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ABSTRACT

In this study, we propose a flexible and comprehensive iter-
ation algorithm called “general iteration algorithm” (GIA)
to model insurance ratemaking data. The iteration algo-
rithm is a generalization of a decades-old iteration ap-
proach known as “minimum bias models.” We will demon-
strate how to use GIA to solve all the multiplicative mini-
mum bias models published to date and the commonly used
multiplicative generalized linear models (GLMs), such as
gamma, Poisson, normal, and inverse Gaussian models. In
addition, we will demonstrate how to apply GIA to solve
the broad range of GLMmodels, mixed additive and multi-
plicative models, and constraint-optimization problems that
pricing actuaries often deal with in their practical work.
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1. Introduction
Insurance rating for property and casualty lines

of business went through a great expansion after
World War II. The expansion laid down the foun-
dation for modern rating plans, which are fairly
complex in that they typically consist of a wide
range of rating factors. However, it also created
a significant challenge for the insurance industry
in how to determine the optimal values for each
rating variable in the plan. For example, a typical
personal automobile rating plan contains garage
territory, driver age, driver gender, driver mari-
tal status, vehicle usage, driving distance, vehicle
model year, vehicle symbols, driver history (ac-
cidents and violations), and a number of special
credits and debits such as multi-car discounts,
driving school discounts, and good student dis-
counts.
To respond to the challenge of rating plan ex-

pansion, Bailey and Simon [2] and Bailey [1]
proposed a “heuristic” iteration approach called
“minimum bias models,” which utilizes an itera-
tive procedure in determining simultaneously the
“optimal” values for the rating variables. Dur-
ing iteration, the procedure will minimize a tar-
get “bias” function. Compared to the traditional
one-way or two-way analysis, such “multivariate
procedures” can reduce estimation errors. Un-
til recent interest in generalized linear models
(GLMs), the minimum bias approach was the
major technique used by property and casualty
pricing actuaries in determining the rate relativi-
ties for a class plan with multiple rating variables.
We will illustrate how the minimum bias ap-

proach can be used to derive indicated class plan
factors. Because multiplicative models are more
popular than additive ones, we will focus first
and primarily on multiplicative models. Later, we
will also illustrate how to generalize the approach
by developing additive and mixed additive-
multiplicative models.
Assume that we are conducting a two-variable

(X and Y) rating plan analysis based on loss

cost. Variable X has a total of m categories of
values, variable Y has a total of n categories of
values, and the categories are represented by the
subscript of i (from 1,2, : : : ,m) and j (from 1,2,
: : : ,n). Define ri,j as the observed loss cost rela-
tivity, and wi,j as the earned exposures or weight
for the classification i and j for variables X and
Y, respectively, and let xi and yj be the relativities
for classification i and classification j, respec-
tively. The multiplicative rating plan proposed by
Bailey [1] is:

E(ri,j) = xiyj , where i = 1,2, : : : ,m

and j = 1,2, : : : ,n:

With the above multiplicative formula, one
type of “error” proposed by Bailey is to measure
the difference between the “estimated cost” and
the “observed cost.” The errors across the vari-
able Y are

Pn
j=1wi,j(ri,j ¡ xiyj) for i= 1,2, : : : ,m.

The errors across the variable X are
Pm
i=1wi,j

¢ (ri,j ¡ xiyj) for j = 1,2, : : : ,n.
When the above errors are set to “zero” for

every X and Y, it can be shown that the estimated
relativities, x̂i, ŷj , can be derived iteratively as
follows:

Algorithm 1:

x̂i =

P
j wi,jri,jP
j wi,jyj

ŷj =

P
i wi,jri,jP
i wi,jxi

:

(1.1)

Strictly speaking, it is somewhat misleading
to describe Bailey’s approach as “minimum bias
models.” First, what Bailey proposed is essen-
tially an iteration algorithm, not a set of statistical
models. The iterative procedure is a “fixed point
iteration technique” commonly employed in nu-
meric analysis for root finding. Second, the “er-
ror” function above is not consistent with the bias
concept in statistics. Bias generally refers to the
difference between the mean of an estimator and
the true value of the parameter being estimated.
For example, suppose we are trying to estimate
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relativity xi using an estimator x̂i (which is some
function of observed data). Then the bias is de-
fined as E(x̂i)¡ xi. If E(x̂i)¡ xi = 0, x̂i is called
an unbiased estimator of xi. Although Algorithm
1 does not measure the bias of the mean esti-
mated relativity from the true value, the approach
has long been recognized as the “minimum bias”
method by actuaries. In fact, it is essentially a
cross-classification estimation algorithm. In this
paper, we describe our new and generalized ap-
proach, the “general iteration algorithm” (GIA),
which has greater statistical rigor.
Brown [3] was the first one to introduce sta-

tistical models and link Bailey and Simon’s min-
imum bias approach to the maximum likelihood
estimations of the statistical theories:

Li,j = Bri,j = Bxiyj + "i,j ,

where Li,j is the observed loss cost, B is the base,
"i,j is a random error, and Li,j follows a statistical
distribution. Returning to Algorithm 1, it can be
proven that Algorithm 1 is equivalent to apply-
ing the maximum likelihood (ML) method with
an assumption that Li,j follows a Poisson dis-
tribution. Therefore, the results from Algorithm
1 are the same as those from the “ML Poisson
model.”
With the introduction of statistical theories and

statistical models to the minimum bias approach,
Brown further expanded the approach with four
more minimum bias algorithms (three multiplica-
tive and one additive) by assuming different dis-
tributions for Li,j (or ri,j):

Algorithm 2:

x̂i =
1
n

X
j

ri,j
yj
: (1.2)

Algorithm 2 assumes that Li,j follows an expo-
nential distribution.

Algorithm 3:

x̂i =

P
j w

2
i,jri,jyjP

j w
2
i,jy

2
j

: (1.3)

Algorithm 3 is equivalent to an ML normal
model.

Algorithm 4:

x̂i =

P
j wi,jri,jyjP
j wi,jy

2
j

: (1.4)

Algorithm 4 results from the least squares model.
Another minimum bias algorithm proposed by

Bailey and Simon [2] has a complicated format:

Algorithm 5:

x̂i =

ÃP
j wi,jr

2
i,jy

¡1
jP

j wi,jyj

!1=2
: (1.5)

Feldblum and Brosius [5] summarized these
minimum bias algorithms into four categories:
“balance principle,” “maximum likelihood,”
“least squares,” and “Â-squared.”

² Algorithm 1 could be derived from the so-
called “balance principle,” that is, “the sum of
the indicated relativity = the sum of observed
relativity.” Such a balance relationship can be
formulated as:X

j

wi,jri,j =
X
j

wi,jxiyj :

² Algorithms 1, 2, and 3 can be derived from the
associated log likelihood functions of observed
pure premium relativities.

² Algorithm 4 can be derived by minimizing the
sum of the squared errors:

Min
x,y

X
i,j

wi,j(ri,j ¡ xiyj)2:

² Algorithm 5 can be derived by minimizing the
“Â-squared” error, the squared error divided by
the indicated relativity:

Min
x,y

X
i,j

wi,j
(ri,j ¡ xiyj)2

xiyj
:

In his milestone paper, Mildenhall [9] further
demonstrated that classification rates determined
by various linear bias functions are essentially
the same as those from GLMs. One main ad-
vantage of using statistical models such as GLM
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is that the characteristics of the models, such as
the parameters’ confidence intervals and hypoth-
esis testing, can be thoroughly studied and deter-
mined by statistical theories. Also, the contribu-
tion and significance of the variables in the mod-
els can be statistically evaluated. Another advan-
tage is that GLMs are more efficient because they
do not require actuaries to program the iterative
process in determining the parameters.1 How-
ever, this advantage can be discounted somewhat
due to the powerful calculation capability of
modern computers. Due to these advantages,
GLMs have become more popular in recent
years. Of course, actuaries need to acquire the
necessary statistical knowledge in understanding
and applying the GLMs and rely on specific sta-
tistical modeling tools or software.
On the other hand, we believe that the formats

and the procedures for the minimum bias types
of iteration algorithms are simple and straight-
forward. The approach is based on a target or
error function along with an iterative procedure
to minimize the function without distribution as-
sumptions. Actuaries have been using the ap-
proach for many decades. So, compared to GLM,
some advantages of the iteration approach are
that it is easy to understand; easy to use; easy
to program using many different software tools
(for example, an Excel spreadsheet); and does
not require advanced statistical knowledge, such
as maximum likelihood estimations and deviance
functions of GLM.
One issue associated with most previous work

on the minimum bias approach and GLM is the
model-selection limitation. GLMs assume the un-
derlying distributions are from the exponential
family. Also, commonly used statistical software
typically provides limited selection of GLM dis-
tributions, such as Poisson, Gamma, normal, neg-

1GLMs may also involve an iterative approach. The most com-
monly used numerical method to solve the GLM is the “iterative
reweighted least squares” algorithm.

ative binomial, and inverse Gaussian. On the
other hand, only five types of multiplicative mod-
els and four types of additive models are avail-
able from previous minimum bias work.2 These
limitations, we believe, may reduce estimation
accuracy in practice since insurance and actuar-
ial data are rarely perfect and may not fit well
the exponential family of distributions or exist-
ing bias models.
In addition, there are two other common and

practical issues that actuaries have to deal with
in their daily pricing exercises. First, many real-
world rating plans are essentially a mixed addi-
tive and multiplicative model. For example, for
personal auto pricing, the primary class plan fac-
tor for age, gender, marital status, and vehicle
use is often added with the secondary class plan
factor for past accident and violation points, and
then the result is multiplied with other factors.
The commonly used GLM software, to our
knowledge, does not provide options that can
solve such mixed models because the identity
link function implies an additive model, while the
log link function implies a multiplicative model.
Second, it is possible that using either a GLM

or a previous minimum bias iteration approach
will result in parameters for some variables
which are questionable or unacceptable by the
marketplace. One practical way to deal with this
issue is to select or constrain the factors for the
variables based on business and competitive rea-
sons while leaving other factors to be determined
by multivariate modeling techniques. Since all
the variables are connected in the multivariate
analysis, any “constrained” factors should flow
through the analysis, and the constraint will im-
pact the results for the other “unconstrained” fac-
tors. We can call this issue a “constraint opti-
mization” problem.

2Feldblum and Brosius [5] list six multiplicative minimum bias
models in their summary table. However, the balance principle
model is the same as the maximum likelihood Poisson model.
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In this study, we propose a more flexible and
comprehensive approach within the minimum
bias framework, called a “general iteration algo-
rithm” (GIA). The key features of GIA are:

² It will significantly broaden the assumptions
for distributions in use, and, to a certain de-
gree, it totally relaxes any specific form for
the distributions. Therefore, GIA will be able
to provide a much wider array of models from
which actuaries may choose. This will increase
the model-selection flexibility.

² Its flexibility will improve the accuracy and the
goodness of fit of classification rates. We will
demonstrate this result through a case study
later.

² Similar to past minimum bias approaches, it
is easy to understand and does not require ad-
vanced statistical knowledge. For practical pur-
poses, GIA users only need to select the target
functions and the iteration procedure because
the approach is distribution free.

² While GIA still requires the iterative process in
determining the parameters, we believe that the
effort is not significant with today’s powerful
computers.

² It can solve the mixed additive-multiplicative
models and the constraint optimization prob-
lems.

In the following sections, we will first prove
that all five existing multiplicative minimum bias
algorithms are special cases of GIA. We will also
propose several more multiplicative algorithms
that actuaries may consider for ratemaking based
on insurance data. Then, we will demonstrate
how to apply GIAs to solve the mixed models
and constraint optimization problems.
The numerical analysis of multiplicative and

additive models given later is based on sever-
ity data for private passenger auto collision in
Mildenhall [9] and McCullagh and Nelder [8].
The results from selected algorithms will be com-
pared to those from the GLM models. Following

Bailey and Simon [2], the weighted absolute bias
and the Pearson chi-square statistic are used to
measure the goodness of fit. We also calculate
the weighted absolute percentage bias, which in-
dicates the magnitude of the errors relative to the
predicted values.
The remainder of this paper is organized as

follows:

² Section 2 discusses the details of 2-parameter
multiplicative, 3-parameter multiplicative, con-
straint, additive, and mixed GIA.

² Section 3 addresses the residual diagnosis of
GIA.

² Section 4 investigates the calculation efficiency
of GIA. It shows that GIA could converge rap-
idly and is not necessarily inefficient in numer-
ical calculations.

² Section 5 reviews numerical results for two
case studies using multiplicative and mixed
models.

² Section 6 outlines our conclusions.
² The appendix reports the numerical results for
the examples discussed in Section 5 with sev-
eral selected multiplicative GIAs. It also shows
the iterative convergences of selected multi-
plicative, additive, and mixed GIAs.

2. General iteration algorithm
(GIA)

2.1. Two-parameter GIAs

Following the notation used previously, in the
multiplicative framework for two rating factors,
the expected relativity for cell (i,j) should be
equal to the product of xi and yj:

E(ri,j) = ¹i,j = xiyj: (2.1)

By (2.1), there are a total of n alternative esti-
mates for xi and a total of m estimates for yj :

x̂i,j = ri,j=yj , j = 1,2, : : : ,n

ŷj,i = ri,j=xi, i= 1,2, : : : ,m:
(2.2)
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Following actuarial convention, the final esti-
mates of xi and yj could be calculated by the
weighted average of x̂i,j and ŷj,i. If we use the
straight average to estimate the relativity:

x̂i =
X
j

1
n
x̂i,j =

1
n

X
j

ri,j
yj
: (2.3)

Similarly, ŷj =
P
i(1=m)ŷj,i = (1=m)

P
i(ri,j=xi).

This is Algorithm 2, the ML exponential model
introduced by Brown [3].
If the relativity-adjusted exposure, wi,j¹i,j , is

used as the weight in determining the estimates:

x̂i =
X
j

wi,j¹i,jP
j wi,j¹i,j

x̂i,j =
X
j

wi,jyjP
j wi,jyj

ri,j
yj

=

P
j wi,jri,jP
j wi,jyj

: (2.4)

Similarly,

ŷj =
X
i

wi,j¹i,jP
i wi,j¹i,j

ŷi,j =
X
i

wi,jxiP
i wi,jxi

ri,j
xi

=

P
i wi,jri,jP
i wi,jxi

:

The resulting model is the same as Algorithm 1,
the “balance principle” or ML Poisson model.
If the square of the relativity-adjusted expo-

sure, w2i,j¹
2
i,j , is used as the weight:

x̂i =
X
j

w2i,j¹
2
i,jP

j w
2
i,j¹

2
i,j
x̂i,j =

P
j w

2
i,jri,jyjP

j w
2
i,jy

2
j

:

(2.5)

The resulting model is the same as Algorithm 3,
the ML normal model.
If the exposure adjusted by the square of rela-

tivity, wi,j¹
2
i,j , is used as the weight:

x̂i =
X
j

wi,j¹
2
i,jP

j wi,j¹
2
i,j
x̂i,j =

P
j wi,jri,jyjP
j wi,jy

2
j

:

(2.6)

The resulting model is the same as Algorithm 4,
the least-squares model.

From the above results, we propose the 2-pa-
rameter GIA approach by using wpi,j¹

q
i,j as the

weights for the bias function:
2-Parameter GIA:

x̂i =
X
j

wpi,j¹
q
i,jP

j w
p
i,j¹

q
i,j
x̂i,j =

P
j w

p
i,jri,jy

q¡1
jP

j w
p
i,jy

q
j

:

(2.7)

When

² p= q= 0, it is the ML exponential model, Al-
gorithm 2;

² p= q= 1, it is the ML Poisson model, Algo-
rithm 1;

² p= q= 2, it is the ML normal model, Algo-
rithm 3

² p= 1 and q= 2, it is the least-squares model,
Algorithm 4.

In addition, there are two more models that
correspond to GLM with the exponential family
of gamma and inverse Gaussian distributions.3

When the exposure is used as the weights, that
is, p= 1 and q= 0, the GIA will lead to a GLM
gamma model and becomes:

Algorithm 6:

x̂i =
X
j

wi,jP
j wi,j

x̂i,j =

P
j wi,jri,jy

¡1
jP

j wi,j
: (2.8)

When p= 1 and q=¡1, the GIA leads to a
GLM inverse Gaussian model and becomes:

Algorithm 7:

x̂i =
X
j

wi,jy
¡1
jP

j wi,jy
¡1
j

x̂i,j =

P
j wi,jri,j=y

2
jP

j wi,j=yj
:

(2.9)

Equation (2.7) suggests that in theory there is
no limitation for the values of p and q that can
be used and they can take on any real values.
It is with this feature that GIA should greatly

3For detailed information, please refer to Section 7 of Mildenhall
[9].
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enhance the flexibility for actuaries when they
apply the algorithm to fit their data. Of course,
in reality we do not expect that extreme values
for p and q will be found useful. In ratemaking
applications, earned premium could be used if
exposure is not available. Normalized premium
(premium divided by relativity) is a reasonable
option for the weight. This suggests that q could
be negative. In general, p should be positive: the
more exposure/claims/premium, the more weight
assigned.

2.2. Three-parameter GIAs

So far, we have used the 2-parameter GIA in
Equation (2.7) to represent several commonly
used models, Algorithms 1 to 4, but not Algo-
rithm 5, the “Â-squared” multiplicative model.
In order to represent Algorithm 5, we further ex-
pand the 2-parameter GIA to a 3-parameter GIA
using the link function concept from GLM.
One generalization of GLMs as compared to a

more basic linear model is done by introducing
a link function to link the linear predictor to the
response variable. Similarly, we introduce a rela-
tivity link function to link the GIA estimate to the
relativity. The proposed relativity link function is
different in several aspects from the link function
in GLMs. In GLMs, the link function determines
the type of model: log link implies a multiplica-
tive model and identity link implies an additive
model. This is not the case for GIA. Multiplica-
tive GIA, for example, could have a log, power,
or exponential relativity link function.
For a 3-parameter GIA, instead of using (2.2),

we estimate the relativity link functions of f(x̂i)
and f(ŷj) from f(x̂i,j) and f(ŷj,i) first; and then
calculate x̂i and ŷj by inverting the relativity link
function, f¡1(f(x̂i)) and f¡1(f(ŷj)). The func-
tions f(x̂i,j) and f(ŷj,i) can be estimated by:

f(x̂i,j) = f(ri,j=yj), j = 1,2, : : : ,n

f(ŷj,i) = f(ri,j=xi), i = 1,2, : : : ,m:
(2.10)

Taking the weighted average using parameters
p and q:

f(x̂i) =
X
j

wpi,j¹
q
i,jP

j w
p
i,j¹

q
i,j
f(x̂i,j) =

P
j w

p
i,jy

q
j f

Ã
ri,j
yj

!
P
j w

p
i,jy

q
j

(2.11)

f(ŷj) =
X
i

wpi,j¹
q
i,jP

i w
p
i,j¹

q
i,j
f(ŷj,i) =

P
i w

p
i,jx

q
i f

μ
ri,j
xi

¶
P
i w

p
i,jx

q
i

:

Thus,

x̂i = f
¡1

0BBBB@
P
j w

p
i,jy

q
j f

Ã
ri,j
yj

!
P
j w

p
i,jy

q
j

1CCCCA

ŷj = f
¡1

0BBB@
P
i w

p
i,jx

q
i f

μ
ri,j
xi

¶
P
i w

p
i,jx

q
i

1CCCA :
(2.12)

One possible selection of the relativity link
function is the power function, f(x̂i) = x̂

k
i and

f(ŷj) = ŷ
k
j . In this case, equation (2.12) leads to

a 3-parameter GIA:

x̂i =

0@Pj w
p
i,jr

k
i,jy

q¡k
jP

j w
p
i,jy

q
j

1A1=k : (2.13)4

When k = 2, p= 1, and q= 1, Equation (2.13) is
equivalent to:

x̂i =

ÃP
j wi,jr

2
i,jy

¡1
jP

j wi,jyj

!1=2
, (2.14)

and this is Algorithm 5, the “Â-squared” multi-
plicative model.
Another example of a new iterative algorithm

occurs when k = 1=2, p= 1, and q= 1:

Algorithm 8:

x̂i =

0@Pj wi,jr
1=2
i,j y

1=2
jP

j wi,jyj

1A2 : (2.15)

4There is no unique solution for these equations. For one group of
solutions, we can divide each x by a factor and multiply each y by
the same factor to obtain another group of solutions. To guarantee
a unique solution, we can add a constraint to force the average of
the x’s to be one.
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Mildenhall [10] indicated that the 3-parameter
GIA is equivalent to a GLM with the parame-
ters xk and yk, the weight wp, and the response
variable rk following a distribution with variance
function Var(¹) = ¹2¡q=k. When k = 1 and p= 1,
we can conclude that:

² when q= 2, the normal GLM model is the
same as the GIA Algorithm 4 in Equation
(1.4);

² when q= 1, the Poisson GLM model is the
same as the GIA Algorithm 1 in Equation
(1.1);

² when q= 0, the gamma GLM model is the
same as the GIA Algorithm 6 in Equation
(2.8);

² when q=¡1, the inverse Gaussian GLM
model is the same as the GIA Algorithm 7 in
Equation (2.9).

Also, for “Â-squared” minimum bias model with
k = 2, p= 1, and q= 1, the GIA theory indicates
that r2 follows a Tweedie distribution with a vari-
ance function Var(¹) = ¹1:5.
In actuarial exercises, we often exclude the ex-

tremely high and low values from the weighted
average to yield more robust results. In the case
of several rating variables, there may be thou-
sands of alternative estimates. Actuaries have the
flexibility to use the weighted average within se-
lected ranges (e.g., the average without the high-
est and the lowest 1% percentile). This is similar
to the concept of “trimmed” regression used with
GLMs whereby observations with undue influ-
ence on a fitted value are removed.
Finally, we would like to extend GIA to re-

serve applications. Mack [7] discussed the con-
nection between ratemaking models of auto in-
surance and IBNR reserve calculation because
reserves can be estimated by a ratemaking model
with two “rating” variables, accident year and
development year. He showed that the minimum
bias method produces the same result as the chain
ladder loss development method. Recently, ac-
tuaries have applied GLMs to estimate reserves

using the incremental loss as the response var-
iable.
Let Pi,j be the incremental paid loss in acci-

dent year i and development year j, that is, Pi,j is
the cell (i,j) of the incremental payment triangle.
England and Verrall [4] used the following GLM
with log link function and Poisson distribution to
estimate the expected values of future payments:

E(Pi,j) =mi,j and Var(Pi,j) = Ámi,j ,

log(mi,j) = C+®i+¯j

®1 = ¯1 = 0:

Several other models were also proposed for
reserve estimates. For example, Renshaw and
Verrall [11] applied the GLM with a gamma
distribution. The only difference between the
gamma and Poisson models is that the gamma
model’s variance function is Var(Pi,j) = Ám

2
i,j .

Let ¹i,j = (mi,j=m1,1), xi = e
®i , and yj = e

¯j ;
then the above GLM reserve models can be sim-
ilarly transferred to the GIA multiplicative al-
gorithm by setting ¹i,j = xiyj . So GIA can also
be used to estimate reserves based on the trian-
gles of incremental paid loss. When k = 1, p= 1
and q= 1, GIA yields the same result as a Pois-
son GLM reserve model; when k = 1, p= 1, and
q= 0, GIA produces the same result as a gamma
GLM model.

2.3. Constraint GIA

In real-world ratemaking applications, some
factors need to be selected or capped within a
certain range for business or competitive reasons.
Since in a multivariate analysis, all the variables
are related, other factors should be adjusted to
reflect the impact of the subjective selections.
When this issue arises, the standard GLM or
other approaches may have limitations if the se-
lected factors are outside of the fitted confidence
interval.
For example, the multi-car discount used for

private passenger auto pricing is typically be-
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tween 5% and 25%. Any factor outside this range
is not likely to be accepted by the market, no mat-
ter what the fitted value is for the “indicated” dis-
count. In the following we will demonstrate how
to apply GIA to solve the issue.
For example, let x1 and x2 be the single and

multi-car factors, respectively, and we will cap
the multi-car discount to be between 5% and
25%. The constraint can be represented by 0:75x1
· x2 · 0:95x1. Adding this constraint to (2.13),
we can solve the problem by:

x̂1 =

ÃP
j
wp1,jr

k
1,jy

q¡k
jP

j
wp1,jy

q
j

!1=k

,

(2.16)

x̂2 = max

Ã
0:75x̂1,min

Ã
0:95x̂1,

ÃP
j
wp2,jr

k
2,jy

q¡k
jP

j
wp2,jy

q
j

!
1=k

!!
:

With the constraint, we can continue the iter-
ation process until the values for all other rat-
ing factors converge. This flexibility5 associated
with GIA will provide actuaries another benefit
in dealing with their practical problems.

2.4. Additive GIA

Following the same notations as above, the ex-
pected cost for classification cell (i,j) with an
additive model should be equal to the sum of xi
and yj:

E(ri,j) = ¹i,j = xi+ yj: (2.17)

Thus,

x̂i,j = ri,j ¡ yj , j = 1,2, : : : ,n

ŷj,i = ri,j ¡ xi, i= 1,2, : : : ,m:
(2.18)

In the multiplicative models, we use the relativ-
ity-adjusted exposure, wpi,j¹

q
i,j , as the weighting

function and introduce the power relativity link
function. However, the weighting functions and

5Using the offset term, GLMs can solve fixed factor constraints,
such as x2 = 0:8. GIA is more flexible in its capability of solving
almost all formats of constraints.

the relativity link functions cannot be applied in
an additive process.
For the additive GIA, we are limited to the

following one-parameter model using wpi,j as the
weight:

x̂i =
X
j

wpi,jP
j w

p
i,j
x̂i,j =

P
j w

p
i,j(ri,j ¡ yj)P
j w

p
i,j

:

(2.19)

When p= 1, it leads to the model introduced
by Bailey [1] or the “Balance Principle” model
in Feldblum and Brosius [5]. Mildenhall [9] also
proved that it is equivalent to an additive normal
GLM model. When p= 2, it leads to the ML ad-
ditive normal model introduced by Brown [3].
When p= 0, it leads to the least squares model
by Feldblum and Brosius [5]. There is no further
generalization for the additive GIAs with addi-
tional parameters or link functions.
Except for the exponential family of distri-

butions, the lognormal distribution is probably
the most widely used distribution in actuarial
ractice. If ri,j follows a lognormal distribution,
log(ri,j) will follow a normal distribution and the
multiplicative rating plan can be transformed
to log(ri,j) = log(xi) + log(yj)+ "i,j . The additive
GIA algorithms can be used to derive the pa-
rameters for the lognormal distribution assump-
tion.6

2.5. Mixed additive and multiplicative
GIAs

A simplified mixed additive and multiplicative
model7 can be illustrated as follows:

ri,j,h = (xi+ yj)£ zh+ "i,j,h, (2.20)

where i = 1,2, : : : ,m; j = 1,2, : : : ,n; and h= 1,2,
: : : , l. There are n£ l alternative estimates for xi:

x̂i,j,h =
ri,j,h
zh

¡ yj:

6E(ri,j ) = xi £ yj £ exp(0:5£Var("i,j )).
7The models with more complex additive-multiplicative structures
can be derived similarly.
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There are m£ l alternative estimates for yj:

ŷi,j,h =
ri,j,h
zh

¡ xi:

There are m£ n alternative estimates for zh:

ẑi,j,h =
ri,j,h
xi+ yj

:

Using wpi,j,h as the weight:

ẑh =

P
i

P
j w

p
i,j,h£ ẑi,j,hP

i

P
j w

p
i,j,h

=

P
i

P
j w

p
i,j,h£

Ã
ri,j,h
xi+ yj

!
P
i

P
j w

p
i,j,h

,

x̂i =

P
j

P
hw

p
i,j,h£ x̂i,j,hP

j

P
hw

p
i,j,h

=

P
j

P
hw

p
i,j,h£

μ
ri,j,h
zh

¡ yj
¶

P
j

P
hw

p
i,j,h

;

ŷj =

P
i

P
hw

p
i,j,h£ ŷi,j,hP

i

P
hw

p
i,j,h

=

P
i

P
hw

p
i,j,h£

μ
ri,j,h
zh

¡ xi
¶

P
i

P
hw

p
i,j,h

:

(2.21)

There is no unique solution for (2.21). For ex-
ample, if a, b, and c are a solution to estimate the
factors x, y, and z, then 2a, 2b, and 0:5c are an-
other possible solution. In order to facilitate the
iteration convergence, we need to add some con-
straints in the procedure. If we use the sample
mean as the base, the weighted average of mul-
tiplicative factors from one rating variable should
be close to one. So in each iteration we can
adjust all the z’s proportionally so that the
average is reset to one. Mathematically, the con-
straint is: P

i

P
j

P
hw

p
i,j,hẑhP

i

P
j

P
hw

p
i,j,h

= 1: (2.22)

3. Residual diagnosis

For a statistical data-fitting exercise, it is im-
portant to conduct a diagnostic test to validate the
distribution assumption in use. Such diagnostic
tests typically consist of a residual plot in which
the residuals are the difference between the fitted
values and the actual values. In this section, we
will describe how to conduct such residual anal-
ysis for GIA, and the residual plot results for the
case study are given in the next section.
We have discussed that a 3-parameter GIA is

equivalent to a GLM, assuming the response
variable rk follows a distribution with variance
function Var(¹) = ¹2¡q=k. The raw residuals
(rki,j ¡ x̂ki ŷkj ) from GIA do not asymptotically fol-
low an independent and identical normal distri-
bution because the variances of residuals are pos-
itively correlated to the predicted values.8 As in
GLM, we define the scaled Pearson residual of
GIA as

ei,j =
rki,j ¡ r̂kip
Var(¹)

=
rki,j ¡ x̂ki ŷkjq
(x̂ki ŷ

k
j )
2¡q=k

=
rki,j ¡ x̂ki ŷkjq
x̂2k¡qi ŷ2k¡qj

,

(3.1)

where ei,j is approximately independent and iden-
tically distributed since

Var(ei,j) = Var

0@ rki,j ¡ x̂ki ŷkjq
(x̂ki ŷ

k
j )
2¡q=k

1A
=

Var(rki,j)

(x̂ki ŷ
k
j )
2¡q=k = 1: (3.2)

We can use the scaled Pearson residuals to con-
duct the residual diagnosis for GIA, such as de-
veloping a scattered residuals plot and a quantile-
to-quantile (Q-Q) plot. If the GIA algorithms fit
the data well, scaled Pearson residuals are ran-
domly scattered and the Q-Q plot is close to a
straight line.

8The additive models are equivalent to GLM normal models, so
that the raw residuals from additive and mixed models can be used
directly for diagnosis tests.
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4. Calculation efficiency

One issue associated with GIA is the calcula-
tion efficiency. Mildenhall [9] discussed that one
advantage of GLMs compared to the minimum
bias models is the calculation efficiency because
GLMs do not require an iterative process in esti-
mating the parameters. He showed that the addi-
tive minimum bias model by Bailey [1], or GIA
with p= 1, does not converge even after 50 iter-
ations using the well-investigated data given by
McCullagh and Nelder [8].
However, with several adjustments to the iter-

ation methodology, we can show that GIA can
converge very quickly. Using the same data, the
additive GIA can complete the convergence in
five iterations. One adjustment is to include as
much updated information as possible–that is,
the latest y’s should be used to estimate the next
x’s and vice versa.
In GLMs and previous minimum bias models,

a specific class is usually selected as the base
(e.g., age 60+ and pleasure). For GIA, we sug-
gest using the average as the base, because, when
using a specific class as the base, the numerical
value of the base will vary from one iteration to
next, requiring additional iterations to force the
factor for the base class to be one.
Another well-known issue for the iteration pro-

cedure concerns how to set the starting point for
the first iteration. The closer the starting point to
the final results, the faster the convergence. Us-
ing average frequency=severity=pure premium as
the base, the average factor of a rating variable
is one for multiplicative models and the average
discount is zero for the additive models. There-
fore, in this study, we chose the starting values of
xi,0 and yj,0 to be 1 for the multiplicative models
and 0 for the additive models.

5. Numerical analysis

The numerical analysis of testing various mul-
tiplicative GIAs is based on the severity data for

private passenger auto collision given in Milden-
hall [9] and McCullagh and Nelder [8]. Using
this well-researched data will help us to com-
pare the empirical results of this paper with pre-
vious studies. The data includes 32 severity ob-
servations for two classification variables: eight
age groups and four types of vehicle use. In this
severity case study, the weight wi,j is the number
of claims. Table 1 in the Appendix lists the data.
In order to test mixed additive and multiplica-

tive GIAs, we need at least three variables in the
data. The data in Mildenhall [9] and McCullagh
and Nelder [8] contain only two variables. There-
fore, we will use another collision pure premium
dataset to demonstrate the mixed algorithm. In
addition to age and vehicle use, this data includes
credit score as a third variable, with four classi-
fications from low to high. In this pure premium
case study, the weight wi,j is the earned exposure.
Table 2 in the Appendix displays the data.
Four criteria are used to evaluate the perfor-

mance of these GIAs: the absolute bias, the ab-
solute percentage bias, the Pearson chi-squared
statistic, and the combination of absolute bias
and the chi-squared statistic:

² The weighted absolute bias (wab) criterion is
proposed by Bailey and Simon [2]. It is the
weighted average of absolute dollar difference
between the observations and fitted values:

wab =

P
wi,j jBri,j ¡Bxiyj jP

wi,j
:

² The second one, weighted absolute percentage
bias (wapb), measures the absolute bias rela-
tive to the predicted values:

wapb =

P
wi,j

jBri,j ¡Bxiyj j
BxiyjP
wi,j

:

² The weighted Pearson chi-squared (wChi)
statistic is also proposed by Bailey and Simon
[2] and it is appropriate to test if “differences
between the raw data and the estimated rela-
tivities should be small enough to be caused
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by chance”:

wChi =

P
wi,j

(Bri,j ¡Bxiyj)2
BxiyjP
wi,j

:

² Lastly, we combine the absolute bias and Pear-
son chi-squared statistic,

p
wab£wChi, to be

the fourth criterion for the model selection.

Table 3 lists the relativities for Algorithms 1—8
and Table 4 displays the four performance statis-
tics of those models, wab, wapb, wChi, andp
wab£wChi.9 In all the cases, class “age 60+”

and “pleasure” are used as the base.
To illustrate the residual diagnosis of GIA, we

show the residual plots for GIA with k = 1, p=
1, and q=¡0:5. Figure 1 in the Appendix re-
ports the scattered residuals by observations; Fig-
ures 2 and 3 show the scattered residuals by age
and by vehicle use, respectively; Figure 4 is the
Q-Q plot. It is clear that the classification of age
17—20 and business use is an outlier.10 This is
not surprising because of the small sample size
in the cell (five claims). A practical way to solve
the problem is to cap the severity.
As stated before, we find that GLMs with com-

mon exponential family distribution assumptions
are special cases of GIA (k = 1 and p= 1). Com-
paring the GIA factors in Table 3 with those from
GLMs with normal, Poisson, gamma, and inverse
Gaussian distributions, we confirm:

² when k = 1, p= 1, and q= 2, the “least
squares” GIA has the same results as GLM
with a normal distribution;11

² when k = 1, p= 1, and q= 1, GIA is the same
as a Poisson GLM;

9We tested hundreds of 3-parameter algorithms. For the detailed
reports on all the tested models, please refer to Fu and Wu [6].
10The severity of age 17—20 and business use does not fit any tested
GLMs and GIAs well.
11The underlying assumption of “least squares” regression is that
the residuals follow a normal distribution. So the “least squares”
method is the same as a normal GLM.

² when k = 1, p= 1, and q= 0, GIA is the same
as a gamma GLM; and

² when k = 1, p= 1 and q=¡1, GIA is the same
as a GLM with inverse Gaussian distribution.

As discussed in Section 2, a GIA with k = 1
and p= 1 0@x̂i =

P
j wi,jri,jy

q¡1
jP

j wi,jy
q
j

1A
is equivalent to the multiplicative GLMs with
the variance function of Var(¹) = ¹2¡q for an as-
sumed exponential family distribution. It is well
known that insurance and actuarial data is gen-
erally positively skewed. The skewness for the
symmetric normal distribution is zero, and is in-
creasingly positive from Poisson, to gamma, and
to inverse Gaussian. For the multiplicative GIA
algorithms, the skewness can be represented by
q. When q= 2, the GIA is the same as a normal
GLM. When q= 1, it is the same as a Poisson
GLM. It is the same as a gamma when q= 0
and the same as inverse Gaussian when q=¡1.
Thus, smaller q values should be selected when
the GIA is applied to more skewed data.
The authors also attempted to find the “global

minimum error” points.12 In this case study, if
wab is used to measure the model performance,
when k = 1:95, p= 3:15, and q=¡14:06, the
weighted absolute error is minimized with wab =
10:0765. If wapb is used to measure the model
performance, when k = 1:98, p= 3:15, and q=
¡14:04, the weighted absolute percentage error
is minimized with wapb = 3:461%. The result
suggests that the best-fit model, in this exam-
ple, does not occur with any of the commonly

12Resolving such global minimum error issues requires additional
in-depth research and is beyond the scope of this paper. Since the
error measures are easy to calculate explicitly in a spreadsheet, an
Excel built-in tool like Solver can be used to find the optimization
solutions. If the data is larger than the spreadsheet’s capacity, inter-
ested readers can apply Newton’s method to obtain the minimums
using SAS, Splus, or Matlab. The first and second derivatives can
be estimated using a finite difference method.

204 CASUALTY  ACTUAR IAL  SOC IETY  V O L U M E  0 1 / I S S U E  0 2



General Iteration Algorithm for Classification Ratemaking

Figure 1. Scattered residual plot of GIA with k = 1, p = 1, and q =¡0:5.

Figure 2. Scattered residual plot by age of GIA with k = 1, p = 1, and q =¡0:5.

used minimum bias models and generalized lin-
ear models. It clearly demonstrates the fact that
insurance data may not be perfect for predeter-
mined distributions.
On the other hand, if wChi is used, the “Â-

squared” model (k = 2, p= 1, and q= 1) pro-

vides the best solution. This is expected because
the “Â-squared” model is calculated by minimiz-
ing the Pearson chi-squared statistic.
If we use the criterion of

p
wab£wChi to se-

lect models, when k = 2:45, p= 1:16, and q=
¡0:06, the combined error is minimized with
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Figure 3. Scattered residual plot by vehicle use of GIA with k = 1, p = 1, and q =¡0:5.

Figure 4. Q-Q plot of GIA with k = 1, p = 1, and q =¡0:5.

p
wab£wChi = 3:3061. Again, the five com-

monly used minimum bias algorithms are not
the best solution when absolute bias and the chi-
squared statistic are considered simultaneously.
Based on the results of this research and our

experience, we suggest for actuarial applications

the following ranges of values for k, p, q:

² 1· k · 3.
² p¸ q, 0:5· p· 4, and q· 1.
² The higher the skewness of the data, the small-
er the value of q should be.
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Finally, we use another collision pure premium
dataset to demonstrate the results for the mixed
algorithm. Table 11 reports the final factors of
the model. For the purpose of illustration, we will
only calculate the model with p= 1.
To show that GIAs can converge rapidly, in

the Appendix we report the iteration processes
of selected GIAs:

² Table 5 shows the multiplicative factors for the
gamma GIA using average severity as the base.

² Table 6 translates those factors using the clas-
sification age 60+ and pleasure as the base.

² Table 7 reports the iterative process for the co-
efficients of a GLM with the gamma distribu-
tion and log link.

² Table 8 translates those coefficients to the mul-
tiplicative factors of a gamma GLM.

² Table 9 lists the additive factors for the GIA
with p= 1.

² Table 10 shows the additive dollar values for
the GIA with p= 1 and uses the classification
age 60+ and pleasure as the base.

² Table 11 reports the convergence process of
the mixed model with p= 1.

From Tables 5—8, the multiplicative gamma
GIA converges in four iterations. This is as fast
as the corresponding GLM model. As expected,
the numerical solutions between the two models
are identical, and the solutions are also identical
to the previous results of Algorithm 6 given in
Table 3 for k = 1, p= 1, and q= 0.
Tables 9 and 10 report the iterative process for

the GIA additive algorithm with p= 1. Milden-
hall [9] used this model as an example to show
that the minimum bias approach is not efficient.
He showed that the minimum bias model con-
verges slowly to the GLM results, and that the
dollar values at the 50th iteration are about two
cents different from those by GLM. However,
using our numerical algorithm, the GIA calcula-
tion converges completely in five iterations with
solutions identical to GLM results.

Table 11 shows the iterative process for the
GIA mixed model. Even though the algorithm
is more complicated than the multiplicative and
additive models, the convergence takes only six
iterations.
The above example illustrates an optimization

case with two and three variables. However, in
typical rating plans, we need to optimize more
than two variables. Our experience indicates that
the improved numerical approach for GIA will
converge fairly quickly for typical actuarial rat-
ing exercises with five to 15 variables.

4. Conclusions

In this research, we propose a general iter-
ation algorithm by including different weight-
ing functions and relativity link functions in the
approach. As indicated by the severity example
given previously, insurance and actuarial data are
rarely perfect, so we expect that the best fitted
results typically will not be based on a prede-
termined distribution, such as those in the expo-
nential family of distributions. Therefore, GIA
can provide actuaries a great deal of flexibility in
data fitting and model selection. The case stud-
ies given in the paper indicate that the “best” fit-
ted results occur when the underlying distribu-
tion assumptions are not commonly used distri-
butions.
In theory, the parameters in GIA can take on

any real values and there is no limitation on the
relativity link functions when GIA is applied to
a dataset. Therefore, GIA will provide actuar-
ies many more options than previous minimum
bias algorithms or GLMs. However, due to the
fact that insurance and actuarial data is positively
skewed in nature, we do not expect that a very
wide range of weighting or relativity link func-
tions needs to be used in practice.
For the severity example used in the study, we

searched and identified the best models with the
minimum fitted errors. One issue may exist: GIA
uses an iterative process in determining the pa-
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rameters, so when it further incorporates mul-
tiple distribution assumptions in the searching
process, the approach may become even more
time-consuming and inefficient. However, we do
not believe this issue is significant because of
the powerful computational capability of mod-
ern computers.
Mildenhall [10] indicates, in his comments on

our prior work, that GLM can be extended to
replicate the comprehensive GIA proposed in this
study. However, since commonly used GLM soft-
ware has limited selections for the statistical dis-
tribution assumptions, it is difficult to perform
Mildenhall’s extension. In addition, we demon-
strate how to extend GIA to solve mixed additive-
multiplicative models and constraint optimiza-
tion problems. To our knowledge, at this stage,
there is no solution provided by GLM users to
deal with these issues.
With the fast development of information tech-

nology, actuaries can analyze data in ways they
could not imagine a decade ago. Currently there
is a strong interest in data mining and predic-
tive modeling in the insurance industry, and this
calls for more powerful data analytical tools for
actuaries. While some new tools, such as GLM,
neural networks, decision trees, and MARS, have
emerged recently and have received a great deal
of attention, we believe that the decades-old min-
imum bias algorithms still have several advan-
tages over other techniques, including being easy
to understand and easy to use. We hope that our
work in improving the flexibility and compre-
hensiveness of the minimum bias iteration ap-
proach is a timely effort and that this approach
will continue to be a useful tool for actuaries in
the future.
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Appendix. Data and numerical results

Table 1. PPA collision severity data for multiplicative and additive algorithms

Age VUSE Severity Claim

17–20 Pleasure 250.48 21
17–20 DriveShort 274.78 40
17–20 DriveLong 244.52 23
17–20 Business 797.80 5
21–24 Pleasure 213.71 63
21–24 DriveShort 298.60 171
21–24 DriveLong 298.13 92
21–24 Business 362.23 44
25–29 Pleasure 250.57 140
25–29 DriveShort 248.56 343
25–29 DriveLong 297.90 318
25–29 Business 342.31 129
30–34 Pleasure 229.09 123
30–34 DriveShort 228.48 448
30–34 DriveLong 293.87 361
30–34 Business 367.46 169
35–39 Pleasure 153.62 151
35–39 DriveShort 201.67 479
35–39 DriveLong 238.21 381
35–39 Business 256.21 166
40–49 Pleasure 208.59 245
40–49 DriveShort 202.80 970
40–49 DriveLong 236.06 719
40–49 Business 352.49 304
50–59 Pleasure 207.57 266
50–59 DriveShort 202.67 859
50–59 DriveLong 253.63 504
50–59 Business 340.56 162
60+ Pleasure 192.00 260
60+ DriveShort 196.33 578
60+ DriveLong 259.79 312
60+ Business 342.58 96

Table 2. PPA collision pure premium data for the mixed algorithm

Age VUSE Credit Exposure Loss Pure Prem

17–20 Business 1 5.2 0.0 0.00
17–20 Business 2 3.3 0.0 0.00
17–20 Business 3 7.3 0.0 0.00
17–20 Business 4 6.2 0.0 0.00
17–20 DriveLong 1 66.5 9,513.6 143.06
17–20 DriveLong 2 48.8 19,380.4 397.14
17–20 DriveLong 3 116.3 31,301.1 269.21
17–20 DriveLong 4 59.7 10,038.2 168.28
17–20 DriveShort 1 1,010.9 350,529.8 346.76
17–20 DriveShort 2 781.4 255,723.2 327.28
17–20 DriveShort 3 2,294.3 612,357.7 266.90
17–20 DriveShort 4 1,258.5 331,804.0 263.65
17–20 Pleasure 1 752.9 204,925.3 272.18
17–20 Pleasure 2 689.2 253,729.9 368.14
17–20 Pleasure 3 2,376.6 599,740.7 252.35
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Table 2. (Continued)

Age VUSE Credit Exposure Loss Pure Prem

17–20 Pleasure 4 1,285.9 237,747.6 184.89
21–24 Business 1 3.7 7,148.7 1,954.97
21–24 Business 2 3.3 0.0 0.00
21–24 Business 3 8.2 1,885.7 229.92
21–24 Business 4 2.2 140.0 63.49
21–24 DriveLong 1 126.0 28,433.6 225.61
21–24 DriveLong 2 145.6 43,135.2 296.32
21–24 DriveLong 3 187.7 82,429.8 439.07
21–24 DriveLong 4 80.7 12,261.0 151.88
21–24 DriveShort 1 1,427.9 277,123.8 194.07
21–24 DriveShort 2 1,771.4 427,339.5 241.25
21–24 DriveShort 3 2,831.4 509,032.4 179.78
21–24 DriveShort 4 1,170.3 123,744.3 105.74
21–24 Pleasure 1 643.4 153,109.7 237.95
21–24 Pleasure 2 792.4 214,037.3 270.10
21–24 Pleasure 3 1,811.2 380,801.1 210.25
21–24 Pleasure 4 955.0 156,535.5 163.92
25–29 Business 1 7.9 10,008.0 1,267.24
25–29 Business 2 14.8 8,806.8 595.42
25–29 Business 3 24.3 4,569.5 187.94
25–29 Business 4 3.8 0.0 0.00
25–29 DriveLong 1 242.3 64,343.7 265.52
25–29 DriveLong 2 280.6 66,854.4 238.27
25–29 DriveLong 3 508.1 91,732.4 180.54
25–29 DriveLong 4 70.8 9,346.9 132.07
25–29 DriveShort 1 2,685.0 474,584.1 176.75
25–29 DriveShort 2 2,918.1 484,317.1 165.97
25–29 DriveShort 3 4,908.4 725,874.1 147.88
25–29 DriveShort 4 813.0 121,589.9 149.55
25–29 Pleasure 1 1,140.1 252,874.9 221.79
25–29 Pleasure 2 1,173.3 143,197.2 122.05
25–29 Pleasure 3 1,984.2 261,112.7 131.59
25–29 Pleasure 4 465.5 52,280.0 112.31
30–34 Business 1 12.7 2,447.0 192.76
30–34 Business 2 20.1 11,168.7 555.47
30–34 Business 3 41.6 6,039.5 145.08
30–34 Business 4 2.5 0.0 0.00
30–34 DriveLong 1 351.4 44,128.5 125.57
30–34 DriveLong 2 280.1 32,023.1 114.34
30–34 DriveLong 3 752.4 76,489.0 101.66
30–34 DriveLong 4 141.4 28,522.0 201.66
30–34 DriveShort 1 3,125.5 529,866.3 169.53
30–34 DriveShort 2 2,726.8 339,734.4 124.59
30–34 DriveShort 3 6,534.6 837,467.0 128.16
30–34 DriveShort 4 1,142.2 111,598.4 97.70
30–34 Pleasure 1 1,668.3 223,172.5 133.77
30–34 Pleasure 2 1,566.8 217,866.0 139.05
30–34 Pleasure 3 3,713.6 272,824.1 73.47
30–34 Pleasure 4 704.2 101,294.5 143.85
35–39 Business 1 24.8 0.0 0.00
35–39 Business 2 26.3 0.0 0.00
35–39 Business 3 93.9 16,303.5 173.64
35–39 Business 4 21.0 6,283.5 299.78
35–39 DriveLong 1 381.5 55,915.9 146.57
35–39 DriveLong 2 349.1 57,144.1 163.68
35–39 DriveLong 3 1,026.2 83,512.8 81.38
35–39 DriveLong 4 284.5 18,426.5 64.77
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Table 2. (Continued)

Age VUSE Credit Exposure Loss Pure Prem

35–39 DriveShort 1 2,916.6 462,268.3 158.50
35–39 DriveShort 2 2,671.6 406,378.3 152.11
35–39 DriveShort 3 7,354.7 791,419.1 107.61
35–39 DriveShort 4 2,051.5 177,397.5 86.47
35–39 Pleasure 1 1,759.2 304,840.8 173.28
35–39 Pleasure 2 1,895.8 253,239.5 133.58
35–39 Pleasure 3 5,284.4 634,395.0 120.05
35–39 Pleasure 4 1,719.3 158,092.6 91.95
40–49 Business 1 58.6 6,144.3 104.86
40–49 Business 2 71.6 2,904.0 40.54
40–49 Business 3 241.5 20,189.9 83.59
40–49 Business 4 119.4 8,570.0 71.79
40–49 DriveLong 1 740.4 108,353.8 146.35
40–49 DriveLong 2 796.7 116,826.4 146.63
40–49 DriveLong 3 2,345.8 272,806.7 116.30
40–49 DriveLong 4 1,071.7 90,416.8 84.36
40–49 DriveShort 1 6,005.9 909,030.1 151.36
40–49 DriveShort 2 5,920.7 872,424.1 147.35
40–49 DriveShort 3 17,811.1 1,922,925.0 107.96
40–49 DriveShort 4 8,117.4 768,209.6 94.64
40–49 Pleasure 1 4,141.6 750,012.4 181.09
40–49 Pleasure 2 4,655.8 654,742.2 140.63
40–49 Pleasure 3 15,053.2 1,842,087.0 122.37
40–49 Pleasure 4 7,641.1 727,944.0 95.27
50–59 Business 1 47.5 13,664.7 287.88
50–59 Business 2 80.6 9,389.2 116.54
50–59 Business 3 274.9 81,673.0 297.08
50–59 Business 4 153.2 17,521.7 114.37
50–59 DriveLong 1 531.5 39,548.2 74.41
50–59 DriveLong 2 617.7 62,526.3 101.22
50–59 DriveLong 3 1,977.2 166,025.0 83.97
50–59 DriveLong 4 1,290.2 88,343.5 68.47
50–59 DriveShort 1 4,367.9 598,852.8 137.10
50–59 DriveShort 2 4,635.3 615,743.5 132.84
50–59 DriveShort 3 15,020.7 1,512,889.7 100.72
50–59 DriveShort 4 9,795.8 725,559.5 74.07
50–59 Pleasure 1 4,128.7 682,331.4 165.27
50–59 Pleasure 2 4,719.2 608,792.4 129.00
50–59 Pleasure 3 15,841.4 1,653,298.5 104.37
50–59 Pleasure 4 11,439.1 923,608.0 80.74
60+ Business 1 18.7 0.0 0.00
60+ Business 2 36.2 1,331.6 36.76
60+ Business 3 134.5 23,698.8 176.21
60+ Business 4 133.1 16,844.7 126.56
60+ DriveLong 1 174.2 25,849.2 148.41
60+ DriveLong 2 203.7 31,320.5 153.79
60+ DriveLong 3 776.2 55,812.1 71.90
60+ DriveLong 4 705.7 38,051.9 53.92
60+ DriveShort 1 1,400.5 175,722.8 125.47
60+ DriveShort 2 1,648.6 157,108.6 95.30
60+ DriveShort 3 6,334.3 556,852.1 87.91
60+ DriveShort 4 6,236.2 553,343.2 88.73
60+ Pleasure 1 5,237.7 650,696.3 124.23
60+ Pleasure 2 4,725.1 567,174.2 120.03
60+ Pleasure 3 22,656.9 2,129,405.7 93.99
60+ Pleasure 4 31,601.4 2,601,434.7 82.32
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Table 3. The age and vehicle-use relativities for Algorithms 1–8

Algorithm 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business DTW Long DTW Short Pleasure

1 1.319 1.280 1.190 1.151 0.919 1.005 1.019 1.000 1.642 1.262 1.042 1.000
2 1.483 1.204 1.178 1.140 0.872 1.012 1.020 1.000 1.801 1.260 1.087 1.000
3 1.276 1.351 1.205 1.161 0.953 1.002 1.020 1.000 1.646 1.239 1.020 1.000
4 1.343 1.256 1.171 1.145 0.905 1.003 1.015 1.000 1.641 1.260 1.042 1.000
5 1.371 1.289 1.190 1.150 0.922 1.005 1.018 1.000 1.647 1.261 1.040 1.000
6 1.307 1.301 1.206 1.156 0.931 1.007 1.022 1.000 1.644 1.264 1.042 1.000
7 1.303 1.318 1.220 1.159 0.939 1.010 1.026 1.000 1.647 1.266 1.042 1.000
8 1.298 1.276 1.190 1.152 0.918 1.004 1.019 1.000 1.639 1.263 1.043 1.000

Table 4. The performance measurements for Algorithms 1–8

Algorithm wab wapb wChi
p
wab ¤wChi

1 11.190 4.45% 1.022 3.3815
2 14.588 5.96% 1.426 4.5612
3 10.577 4.01% 1.096 3.4051
4 11.664 4.70% 1.032 3.4696
5 11.192 4.42% 1.015 3.3705
6 10.826 4.26% 1.029 3.3376
7 10.669 4.15% 1.043 3.3358
8 11.208 4.47% 1.029 3.3967

Table 5. Numerical iterations for multiplicative gamma GIA factors using average severity as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 241.46 1.20355 1.20764 1.15438 1.12367 0.89052 0.97098 0.95341 0.92183 1.39343 1.07369 0.88745 0.85417
2 241.46 1.23983 1.23441 1.14473 1.09725 0.88339 0.95575 0.96996 0.94864 1.39890 1.07549 0.88654 0.85098
3 241.46 1.24057 1.23475 1.14465 1.09689 0.88323 0.95554 0.97017 0.94908 1.39898 1.07551 0.88653 0.85093
4 241.46 1.24059 1.23476 1.14465 1.09688 0.88323 0.95554 0.97017 0.94909 1.39898 1.07551 0.88653 0.85093

Table 6. Numerical iterations for multiplicative gamma GIA factors using 60+ and pleasure as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 190.126 1.30561 1.31004 1.25228 1.21896 0.96604 1.05332 1.03426 1.00000 1.63132 1.25700 1.03896 1.00000
2 194.924 1.30696 1.30124 1.20671 1.15666 0.93122 1.00749 1.02247 1.00000 1.64387 1.26382 1.04178 1.00000
3 195.003 1.30713 1.30100 1.20606 1.15574 0.93062 1.00681 1.02222 1.00000 1.64406 1.26393 1.04183 1.00000
4 195.004 1.30714 1.30100 1.20605 1.15573 0.93061 1.00680 1.02221 1.00000 1.64406 1.26393 1.04183 1.00000

Table 7. Numerical iterations for multiplicative gamma GLM coefficients using 60+ and pleasure as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 5.271 0.24473 0.25635 0.18704 0.14541 ¡0:07528 0.00653 0.02240 0.00000 0.49442 0.23602 0.04304 0.00000
2 5.273 0.26833 0.26300 0.18728 0.14470 ¡0:07206 0.00682 0.02197 0.00000 0.49730 0.23429 0.04118 0.00000
3 5.273 0.26783 0.26312 0.18735 0.14473 ¡0:07192 0.00677 0.02197 0.00000 0.49717 0.23423 0.04099 0.00000
4 5.273 0.26784 0.26313 0.18735 0.14473 ¡0:07192 0.00677 0.02197 0.00000 0.49717 0.23423 0.04098 0.00000

212 CASUALTY  ACTUAR IAL  SOC IETY  V O L U M E  0 1 / I S S U E  0 2



General Iteration Algorithm for Classification Ratemaking

Table 8. Numerical iterations for multiplicative gamma GLM factors using 60+ and pleasure as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 194.612 1.27728 1.29221 1.20567 1.15651 0.92749 1.00655 1.02265 1.00000 1.63954 1.26620 1.04398 1.00000
2 194.986 1.30778 1.30082 1.20596 1.15570 0.93047 1.00684 1.02222 1.00000 1.64427 1.26401 1.04204 1.00000
3 195.004 1.30713 1.30099 1.20605 1.15573 0.93061 1.00680 1.02221 1.00000 1.64406 1.26394 1.04184 1.00000
4 195.004 1.30714 1.30100 1.20605 1.15573 0.93061 1.00680 1.02221 1.00000 1.64406 1.26393 1.04183 1.00000

Table 9. Numerical iterations for additive factors of additive GIA with p = 1 using average severity as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 241.46 1.20355 1.20764 1.15438 1.12367 0.89052 0.97098 0.95341 0.92183 0.39376 0.07209 ¡0:11175 ¡0:14513
2 241.46 1.24727 1.21924 1.13818 1.10128 0.87575 0.95865 0.97266 0.95556 0.39840 0.07410 ¡0:11308 ¡0:14928
3 241.46 1.24807 1.21951 1.13796 1.10091 0.87552 0.95841 0.97293 0.95619 0.39848 0.07413 ¡0:11310 ¡0:14936
4 241.46 1.24808 1.21952 1.13796 1.10090 0.87552 0.95840 0.97293 0.95620 0.39848 0.07413 ¡0:11310 ¡0:14936
5 241.46 1.24808 1.21952 1.13796 1.10090 0.87552 0.95840 0.97293 0.95620 0.39848 0.07413 ¡0:11310 ¡0:14936

Table 10. Numerical iterations for dollar values of additive GIA with p = 1 using age 60+ and pleasure as the base

DTW DTW
Iteration Base 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Business Long Short Pleasure

1 187.541 68.024 69.011 56.153 48.736 ¡7:559 11.867 7.626 0.000 130.121 52.452 8.060 0.000
2 194.684 70.435 63.668 44.094 35.184 ¡19:272 0.746 4.128 0.000 132.244 53.937 8.743 0.000
3 194.816 70.477 63.583 43.892 34.945 ¡19:478 0.537 4.043 0.000 132.281 53.964 8.756 0.000
4 194.818 70.478 63.581 43.889 34.941 ¡19:481 0.533 4.041 0.000 132.282 53.964 8.756 0.000
5 194.818 70.478 63.581 43.889 34.941 ¡19:481 0.533 4.041 0.000 132.282 53.964 8.756 0.000

Table 11. Convergence process of mixed GIA with p = 1

Iter- Busi- DTW DTW
ation ness Long Short Pleasure 17–20 21–24 25–29 30–34 35–39 40–49 50–59 60+ Credit1 Credit2 Credit3 Credit4

1 1.3493 0.9731 1.0532 0.9539 2.2395 1.6630 1.3075 1.0138 1.0127 1.0042 0.8634 0.7888 0.3006 0.1852 ¡0:0468 ¡0:1722
2 1.4916 0.9169 0.9752 1.0245 2.2467 1.6483 1.2706 0.9787 0.9894 1.0028 0.8745 0.8154 0.3188 0.2046 ¡0:0446 ¡0:1947
3 1.4887 0.9221 0.9800 1.0199 2.2433 1.6412 1.2586 0.9691 0.9835 1.0002 0.8753 0.8239 0.3200 0.2057 ¡0:0441 ¡0:1966
4 1.4886 0.9246 0.9823 1.0177 2.2423 1.6397 1.2563 0.9674 0.9824 0.9996 0.8752 0.8253 0.3200 0.2056 ¡0:0440 ¡0:1967
5 1.4886 0.9251 0.9827 1.0173 2.2421 1.6395 1.2560 0.9672 0.9823 0.9995 0.8752 0.8255 0.3200 0.2056 ¡0:0440 ¡0:1966
6 1.4886 0.9251 0.9828 1.0172 2.2421 1.6394 1.2560 0.9672 0.9823 0.9995 0.8752 0.8255 0.3200 0.2056 ¡0:0440 ¡0:1966
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