insurance losses 

due to noncatastrophic weather events and propose a compre-

hensive statistical methodology for assessment of future claim 

dynamics in the face of climate change. We also provide valuable 

insight into uncertainties of the developed forecasts for claim 

severities with respect to various climate model projections and 

greenhouse emission scenarios. The results of our study pave 

the way for more accurate short- and long-term cost-benefit 

assessment of climate adaptation in the insurance sector.
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one of the very first steps on the path of a system-
atic and sound analysis of future insurance risk due 
to noncatastrophic weather events, the results of our 
study pave the way for more accurate short- and 
long-term cost-benefit assessment of climate adapta-
tion in the insurance sector.

The strategy we employ includes an analysis of 
nonlinear dependencies between weather and claims 
data; detection of critical thresholds, or tipping 
points leading to an increased number of claims; 
and joint frequency-severity predictive modeling 
of weather-related daily losses. A summary of the 
proposed analysis strategy is presented in Figure 1.1; 
all the details are explained further in the paper.

The remainder of this paper is organized as follows. 
Section 2 describes the data: recorded insurance 
claims and weather conditions as well as climate 
projections (Step 1 in Figure 1.1). Section 3 show-
cases the methods of attribution analysis and tail 
comparison (Steps 2 and 3 in Figure 1.1). Section 4 
presents joint frequency-severity predictive model-
ing and forecasts (Step 4 in Figure 1.1). The paper is 
concluded with a discussion in Section 5.

2.  Data

In this study, we use Canadian residential insur-
ance claim data, local weather station data, gridded 
instrumental data products, and regional climate 
model data that are described below.

Insurance Data    The insurance data consist of 
redacted, anonymized, and aggregated home insur-
ance claims (counts and dollar losses) incurred due 
to weather damage reported by postal code during  
10 years spanning 2002 to 2011. The data have 
been internally validated for quality control, and the 
selected geographic locations represent four urban 
areas in Canada, which we call City A, City B, City C,  
and City D. City A is situated in the continental 
climate zone in the high prairie, City B directly on 
a lake in the Great Lakes area, City C in eastern 
Canada with cold and temperate continental climate 
characterized by four distinct seasons, and City D in 

1.  Introduction

There is a growing body of scientific evidence that 
extreme weather events are increasing in frequency 
and intensity (Intergovernmental Panel on Climate 
Change [IPCC] 2014a). This phenomenon has already 
led to significant property damages and mounting 
insurance losses due to floods, storms, hurricanes, and 
other natural disasters (e.g., see Bouvet and Kirjanas 
2016; LSE 2015; NAIC 2016; Smith and Matthews 
2015 and references therein). To mitigate the adverse 
effects of this upward trend, insurers need a compre-
hensive attribution analysis of climate-related claim 
dynamics at a local level and a reliable quantification 
of future climate-related risks.

Whereas a vast literature exists on modeling insur-
ance risks due to weather disasters and catastrophic 
events (see, e.g., overviews by Grossi, Kunreuther, 
and Windeler 2005; Kunreuther and Michel-Kerjan 
2012; Toumi and Restell 2014), little is known about 
how to address risks due to less extreme events, the 
so-called low individual but high cumulative impact 
events, which have exhibited rising frequencies over 
time. The yet-scarce literature on this topic primarily 
focuses on modeling a number of weather-related 
insurance claims (Scheel et al. 2013; Soliman et al. 
2015; Lyubchich and Gel 2017) rather than on the 
dynamics of related losses. A few recent studies 
on predicting insurance losses due to extreme but 
noncatastrophic weather events include Haug et al. 
(2011), who consider Norwegian home insurance data 
aggregated at a provincial level; Cheng et al. (2012), 
who analyze rainfall-related damage in four cities in 
Ontario, Canada; and Held et al. (2013), who use 
various downscaling methods to evaluate winter-
storm-induced residential losses in Germany.

In this paper, we develop an attribution analysis 
of weather-related insurance losses on a daily scale 
and present a comprehensive statistical methodology 
for assessing future loss dynamics. Our study also 
provides a valuable insight into uncertainties of the 
developed forecasts for claim severities with respect 
to various climate model projections and greenhouse 
emission scenarios. While the current paper is only 
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obtained for each city, from which we use mean 
temperature, total precipitation (millimeters, snow is 
converted to water equivalents), and speed of maxi-
mum gust (kilometers per hour) for our analyses. Gust 
speeds less than 31 kilometers per hour (8.6 meters 
per second) are not reported, but this is well below the 
wind level that would be expected to cause damage 
claims (Stewart 2003).

Climate Model Output    Data from three climate  
model experiments used in this study are derived 
from the CanRCM4 version of the Canadian Regional 
Climate Model run by the Canadian Center for Cli-
mate Modeling and Analysis. The model is described 
in Scinocca et al. (2016), and the model experiments 
used here were part of the North American Coordi-
nated Regional Climate Downscaling Experiment 
(Giorgi and Gutowski 2015). Regional climate 
models require lower-resolution input data from 
either processed observational data sets or a global-
scale climate model.

eastern Canada with a similar hemiboreal climate with 
no dry season but at double the elevation of City C. 
All four selected cities are medium sized and have 
similar population densities. At the preprocessing 
stage, we normalize the daily number of claims by the 
number of policyholders on each day and adjust the 
dollar amounts by the metropolitan area composite 
quarterly index of apartment building construction  
(Table 327-0044, http://www5.statcan.gc.ca). Since 
we have no data on collected premiums and thus  
are unable to evaluate the loss ratios, similarly to 
Frees, Meyers, and Cummings (2012), we focus on 
the assessment of claim frequencies and severities 
(see Frees, Derrig, and Meyers 2014 for a detailed 
discussion and literature overview).

Weather Observations    The weather observa-
tions we use in our analysis are provided by Envi-
ronment Canada in its Digital Archive of Canadian 
Climatological Data and are available from http://
climate.weather.gc.ca/. Daily climatological data are  

1. Data support

• Observed daily number of claims
• Observed daily weather conditions 

(e.g., precipitation, temperature, 
and wind speed)

• Observed claim-by-
claim losses

• Future daily projections 
of the weather 
conditions (e.g., 
RCP 4.5 and 8.5)

2. Attribution analysis
• Identify critical thresholds in 

weather variables
• Fit a time series model for the 

number of claims versus weather 
variables

3. Tail comparison
• Use algorithm 1 to estimate future change (� ) in the number 

of claims, based on different climate projections

4. Joint frequency-severity predictive modeling
• Fit a parametric distribution to the daily number of claims
• Adjust the distribution mean by �  to reflect the forecasted changes in the number of claims
• Use this new distribution of claims in algorithm 2 to simulate the future daily losses

Note: RCP = Representative Concentration Pathway.

Figure 1.1.  Flow chart of the attribution analysis and joint forecast of daily 
number and severity of weather-related home insurance claims
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of Soliman et al. (2015) and Lyubchich and Gel (2017) 
to modeling a number of weather-related claims, 
with a collective risk model (CRM) simulation algo-
rithm of Meyers, Klinker, and Lalonde (2003). As a 
result, we propose a new method for joint frequency-
severity predictive modeling of weather-related claim 
severities.

3.1.  Triggering thresholds  
and attribution analysis

The first step of our methodology is to find criti-
cal thresholds for weather variables after which the 
severity of daily claims starts to increase monotoni-
cally (Lyubchich and Gel 2017). This knowledge of 
the weather effects is useful and important not only 
for accommodating nonlinearities in statistical models 
but also for the insurance industry to (1) dispatch 
insurance inspectors more efficiently (short-term), 
(2) establish appropriate building guidelines (long-
term), and (3) formulate mitigation and prevention 
policies (long-term).

We use two methods to find the thresholds for 
observed insurance claim counts versus precipita-
tion and wind speed: Classification and Regression 
Trees (Breiman et al. 1984; Derrig and Francis 2006; 
Hadidi 2003) and Alternating Conditional Expecta-
tions (ACE) transformations (Breiman and Friedman 
1985). In addition to precipitation and wind speed, 
we considered a set of other atmospheric variables as 
potential predictors, including surface air temperature 
and pressure. However, our model selection analysis 
based on the Akaike information criterion (AIC) indi-
cated that surface air temperature and pressure are 
not important predictors. (AIC is a model selection  
criterion that is widely used in numerous actuarial 
applications; see Brockett 1991; Frees, Derrig, and 
Meyers 2014; and references therein.)

The key ideas of Classification and Regression Trees 
(Breiman et al. 1984) are to

•	 use piecewise constant functions to approximate 
nonlinear relationship between covariates (weather 
events) and a response variable (the number of house 
insurance claims due to adverse weather);

To evaluate uncertainty due to various scenarios of 
global warming, we use available data at 25 kilometers 
(0.22 degree) spatial resolution from two CanRCM4 
experiments run with the second-generation Cana-
dian Earth System Model, CanESM2, as input data. 
In particular, we consider two runs from 2006 to 
2100, forced with greenhouse gas scenarios known 
as RCP 4.5 and RCP 8.5. These Representative Con-
centration Pathways (RCPs) are commissioned by 
the IPCC and have been used widely in different 
efforts to study potential impacts of climate change. 
The RCP 4.5 scenario stabilizes greenhouse forcing 
to 4.5 watts per square meter before 2100 and rep-
resents a world where greenhouse gas emissions 
are brought under control by a variety of human 
actions. RCP 8.5 is a business-as-usual scenario where 
greenhouse gas forcing from human activities is not 
curtailed and rises to 8.5 watts per square meter by 
2100. The climate in each of the model runs develops 
independently, so small differences between model 
runs are expected due to normal stochastic noise in 
the climate system.

In addition, to assess uncertainty due to the poten-
tial discrepancy between climate model output and 
weather observations, we consider a third experi-
ment of the CanRCM4 regional model that was run 
for 1989 to 2009 with ERA-Interim reanalysis data 
(Dee et al. 2011) as input data. A climate reanalysis 
provides an estimate of the state of the climate sys-
tem over the whole globe based on observations by 
coupling models with the observations. Like global 
climate model output, reanalysis data are continuous  
(unlike true observations) and can be used as the input 
data for the regional climate model. The ERA-Interim 
run of CanRCP4 represents a validation experiment 
to test how well the model represents the real world 
when the boundary condition inputs are from the real 
world rather than a model simulation.

3.  Methods

To develop an attribution analysis of current 
weather-related losses and to assess dynamics of 
future claim severities, we combine the approaches 
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transformation plots as the location of a breakpoint, 
which separates values of a weather predictor with 
trivial or no impact on the claim counts from the 
values having a significant impact. We finally truncate 
the weather predictors by setting the observations 
below selected thresholds to zero.

For the attribution analysis, we use a Generalized 
Autoregressive Moving Average (GARMA) approach 
by Benjamin, Rigby, and Stasinopoulos (2003), which 
accommodates integer-valued time series as well as 
non-Gaussianity of the variables. Let Y1, . . . , Yt be 
observed daily number of claims and Xt be a matrix 
of some exogenous regressors (precipitation, wind 
speed, etc.). Then, we can model conditional mean 
of Yt, given Y1, . . . , Yt – 1, X1, . . . , Xt, as

, (3.1)

1

1
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g Y g

t t j t j t jj
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where g( •) is an appropriate link function, β is the 
vector of regression coefficients, φ are coefficients of 
the autoregressive part of order p, and q are coeffi-
cients of the moving average part of order q. We use 
a zero-adjusted Poisson distribution to model daily 
claims, and link function g( •) is ln( •). See Cameron and 
Trivedi (2013); Creal, Koopman, and Lucas (2013); 
Fokianos (2015); and references therein for dis
cussion of GARMA and other models for time series 
of counts.

The ACE-selected thresholds for precipitation and 
wind speed are reported in Table 3.1, along with the 
modeling results of the number of claims versus the 
weather predictors in GARMA(p, q) framework (3.1), 
where model order q was selected using AIC. The 
variability of estimated parameters is not high, and 
City B has generally higher βs, implying higher 
vulnerability to severe weather, which may be related 
to the city’s location directly in the Great Lakes area.

Remark.    Atmospheric thresholds that are cur-
rently adopted in civil engineering for building codes 
and standards primarily target extreme catastrophic 
events (see, e.g., Crawford and Seidel 2013; Gillespie, 

•	 partition the predictor space with binary splits for-
mulated in terms of the covariates, for example, 
identify thresholds in precipitation amounts that 
iteratively split the range for this variable into 
intervals; and

•	 divide the whole domain into relatively homoge-
neous subdomains so the thresholds are chosen to 
provide the most homogeneous responses (claim 
counts) within each subdomain.

The tree-based models do not aim to construct 
an explicit global linear model for prediction or 
interpretation. Instead, the nonparametric tree-based 
approaches bifurcate the data recursively at critical 
points of covariates to split the data into groups that 
are as homogeneous as possible within and as hetero-
geneous as possible in between.

ACE is a nonparametric procedure that smoothly 
transforms predictors Xj to maximize the correlation 
between the response Y and transformed predic-
tors fj(Xj) in a linear additive model (Breiman and 
Friedman 1985):

�,
1

Y f Xj jj

k∑ ( )= α + +=

where α is the intercept, fj( •) are some smooth 
nonlinear functions, k is the number of predictors, 
and  are independent and identically distributed 
random variables. ACE also can employ a smooth 
transformation of response, that is, q(Y), with the goal 
to minimize

.
1

2
E Y f Xj jj

k∑{ }( )( )θ − =

ACE transformations are splines with a predefined 
degree of smoothness, which is a special case of the 
generalized additive models (see Frees, Derrig, and 
Meyers 2014 for an overview of generalized additive 
models in actuarial sciences). In addition, a user can 
define such conditions as monotonicity and periodicity. 
In our analysis, we apply monotonic transformations 
to predictors without transforming the response.

Similar to Soliman et al. (2015) and Lyubchich 
and Gel (2017), we identify the thresholds from ACE 
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use this information together with GARMA output 
to incorporate the climate change effects into claims 
forecasts.

We now apply Algorithm 1 to the claim dynamics  
in four cities and summarize our findings in Table 3.2. 
In particular, Table 3.2 suggests that claim counts will 
likely increase in all four cities during 2021–2030. 
The major increase is expected for City B, which is 
directly on a lake, indicating that changes in lake-
derived moisture and its representation in the model 
should be explored in detail to fully understand this 
result. In general, higher elevation corresponds to a  
smaller increase in claim counts, but it is uncertain 
whether this is due to a reduced change in climate 
with elevation or is simply an artifact of the model 
representation of elevation and its dynamical impacts. 
There is not a large difference between the two sce-
narios for this time period because the climate projec-
tions do not diverge enough by 2021–2030 to make 
a substantial difference in the analysis. The small 
differences of a few percentage points between sce-
narios are likely due to climate system noise expected 
between different model runs.

3.3.  Future projections with  
respect to different climate  
comparison scenarios

We now conduct an extensive study to examine 
the discrepancies arising from using different climate 
model outputs and observations. Specifically, our 
previously discussed analysis was based on weather 
observations in 2002–2011, and future projections 

Antes, and Donnelly 2016; Obama 2015) and do 
not account for low individual but high cumulative 
impact events, which have exhibited rising frequen-
cies over time but still remain a gray zone for risk 
management in the public sector. Hence, the burden 
of handling the outcomes of such low individual but 
high cumulative impact events is still on insurers  
and their clients. The study proposed here allows us 
to shed light on the critical thresholds and methods  
to derive them that could be used by the insurance 
companies to mitigate risks and minimize their 
losses—before the public-sector entities recognize 
the challenges of the gray zone of low individual but 
high cumulative impact events.

3.2.  Adaptive extrapolation  
of claim frequencies

The selected thresholds and estimated model 
parameters further play a role in assessing future 
trends in the number of insurance claims. We obtain 
future values of atmospheric variables at daily reso-
lution from the climate model projections. Similar 
to the modeling step (Section 3.1), we focus on the 
distribution tails above certain thresholds, which are 
both most important in insurance claims modeling 
and most dynamic as they exhibit greater changes 
than the rest of the distribution (Figure 3.1). Algo-
rithm 1, which is a multivariate extension of the 
quantile-based method of Soliman et al. (2015),  
is based on the idea of numerical integration and 
allows us to naturally compare tails of two distribu-
tions (e.g., observed and forecasted precipitation) and 

Table 3.1.  Results of attribution analysis and modeling of daily number of 
weather-related claims using weather predictors (precipitation and wind speed) 
in 2002–2011

Thresholds GARMA(0, q) model parameters

City
Precipitation, 

millimeters/day
Wind speed, 

kilometers/hour β̂pcp β̂wind speed q

A 5 50 .032 (.004) .013 (.001) 1

B 1 50 .034 (.004) .037 (.002) 6

C 1 45 .024 (.002) .021 (.001) 3

D 5 55 .026 (.002) .014 (.001) 1

Note: Standard errors are in parentheses.
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climate model produced during an evaluation run for 
the recent past (1989–2009), which was forced with 
ERA-Interim reanalysis data. This analysis allows us 
to compare outputs of a climate model representation 
of the recent past and of the future (climate scenarios 
RCP 4.5 and RCP 8.5) at the same space-time reso-
lution, to evaluate discrepancies in our analysis that 
arise due to differences between the climate model 
output and real-world observations. A disadvantage 
of using ERA-Interim forced output is the lack of 
model output data for certain years and varying data 
availability for different climate models. In our case, 
evaluations continued up to 2009, whereas available  

have been based on comparing future climate model 
output against the weather observations.

To evaluate the uncertainty due to climate model 
projections and model discrepancies in estimating 
the “true” state of atmosphere, here we use an alter-
native to weather observations—output of the same 
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Figure 3.1.  Box-plots of daily precipitation less than 50 millimeters per day observed in 2002–2011  
and projected for 2021–2030 under RCP 4.5 and RCP 8.5

Table 3.2.  Summary of projected increase (D, percentage)  
in weather-related claim counts in 2021–2030, relative to  
the baseline level of 2002–2011

Climate scenario for 2021–2030

City RCP 4.5 RCP 8.5

A 20 21

B 89 99

C 35 33

D 30 28

Algorithm 1.  Incorporating the effects of weather extremes in 
extrapolation of the claim frequencies (modified multivariate 
version of the quantile-based method by Soliman et al. 2015)

1. � Select a percentile threshold li for the i-th weather predictor  
(i = 1, . . . , k), based on the baseline (reference, observed) 
distribution. Here we set li as the 90th percentile of observed 
distribution for all i.

2. � Let Ni be the number of observations above li, which are sepa-
rated into wi equally filled intervals with ni = Ni/wi observations in 
each. The number of intervals wi can be automatically selected, 
for example, using the Sturges’ formula: wi = log2 Ni + 1.

3. � Let Cij be a center of j-th interval, then find quantile distances 
between climate projections and observations: Pij = C ij

fcst – C ij
obs, 

where j = 1, . . . , wi.
4. � Repeat the steps above for each i = 1, . . . , k, and calculate  

the overall change in the number of claims suggested by the  
tail dynamics of the weather predictors:

ˆ ,
11
G P nij ij

w

i

k i

ı∑∑ ( )∆ = β
==

where G (•) is an inverse function of g (•).
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The projected numbers of weather-related home 
insurance claims were compared between three 
possible analysis scenarios summarized in Table 3.4. 
The scenarios differ based on (1) which weather data 
source (observations or climate model output) we 
use for estimating critical thresholds and GARMA 
modeling and (2) whether we compare future climate 
model output with the model itself (ERA-Interim 
evaluations) or with the observed data.

Scenario 1. Model number of claims (ncl ) as a 
function of observed data (obs), that is, ncl ∼ b1 × obs.  

insurance data cover 2002–2011; thus, we had to 
reduce the period of analysis from 10 to 8 years: 
2002 to 2009.

The climate model adequately represents the 
variables of the climate system that are important for 
our analysis. The model data are characterized by 
a higher proportion of days with very low precipita-
tion (Figure 3.2), which is compensated for by higher 
extremes, such that the centers of the distributions, 
that is, the first to third quartiles, remain close to each 
other (Table 3.3).
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Figure 3.2.  Frequency distribution of original (blue) daily precipitation and output of the ERA-Interim 
reanalysis (shaded) for the eight-year period of 2002–2009

Table 3.3.  Summary comparison of daily observed precipitation and output of the ERA-Interim evaluation, for the eight-year period 
of 2002–2009 (millimeters per day)

City Data Minimum 1st quartile Median Mean 3rd quartile Maximum

A Observations 0 0 0.0 1.0 0.6 34.1

ERA-Interim evaluation 0 0 0.1 1.6 1.0 82.0

B Observations 0 0 0.0 2.2 1.3 62.9

ERA-Interim evaluation 0 0 0.2 2.9 2.4 107.3

C Observations 0 0 0.0 3.2 3.2 75.5

ERA-Interim evaluation 0 0 0.2 3.2 2.7 153.3

D Observations 0 0 0.0 3.2 3.0 88.3

ERA-Interim evaluation 0 0 0.3 3.7 3.2 114.6
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for claim frequencies with the simulation algorithm 
of Meyers, Klinker, and Lalonde (2003) to eval
uate the distributions of future claim severities. We 
start from the CRM method of Meyers, Klinker, and 
Lalonde (2003) adapted for one line of insurance 
(Algorithm 2).

Algorithm 2 can be applied using as Zk the 
observed distributions of daily number of claims 
and claim-by-claim losses. However, to obtain fore-
casts using Algorithm 2, we need an approximation 
of the distribution of claim counts so we can adjust 
it to the future scenarios of claim frequencies.  
We considered a range of distributions to approxi-
mate the daily number of claims (Delaporte, negative 
binomial of types I and II, Poisson, Poisson inverse 
Gaussian, Sichel, and zero-inflated/adjusted Poisson)  
(Frees, Derrig, and Meyers 2014; Trowbridge 1989) 
and found that the Sichel distribution (Figure 4.1) 
delivers the most competitive results based on AIC. 
The Sichel distribution is a three-parameter com-
pound Poisson distribution; the two-parameter form 
is known as the inverse Gaussian Poisson (Stein, 
Zucchini, and Juritz 1987). The Sichel distribution 
provides a flexible alternative for modeling highly 

Compare tails of future climate projections with 
observed data and estimate the change d1. The pro-
jected change in a future number of claims D is a 
function of b1 × d1.

Scenario 2. Model number of claims (ncl) as a func-
tion of the reanalysis data (era), that is, ncl ∼ b2 × era. 
Compare tails of future climate projections with era 
and estimate the change d2. The projected change in a 
future number of claims D is a function of b2 × d2.

Scenario 3. Model number of claims (ncl) as a 
function of observed data (obs), that is, ncl ∼ b1 × obs.  
Compare tails of future climate projections with era 
and estimate the change d2. The projected change in 
a future number of claims D is a function of b1 × d2.

Remarkably, all three comparison scenarios agree 
not just in a common upward trend (number of claims 
is increasing) across the four considered cities but also 
in similar forecasted changes for each city across the 
three comparison scenarios. This validates our origi-
nal approach (Scenario 1), which has an advantage 
of using a longer data set (subject to insurance data 
availability, which is the period of 2002–2011 in 
our case) for reducing the uncertainty in statistical  
models. Hence, in our further analysis we proceed 
with Scenario 1.

4.  Joint Frequency-Severity 
Predictive Modeling

To forecast the dollar amounts (severity) of incurred 
losses, we use the CRM approach. This approach 
entails integrating our GARMA-based projections 

Table 3.4.  Projected change in the number of claims (D, percentage), depending on the source of weather data and scenario  
of comparisons. The compared eight-year periods are current (2002–2009) and future (2021–2028)

Comparison scenario Scenario 1 Scenario 2 Scenario 3

Current weather data (used in attribution analysis) Observations ERA-Interim evaluations Observations

Future is compared against current Observations ERA-Interim evaluations ERA-Interim evaluations

Future climate scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City A 21   22   25   26   25   25

B 94 100 118 116 119 116

C 32   31   37   36   35   35

D 32   29   37   36   38   36

Algorithm 2.  CRM simulation (a modified version of  
the CRM method by Meyers, Klinker, and Lalonde 2003)

1. � Select a random count K from a distribution of daily number  
of claims with mean l, where l is the expected claim count.

2.  Select random claim sizes Zk, where k = 1, . . . , K.
3.  Calculate daily loss X = ∑K

k=1Zk.
4. � Repeat the three steps above B times and use {X}1

B to construct  
a distribution for daily claim severities.
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tion still provides the best fit among all other con-
sidered distributions.

To validate the approach of approximating the 
number of claims with a Sichel distribution, we first 
consider the distributions of the observed claim sever-
ities versus their approximations using Algorithm 2  
(Figure 4.2). The worst fit is observed for City B, 
which is not surprising given that it has very few 
(about 11%) days with nonzero losses, compared to 
more than 30% of days with losses in the other three 
cities. In the cases with more nonzero data (City A, 
City C, and City D), the simulated distributions mimic 
the distributions of observed severities well; therefore, 
we proceed with using the Sichel distribution in the 
CRM approach (Algorithm 2) for assessing the 
projected distributions of claim severities.

Further, we employ results of Algorithm 1  
(Section 3.2) for estimating D under comparison 
Scenario 1 (Section 3.3) for the longest period of 
data availability for the given scenario (10 years: 
2002–2011). Table 3.2 shows the estimated increase 
in claim frequencies, which implies the respective 
changes in parameter µ of a Sichel distribution.  
We now apply CRM Algorithm 2, where simulations 

skewed distributions of observed counts, and its 
utility in actuarial applications has been introduced 
by Willmot (1986), Panjer and Willmot (1990), and 
Willmot (1993) and then extensively studied in a 
variety of insurance settings (see, e.g., Bermúdez 
and Karlis 2012; Hera-Martines, Gil-Fana, and 
Vilar-Zanon 2008; Tzougas and Frangos 2014, and 
references therein). Table 4.1 reports the estimated 
parameters of the Sichel distribution fitted to the 
number of claims in each city in the period 2002–
2011. The Kolmogorov-Smirnov and Anderson-
Darling goodness of fit tests at the 5% significance 
level do not provide evidence against the fitted 
Sichel distributions for City A and City C. The null 
hypothesis is rejected by these tests in City B and 
City D due to outliers; however, the Sichel distribu-
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Figure 4.1.  Results of fitting Sichel distribution curves to the series of normalized number of claims  
in four cities (bars); x-axes are truncated to the same value

Table 4.1.  Estimated parameters of the Sichel distributions 
for the normalized number of claims

City

Parameter A B C D

µ 4.99 1.82 2.83 2.31

s 4.85 3.77 3.00 2.10

n –1.89 –1.45 –1.88 –2.01
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increases in losses, and the most profound changes 
are suggested for City B (in both lower and upper 
percentiles). Such findings can be explained by 
the greater expected increase in claim frequencies  
(Table 3.2), the location of City B (directly on the 
lake), and the higher variability of fit for City B 
(the approximation of the number of claims by the 
Sichel distribution is less accurate for this city, which 
affects the approximation of the losses).

Remarkably, although the projected changes in 
mean frequency of claims in other cities are relatively 
synchronous (20–35% increase for City A, City C, 
and City D; Table 3.2), the changes in individual 
percentiles are more variable and range from a decline 
of 3% (in 75th percentile under RCP 4.5 for City A) to 
an increase of 94–96% (in 75th percentile for City C).

5.  Conclusion

In this paper, we present a new method for mod-
eling and forecasting house insurance losses due 
to noncatastrophic weather events. Our data-driven 

Note: CAD2002 = Canadian dollars adjusted for inflation to the level of 2002.
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Figure 4.2.  Original (red) and approximated with Algorithm 1 (shaded) distributions of daily losses in  
the four cities. Y-axis represents the percentage of the total number of days in the period 2002–2011 
(days with zero losses are counted toward the total of 100% but are not plotted).

Table 4.2.  Summary of the observed and projected 
percentiles of daily weather-related losses in CAD2002

City Percentile
Observed in 
2002–2011

Climate scenario  
for 2021–2030

RCP 4.5 RCP 8.5

A 75th 4,258 4,124 4,237

90th 15,451 15,868 16,250

95th 25,814 28,161 29,559

B 75th 0 4,205 4,688

90th 704 15,738 17,049

95th 5,015 29,228 30,689

C 75th 1,722 3,347 3,370

90th 8,829 12,466 12,144

95th 15,847 20,603 20,647

D 75th 2,506 2,637 2,636

90th 8,393 9,217 9,175

95th 15,770 16,289 15,840

of the future number of claims in Step 1 are based 
on the Sichel distribution with parameters µ + D.

Table 4.2 presents the observed and projected 
percentiles for daily losses under Scenarios RCP 4.5  
and RCP 8.5. All four cities exhibit noticeable 
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“normal” weather; however, in a changing climate, 
that length of record may be too long since we expect 
the weather to change significantly during 30 years 
(Huang, Dool, and Barnston 1996; Livezey et al. 
2007). It has been suggested that temperature and 
precipitation across the continental United States 
can be well characterized by only 10 and 15 years 
of data, respectively, providing the optimal predic-
tive skill for the following year (Huang, Dool, and 
Barnston 1996). Thus, our analysis of 10 years is rea-
sonable, though an analysis of the length of record 
needed for optimum predictive skill in each variable 
of interest could be employed by industry analysts 
with access to larger actuarial data sets and existing 
publically available weather and climate data. Expan-
sion of this method to spatially more extensive data sets 
in the future would provide important information 
about regional patterns of expected future climate- 
claims relationships. With such information, we expect 
companies could adjust rates to more appropriately 
reflect the changing potential risk of “normal” weather 
hazards in a region.

From a practical standpoint, this type of analysis 
would need to be updated as model data become avail-
able (approximately every five years) to continue to 
use cutting-edge information about the future climate. 
Climate models, both regional and global, are con-
stantly being improved. We used the latest available 
North American regional dynamically downscaled 
climate data at the time of our analysis, but the global 
model projection data are updated every five years 
for the IPCC reports, and new regional model data 
are available accordingly if funding for the science 
is continued.

The approach of our study sidesteps the traditional 
notion that the past is a feasible predictor of the future. 
In social and natural sciences, information from the 
past behavior of a system often is used as a predictor 
of the future behavior of the system. However, this 
assumption is valid only as long as there is a rea-
sonable expectation that the dynamics of the system 
do not vary (significantly) over time. Anthropogenic 
climate change, however, causes a relatively rapid 

approach is based on integrating two algorithms, 
that is, a multivariate extension of a nonparametric 
method for analysis of weather-related claim counts 
by Soliman et al. (2015) and a simulation-based 
algorithm for collective risk modeling by Meyers, 
Klinker, and Lalonde (2003). We evaluate uncertainty 
due to potential differences between climate model 
output and weather observations and evaluate the 
estimated losses from two global warming scenarios. 
As a result, we produce a projected distribution of 
weather-related claim severities that intrinsically 
accounts for local geographical characteristics and, 
hence, is suitable for short- and long-term manage-
ment of insurance risk due to adverse weather events. 
For instance, in the case of short-term risk manage-
ment, when the projected precipitation is expected to 
exceed the critical threshold defined by our method-
ology, the insurance company may proactively hire 
more insurance assessors and loss adjusters to ensure 
timely processing of claims. In the case of medium- 
and long-term risk projections, the results of this study 
can be used to reevaluate insurance premiums and a 
range of insurance products offered in a particular  
area as well as to offer incentives for homeowners  
who reduce vulnerability of their properties to adverse 
weather effects and more closely collaborate with 
public-sector entities on introducing new weather-
resistance building codes and standards.

Despite the well-documented effects of adverse 
weather on the insurance industry, our study is one 
of the first attempts to understand and evaluate the 
impact of noncatastrophic atmospheric events on 
the insurance sector, particularly home insurance 
(see the literature review by Lyubchich et al. 2019). 
Hence, we would like to conclude the paper with a 
discussion of a number of caveats, limitations, and 
open research directions.

In this proof-of-concept study, we use data from 
only a few locations over 10 years, but obviously, a 
broader spatial and temporal extent of data (to which 
we did not have access) would make the results more 
practically applicable. Climatologists traditionally 
use 30 years of weather data to describe expected 
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and Losses in Ontario, Canada,” Journal of Water Resource 
and Protection 4, 2012, pp. 49–62.

Cooke, R., and C. Kousky, Climate Dependencies and Risk 
Management: Microcorrelations and Tail Dependence, 
vols. 10–13, Washington, DC: Resources for the Future, 
2010.

Crawford, M., and S. Seidel, Weathering the Storm: Building 
Business Resilience to Climate Change, Arlington, VA: Center 
for Climate and Energy Solutions, 2013.

Creal, D., S. J. Koopman, and A. Lucas, “Generalized Auto
regressive Score Models with Applications,” Journal of Applied 
Econometrics 28:5, 2013, pp. 777–795.

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, 
S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo,  
P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, 
J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, 
A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. 
Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi,  
A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. 
Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, 
and F. Vitart, “The ERA-interim Reanalysis: Configuration and 
Performance of the Data Assimilation System,” Quarterly 
Journal of the Royal Meterological Society 137:656, 2011, 
pp. 553–597.

Derrig, R., and L. Francis, Distinguishing the Forest from the 
TREES: A Comparison of Tree Based Data Mining Methods, 
Casualty Actuarial Society E-Forum, 2006, https://www. 
casact.org/pubs/forum/06wforum/06w05.pdf.

Fokianos, K., “Statistical Analysis of Count Time Series Models: 
A GLM Perspective,” in Handbook of Discrete-Valued Time 
Series, pp. 3–28, edited by R. A. Davis, S. H. Holan, R. Lund, 
and N. Ravishanker, Boca Raton, FL: CRC, 2015.

change in the Earth’s climate system, which puts that 
assumption in jeopardy for many social and environ-
mental systems (IPCC 2014b). Milly et al. (2008) 
put it succinctly for the field of water management 
in the title of their article, “Stationarity Is Dead: 
Whither Water Management?” How can we assess 
the impact of such changes in the Earth’s climate 
system, and how can these changes be incorporated 
into insurance risk management? How are these 
changes distributed in space and time? This is of 
particular importance for regional risk management 
as weather-related events have long been known to 
induce spatial dependencies among insurance policies, 
often leading to undercapitalization and excessive 
risk taking (Cooke and Kousky 2010).

Although insurance policies are adjusted regularly 
and therefore can theoretically be changed to reflect  
current conditions, the episodic nature of many 
weather-related perils and relatively rapid changes 
cause a lag between the observed event statistics and 
the current real probability of an event that is increas-
ing in frequency. How can we get ahead of this lag?

These and many other related fundamental ques-
tions about insurance risk management at the face 
of climate change can be addressed only if the gaps 
between paradigms of actuarial theory and practice, 
statistics, and climate sciences are bridged together, 
forging joint interdisciplinary efforts.
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