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Applying Graphical Models 
to Automobile Insurance Data
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ABSTRACT

Analysis of insurance data provides input for making decisions

regarding underwriting, pricing of insurance products, and

claims, as well as profitability analysis. In this paper, we

consider graphical modeling as a vehicle to reveal dependency

structure of categorical variables used in the Australian Auto­

mobile data. The methodology developed here may supplement

the traditional approach to ratemaking.

Topics considered are the description of the automobile data

set, preprocessing of the variables, visualization tools suitable

for contingency tables, classical test of independence, log­linear

models, the concept of conditional independence, and graphical

modeling as a vehicle to explore the dependency structure

among categorical variables, as well as a review of frequency

rates by rating class.
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We now proceed with briefly outlining the con­
tents of the other sections. Description of the data
used and exploratory data analysis, as well as pre­
processing of the data, are covered in section 2.
In section 3, we consider two­way contingency tables,
using the Pearson chi­square test for assessing the
strength of association between two categorical
variables. Mosaic plots, as a visualization tool, are
used to present two­way contingency tables, and we
discuss some limitations of analysis based solely
on two variables. Section 4 considers the analysis of
three categorical variables. In particular, we extend
the description of mosaic plots to that of three vari­
ables, introduce log­linear models, the concept of
conditional independence, and graphical modeling.
Considerations of more than three categorical vari­
ables and model selection have been relegated to sec­
tion 5. The use of graphical modeling for exploring
dependency structure of categorical variables, poten­
tial applications to determining frequency rates, and
overfitting are also discussed in section 5. Summary
and concluding remarks are stated in section 6.

An attempt has been made to blend theory with the
necessary statistical computations, so that the paper
will be useful to practicing actuaries.

2. Data and data preprocessing

Insurance data are generally propriety informa­
tion of the insurance companies and are not publicly
available. The data used in this paper is available from
the following Web site and has been referenced in the
book co­authored by de Jong and Heller (2008):
http://www.businessandeconomics.mq.edu.au/
our_departments/Applied_Finance_and_Actuarial_
Studies/research/books/GLMsforInsuranceData/
data_sets.

The data consists of one year of Australian vehicle
insurance policies taken out in 2004 or 2005. The name
of the data set is car.csv and there is a brief description
of the variables considered in the file named vehicle.txt
which has been reproduced here in the Appendix A.1.
There were 67,856 observations, and for each record
the values of ten attributes were given.

1. Introduction

In a data­driven decision­making environment,
analysis of insurance data provides input for making
decisions regarding underwriting, pricing of insurance
products, claims and profitability. The focus of this
paper is to study the dependency structure of categori­
cal variables pertaining to the Australian automobile
insurance data, and to explore potential applications
to determination of frequency rates by rating classes.

Insurers gather information about their policy
holders at the time of writing insurance policies.
The data collected by an insurance carrier depends
on the line of business offered, business expediency,
and legal constraints. The rating variables are used
to price insurance products based on the insured’s
characteristics and are helpful regarding underwrit­
ing selection. Rating variables are of mixed measure­
ment types. Our focus here is only with respect to the
categorical variables used in the Australian Auto­
mobile insurance data.

The analysis of insurance data is a multi­faceted
endeavor. The goals of statistical data analysis are
broadly of two types: understanding and prediction.
Understanding encompasses summarization as well
as inference.

Tasks associated with machine learning, i.e., learn­
ing from data, are categorized as supervised learning
and unsupervised learning. Predictive modeling is an
example of supervised learning, where features are
used to predict the value of a target variable.

Unsupervised learning is mainly concerned with
finding relationships between features, or grouping
of instances as to reveal hidden underlying structure
of data with no designated target variable involved.

The goal of the analysis in this paper is primarily
about understanding and an exercise in unsupervised
learning.

We consider exploratory data analysis (EDA)
tools suitable for categorical variables. Inferential
procedures such as tests of independence and fit­
ting log­linear models to data are discussed. Further­
more, we discuss some limitations of these tools and
procedures.
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Exhibit 2.1 provides information about the name,
type of measurement, and sample values for each
variable in the automobile data set. For instance,
Vehicle Value (veh_value} is a continuous (num)
variable with sample values in unit of 10,000 while
Vehicle Body Type (veh_body) is a nominal attribute.

Exhibit 2.2 provides crude information regarding
(a) whether a variable is symmetrically distributed,
(b) appearance of outliers, and (c) if there are any
inconsistent observed values.

The analysis in this paper is primarily concerned
with the categorical—nominal or ordinal—attributes.
The preprocessing of the data involved: (a) change

The software R has been used to perform com­
putations and display graphics. R is an open­source
software useful for doing statistical analysis and data
visualization. The base package of R has many useful
standard functions, and there are over 4,000 supple­
mental packages which enhance the capabilities of R.
Information about R and its associated packages can
be obtained from http://cran.r­project.org/. Some of
the R functions used in this paper are referenced in
Appendix A.2 and may be of interest to practicing
actuaries.

A quick “feel” of the data can be obtained from
Exhibit 2.1 and Exhibit 2.2.

Exhibit 2.1. The structure of automobile data set
‘data.frame’ : 67856 obs. of 10 variables:

$ veh_value : num 1.06 1.03 3.26 4.14 0.72 2.01 1.6 1.47 0.52 0.38 . . .

$ exposure : num 0.304 0.649 0.569 0.318 0.649 . . .

$ clm : int 0 0 0 0 0 0 0 0 0 0 . . .

$ numclaims: int 0 0 0 0 0 0 0 0 0 0 . . .

$ claimcst0 : num 0 0 0 0 0 0 0 0 0 0 . . .

$ veh_body : Factor w/ 13 levels “BUS”,”CONVT”,..: 4 4 13 11 4 5 8 4 4 4 . . .

$ veh_age : int 3 2 2 2 4 3 3 2 4 4 . . .

$ gender : Factor w/ 2 levels “F”,”M”: 1 1 1 1 1 2 2 2 1 1 . . .

$ area : Factor w/ 6 levels “A”,”B”,”C”,”D”,..: 3 1 5 4 3 3 1 2 1 2 . . .

$ agecat : int 2 4 2 2 2 4 4 6 3 4 . . .

Exhibit 2.2. Five summary statistics for the automobile data

veh_value exposure clm numclaims claimcst0

Min. : 0.000 Min. : 0.002738 Min. : 0.00000 Min. : 0.00000 Min. : 0.0

1st Qu. : 1.010 1st Qu. : 0.219028 1st Qu. : 0.00000 1st Qu. : 0.00000 1st Qu. : 0.0

Median : 1.500 Median : 0.446270 Median : 0.00000 Median : 0.00000 Median : 0.0

Mean : 1.777 Mean : 0.468651 Mean : 0.06814 Mean : 0.07276 Mean : 137.3

3rd Qu. : 2.150 3rd Qu. : 0.709103 3rd Qu. : 0.00000 3rd Qu. : 0.00000 3rd Qu. : 0.0

Max. : 34.560 Max. : 0.999316 Max. : 1.00000 Max. : 4.00000 Max. : 55922.1

veh_body veh_age gender area agecat

SEDAN : 22233 Min. : 1.000 F : 38603 A : 16312 Min. : 1.000

HBACK : 18915 1st Qu. : 2.000 M : 29253 B : 13341 1st Qu. : 2.000

STNWG : 16261 Median : 3.000 C : 20540 Median : 3.000

UT : 4586 Mean : 2.674 D : 8173 Mean : 3.485

TRUCK : 1750 3rd Qu. : 4.000 E : 5912 3rd Qu. : 5.000

HDTOP : 1579 Max. : 4.000 F : 3578 Max. : 6.000

(Other) : 2532
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The matrix of distances is used as an input to a
hierarchical clustering algorithm for grouping levels
of the Body. For an explanation of the hierarchical
clustering method, refer to Johnson and Wichern
(2007). The output of the hierarchical analysis is a
dendrogram (an inverted tree); see Exhibit 2.4. The
lower section of the dendrogram suggests combining
the low frequency levels BUS, CONVT, MCARA and
RDSTR into a single class labeled “Other.” Hence,
the number of levels of Body was reduced from
thirteen to ten. Furthermore, the label of the levels was
changed from character to numeric type to facilitate
graphical presentation.

Bar charts are commonly used to show the frequency
distributions of categorical variables. In Exhibit 2.5,
we display the bar charts for the attributes studied
here, based on their relative frequencies.

Now, we may proceed with the statistical analysis
phase of the paper.

3. Analysis of two categorical
variables

In this section, we discuss exploratory tools as well
as a statistical test of independence for two categori­
cal variables. The information about two categorical

of names of the variables used for easier references,
(b) transformations of two of the variables, and
(c) selecting seven out of the ten variables for this study.
Additional details are provided in Appendix A.3.

The variable “Value” was originally recorded on a
numeric scale. Value is used as a proxy for “size” and
or “power” of a vehicle and serves as an underwriting
variable. Since our primary interest is with categori­
cal variables, it was decided to include Value in our
analysis as an ordinal rather than numeric variable.
The process of transforming a numeric variable to an
ordinal variable is referred to as binning or feature­
discretization; see Kantardzic (2011). There are two
commonly methods used for binning. One method
uses equal frequency and the other uses equal length.
Here, we chose the equal frequency approach. The
25% quartile (1.01), 50% quartile (1.50) and 75%
quartile (2.15) of the Value were selected as cutoff
points for binning.

The other transformed variable was the “Body.” The
categorical variable Body had originally thirteen
levels. Some of the levels had relatively low frequen­
cies (see Table 2.1). These low frequency classes can
affect the results of some statistical procedures used
to fitting a model to the data. Reducing the number
of levels, i.e., collapsing, may be achieved subjec­
tively based upon an expert’s opinion, or it may be
determined objectively based on a certain criterion.
I decided to consider the variable Claim in conjunc­
tion with Body to reduce the number of levels to be
used; see Table 2.1.

For any two levels of the Body type, we can mea­
sure their “closeness” by using the Euclidean distance
based on the relative frequencies. For instance, to see
how close is “BUS” to “CONVT,” the Euclidean dis­
tance is computed as follows:

( )

( ) ( )= − + −

=

d BUS CONVT,

0.00062 .00123 0.00195 0.00065

0.00144

2 2

The distance between any two distinct levels of
the Body has been computed and organized as a dis­
tance matrix in Exhibit 2.3.

Table 2.1. Body and Claim count

Frequency and Relative Frequency Summary

Body \Claim
No

Claim Claim No Claim Claim

1 BUS 39 9 0.00062 0.00195

2 CONVT 78 3 0.00123 0.00065

3 COUPE 712 68 0.01126 0.01471

4 HBACK 17,651 1,264 0.27915 0.27336

5 HDTOP 1,449 130 0.02292 0.02811

6 MCARA 113 14 0.00179 0.00303

7 MIBUS 674 43 0.01066 0.00930

8 PANVN 690 62 0.01091 0.01341

9 RDSTR 25 2 0.00040 0.00043

10 SEDAN 20,757 1,476 0.32827 0.31920

11 STNWG 15,088 1,173 0.23861 0.25368

12 TRUCK 1,630 120 0.02578 0.02595

13 UTE 4,326 260 0.06842 0.05623

Total 63,232 4,624 1.00000 1.00000
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Exhibit 2.3. Distance matrix for the Body type

BUS CONVT COUPE HBACK HDTOP MCARA MIBUS PANVN RDSTR SEDAN STNWG TRUCK

CONVT 0.00144

COUPE 0.01662 0.01727

HBACK 0.38890 0.38937 0.37238

HDTOP 0.03438 0.03499 0.01777 0.35468

MCARA 0.00159 0.00244 0.01504 0.38731 0.03280

MIBUS 0.01245 0.01279 0.00544 0.37658 0.02245 0.01086

PANVN 0.01541 0.01602 0.00134 0.37353 0.01898 0.01382 0.00412

RDSTR 0.00153 0.00087 0.01794 0.39011 0.03569 0.00294 0.01356 0.01670

SEDAN 0.45608 0.45654 0.43956 0.06719 0.42187 0.45449 0.44375 0.44071 0.45729

STNWG 0.34643 0.34695 0.32984 0.04506 0.31210 0.34484 0.33419 0.33102 0.34768 0.11105

TRUCK 0.03478 0.03525 0.01836 0.35413 0.00359 0.03318 0.02249 0.01945 0.03599 0.42130 0.31170

UTE 0.08685 0.08719 0.07065 0.30258 0.05348 0.08526 0.07442 0.07169 0.08798 0.36970 0.26068 0.05229
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Exhibit 2.4. Dendrogram

variables is summarized as a two­way contingency
table obtained by cross­tabulating the data. The con­
tingency table for Value and Vehicle Age is given by
Table 3.1. The top­left panel of Exhibit 3.1, a mosaic
plot, provides a graphical display corresponding to
the contingency Table 3.1.

The association between two categorical variables
is determined by conducting a Pearson chi­square test
of independence.

Let us proceed with introducing the necessary
notations and terms needed to perform the Pearson
chi­square test.

For two categorical variables A and B, having
domains dom(A) = {1, 2, . . . , J} and dom(B) =

{1, 2, . . . , K}, the subset of the data with A = j and

B = k is labeled as the cell ( j, k) � dom(A) w dom(B).
A two­way cross­tabulation of the data determines
all cell frequencies, njk’s. The Pearson chi­square test
statistic, X2 , is defined as

X
n m

m
jk jk

jkk

K

j

J

∑∑ ( )=
− ( )

( )
==

ˆ

ˆ
,2

0 2

0
11

where njk is the observed frequency count for the
cell ( j, k); m̂jk

(0), the expected count for the cell ( j, k),
assuming the validity of independence hypothesis for

A and B. That is, m
n n

n
jk

j k=( ) + +ˆ 0 ; where nj+ and n+k

are the jth row total and kth column total, respectively,
of the two­way contingency table; and n denotes the
total number of observations.

Based on the validity of the null hypothesis of inde­
pendence, the statistic X2 is asymptotically distributed
as a chi­squared random variable with (J − 1) (K − 1)
degrees of freedom. Large observed values of X2 or
alternatively small p­values do not support the null
hypothesis of independence. A chosen p − value =
F f 0.05 leads to rejection of independence hypoth­
esis where F is the significance level of the test; see
Christensen (1997).

Our analysis of the Australian Automobile data
involved seven categorical variables. Twenty­one
Pearson chi­square tests of independence were
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Table 3.1. Value and Vehicle Age frequencies

Value

VehAge

1 2 3 4

1 3 202 4964 11891

2 2175 3897 7112 4124

3 3365 6883 3734 2568

4 6714 5605 4254 365

0.
00

0.
10

0.
20

0.
30

0.
00

0.
10

0.
20

0.
30

0.
00

0.
10

0.
20

0.
30

0.
00

0.
10

0.
20

0.
30

0.
00

0.
10

0.
20

0.
30

0.
0

0.
2

0.
4

0.
6

0.
0

0.
4

0.
8

1 2 3 4

1 2 3 4

1 2 4 63 5

A B D FC E

1 310

M

Location ValueGender

BodyClaim

VehAgeDriverAge

F

75 9

Exhibit 2.5. Bar charts for relative frequency of attributes studied

performed. It is interesting to note that only in the
case of Claim and Gender, we failed to reject the
null hypothesis of independence.

A mosaic plot (see top left panel of Exhibit 3.1)
provides a graphical display corresponding to a two­
way contingency table. The methodology to con­
struct mosaic plots has been explained by Friendly
(1994). A mosaic is composed of tiles, where each

tile corresponds to a cell of a contingency table. To
the cell ( j, k), 1 f j f J, 1 f k f K, there corresponds
a tile labeled ( j, k) whose width is proportional to

n+k and its height is proportional to n
n

n
j k

jk

k

=
+

, the

conditional count; see top left panel of Exhibit 3.1,
where J = K = 4. The area of the ( j, k) tile is propor­
tional to the cell frequency njk.

Under the independence assumption, the expected

frequency for the cell ( j, k) is m
n n

n
jk

j k=( ) + +ˆ 0 . Hence,

the height of the ( j, k) tile is proportional to nj+ which
does not depend upon k, the second variable. Based
on the independence assumption, for each j (horizon­
tal level, representing the first variable), tiles in the
jth row with differing k values have the same height;
see the top right panel of Exhibit 3.1.
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tends to lead to better decisions. Second, when there
are other categorical variables available, say, three in
total, then, in some instances, the inferences based
on two categorical variables, a marginal approach,
may contradict the conclusion based on using all
three. These anomalies are referred to as Simpson’s
paradox; see Agresti (2002).

4. Log-linear models, conditional
independence, and graphical
modeling

In this section we consider log­linear models,
three­way mosaic plots, the concept of conditional
independence, and graphical models as they relate
to three categorical variables.

To perform a test of independence involving three
categorical variables, one approach is to extend the

The mosaics corresponding to observed and
expected frequencies for categorical variables Value
and Vehicle Age, shown in Exhibit 3.1, top left and
top right, are dissimilar. This lack of similarity is
consistent with rejection of the chi­square test. On
the other hand, the mosaics in the bottom right and
bottom left of Exhibit 3.1 appear similar, and this
outcome is consistent with failing to reject the inde­
pendence test for Claim and Gender.

Furthermore, one notices the anomaly between
observed and expected frequencies for the cell cor­
responding to the Value of 1 and Vehicle Age of 4 in
Exhibit 3.1. Hence, mosaic plots reveal further infor­
mation beyond independence.

There are some limitations to relying only on two
categorical variables. First, if there are more than two
categorical variables available, then it seems logical
to use all the available variables, as more information

Exhibit 3.1. Mosaic plots for Value and Vehicle Age as well as Claim and Gender
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where mjk is the expected number of observation for
the cell

( ) ≤ ≤ ≤ ≤j k j J and k K, ,1 1 ;

u, a constant term (an intercept), uj
A and uk

B are the
main effect terms due to A and B respectively, and
u jk

AB's denote the two­factor interaction terms.
Testing for independence of A and B is equiva­

lent to testing for the null hypothesis H0 : u jk
AB = 0 in

model (1).
When the independence assumption prevails, model

(1) reduces to

( ) = + +m u u ujk j
A

k
Blog , (2)

Model (1) is referred to as the saturated model,
and model (2) is referred to as the independence
model. The saturated model is over­parameterized,
i.e., the number of parameters u, uj

A, uk
B and u jk

AB's
exceed the value of JK, the number of cells. To
fit model (1) to cell frequencies, it is necessary to
impose some restrictions on the number of param­
eters used. There are three alternative ways to
impose restrictions on the parameters referred to as
sum, treatment, and Helmert constraints; see ref­
erences by Faraway (2005), Christensen (1997), or
Feinberg (1980).

The R program uses the treatment constraint as
default. The treatment constraint approach selects one
level of A and one level of B as fixed and refers to
them as base levels. The following identity shows
that with the treatment constraints applied, the num­
ber of parameters used in the saturated model (1) is
sufficient and not over­specified:

1 J 1 K 1 J 1 K 1 JK.( ) ( ) ( )( )+ − + − + − − ≡

Since the saturated model has as many parameters
as there are cells in the cross­tabulated data, it provides
a perfect fit to the cell frequencies and thus it pro­
vides no simplification in the context of modeling.
The saturated model serves the purpose of being the

Pearson chi­square test to the case of three factors.
Alternatively, a preferred approach is to use the
log­linear models.

Log­linear models are a special class of the gen­
eralized linear models, GLM, which extend the
classical regression models. In classical regression
analysis, the mean of a continuous response variable
is related to a set of explanatory variables, assuming
that the response variable is normally distributed.
With log­linear models, one relates the expected
cell count of a multidimensional contingency table
to a set of categorical variables by specifying their
main and interaction effects. This approach mir­
rors the ANOVA procedure where a continuous
response variable is related to a set of explana­
tory factors. An advantage of using the log­linear
approach over the Pearson chi­square test is that it
allows for testing alternative dependency structure
among the categorical variables. Useful references
for log­linear models are Agresti (2002), Fienberg
(1980) and Christensen (1997).

We begin by describing log­linear models for two
categorical variables A and B, although our focus is
with more than two variables.

Let A and B have respective domains dom(A) =
{1, 2, . . . , J} and dom(B) = {1, 2, . . . , K}. For the
cell ( j, k) � dom(A) w dom(B), entities of inter­
est are pjk, njk,and mjk = npjk, denoting respectively
the probability, the observed frequency count, and
the expected count associated with the cell ( j, k);
n denotes the total number of observations in the
data set. For a sample of size n, the random vector
(A, B) has a multinomial distribution. Multinomial
distribution serves as the principal multivariate dis­
tribution for a random vector whose components are
categorical variables. Multinomial distribution is not
as restrictive as multivariate normal which is used
for random vector with continuous component.

The log­linear model for two categorical variables
A and B is specified as

m u u u ujk j
A

k
B

jk
AB( ) = + + +log , (1)
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dence hypothesis for Claim and Location in this
instance. This result is consistent with the Pearson
chi­squared test performed in section 3. Recall that
the only case where Pearson chi­squared tests of
independence failed was for Claim and Gender.

We now introduce the concept of graphical mod­
els for the case of two categorical variables. Further
elaboration on this subject is given below when we
have more than two variables.

Graphical models are used to illustrate relation­
ships among several variables. In the case of two
categorical variables A and B, the situation is rela­
tively simple: either A is independent of B or they
are not independent. Exhibit 4.2 illustrates this
viewpoint.

Exhibit 4.2 presents two graphs next to each
other. The vertices (nodes) represent the variables.
The presence of an edge (chord) between two nodes
implies the variables are related. Absence of an edge
implies independence.

To summarize, we can test for independence using
either the Pearson chi­square test X2, section 3, or
use deviance G2 as defined above for the log­linear
model. Furthermore, we can represent our results by
graphs as shown in Exhibit 4.2.

Next, we proceed to describe mosaic plots for visu­
alizing a three­way contingency table. Table 4.1

base model for comparing other simpler models to it,
for example, by comparing the independence model
(2) to the saturated model (1).

To compare model (1) with model (2), the appro­
priate test statistic is the deviance statistic, G 2:

2 log
ˆ

,2
0

11
∑∑= 



( )

==
G n

n

m
jk

jk

jkk

K

j

J

where m̂jk
(0) is the expected count for the cell ( j, k),

assuming the independence model (2) is valid, i.e.,

m
n n

n
jk

j k=( ) + +ˆ 0  is the maximum likelihood estimator

for mjk, expected cell count, under the independence
assumption.

The test statistic G2 is asymptotically distributed
as a chi­squared random variable with (J − 1)(K − 1)
degrees of freedom; see Christensen (1997) for details.

The R output for testing the independence of
Claim and Location is given in Exhibit 4.1.

The deviance (residual deviance), has a value of
18.117. This statistic is used to test the independence
of Claim and Location. Its asymptotic distribution
is a chi­squared distribution with 5 degrees of free­
dom, the difference between the number of param­
eters used in models (1) and (2). It has a p­value of
0.00280, which implies that we reject the indepen­

Exhibit 4.1. R Output for testing the independence of Claim and Location
Coefficients:

Estimate Std. Error z value Pr(#|z|)
(Intercept) 9.629079 0.007898 1219.14 <2e–16***
Claim 1 −2.615550 0.015234 −171.69 <2e–16***
Location B −0.201059 0.011673 −17.22 <2e–16***
Location C 0.230473 0.010488 21.98 <2e–16***
Location D −0.691065 0.013552 −50.99 <2e–16***
Location E −1.014917 0.015181 −66.86 <2e–16***
Location F −1.517097 0.018461 −82.18 <2e–16***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance : 79977.618 on 11 degrees of freedom
Residual deviance : 18.117 on 5 degrees of freedom
AIC: 147.66
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Step (1). For A, the first categorical variable, create
vertical strips with width proportional to nj++�

Step (2). Each vertical strip in Step (1) is sub­
divided horizontally with height proportional to

n

n
jk

j

+

++
, conditional count of the second variable B

given the first variable A.
Step (3). Each JK rectangle in Step (2) is further

subdivided vertically with widths proportional to

n

n
jkl

jk+
.

In this fashion, a tile constructed in Step (3), labeled
as ( j, k, l), has an area proportional to njkl.

summarizes the data for categorical variables Claim,
Body and Location in the form of three­way contin­
gency table derived from the Australian automobile
insurance data.

Exhibit 4.3 displays a mosaic plot corresponding
to Table 4.1.

The construction of the mosaic plot for the multi­
dimensional contingency table, three categorical vari­
ables in this instance, is based on the exposition given
by Friendly (1994).

For three categorical variables A, B, and C, with
typical levels of j, k, and l, respectively, to each cell
( j, k, l) of the three­way contingency table, there cor­
responds a tile ( j, k, l) constructed by the following
three sequential steps:

Table 4.1. Three-way contingency table for Claim, Body, and Location

Claim
Body

Location 1 2 3 4 5 6 7 8 9 10

0 A 230 4874 280 143 179 5284 3281 208 670 78

B 166 3810 221 160 167 4559 2330 225 698 40

C 230 6035 352 256 244 6780 3907 275 982 67

D 55 1612 222 48 52 2239 2246 374 795 34

E 24 1009 157 53 39 1465 1696 354 707 22

F 7 311 217 14 9 430 1628 194 474 14

1 A 23 332 27 11 21 367 250 7 38 9

B 23 299 28 12 13 323 197 15 52 3

C 16 434 29 14 20 520 294 33 48 4

D 4 110 18 2 6 130 149 27 45 5

E 1 65 13 2 0 108 123 23 48 3

F 1 24 15 2 2 28 160 15 29 4

Exhibit 4.2. Graphical presentation of Claim and Location
and Claim and Gender

Claim and Location Claim and Gender

Location Claim

Claim Gender
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As the number of categorical variables increases,
then it becomes harder to interpret the pattern of
dependency among variables based on mosaic dis­
plays. This is because the addition of a new variable
requires further subdivision of each existing tile.

Now, we consider log­linear models for the case of
three categorical variables A, B, and C. The notations
previously used will be extended to the case of three.

A log­linear model for three categorical variables
A, B, and C, with C having a typical value of l, where
l � dom(C) = {1, 2, . . . , L}, is defined by equation (3).
The model in (3) is referred to as the saturated log­
linear models for three categorical variables:

( ) = + + + +

+ + +

m u u u u u

u u u

jkl j
A

k
B

l
C

jk
AB

jl
AC

kl
BC

jkl
ABC

log

, (3)

where mjkl is the expected count for the cell ( j, k, l),
with ( j, k, l) � dom(A) w dom(B) w dim(C); u is the
constant (intercept) term, uj

A, uk
B, and ul

C are the main

These three steps above are analogous to writing
the joint probability of the cell ( j, k, l ) as a product of
marginal and conditional probabilities, as expressed by

( )
( ) ( ) ( )

= = =
= = = = = = =

P A j B k C l

P A j P B k A j P C l A j B k

, ,

, .

Exhibit 4.4 shows the mosaic plot for the three
categorical variables Claim, Body and Location based
on the expected frequency under the assumption of
independence. That is, the joint probability of the
cell ( j, k, l), pjkl is computed as the product of three
marginal probabilities, i.e., pjkl = pj++ p+k+ p++l. All
probability items are estimated by appropriate cell
count ratios.

Applying log­linear models, the independence
assumption was not supported for any of three
categorical variables studied. Hence, it should not
be surprising to see Exhibits 4.3 and 4.4 having differ­
ent appearances.

Exhibit 4.3. Mosaic plot for Claim, Body and Location
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related u­terms are also excluded. Graphical mod­
els, a subclass of hierarchical models, are formed
by excluding a set of two­factor interaction terms
(and hence their higher­order related terms). For a
more detailed discussion of these concepts, refer to
Lauritizen (1996).

The independent model, the smallest log­linear
model with all the three categorical variables included,
is presented as:

log . (4)( ) = + + +m u u u ujkl j
A

k
B

l
C

Among log­linear models, the conditionally inde-
pendent models are of much interest. These mod­
els are not as detailed as the saturated model, but
provide additional dependency structure not pro­
vided by the independence model. They are easier
to interpret and belong to the class of graphical
models.

effect terms, and u jk
AB, u jl

AC, ukl
BC, and u jkl

ABC are two­
factors and three­factors interaction terms.

For a sample of size n, the random vector (A,B,C)
has a multinomial distribution. The number of param­
eters in model (3) is overspecified and subject to
constraint, as in the case of two categorical variables
above.

The saturated model (3) is the largest model with
respect to three categorical variables. By excluding
certain u­terms in (3) above, alternative dependency
structures among A, B, and C may be considered.
The saturated model serves as a base model for com­
paring to other parsimonious log­linear models.

There are two subclasses of log­linear models
which are of interest to us: the hierarchical models
and the graphical models. The definition of these
terms is based on the one given by Edwards (2000).
In a hierarchical log­linear model, if a u­term is
excluded (set equal to zero) then all its higher­order

Exhibit 4.4. Mosaic plot for Claim, Body and Location based
on the hypothesis of independence
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Exhibit 4.5 presents five graphs of interest corre­
sponding to the models (3), (4) and (5) above.

The top­left graph of Exhibit 4.5 corresponds
to a graph that is complete, the saturated model of
(3). The top­right graph with no edges corresponds
to the independent model of (4). The three graphs
in the lower part of the exhibit, from left to right,
correspond to conditional independence models of
A²²DB²C, A²²DC²B, and B²²C___²A respectively, i.e., to
(5a), (5b), and (5c).

Relative to the saturated model, a conditional inde­
pendent model is a more parsimonious model in the
sense that it requires fewer parameters to be speci­
fied. Furthermore, the conditional independent mod­
els are easier to explain and interpret graphically. For
instance, the conditional independent model of (5b),
A²²C___²B, implies that the edge AC has been removed
from the complete model.

Returning to the Australian Auto data, with seven
categorical variables, there are potentially 35 pos­
sible log­linear models involving three categorical
variables.

Each of these 35 models failed the test of inde­
pendence. Next, we considered the conditionally
independent models, models (5a), (5b) and (5c), for
the 35 cases. Exhibit 4.6 provides the summary of
testing for the conditional independence where the
results were statistically significant.

The function ciTest_table of the R package gRim
(see Højsgaard, Edwards, and Lauritzen 2012) was
used to perform the conditional independent tests.
With three categorical variables, the implication
of conditional independence test is tantamount to
removal of an edge from the respective complete
graph. Exhibit 4.7 provides the R output in the
case of selected three variables: Claim, Gender,
and Vehicle Age.

In Exhibit 4.7, the p­value for testing the condi­
tional independence of Claim and Gender given the
Vehicle Age is 0.8740. It has the implication that the
test fails to reject the conditional independence test
in this instance. Results in Exhibit 4.6 were similarly
derived.

The conditional independence property, as it relates
to three categorical variables A, B, and C, is defined
as follows:

A and B are conditionally independent given C if

( )
( ) ( )

= = = =
= = = =

P A j B k C l

P A j C l P B k C l

,

,

for all ( j, k, l) � dom(A) w dom(B) w dim(C).
The notation used to express conditional indepen­

dence, is A²²DB²C due to Dawid (1979).
The three conditional independence models of

interest are:

m u u u u u u ajkl j
A

k
B

l
C

jl
AC

kl
BC( ) = + + + + +log (5 )

m u u u u u u bjkl j
A

k
B

l
C

jk
AB

kl
BC( ) = + + + + +log (5 )

m u u u u u u cjkl j
A

k
B

l
C

jk
AB

jl
AC( ) = + + + + +log (5 )

Using the conditional independence notation, we
have A²²DB²C, A²²DC²B, and B²²C___²A corresponding to
(5a), (5b), and (5c), respectively.

To discuss further the graphical models, we need
to introduce some basic elements of graph theory.
Graph theory is a branch of mathematics (see Berge
2001). Graph theory has been applied to transporta­
tion networks and social networks (Kolaczyk 2009),
and used in computer science (see Cook and Holder
2007). For interaction of graph theory and log­linear
models, refer to Whittaker (1990), Lauritzen (1996),
and Edwards (2000).

A graph, G is a pair (V, E) where V is a finite
set of vertices and E, a subset of V w V, is a set of
edges. Here, the vertices represent variables, and
for two vertices a and b such that (a, b) � E implies
a relationship between vertices a and b. If (a, b) � E
then we say that vertices a and b are adjacent to
each other. A graph is simple if we exclude loops
and multiple edges. A graph is undirected if (a, b)
� E implies (b, a) � E. The graphs considered
here are simple and undirected. A graph is com-
plete if all the vertices in the graph are adjacent to
each other.
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observation is consistent with formal test of condi­
tional independence, case 5, of Exhibit 4.6.

5. Graphical models

Log­linear models of the previous section can be
extended to more than three categorical variables. By
increasing the number of variables, one encounters
two kinds of problems. The first problem is referred

Before proceeding to the next section involv­
ing more than three categorical variables, it is worth
introducing an additional exploratory tool for visu­
alizing “conditional” relationship among three vari­
ables. Exhibit 4.8 displays the relationship between
Claim and Gender for each level of Location variable.

Reviewing the six panels of Exhibit 4.8, one
notices the similarity of these panels with respect to
Claim and Gender for each level of Location. This

Exhibit 4.6. Results of conditional independent tests

1 Claim and Gender are conditionally independent of Value

2 Claim and Gender are conditionally independent of Body

3 Claim and Body are conditionally independent of Driver Age

4 Claim and Gender are conditionally independent of Vehicle Age

5 Claim and Gender are conditionally independent of Location

6 Claim and Gender are conditionally independent of Driver Age

7 Claim and Location are conditionally independent of Driver Age

A, B, and C are Dependent A, B, and C are Independent

A and B are Independent given C A and C are Independent given B B and C are Independent given A

A

C

B

A A
A

C

C

C

B

B

B

B

A

C

Exhibit 4.5. Graphical models corresponding to complete, independent,
and conditional independence
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Exhibit 4.7. Selected R output for testing conditional independence

# Output of conditional independence test for
# Claim and Vehicle Age given Gender:

ciTest_table(d.3.245.table, set=c(“Claim”, “VehAge”, “Gender”))
Testing Claim _|_ VehAge | Gender
Statistic (DEV): 27.246 df: 6 p-value: 0.0001 method: CHISQ
# d.3.245.table: Data set for Claim, Vehicle Age and Gender

# Output of conditional independence test for
# Claim and Gender given Vehicle Age

ciTest_table(d.3.245.table, set=c(“Claim”, “Gender”, “VehAge”))
Testing Claim _|_ Gender | VehAge
Statistic (DEV): 1.225 df: 4 p-value: 0.8740 method: CHISQ
# d.3.245.table: Data set for Claim, Gender and Vehicle Age

# Output of conditional independence test for
# Vehicle Age and Gender given Claim

ciTest_table(d.3.245.table, set=c(“VehAge”, “Gender”, “Claim”))
Testing VehAge _|_ Gender | Claim
Statistic (DEV): 288.004 df: 6 p-value: 0.0000 method: CHISQ
# d.3.245.table: Data set for Claim, Gender and Vehicle Age

Gender
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Exhibit 4.8. Conditional plot of Claim and Gender given Location
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Lauritzen (2012). Obtaining empty cells is not that
uncommon when the number of categorical variables
increases. With a fixed sample size, the observations
need to be spread to a larger number of cells resulting
in some cells being empty.

The approach in this paper for selecting a model
is as follows. First, we fit a saturated model to
the data using all the available categorical vari­
ables. The fitted saturated model corresponds to a
complete graph. Here, we use the term model and
graph interchangeably. The second step involves
using the fitted saturated model as an input to the
stepwise function of R in the gRim package. The
output of the stepwise function is a more parsimo­
nious fitted log­linear model belonging to the class
of graphical models. The stepwise function uses a
backward elimination procedure by removing cer­
tain edges of the saturated graph, thus producing
a pruned subgraph; see Højsgaard, Edwards and
Lauritzen (2012).

The graphs of the saturated fitted model and the
graph produced by applying the stepwise function,
here referred to as the stepwise model, are shown in
Exhibit 5.1.

An insight into structure of the stepwise graph
is provided by examining its cliques. A clique is a
complete (maximal) subgraph such that by enlarg­
ing its vertex set, it would lose the property of being
complete.

to as the “model selection,” and the second as the
“estimation” problem. Let us elaborate on each of
these two issues. By excluding certain two­factor,
three­factor, or other higher order factor interaction
terms, different log­linear models are obtained. The
number of potential log­linear models increases in
a non­linear fashion as the number of categori­
cal variables increases. According to Christensen
(1997), with four categorical variables there are
113 ANOVA type models with their main effects
included. Furthermore, with five categorical vari­
ables, there are several thousand models to choose
from. The model search space, the set of potentially
acceptable log­linear models, is very large, and find­
ing an “optimum” model among the potential mod­
els is a challenging task. It may be more expedient
to search among the smaller class of graphical mod­
els for a suitable candidate. Graphical models have
the advantages of being presented as graphs and are
subject to easier interpretation.

The second problem is related to estimation of
parameters of log­linear models. Some data sets have
cells with zero frequency. In these situations, some
software may either fail to fit a model to the data, or
it may make adjustments and proceed to fit a model
accordingly. The handling of empty cells is not
uniform among different software. Hence, there are
uncertainties regarding the output depending upon
the software selected; see Højsgaard, Edwards and

Exhibit 5.1. Graphical models for saturated and stepwise models based
on the Australian Auto data

Saturated Model Stepwise Model

Driver
Age

Driver
Age

VehAge

VehAge
Location

Location

Claim

Claim

Value Value

Body

Body

Gender

Gender
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Exhibit 5.3 illustrates the fitted stepwise model
and its cliques.

Two of the cliques of Exhibit 5.3 provide expo­
sure (underwriting) information and third clique,
the lower right, provides claim information. Two of
the cliques show a strong binding among the four
variables Value, Vehicle Age, Gender and Location.
By confining ourselves to graphical models, and

An intuitive characteristic of a clique based on
the exposition of Hanneman and Riddle (2005) is as
follows: a clique is a subgraph of a graph whose
nodes are more closely and intensely related to one
another than they are to other nodes of the graph.

Exhibit 5.2 illustrates the composition of three
cliques associated with the graph of the fitted step­
wise model.

Exhibit 5.2. Cliques of the fitted stepwise model

RBGL::maxClique(as(model.step,”graphNEL”))

$maxCliques

$maxCliques[[1]]

[1] “Value “VehAge” “Gender” “Location” “Body”

$maxCliques[[2]]

[1] “Value” “VehAge” “Gender” “Location” “DriverAge”

$maxCliques[[3]]

[1] “Value” “Claim” “DriverAge”

Driver
Age

Driver
Age

Driver
Age

VehAge

VehAge

VehAge

Location

Location

Location

Claim

Claim

Value

Value

Value

Value

Body

Body

Gender

Gender

Gender

Exhibit 5.3. Stepwise graph and its cliques
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examining their cliques, we can gain an insight into
variables that are closely related.

We now give an example for reviewing claim
frequency rates which utilizes the cliques given in
Exhibit 5.2. Let us compute average Claim occur­
rence rate for each cell in three circumstances. The
three cases depend upon which underwriting factors
have been selected. We shall refer to these cases
as “All,” “Clique 1,” and “Clique 2.” Table 5.1
gives a summary of the statistics produced. We shall
explain the statistics corresponding to the “All”
case. The figures for the other two cases were sim­
ilarly computed.

For the Australian auto insurance, the “All”
case involved the six underwriting variables. The
variables involved were Value (after conversion
from numeric to ordinal), Body (after reducing the
number of level from 13 to 10), Vehicle Age,
Gender, Location, and Driver Age. The number
of potentially distinct cells arising from different
combination of levels of these six variables was
11,520(4 * 10 * 4 * 2 * 6 * 6). The actual number of

non­empty observed cells was 5,063. The average
value of Claim occurrence for each cell, referred to
as rate, was computed. Only 1,905 cells had posi-
tive average Claim occurrence rates. These posi­
tive claim rates may be utilized for computing or
reviewing frequency rates. Note that the traditional
ratemaking procedures may not consider some of
these 1,905 cell rates as credible due to low cell
counts. Regarding these positive average Claim
occurrence rates, we computed the values of Mini­
mum, Q1 (first quantile), Median, Mean, Q3 (third
quartile) and Maximum (see Table 5.1). The figures
for “Clique 1” and “Clique 2” cases were similarly
determined.

For the above three cases, we constructed boxplots
to compare the distribution of positive average Claim
occurrence rates; see Exhibit 5.4.

Reviewing the boxplots, we note that “frequency”
rates for the “Clique 2” are more stable. They are
less volatile, and the median and mean values
are close to each other. For “All” and “Clique 1”
cases, the average Claim occurrence rates may well

Table 5.1. Review of claim frequency based on cliques

ID Variables
Potential
# cells

Observed
# cells

# cells with
positive
“freq.” Min. Q1 Median Mean Q3 Max.

All Value (4) 11,520 5,063 1,905 0.0135 0.0667 0.1071 0.1869 0.2000 1.0000

Body (10)

Vehicle Age (4)

Gender (2)

Location (6)

Driver Age (6)

Clique 1 Value (4) 1,920 1,211 701 0.0099 0.0562 0.0800 0.1275 0.1290 1.0000

Body (10)

Vehicle Age (4)

Gender (2)

Location (6)

Clique 2 Value (4) 1,152 1,047 834 0.0111 0.0500 0.0702 0.0875 0.0997 1.0000

Vehicle Age (4)

Gender (2)

Location (6)

Driver Age (6)
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based on using all data may be too “optimistic”—
close to the data—and may not necessarily gener­
alize well to similar unseen data. This phenomenon
is referred to as overfitting. Tan, Steinbach and
Kumar (2006) discuss overfitting as it applies to
classification, a supervised learning task. As was
mentioned above, our study is mainly an exercise
in unsupervised learning, and, moreover, we did
not have access to similar additional unseen data.
So, to validate our findings regarding the stepwise
graph and its cliques (Exhibit 5.3), we considered
replicating our results by selecting 10 random
samples of equal size from the original data set.
For each random sample (1) we determined the
fitted saturated model, (2) used the sample fitted
saturated model as input to the stepwise function
to determine the corresponding fitted stepwise
model, and (3) examined the cliques associated

be influenced by outliers. It is difficult to visually
see the number of outliers appearing in Exhibit 5.4.
I used the “out” attribute of the R boxplot function
for determining outliers (extremes); see the follow­
ing link: http://stat.ethz.ch/R­manual/R­devel/library/
grDevices/html/boxplot.stats.html.

The outlier definition used is associated with the
“out” attribute of the boxplot function defined as “the
values of any data points which lie beyond the extremes
of the whiskers.” The percentage of outlier values for
the “All,” “Clique 1,” and “Clique 2” were 10.4, 11.1,
and 5.2, respectively. Our example may help in deter­
mining or reviewing a collection of “frequency” rates
which are more stable and are based on smaller num­
ber of rating factors.

Finally, we shall discuss briefly the notion of over­
fitting as it applies here. The graphs in Exhibit 5.3
were based on using the entire data set. Results
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Exhibit 5.4. Comparison of average claims rates
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6. Summary and concluding
remarks

In this paper, we studied several categorical vari­
ables related to an Australian automobile insurance
data. We began by using exploratory data analy­
sis tools to understand the nature of our data. We
transformed of some of the variables as a part of pre­
processing the data. Visualization tools—bar charts,
mosaics, and conditional plots—were informally
used. We constructed several multi­dimensional
contingency tables for summarizing the information
regarding the categorical variables used.

Tests of independence based on chi­square statis­
tic and log­linear models were discussed. Concepts
of conditional independence and graphical model­
ing were introduced. By examining the cliques of a
parsimonious graphical model fitted to the data, one
obtains insight into which combination of categorical

with fitted stepwise model for each of the 10 sam­
ples. The result of these replications is summa­
rized in Table 5.2.

Reviewing the results in Table 5.2, we note that
using the entire data set produced two cliques of
size 5 which do not appear among the cliques
produced by the 10 replications. This result may
be attributable to the size effect. It is conceivable
that a pattern observed in a large data set  may
not reveal itself in smaller data sets (see Mayer­
Schonberger and Cukier 2013). But the two cliques
of size 4 from the replicated samples share the same
variables as the cliques of size 5 based on the entire
data. It is interesting to note that the cliques involv­
ing the three variables Location, Value and Vehicle
Age appeared in all 10 random samples. Overall,
the results obtained by performing the replications
do not appear to contradict the findings based on
the entire data.

Table 5.2. Replication of graphical modeling based on ten random samples

Cliques based on the entire data set

Body Gender Location Value VehAge

DriverAge Gender Location Value VehAge

Claim DriverAge Value

Cliques with 4 variables Freq. Sample ID

Body Gender Value VehAge 4 2, 4, 7, 9

DriverAge Gender Value VehAge 2 2, 9

Cliques with 3 variables

Location Value VehAge 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Body Value VehAge 6 1, 3, 5, 6, 8, 10

DriverAge Value VehAge 5 3, 5, 6, 7, 10

Body Gender Value 3 1, 8, 10

DriverAge Gender Value 3 1, 4, 8

Body Gender VehAge 1 5

Claim DriverAge Gender 1 1

Claim Gender Value 1 10

Cliques with 2 variables

Claim Value 4 2, 3, 6, 7

Body Gender 2 3, 6

Claim DriverAge 2 5, 9

Claim Gender 1 8

Claim VehAge 1 4
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variables tend to bind together. Furthermore, we
discussed briefly issues related to model selection
and overfitting. Finally, an example was given that
utilized the information provided by cliques of a fit­
ted graphical model regarding dependency structure
among rating variables. Such an analysis may sup­
plement the traditional ratemaking reviews of clas­
sification rates.

Appendix A.1. A brief description
of the Australian Automobile
Data set

This data set is based on one­year vehicle insur­
ance policies taken out in 2004 or 2005. There are
67,856 policies, of which 4,624 (6.8%) had at least
one claim.

Variables:

veh_value vehicle value, in $10,000s

exposure 0–1

clm occurrence of claim (0 = no, 1 = yes)

numclaims number of claims

claimcst0 claim amount (0 if no claim)

veh_body vehicle body, coded as

BUS

CONVT = convertible

COUPE

HBACK = hatchback

HDTOP = hardtop

MCARA = motorized caravan

MIBUS = minibus

PANVN = panel van

RDSTR = roadster

SEDAN

STNWG = station wagon

TRUCK

UTE – utility

veh_age age of vehicle: 1 (youngest), 2, 3, 4

gender gender of driver: M, F

area driver's area of residence: A, B, C, D, E, F

agecat driver’s age category: 1 (youngest), 2, 3, 4, 5, 6
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levels, thus reducing the number of levels for
analysis to 10.

e) Three other variables were excluded from this
study.

References
Agresti, A., Categorical Data Analysis, New York: Wiley,

2002.
Berge, C., The Theory Of Graphs, Minneola, NY: Dover, 2001,

a reprint of 1962 edition, London: Methuen, 1962.
Cook, D. J., and L. B. Holder, eds., Mining Graph Data, Hoboken,

N.J.: Wiley, 2007.
Christensen R. C., Log-Linear Models and Logistic Regression,

New York: Springer, 1997.
Dawid, A. P., “Conditional Independence in Statistical Theory

(with discussion),” Journal of the Royal Statistical Society,
series B, 41:1, 1979, pp. 1–31.

De Jong, P., and G. Z. Heller, Generalized Linear Models for
Insurance Data, New York: Cambridge, 2008.

Edwards, D., Introduction to Graphical Modelling, New York:
Springer, 2000.

Faraway, J. J., Linear Models with R, Boca Raton: Chapman and
Hall/CRC, 2005.

Feinberg, S. E., The Analysis of Cross-Classified Categorical
Data, Cambridge, Mass.: MIT Press, 1980.

Friendly, M., “Mosaic Displays for Multi­Way Contingency
Tables,” Journal of the American Statistical Association 89:
425, 1994, pp.190–200.

Hanneman, R., and M. Riddle, Introduction to Social Network
Methods, 2005, http://faculty.ucr.edu/channeman/nettext/
Introduction_to_Social_Network_Methods.pdf.

Højsgaard, S., D. Edwards, and S. Lauritzen, Graphical Models
with R, New York: Springer, 2012.

Johnson, R. A., and D. W. Wichern, Applied Multivariate Statis-
tical Analysis, Upper Saddle River, N.J.: Pearson, 2007.

Kantardzic, M., Data Mining: Concepts, Models, Methods and
Algorithms, 2nd ed., New York: Wiley, 2011.

Kolaczyk, E. D., Statistical Analysis of Network Data,
New York: Springer, 2009.

Lauritzen, S. L., Graphical Models, New York: Oxford, 1996.
Mayer­Schonberger, V., and K. Cukier, BIG DATA: A Revolu-

tion That Will Transform How We Live, Work, and Think,
New York: Houghton Mifflin Harcourt, 2013.

Tan, P.­N., M. Steinbach, and V. Kumar, Introduction To Data
Mining, Boston: Addison Wesley, 2006.

Whittaker, J., Graphical Models in Applied Multivariate Statis-
tics, New York: Wiley, 1990.

Appendix A.2. R functions

Section Subject R function

2 Exhibit 2.1 str()

2 Exhibit 2.2 summary()

2 Quartiles quantile()

2 Exhibit 2.3 dist()

2 Dendrogram hclust(), plot()

2 Bar Chart barplot

3 Chi-square test chisq.test()

3 Table 3.1 table()

3 Exhibit 3.2 mosaic()

4 Log-Linear fit glm()

4 Exhibit 4.5 dmod(), plot(), stepwise()

4 Exhibit 4.7 ciTest_table()

5 Exhibit 5.2 RBGL::maxClique()

Appendix A.3. Preprocessing

The preprocessing of the data involved the follow­
ing steps:

a) Variable names in the original data set were
renamed for the sake of easier reference. The
original names appear in Appendix A.1 and
are reproduced here in parentheses next to their
names as used here: Value (veh_value), Claim
(clm), Body (veh_body), VehAge (veh_age),
Gender (gender), Location (area), and Driver­
Age (agecat).

b) The variable vehicle value, a numeric variable,
was transformed into an ordinal variable named
Value.

c) Apart from change of names, there were no other
changes concerning the five variables: Claim,
VehAge, Gender, Location, and DriverAge.

d) The variable Body had originally thirteen
levels presenting the Type of Body of the
Vehicle. Due to low frequencies of some levels,
it was decided to combine lower frequency
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