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ABSTRACT

Rating areas are commonly used to capture unexplained  

geographical variability of claims in insurance pricing. A new 

method for defining rating areas is proposed using a two-part 

generalized geoadditive model that models spatial effects 

smoothly using Gaussian Markov random fields. The first part 

handles zero/nonzero expenses in a logistic model; the second 

handles nonzero expenses (on log-scale) in a linear model. 

Both models are fit with R package INLA for Bayesian infer-

ences. The resulting spatial effects are used to construct more 

representative ratings. The methodology is illustrated with 

simulated data based on zipcode areas, but modeled on zipcode- 

or county-level.
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ability constraints such as the minimum area or geo-
graphic contiguity of each territory (Weibel and Walsh 
2008). The homogeneity of risk classification in a  
rating area can be assessed by the within cluster vari-
ance as a percentage of the total variance (Jennings 
2008; Miller 2004). Rating areas with territorial bound-
aries from clustering methods are coarse, as shown in 
Figure 1, in that: (1) units within one rating area may 
not be that homogeneous; and (2) neighboring units 
across a boundary may not be that different. Further, 
clustering methods cannot handle geographic units 
with no observations, which is not uncommon in less 
populated areas.

Because of the spatial contiguity and the “spill-over” 
effect, it is reasonable to assume that the geographic 
risk surface is smooth. With the aid of geographic 
information systems, local smoothing and inverse 
distance weighted averages have been used to define 
ratings at the basic geographical unit level without 
territorial boundaries (Brubaker 1996; Christopherson  
and Werland 1996). These methods are often applied 
to the residuals from models that account for large 
scale variation explained by other predictors. There-
fore, the smoothing and the modeling are in two  
separate stages, which makes inference on the ratings 
difficult and often disregarded. A modeling strategy 
that unifies the two stages is the generalized additive  
model (GAM) framework (Hastie and Tibshirani 
1990) with spatial random effects at the basic geo-
graphic unit level. A GAM allows the covariate effects 
to be smoothly varying instead of linear, a highly 
desired feature in capturing the large scale variation. 
The spatial random effects account for the structured, 
small scale variation across the basic geographic 
units. Additional unstructured random effects can be 
included to account for the spatial heterogeneity for 
each basic unit.

Such models are termed generalized geoadditive  
models (Kammann and Wand 2003) and have been 
applied to insurance data (Fahrmeir et al. 2003, 
2007b; Lang and Brezger 2004). Inferences about 
generalized geoadditive models are often made in  
the Bayesian framework with the Markov chain 
Monte Carlo (MCMC) method (Fahrmeir et al. 2007a; 

1. Introduction

Geographical variability of claims in health insur-
ance is a well-known issue that is important in pricing 
insurance products. The relevant research is known 
as geographical ratemaking in property and casualty 
insurance (e.g., Griz 2015; McClenahan 1990). Area 
of residence is one of the factors that health insurers 
can use when adjusting premiums by the Patient 
Protection and Affordable Care Act, as it helps 
to account for the spatial variability that cannot be 
explained by other factors such as age and smoking 
status (e.g., Kofman and Pollitz 2006; NAIC and 
CIPR 2011). A common way to handle the spatial 
variation is by clustering small geographic regions 
(e.g., at the county level or zipcode level) into larger 
areas, each of which has its own rate in product pric-
ing (e.g., Werner and Modlin 2010). These grouped 
areas are usually called geographic rating areas. 
Although geographic rating is permitted in most 
states, it is limited by state/federal regulations to  
the use of the first three digits of zipcode or county  
(https://www.cms.gov/cciio/programs-and-initiatives/ 
health-insurance-market-reforms/state-gra.html). 
For example, Figure 1 is a sample rating area map 
of Ohio approved by the Ohio Department of Insur-
ance, where 88 counties in the state are grouped into 
17 rating areas.

Rating areas need to be defined with actuarial  
justifications. Early rating areas were defined based 
on subjective information such as agent feedback or 
loss ratios that may have lacked credibility; some 
historical territory definitions lacked statistical sup-
port and may have lost meaning over time (Jennings 
2008, p.34). Modern clustering methods, non-model 
based or model based, have been applied to residuals  
from standard models such as generalized linear 
models (GLMs), (Haberman and Renshaw 1996; 
McCullagh 1984) to group basic geographic units such 
as counties into clusters based on historical experi-
ence, modeled experience, or well-defined simi larity 
rules (Werner and Modlin 2010; Yao 2008). A unique 
requirement of the cluster analysis in this context is 
that there are various social and regulatory accept-
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were not suggested and actuarial implications were 
not fully discussed.

This paper aims to provide a practical method for 
geographical rating with a two-part generalized geo-
additive model, using a fast alternative to MCMC, 
the integrated nested Laplace approximation (INLA) 
(Rue et al. 2009). The implementation is available 
in R package INLA (Martins et al. 2013), which 
could reduce computing time from days to hours for 
large data sets. Because real health insurance data 

Fahrmeir and Lang 2001; Klein et al. 2014, 2015). 
Due to the computing intensive MCMC, however, 
the model has not been widely applied to geographic 
rating despite its natural potential. Practical appli-
cations are further complicated by excess zeros 
commonly observed in claims, resulting in semi-
continuous data. The most relevant work in Klein 
et al. (2014) used zero-inflated generalized geo-
additive models in non-life ratemaking, but imple-
mentable rating areas using the spatial random effects 

Figure 1. Geographic rating area map for Ohio approved by Ohio Department 
of Insurance in Feb. 2014. Source: http://www.insurance.ohio.gov/Company/
Documents/Rating_Areas_Map.pdf.
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perform much better than models without any spatial 
effect, but modeling at the finer zipcode level, if 
allowed by regulations, could lead to additional gain. 
Although the methods are motivated and illustrated 
with healthcare insurance, they can be applied to 
property and casualty insurance also.

The rest of the paper is organized as follows.  
A simulated data set mimicking a health insurance 
claim data set in reality is introduced in Section 2. 
The generalized geoadditive model and its inferences 
using the INLA package are presented in Section 3. 
A definition of ratings at the zipcode level with the 
spatial random effects in the model is developed in 
Section 3.6. The simulated data is analyzed, with 
results discussed and ratings map presented in Sec-
tion 4. A discussion concludes in Section 5. Details 
about the data generation and INLA are relegated to 
the Appendix.

2. Healthcare expense data

A simulated dataset is used to illustrate the pro-
posed methods which avoids the proprietary restric-
tions from using real data. The data generating 
mechanism was designed to generate data with 
features mimicking those of real data that are typi-
cally available for geographic rating; see details in 
Appendix A. Healthcare expenses of one month for 
n = 20,000 members in Ohio were generated with 
their age, gender, income, and zipcode. The variable 
income does not need to be income; it can represent 
a continuous variable of importance other than the 
demographics. The use of age and gender in pricing 

is subject to state or federal 
regulations, so their usage 
here is for illustration pur-
poses. The covariates of the 
simulated data were gen-
erated independently. In a 
practical setting, they can 
be correlated, which should 
be handled the same way as 
done in a multiple regression  

are privileged, we choose to use a simulated data to 
demonstrate the models and methods, which mimic 
the real data from a company, with features such 
as spatial dependence, excess number of zeros, and 
nonlinear covariate effects. An additional advantage 
of simulated data is that the true model and true 
parameter values are known, facilitating model  
fitting assessment that is otherwise not possible with 
real data. Our code is in supplementary materials to  
ensure reproducibility. The simulated data are health-
care expenses and covariates at the individual level, 
including the basic geographical unit where each 
individual resides such as zipcode or county. The 
expenses typically have a positive probability mass 
at zero (about 20% in the simulated example in 
Section 2), and a two-part model is used for such 
data (Deb et al. 2006; Frees and Sun 2010). The first 
part models the binary response of whether or not 
the expense is positive, and the second part models  
the expense amount if it is positive. Nonlinear 
covariate effects, structured spatial random effects, 
and unstructured random effects are included in both 
parts. The structured spatial random effects are in the 
form of Gaussian Markov random fields (GMRF) 
(e.g., Rue and Held 2005).

The rating for each basic geographical unit is 
derived as a ratio based on the two sets of structured 
spatial random effects. The ratings vary smoothly 
on the map without territorial boundaries, and they 
are justified by the unified fully Bayesian modeling 
framework. Units containing no individual data can 
still be rated with the built-in information borrowing 
mechanism of the inference procedure. The result-
ing ratings are more fair  
to customers, more accurate 
in predicting expenses, and 
more profitable for insurers. 
We further compare models 
with spatial effects at the 
county level and those at the 
zipcode level, due to regu-
lation restrictions. Models 
at the county level already 

The ratings vary smoothly on the 
map without territorial boundaries, 
and they are justified by the unified 
fully Bayesian modeling framework. 
Units containing no individual data 
can still be rated with the built-in 

information borrowing mechanism 
of the inference procedure.
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zeros. Second, children and seniors are associated 
with higher expenses; that is, the age effect is non-
linear, V-shaped. Lastly, everything else held constant, 
members in urban zipcode areas are more likely to 
have higher expenses than those in rural zipcode 
areas. This was enforced by the structural spatial 
effects with higher values assigned to urban zipcode 
areas; see details in the Appendix A. A reasonably 
good geographic rating method should address the 
challenges from these three features: 1) the positive 
probability of zero expense; 2) nonlinear effect for 
some risk factors; and 3) the smoothly varying ratings 
at the zipcode (or county) level. The proposed methods 
address these challenges by a two-part model that 
allows smooth covariate effects and spatial random 
effects. Although the spatial effects were generated 
at the zipcode level, it is also of interest to investigate 
the impact of a restriction that only allows county 
level geographic rating.

3. Models and methods

3.1. Generalized geoadditive model

For i = 1 , . . . , n, let Yi be the response variable.  
In the geographic rating application, the response 
variable can be a binary variable indicating the 

model. Moderate correlation does not bring extra 
difficulty to our methodology; too high correlation 
causes collinearity, which can be fixed, for exam-
ple, by constructing new predictors from a principal 
component analysis. The geographic distribution of 
the n members in 1197 zipcode areas and their ages 
were generated to approximately match those from 
the census data (http://www.census.gov/popest/). The  
resulting dataset has five variables for n members: 
expense, zipcode, age, gender (male = 1), and income 
(on log scale). Table 1 shows the first 5 rows of the 
dataset.

The simulated healthcare expense data has several 
realistic features. First, about 20% of the members 
have zero expense; Figure 2 shows the histogram of 
the healthcare expense per month on the log scale, 
with the leftmost bar representing the frequency of 

Table 1. Sample rows of the simulated dataset

Expense Zipcode Age Gender (log) Income

282.84 43001 36 0 5.52

180.22 43001 33 0 7.28

347.31 43001 21 1 5.40

1523.75 43001 45 1 6.64

224.21 43001 23 1 5.42
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Figure 2. Histogram of healthcare expense on the log scale.  
The vertical bar on the left represents zero expenses.
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geneity across the regions, the spatial random effects 
are usually surrogates of unobserved factors. As most 
of the unobserved factors vary smoothly over the 
space, two neighboring regions are more alike than 
two regions further apart. The local dependence 
structure is described by an Intrinsic GMRF, which 
adopts an intuitive conditional specification:

∼ ∼∑γ γ t γ
t





≠ γ

γ
N

n n
s t t s

s
tt s

s

,
1

,
1

, (3.2);

where ns is the number of neighbors of region s,  
t ∼ s indicates that region t and region s are neighbors,  
and tγ is a precision parameter. The joint distribution 
of f = (γ1, . . . , γR) can be equivalently specified as

∼ ( )( )t −γ
− − N I WR0, , (3.3)1 1

where W = (wst), wst = I (t ∼ s)/ns. Model (3.3) speci-
fies an improper distribution because the precision 
matrix IR – W is not of full rank. It can, however, 
be used as a prior for f. This model is known as an 
intrinsic conditional autoregressive (ICAR) model, 
because model (3.2) is the limit of an autoregressive 
model as the autoregressive coefficient r = 1. As 
such, it can accommodate stronger dependence than 
models with r < 1.

3.2. Two-Part generalized  
geoadditive model

As patient level healthcare expenses have a large 
percentage at zero, applying model (3.1) directly 

would not be appropriate. 
Two-part models have been 
developed for zero-modified  
data; see Neelon and 
O’Malley (2014) for a recent 
review. We consider a two-
part generalized geoadditive 
model. A generalized geo-
additive model is used for 
the probability of non-zero 
expense in the first part, and 

presence/absence of healthcare expense, or the log 
transformed healthcare expense if it is positive. Let 
Xi and Zi be a p × 1 and a q × 1 covariate vector, 
which have linear and nonlinear effects, respectively. 
Let si be the region (zipcode area) in which subject i  
resides, si ∈ {1, . . . , R}, where R is the number of 
regions (which could be zipcode areas or counties). 
A generalized geoadditive model (Kammann and 
Wand 2003) is

a `∑ ( )( )µ = + + γ += g X f Zi i j ij s sj

q

i i

 ; (3.1)
1

where g is a known link function, µi = E[Yi |Xi, Zi, 
γsi

, si
], β is a p × 1 vector of coefficients for Xi, fj, 

j = 1, . . . , q, are smooth nonlinear functions with 
parameter vector `, γsi

 are structured spatial random 
effects (spatially dependent) at the region level to 
be further described below, and si

 are unstructured 
random effects at the region level. The joint distribu-
tion of  = (1, . . . , R) is N(0, t

–1IR), where IR is 
identity matrix of dimension R, and t is a precision 
parameter.

Model (3.1) encompasses the GAM and GLM as 
special cases. For example, when γ is not present, the 
model is a GAM with an unstructured random effect 
at the region level; when neither γ nor  is present, 
the model is a GAM; when no covariate has smooth 
nonlinear effect, the model is a GLM with struc-
tured and unstructured region level random effects. 
Since the smooth nonlinear effects fj, j = 1, . . . , q, are 
confounded via the intercept, constraints are needed 
for their identifiability. The best constraints are 
Σn

i=1 fj(Zij) = 0 for all j, which makes each fj orthogonal 
to the intercept and leads to 
minimum width confidence 
intervals for the constrained fj  
(Wood 2006).

The structured random 
effects γsi

 in model (3.1) 
account for a smooth geo-
graphical surface across all 
the regions. In contrast to the 
unstructured random effects 
si

 which capture the hetero-

We consider a two-part  
generalized geoadditive model.  

A generalized geoadditive model 
is used for the probability of  

non-zero expense in the first part, 
and a second generalized  

geoadditive model is used for the 
positive expense in the second part.
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3.3. Bayesian inference and INLA

Models (3.4) and (3.5) contain many Gaussian  
components that can be taken advantage of in infer-
ence under the Bayesian framework. Consider the  
first part (3.4) with logit link as an example, where 
Gaussian prior distributions are imposed on a(1) and  
`(1), with hyperparameter vectors sβ

(1) and sα
(1). The 

prior for f (1) is defined as model (3.3) with a preci-
sion parameter tγ (1). The prior for (1) is normal with 
mean 0 and precision parameter t(1). Define w(1) = 
(a(1), `(1), f (1), (1)), the vector of all unknown 
Gaussian variables of interest in the model. Let p(1) 
= (sβ

(1), sα
(1), tγ

(1), t 
(1)) and let p(p(1)) be the prior of 

p(1). Let p(•| •) denote the conditional distribution of 
its arguments. Then p(w(1)|q(1)) is Gaussian with zero 
mean and precision matrix Q(p(1)).

Since Yi are independent given all covariates  
and latent Gaussian variables, the posterior can be 
written as

p

p p p∏

( )

( ) ( ) ( )

p ∝

p p p

( ) ( )

( ) ( ) ( ) ( ) ( )
=

1 1

1 1 1 1 1
1 Y wi ii

n

,

, ,

w Y

w

where p(Yi|wi
(1), p(1)) is the Bernoulli likelihood under 

model (3.4), and Y = {Y1, . . . , Yn}. The posterior 
density for the second part model (3.5) can be 
worked out similarly with superscript “(2)”.

A common approach for inference in such a model 
is to use MCMC. As pointed out by Rue et al. (2009), 
however, performance of MCMC with component-
wise updates in this context is poor due to strong 
dependence among w(1) itself, and between w(1) and 
p(1), especially when n and R are large. Consequently, 
the computational efficiency of MCMC is very low. 
Long chains are needed for convergence to occur, 
which may take days.

INLA is a new approach to statistical inference 
for latent Gaussian models (Martino and Rue 2010; 
Rue et al. 2009). It provides fast, accurate approxi-
mations to the posterior densities of parameters and 
latent Gaussian variables of interest. A sketch of 
the approximation algorithms is in Appendix B.  

a second generalized geoadditive model is used for 
the positive expense in the second part.

Let i be the expense of subject i, i = 1, . . . , n.  
In the first part, the response variable is the indicator  
variable Y i

(1) = 1i>0. By adding a superscript “(1)” 
to all the components in model (3.1), the first part 
model is





Y i n

g X f Z

N I

i i
ind

i

i i j ij sj

q
s

R

i i
a ` ∑

( )

( )

( ) ( )

( )

µ µ =

µ = + γ +

t

t

+

( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

=

γ

−





∼

∼

∼

Bernoulli , 1, . . . , ,

; ,

ICAR ,

0, , (3.4)

1 1 1

1 1 1 1 1 1
1

1

1 1

1 1 1

where µi
(1) = E[Yi

(1)|Xi, Zi, γ i
(1),  i

(1)], f (1) = (γ1
(1), . . . , γR

(1)),  
 (1) = (1

(1), . . . , R
(1)) and the ICAR model is defined 

as model (3.3). The link function g(1) was chosen to 
be the logit link in the data analysis in Section 4.

In the second part, the response variable is Y i
(2) = 

logi provided i > 0. With superscript “(2)”, the 
second part model is





∑

( )

( )

( )

( )

( )

µ µ d =

µ = + γ +

t

t

+

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

=

γ

−

g

Y F y i n

X f Z
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i i
ind

i

i i j ij sj

q
s
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i i
a `







∼

∼

∼

; , , 1, . . . , ,

; ,

ICAR ,

0, , (3.5)

2 2 2

2 2 2 2 2
1

2

2 2

2 2 1

where µ i
(2) = E[Yi

(2)|Xi, Zi, γ i
(2), i

(2)], f (2) = (γ1
(2), . . . , γR

(2)), 
 (2) = (1

(2), . . . , R
(2)), and F(y; µ, d) is a distribu-

tion function specified by a mean parameter µ and 
possibly another parameter d. In the data analysis in  
Section 4, the link function g(2) was the identity link 
and F is the normal distribution with mean µ and 
variance d. Flexible distributions such as general-
ized gamma can be used for F in the second part to 
capture the skewness in the observed data (Liu et al. 
2010; Manning et al. 2005). The covariates Xi and Zi 
in the two parts do not have to be the same, although 
they are the same in the analysis in Section 4.
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INLA uses an alternative method to (3.6) proposed 
by Watanabe (2010),

∑ [ ]( )= ξ( ) ( )
=p p YD ii

n
Var log .1 1

1

This method is more stable than (3.6) because it 
computes the variance separately for each data point 
and sums; the summing yields stability (Gelman 
et al. 2014b). A smaller DIC indicates a better model. 
In general, rules of thumb suggest that differences 
of 3 or more in DIC should be regarded as signifi-
cant (Spiegelhalter et al. 2002). Although the DIC is 
widely used, it is known that it underpenalizes com-
plex models with many random effects (Plummer 
2008; Riebler and Held 2009).

Another popular model comparison criterion is the 
conditional predictive ordinate (CPO) (Geisser 1993; 
Pettit 1990), which is also provided in the INLA 
package. The CPO of observation i is the predictive 
density of the ith observation given the rest of the 
data Y–i

(1) that excludes the ith observation:

( )= p ( ) ( )
−Yi i iCPO .1 1Y

To assess the overall predictive quality of the 
model being considered, the logarithm of the pseudo-
marginal likelihood (LPML) (Geisser and Eddy 1979) 
can be computed,

∑= = ii

n
LPML logCPO .

1

A scaled version –LPML/n is known as the cross-
validated log-score (Gneiting and Raftery 2007).  
A larger value of LPML indicates a better predictive 
model. The difference of two models in LPML is the 
logarithm of the pseudo-Bayes factor (PsBF) (Dey 
et al. 1997; Geisser and Eddy 1979). The asymptotic 
distribution of PsBF (Gelfand and Dey 1994) may be 
used to calibrate PsBF in a similar way to calibration 
for Bayes factors (Kass and Raftery 1995): a differ-
ence of 1–2 indicates strong preference and more 
than 2 will be decisive.

We refer readers to Rue et al. (2009) for more details. 
The INLA methodology is efficiently implemented, 
and includes sparse matrices operations (Martino and 
Rue 2009). By using INLA, days of computing time 
using MCMC can be reduced to hours (e.g., Carroll 
et al. 2015; Taylor and Diggle 2014). The software 
package uses OpenMP to speed up the computa-
tions for shared memory machines, i.e., multicore 
processors which are equipped on most personal 
computers nowadays. An R package is available for 
ease of usage, and was used in the data analysis in 
Section 4. The software is open-source and can be 
downloaded from the website www.r-inla.org, which 
also includes many applications and case studies.

3.4. Model comparison

Since the two parts of the model are separated 
using different parts of the data, model comparisons 
can be done for each part separately. The deviance 
information criterion (DIC) is a commonly used 
model comparison criterion in the Bayesian frame-
work (Spiegelhalter et al. 2002). Taking the first part 
as an example, let ξ(1) = (p(1), w(1)) be the vector  
of all unknown parameters of interest in the model. 
The DIC is defined as

= +D pDDIC ,

where D
–
, as a measure of fit, is the expectation of the 

deviance of the model with respect to the posterior 
distribution of ξ(1), and pD is the effective number of 
parameters measuring the model complexity. Specifi-
cally, D

–
 = Eξ(1)[D(ξ(1))] and D(ξ1)) = –2logp(Y (1)|ξ(1)). 

Several methods have been proposed for calculating 
pD. Spiegelhalter et al. (2002) proposed to use

( )= − ξ( )p D DD ,1

where ξ
–

(1) is the posterior mean of ξ(1). Gelman et al. 
(2014a) suggested

[ ]( )= ξ( )p DD

1

2
Var . (3.6)1
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3.6. Geographic 
rating

Geographic ratings can be 
defined based on the two-
part model, where the struc-
tured spatial effects from 

both parts contribute. In the logistic part, the spatial 
random effects f (1) are the zipcode (or county) level 
adjustments on the probability of having non-zero 
expense for patients with the same covariate vec-
tor. The adjustments take effect on the scale of the 
log odds. In the lognormal part, the spatial random 
effects f (2) are the zipcode (or county) level adjust-
ments on the log scale of the expense if the expense is 
positive. Ideally, the two effects should be combined 
to give a single adjustment for each region in geo-
graphic rating.

We propose a method motivated from the prediction 
of the model. Given the covariates of patient i, the 
mean healthcare expense is predicted to be

µ = µ µ + d 
( ) ( )

i i iˆ ˆ exp ˆ ˆ 2 , (3.7)1 2

where µ̂i
(1) and µ̂i

(2) are estimates of µi
(1) and µi

(2) in 
models (3.4)–(3.5). The additional term d̂/2 is due to 
the expectation of a log-normal random variable with 
variance d on the log scale. We need to transform the 
individual level prediction to a regional level adjust-
ment for ease of practical operation as needed in geo-
graphic rating.

It is clear in model (3.5) that the region level 
adjustment in µ̂i

(2) is simple due to the log link—just 
a scale of exp [γ̂ si

(2)]. The region level adjustment in 
µ̂i

(1) is not readily available as seen from model (3.4): 
since µ̂i

(1) is on the scale of log odds, the impact of 
the spatial random effect γ si

(1) depends on the indi-
vidual covariates Xi, Zi. We propose to average over 
all individuals in each region to form a regional level 
adjustment factor on the probability of non-zero 
expense. For each region r, we take the mean of the 
linear predictor in (3.4) over all the observed indi-
viduals in this region to form a region level linear 
predictor. In particular, let h– r be the regional average  

3.5. Predictive 
performance

Not considering adminis-
trative costs, the premium of 
a customer with a given set 
of covariates is the predicted 
healthcare expense. The predictive performance of 
models can be evaluated by using hold-out data. 
Commonly used measures are mean absolute error 
(MAE), mean absolute percentage error (MAPE), 
and root mean squared prediction error (RMSPE) 
(e.g., Frees et al. 2013). A more recent measure by 
Quiroz et al. (2015) brings randomness into selecting 
training and testing data sets. This approach can be 
applied to all predictive accuracy measures. Taking 
RMSPE as an example, the process has four steps:

1. Randomly select V out of the n observations to be 
the testing data and the rest to be the training data.

2. Fit proposed models on the training data.

3. Make predictions on the testing data using the 
posterior mean of the parameters and obtain 
RMSPE for each fitted model

∑= =V
dii

V
RMSPE

1
,2

1

where di is the prediction error of the ith testing 
data.

4. Repeat steps 1–3 M times, and take the average 
of the M resulting RMSPE values as the mean 
RMSPE (MRMSPE) for each model.

The same procedure can be applied to get mean 
MAE (MMAE).

The variation of each accuracy measure is also 
of interest. The standard deviation from the M rep-
licates for each measure implies the stability of the 
performance under the measure. Smaller standard 
deviation is preferred.

Other measures for predictive modeling compari-
son such as Gini or lift score could also be used, if 
the goal of the prediction is ranking.

Geographic ratings can be 
defined based on the two-part 

model, where the structured spatial 
effects from both parts contribute.
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of the spline basis could be chosen with the DIC or 
LPML, which is beyond the scope of this manuscript. 
In our analysis, we used cubic splines with 5 degrees 
of freedom (and 2 internal knots), which provided 
sufficient flexibility in recovering the true curve.

The mean components of the two-part model 
(3.4)–(3.5) are

( ) ( )µ = β + β + β + q

+ γ +

( ) ( ) ( ) ( ) ( )

( ) ( )

G I B Ai i i i i

s si i

logit

,

1
0
1

1
1

2
1 1

1 1

( )µ = β + β + β + q + γ +( ) ( ) ( ) ( ) ( ) ( ) ( )G I B Ai i i i i s si i

 ,2
0
2

1
2

2
2 2 2 2

where G is gender, I is log income, A is age, and  
B(Ai) represents the spline basis expansion of age. The 
spatial random effects γ si

(1) and γ si

(2), si ∈ {1, . . . , R},  
are possibly restricted by regulations. To investigate 
the impact of the regulations, we fit models with 
spatial effects at two different levels: zipcode level 
(correct specification with R = 1197) and county 
level (misspecification with R = 88). The models 
are referred to as the zipcode level rating model 
and the county level rating model, respectively. As 
the data were generated with zipcode level spatial 
effects, county level rating is less optimal than zip-
code level rating, but may still be better than no 
geographic rating.

Since the smoothing effects are decomposed into 
several linear effects, the hyperparameters p(1) and p(2) 
are reduced to (tγ

(1), t 
(1)) and (tγ

(2), t 
(2), 1/d), respec-

tively. The priors for these hyperparameters are set 
on logp(1) and logp(2) in INLA as gamma distribu-
tions with shape 1 and scale 20,000. The priors for 
(a(1), a(2), p(1), p(2)) are normal with some mean µ and 
precision t which are typically unequal to the default 
values. Users can specify values of priors µ and t 
through the inla function in the INLA package. 
Examples are given in the supplemental code1. The 
structured random effects γ si

(1) and γ si

(2) account for 
a smooth geographical surface across all the rating 

of ĥsi
 = X

si
β̂(1) + Σq

j=1 f̂ j
(1)(Zsi j

) over all i such that si = r. 
This regional level linear predictor h–r is then combined 
with the region level spatial random effect γr

(1) to form 
a regional level probability of non-zero expense for 
region r

[ ]φ = h + γ ( )−
r r r

ˆ logit ˆ .1 1

We propose to use φ̂r, r = si, as the region level 
adjustment in place of µ̂i

(1) in (3.7). Combining the 
two parts, the proposed region level geographic rating 
adjustment for region r, r = 1, . . . , R, is

[ ]r = φ γ ( )
r r r

ˆ exp ˆ .2

This adjustment is a multiplicative effect in predict-
ing the healthcare expense that is applied after the 
individual covariate effects. It combines effects from 
both parts of the two-part model. In the case where 
a large proportion of policyholders in a region had 
no expense but the remaining policyholders had 
very high expenses, the effect obtained from the 
log-normal part exp [γ̂ r

(2)] will be very high, but it will 
be downweighted by the effect from logistic part φ̂r 
which would be much smaller.

4. Illustration

As an illustration, the two-part model was fitted 
to the simulated data described in Section 2 with the 
logit link in the first part and the identity link on the 
log scale in the second part. The effect of age was set 
to be nonlinear in both parts. Although INLA offers 
completely nonparametric specifications of non-
linear effects through random walk priors, we chose 
to describe the nonlinear effect with basis spline 
regression, in which case, the coefficients of the 
basis are estimated the same way as those in linear 
effects, and the computing cost is much lower. The 
spline basis was constructed with the bs function in 
R package splines, and a sum to zero constraint was 
imposed on each basis such that the intercept in the 
model becomes identifiable. The degrees of freedom 1Available at https://elizabeth-schifano.uconn.edu/
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very similar to that of the true effects in Figure 6 
in Appendix A. Urban areas are estimated to have 
higher effects than rural areas. Nonetheless, the 
zipcode level spatial effects vary more smoothly 
over space due to its much finer resolution than the 
county level spatial effects. Further, the county level 
spatial effects have a much smaller magnitude than 
the zipcode level spatial effects, because the former 
is coarser so that zipcode effects within the same 
county get averaged. The finer resolution of zipcode 
spatial effects, if allowed by regulations, allows for 
improved predictions over territory rating methods 
based on counties or even bigger territories as shown 
in Figure 1.

To compare rating models with or without spatial  
effects, we fit several variations of the two-part 
model by dropping the structured spatial effects 
and/or the unstructured random effects at both zip-
code and county levels. Model 1 has neither struc-
tured nor unstructured effects; Model 2 has zipcode 
level unstructured effects but no structured effects; 
Model 3 has zipcode level structured effects but no 
unstructured effects; Model 4 has both structured 
and unstructured effects at zipcode level; Model 5 
has unstructured effects but no structured effects at 
county level; Model 6 has structured effects but no 
unstructured effects at county level; and Model 7 has 
both structured and unstructured effects at county 
level. Estimation results from Model 4 and Model 7  
are reported in Table 2 and Figures 3–4. The DIC 
and LPML for all seven models are summarized in 

areas while the unstructured random effects  si

(1) and 
 si

(2) capture the heterogeneity across the rating areas.

4.1. Statistical analysis

Posterior means, standard errors, and 95% credible 
intervals of the fixed effect coefficients are summa-
rized in Table 2. With such a large sample at the 
individual level, these effects are all estimated quite 
accurately, very close to the true values (2, 0.1, 1) 
and (6, 1, 0.4) in the logistic part and log-normal part, 
respectively. The uncertainty in estimation is much 
higher in the logistic part than in the log-normal part, 
because this part contains less information due to the 
binary nature of the response. The effects estimated 
from the zipcode level rating model are very similar 
to those from the county level rating model, except 
with higher bias for the intercept and higher standard 
errors for the two coefficient parameters (gender and 
income) in the log-normal part. The estimated non-
linear effects of age are shown in Figure 3, which 
recover the true curves very closely in both parts of 
the model. Again, the uncertainty is much higher for 
the logistic part than for the log-normal part, and the 
results from models with different geographic rating 
levels are very similar.

The posterior mean of the spatial effects in both 
parts, γ s

(1) and γ s
(2), are shown in Figure 4 using 9 levels  

of gray scales categorized by their quantiles, with 
darker colors indicating higher spatial effects. For 
models with zipcode level and county level spatial 
effects, the overall color patterns of the estimates are 

Table 2. Posterior means, standard errors (SE), and 95% credible intervals (CI) of fixed effect coefficients

Zipcode level spatial effect County level spatial effect

Mean SE 95% CI Mean SE 95% CI

Logistic part

(Intercept) 2.0155 0.0442 1.9317 2.1056 1.9716 0.0445 1.8871 2.0622

gender 0.1061 0.0403 0.0271 0.1851 0.1052 0.0402 0.0263 0.1840

income 1.0260 0.0236 0.9799 1.0724 1.0233 0.0235 0.9764 1.0685

Log-normal part

(Intercept) 5.9993 0.0061 5.9873 6.0112 5.9228 0.0040 5.9150 5.9307

gender 0.9987 0.0017 0.9954 1.0021 0.9993 0.0043 0.9910 1.0077

income 0.4000 0.0009 0.3982 0.4017 0.3996 0.0022 0.3952 0.4040
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gests that, if the spatial effects in the data were at a 
finer scale like zipcode, which is often a reasonable 
assumption, then modeling it at a larger scale due to 
regulation restrictions is not ideal but can be much 
better than not modeling the spatial effects at all.

The models we considered are only a few choices 
from many possibilities. Other models using a 
Tweedie distribution combined with spatial random 
effects could be competitive for a real data where 
the true distribution is unknown. The models we pre-
sented are for illustration purposes, and the model 

Table 3. Some numbers appear identical in the table 
only because of rounding. Model 1, with no spatial 
component, is clearly out-performed by all others. 
Among the zipcode level rating models, the correctly 
specified Model 4 is the winner in both parts, but 
its advantage is much clearer in the log-normal part 
than in the logistic part in both DIC and LPML. 
The county level rating models are quite competitive 
in the logistic part, but even their best competitor, 
Model 7, is far inferior to Model 4 in the log-normal 
part in both DIC and LPML. The comparison sug-
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Figure 3. Estimates of nonlinear age effects from zipcode level rating model (upper) and  
county level rating model (lower) in logistic regression (left) and normal regression (right)  
and their 95% pointwise credible intervals. The credible intervals are very tight on the right  
due to the large sample size. The true curves are mostly overlapped by the estimated curve.
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(a) zipcode level rating

(b) county level rating

Figure 4. Maps of structured spatial effects in zipcode level rating model (upper) and county level 
rating model (lower). Structured spatial effects for probability of non-zero expense (left) and expense 
given non-zero expense (right).

Table 3. Model fitting comparison results. Model 1 has neither structured nor unstructured effects; Model 2 and Model 5 have 
unstructured effects but no structured effects; Model 3 has Model 6 have structured effects but no unstructured effects; Model 4 
and Model 7 have both structured and unstructured effects. Models 2–4 are zipcode level rating; Models 5–7 are county level rating.

    Zipcode level rating  County level rating

Criteria Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Logistic DIC 15443.3 15443.3 15437.4 15436.7 15443.1 15434.9 15436.4

LPML −7721.7 −7721.7 −7719.8 −7719.4 −7721.6 −7717.6 −7718.3

Log-normal DIC 49426.2 −25912.4 −25921.9 −25937.6 −1945.5 −1941.3 −1947.8

LPML −24713.1 12820.8 12852.1 12869.8 974.0 969.2 975.0
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ferences are relatively small. The three county level 
rating models have very close errors. These errors 
and their standard deviations have units in dollars. 
They reflect the accuracy of pricing based on the 
model given covariates. The results suggest that rating  
models with spatial effects do improve the predictive 
power, and if modeling them at the zipcode level is 
not allowed or possible, modeling them at the coarser, 
county level is still well worth it. Moreover, note that 
around 200 out of 1197 zipcode areas have no obser-
vations in the training data at each replicate, but the 
zipcode level rating model can still estimate the spatial 
effect of these areas by using information from their 
neighboring areas.

Since healthcare expenses have a probability mass 
at zero and are highly skewed to the right, the predic-
tions on zeros and extremely large expenses could have 
very different performance across different models. 
Thus, it may also be valuable to compare the predic-
tive power within each observation group catego-
rized by the values of the expenses. Eight brackets 
are created based on the percentiles of the expenses. 
The first bracket are all zero which comprises of 
about 20% of the data, and the last bracket contains 
expenses over $2,000, which also comprises of about 
20% of the data on the right tail. Table 5 summa-
rizes the MRMSPE of Models 1, 4, and 7, and their 
standard deviations from 100 replicates. In bracket 1,  
Model 7 gives the lowest MRMSPE with a small edge 
over Model 4, but in all other brackets, Model 4 is 
the clear winner with much reduced MRMSPE and 
standard deviation. Both Model 4 and 7 do much 
better than Model 1. In particular, in the last bracket 
with large expenses, which is of most concern to 
insurers, the MRMSPE of Model 4 is about less than 
a half of that of Model 7, and less than a quarter of 
that of Model 1.

Finally, we plot the maps of geographic ratings rr’s 
proposed in Section 3.6 for Ohio in Figure 5, from 
the zipcode level rating model (left) and the county 
level rating model (right). As expected, the maps 
have patterns very similar to those of the structured 
spatial effect maps in Figure 4 because the estimated 

with the correct specification is expected to perform 
the best given the data size.

4.2. Actuarial implications

To compare the predictive performance of the 
models in pricing, we use MMAE and MRMSPE 
computed with V = 5,000 and M = 100. That is,  
instead of fitting the model to all 20,000 obser-
vations, at each replicate, we randomly split the data 
into a training data of 15,000 observations and a test-
ing data of 5,000 observations. MAE and RMSPE 
are obtained on the testing data based on the fit to 
the training data for each model given each replicate 
of training/testing division. MAPE is not used because 
the true expenses could be exactly zero.

Table 4 summarizes the MMAE and MRMSPE 
from 100 replicates. Model 1 which has no geo-
graphic rating component has the largest prediction 
errors, the zipcode level rating models (Models 2–4) 
have much smaller errors, and the county level rating 
models (Models 5–7) fall in between. The standard 
deviations of both measures have the same pattern. 
Within the zipcode level rating models, the correctly 
specified model (Model 4) does better, but the dif-

Table 4. Predictive performance comparison of 7 competing 
models. Model 1 has neither structured nor unstructured 
effects; Model 2 and Model 5 have unstructured effects but 
no structured effects; Model 3 has Model 6 have structured 
effects but no unstructured effects; Model 4 and Model 7 
have both structured and unstructured effects. Models 2–4 
are zipcode level rating; Models 5–7 are county level rating. 
Results are obtained by averaging over 100 replicates 
where the data are resampled at each replicate. Standard 
deviations are presented in parentheses.

Model MMAE (SD) MRMSPE (SD)

No geographic rating

Model 1 1866.7 (134.6) 11416.1 (1779.3)

Zipcode level rating

Model 2 468.5 (34.9) 2741.7 (513.3)

Model 3 454.8 (31.0) 2521.9 (416.6)

Model 4 453.3 (30.7) 2505.7 (420.0)

County level rating

Model 5 1016.9 (84.6) 6790.7 (1458.8)

Model 6 1016.9 (84.8) 6791.8 (1461.4)

Model 7 1016.7 (84.6) 6789.2 (1458.4)
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zipcode areas locally, and eliminates the need for 
justifying boundary lines in the traditional method.

5. Discussion

We proposed a new geographic rating method based 
on a two-part model with a spatial random effect 
in each part of the model. The method removes the 
solid boundaries between traditional rating areas 
and regards each basic geographical region such as  
zipcode area as an individual rating area of its own. The 
structured spatial random effects enforce smoothness 
on the resulting ratings at the basic region level. The 
method can be carried out with the computationally 

probabilities of non-zero expense at all zipcode areas 
or counties have a small range. The two maps in  
Figure 5 are similar in darkness pattern, but their 
scales are very different; the range is (0.42,1.6) from 
the zipcode level rating and (0.61,1.30) from the 
county level rating. This means the former has much 
more flexibility than the latter to adjust the premium 
to account for the spatial variation that cannot be 
explained by the fixed effects such as gender, age, 
and income. Compared to the map in Figure 1 which 
has solid boundaries, the zipcode level rating in the 
left panel of Figure 5 changes in a much smoother 
way over all the zipcode areas on the whole map. 
The smoothing borrows strength from neighboring 

Table 5. MRMSPE comparison results on groups of healthcare expense observations. Model 1 has neither structured nor 
unstructured effects; Model 4 has both structured and unstructured effects at zipcode level. Model 7 has both structured  
and unstructured effects at county level; Predictions are divided into 8 brackets based on the percentiles of the true responses 
where the first and the last brackets each contains around 20% of data. Standard deviations are presented in parentheses  
under each mean.

Brackets [0, 0] (0, 200] (200, 400] (400, 600] (600, 800] (800, 1000] (1000, 2000] (2000, + ∞]

Model 1 1196.1 87.6 187.8 291.1 431.7 591.0 858.4 26408.7

(SD) (971.5) (3.1) (6.8) (13.7) (26.3) (45.3) (53.9) (4138.9)

Model 4 1229.8 42.0 74.8 104.0 122.2 143.3 193.1 5600.7

(SD) (848.8) (0.9) (1.9) (3.8) (4.6) (6.7) (7.3) (918.6)

Model 7 1095.9 45.2 96.3 149.3 209.7 263.9 411.6 15667.1

(SD) (787.1) (1.3) (2.3) (4.6) (8.3) (11.4) (17.4) (3394.4)

Figure 5. Geographic ratings for Ohio, estimated from the zipcode level rating model (left)  
and county level rating model (right)
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•  Based on demographic information from the 
census, generate variable Age (A) from the 
histogram of true distribution. A file of popu-
lation distribution by age has been attached in 
the supplemental material (available at https://
elizabeth-schifano.uconn.edu/).

•  Non-linear effect Age of normal part has  
quadratic form (A – 25)2/200 for A < 25 and 
(A – 25)2/600 for A ≥ 25. Effect of logistic part 
has the same curvature in a ten times smaller 
scale. Both sets of non-linear effects have been 
centered.

2. Simulate zipcodes and structured and unstructured 
geospatial effects:
•  Generate geographical variable zipcode from 

1197 zipcodes of Ohio. Weights are obtained 
from the population distribution over zipcode 
areas from the census. A file of such distri-
bution has been attached in the supplemental 
material.

•  Generate structured spatial effects f s
(1) and f s

(2) 
from the ICAR model, conditioning on a set of 
predetermined positive spatial effects for the 
largest six cities in Ohio (CrICAR function 
in the companion code). Two sets of effects 

Werner, G., and C. Modlin, Basic Ratemaking, 4 ed., Arlington, 
VA: Casualty Actuarial Society, 2010.

Wood, S. N., Generalized Additive Models: An Introduction with 
R, New York: Chapman and Hall/CRC, 2006.

Yao, J., “Clustering in Ratemaking: Applications in Territories 
Clustering,” in 2008 CAS Discussion Paper Program: Applying 
Multivariate Statistical Models, pp. 170–192. Arlington, VA: 
Casualty Actuarial Society, 2008.

Appendices

A. Generation of the  
simulated data

To generate from model (3.4) and model (3.5), we 
need to generate variables income (I), gender (G), 
age (A), geographic variable zipcode, corresponding 
structured spatial effects f (1) and f (2), and unstruc-
tured effects (1) and (2). Probability p and healthcare 
expenses  will be generated through certain link 
functions and transformations.

The whole procedure is shown in steps as follows:

1. Simulate linear and non-linear smooth effects:
•  Generate variable household Income (I) in ten 

thousands under log scale from N(6, 1).
•  Generate variable Gender (G) from a Bernoulli 

distribution with probability 0.5.

Figure 6. Simulated structured spatial effects for probability of non-zero expense (left)  
and simulated structured spatial for expense given non-zero expense (right)
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to feed the genSP function a list of positive effects 
for large cities, a correlation coefficient among all 
regions and a value for the precision parameter to 
simulate spatial effects. To generate data, the number 
of observations (n), standard deviations for both 
sets of random effects (f (1), f (2)) and random noise 
((1), (2)) need to be specified, as well as two sets 
of linear coefficients (a(1), a(2)). After tuning param-
eters, the percentage of non-zero expenses is 79.98% 
and the average non-zero expense is $5,350. All values 
of these parameters used in this paper are listed in 
the R script.

B. Bayesian inference and INLA

Latent Gaussian models are hierarchical models 
which assume a d-dimensional Gaussian field w  
to be point-wise observed through n conditional 
independent data Y (Martino and Rue 2009). Both 
the covariance matrix of the Gaussian field w and  
the likelihood model yi|w can be controlled by 
some unknown hyper-parameters p. The posterior 
then reads:

∏( ) ( ) ( )( )p ∝ p p p=   Y Y wi ii

n, , ,
1

w w

where p denotes the probability density function, 
and Yi’s are independent conditional on wi and p. 
Generalized geoadditive is one specification of latent 
Gaussian models.

Integrated Nested Laplace Approximation (INLA) 
is a new approach to statistical inference for latent 
Gaussian models (Martino and Rue 2010; Rue 
et al. 2009). The posterior marginal distributions 
of interest from the latent Gaussian model can be 
written as

∫

∫( )

( ) ( ) ( )

( )

p = p p

p q = p −

  

 

w w d

d

i i

j j

, ,

,

Y Y Y

Y Y

where p–j stands for a vector of unknown hyper-
parameters excluding the jth element.

are simulated, one for the logistic part with 
conditional effects (0.375, 0.35, 0.325, 0.3, 
0.275, 0.25) and precision parameter 10 (stan-
dard deviation 0.1) and one for the normal part 
with conditional effects (0.375, 0.35, 0.325, 
0.3, 0.275, 0.25)/2 and precision parameter 5 
(standard deviation 0.2). Simulated structured 
effects for both parts are plotted in Figure 6 
which can be compared with fitted structured 
effects in Figure 4.

•  Generate independent unstructured random 
effects for all zipcodes (1) from N(0, 0.152) for 
the logistic part, and (2) from N(0, 0.22) for the 
lognormal part.

3. Simulate binary responses for the logistic part and 
healthcare expenses under log scale for non-zero 
logistic responses.
•  Generate indicators of zero or non-zero 

expense. Generate h as a combination of linear 
effects income and gender, non-linear effect 
age, structured spatial effects and unstructured 
random spatial effects. Apply inverse logit 
transformation to h to get p and generate from 
Bernoulli distribution with probability p. After 
tuning parameters, the percentage of non-zero 
expenses is 79.98%. The true model is

[ ]( )

( )

> = + +

+ + γ +( ) ( ) ( )

I G

f A

i i i

i s si i

logit Pr 0 2 1 0.1

,1 1 1

•  Generate patient level healthcare expenses 
under log scale for those with non-zero indi-
cator values as a combination of linear effects 
income and gender, non-linear effect age, 
structured spatial effects, unstructured random 
effects and a random noise from N(0,0.152). 
Finally, take exponential to make the expenses 
realistic. The true model is

( )= + + + + γ +( ) ( ) ( )I G f Ai i i i s si i
log 6 0.4 .2 2 2

The R script in the supplemental material helps 
to replicate the case study in this paper. One needs 
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a compromise, which is fast to compute and usually 
accurate enough.

Posterior marginals for the latent variables p̃(wi|Y) 
are computed via numerical integration as:

� � �

� �

∫

∑

( ) ( ) ( )

( ) ( )

p = p p

≈ p q p q D=

  w w d
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,

, .
1

Y Y Y

Y Y

The sum is over values of q with area weights Dk. 
Posterior marginals for the hyper-parameters p̃(qj|Y) 
can be computed in a similar way. More informa-
tion, theories, and practicalities are discussed in 
Rue et al. (2009).

In INLA, the prior for f  is ICAR with precision 
parameter tγ (Besag et al. 1991). To ensure identifi-
ability of the overall level, a sum-to-zero constraint 
must be imposed on f . This model is specified with 
model = “besag” in INLA. The prior for the precision 
parameter tγ is represented as a gamma distribution 
on logtγ with shape a = 1 and rate b = 0.01 by default 
(Martino and Rue 2010). These priors influence how 
smooth the spatial effects can be.

More details on implementation are available in 
the INLA manual (Martino and Rue 2009).

The INLA approach uses these marginals to con-
struct nested approximations

� � �

� �

∫
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p q = p −
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,
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where p̃(•|•) is an approximated density. Thus, the 
approximations eliminate the need for MCMC. 
INLA provides accurate approximations to the 
marginal posterior density for the hyper-parameters 
p̃(p |Y) and for the full conditional posterior mar-
ginal densities for the latent variables p̃(wi|p, Y). 
The approximation is based on the Laplace approxi-
mation, and for p(p |Y) three different approaches 
are possible: Gaussian, full Laplace, and simplified 
Laplace (Rue et al. 2009). Each of these has dif-
ferent features, computing times, and accuracy. The 
Gaussian approximation is the fastest to compute but 
there can be errors in the location of the posterior 
mean or errors due to lack of skewness. The Laplace 
approximation is the most accurate but its compu-
tation can be time-consuming. Rue et al. (2009) 
suggested the simplified Laplace approximation as 




