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ABSTRACT

Misrepresentation is a type of insurance fraud that happens frequently 
in policy applications. Due to the unavailability of data, such frauds 
are usually expensive or difficult to detect. Based on the distributional 
structure of regular ratemaking data, we propose a generalized linear 
model (GLM) framework that allows for an embedded predictive 
analysis on the misrepresentation risk. In particular, we treat binary 
misrepresentation indicators as latent variables under GLM ratemaking  
models for rating factors that are subject to misrepresentation. Based on 
a latent logistic regression model on the prevalence of misrepresentation, 
the model identifies characteristics of policies that are subject to a high 
risk of misrepresentation. The method allows for multiple factors that 
are subject to misrepresentation, while accounting for other correctly 
measured risk factors. Based on the observed variables on the claim 
outcome and rating factors, we derive a mixture regression model 
structure that possesses identifiability. The identifiability ensures valid 
inference on the parameters of interest, including the rating relativities 
and the prevalence of misrepresentation. The usefulness of the method 
is demonstrated by simulation studies, as well as a case study using the 
Medical Expenditure Panel Survey data.
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the partially identified parameters, even with an 
infinite amount of data.

Proposed by Brockman and Wright (1992), GLM 
ratemaking models are now very popular in prop­
erty and casualty insurance areas (see Haberman and 
Renshaw 1996). In GLM ratemaking models, possi­
ble misrepresentation in a rating factor is expected to 
cause an attenuation bias in the estimated risk effect 
(e.g., the relativity), resulting in an underestimation 
of the difference between the true positive and true 
negative groups. Despite discussions on operational 
changes in order to discourage such fraudulent 
behaviors, there seems to be little work concerning  
statistical models for predicting or evaluating the 
risks or expenses associated with such fraud. In 
Xia and Gustafson (2016), the authors studied the 
structure of GLM ratemaking models with a binary 
covariate (e.g., risk factor) that is subject to mis­
representation. The study revealed that all parameters 
are theoretically identifiable for GLM ratemaking 
models with common distributions assumed for claim 
severity and frequency. This suggests that we can esti­
mate the rating relativities consistently, using regular 
ratemaking data. However, the study was based on a 
simplified situation where there is a single risk factor 
subject to misrepresentation, without including other 
risk factors.

In the current paper, we use regular ratemaking 
data to develop GLM ratemaking models that embed 
predictive analyses of the misrepresentation risk. 
The particular extensions include: (1) the adjust­
ment for other correctly measured risk factors in the 
ratemaking model; (2) the incorporation of multiple 
rating factors that are subject to misrepresentation; 
(3) the embedding of a latent logistic model for how 
risk factors affect the prevalence of misrepresentation, 
which enables us to perform a predictive analysis 
(see Frees et al. 2014 and Shi and Valdez 2011) 
on the misrepresentation risk. We derive mixture 
regression structures for the conditional distribution 
of the observed variables, confirming the identifi­
ability of the models. We perform simulation studies  
based on finite samples, show that we can consistently 

1.  Introduction

For property and casualty insurance, ratemaking 
models are often determined using historical claim 
data based on rating factors that are predictive for loss 
severity and frequency. We refer to Klein et al. (2014), 
Bermúdez and Karlis (2015), David (2015), Hua 
(2015), Shi (2016) for illustrations in this regard. For 
example, auto insurance rates are usually calculated 
using risk factors such as use of vehicle, annual mile­
age, claim and conviction history, age, gender and 
credit history of the insured or the applicant (Lemaire 
et al. 2016). Due to the financial incentives, policy 
applicants may have a motivation to provide false 
statements on the risk factors. This type of fraud 
occurring on the policy application is referred to as 
insurance misrepresentation (Winsor 1995). In auto 
insurance, information regarding risk factors such 
as use of vehicle and annual mileage is generally hard 
to obtain. Even for insurers that offer a voluntary 
discount on mileage tracking, the existence of anti-
selection limits the capability of such programs in 
obtaining accurate information on the whole book 
of policies.

Misrepresentation is one particular cause of mis­

classification, the type of measurement error in binary 
or categorical variables, when the variable is recorded 
in a wrong category. Xia and Gustafson (2016), Sun 
et al. (2017), and Xia and Gustafson (2018) use the 
term unidirectional misclassification for situations 
like misrepresentation where the error occurs only 
in the direction that is more favorable to the respon­
dent. When there are misclassification errors in some 
of the variables, the general difficulty of modeling 
is the unidentifiability of the parameters. Model 
unidentifiability is a situation where the likelihood 
function possesses multiple global maximums. In 
health and accounting areas, Gustafson (2014) and 
Hahn et al. (2016) studied two cases of partially 
identified models arising from unidirectional mis­
classification, where some parameters of interest 
can not be estimated consistently. For these models, 
we may only be able to obtain a range of values for 
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Denote q = P(V = 1), the true probability of a 
positive risk status. We can derive the observed prob­
ability of a positive risk status as q* = P(V* = 1) =  
P(V* = 1V = 0)P(V = 0) + P(V* = 1V = 1) P(V = 1) =  
q(1 − p). In insurance applications, a quantity of inter­
est is q = P(V = 1V* = 0), the percentage of reported 
negatives that corresponds to a misrepresented true 
positive risk status. We define q as the prevalence 

of misrepresentation. Using the Bayes’s theorem, the 
prevalence of misrepresentation can be obtained as

1 * 0
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* 0

1 1
.

P V V
P V V P V
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Similarly, we can obtain p = (1 − q)q/[q(1 − q)]. 
Note, we can derive one conditional probability from 
the other, along with an estimate of the observed 
probability q* using samples of V*. Note that the 
prevalence of misrepresentation q represents the per­
centage of misrepresented cases among applicants 
who reported a negative risk status. It quantifies the 
misrepresentation risk of a particular application and 
thus determines the total number of misrepresented 
cases in the book of business.

In a GLM ratemaking model, the model considers 
the mean of a response variable Y from a loss or count 
distribution, conditioning on the true risk status V.  
In Xia and Gustafson (2016), the authors showed 
that the conditional distribution of the observed vari­
ables (YV* = 0) is a mixture of the two distributions 
of (YV = 0) and (YV = 1), and (YV* = 1) has the  
same distribution as (YV = 1). Since one of the  
two mixture components can be informed from data 
with V* = 1, the mixture model possesses the model 
identifiability in a general case when the response 
variable is non-binary. Furthermore, the authors 
showed the moment identifiability of the model by 
deriving the observable moments corresponding to  
Y and V*. In an identified model, the likelihood func­
tion possesses one unique global maximum, allowing 

estimate the model parameters including the rating 
relativities, and interpret how risk factors affect the 
prevalence of misrepresentation. The case study using 
the 2013 Medical Expenditure Panel Survey (MEPS) 
data illustrates the use of the proposed method in an 
insurance application.

The proposed model is expected to have an imme­
diate impact on the actuarial practices of the insurance 
industry. Based on the theoretical identification of 
the model, traditional GLM ratemaking models can 
be extended to embed a predictive analysis of mis­
representation risk without requiring extra data on 
the misrepresentation itself. The analysis will pro­
vide information on the characteristics of the insured 
individuals or applicants who are more likely to mis­
represent on self-reported rating factors. With pre­
dictive models that automatically update with new 
underwriting data, the prevalence of misrepresenta­
tion can be predicted at the policy level, during policy 
underwriting based on various risk characteristics. 
Therefore, underwriting interventions can be under­
taken in order to minimize the occurrence of mis­
representation. In addition, the claims department may 
use the risk profiles to help identify fraudulent claims.

2.  A GLM ratemaking model  
with misrepresentation

In Xia and Gustafson (2016), the authors studied 
the identification of a GLM when a covariate (e.g.,  
a rating factor) is subject to misrepresentation. 
For misrepresentation in a binary rating factor (e.g., 
smoking status), we can formulate the model as 
follows. Denote by V and V* the true and observed 
binary risk status, respectively. There is a chance 
for misrepresentation to occur if the individual has 
a positive risk status. In particular, we can write the 
conditional probabilities as

* 0 0 1P V V( )= = =

* 0 1 , (1)P V V p( )= = =

where we call p the misrepresentation probability.
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Given fixed values of x, the conditional distribution 
of (YV *, x) is a mixture of two distributions when 
V * = 0, and it is a single distribution when V * = 1. 
The mixture model in (2) with additional covariates x  
is called a mixture regression model. Such mixture 
models have been shown to possess identifiability, 
given that a mixture distribution is identifiable for the 
specific component distribution (see Hennig 2000, 
and Grün and Leisch 2008b). Owing to the identifi­
ability for mixtures of distributions from the expo­
nential family (Atienza et al. 2006, 2007), the model 
in Equation (2) will be fully identifiable for common 
loss severity and frequency distributions such as 
the gamma, Poisson and negative binomial distribu­
tions considered under the GLM ratemaking context. 
Hence, using regular ratemaking data containing 
(Y, V *, x), we can consistently estimate the mixture 
weight q (i.e., the prevalence of misrepresentation), 
and the regression coefficients in ` (and the cor­
responding relativities).

In order to understand the model identification, 
we use a hypothetical example to visualize the con­
ditional distribution of (YV *, x) under the mixture 
regression context. For better visualization of the 
mixture structure, we assume that the medical loss 
amount Y follows a lognormal distribution, with V * 
being the smoking status. Given x = x0 (i.e., assum­
ing that the comparison is among individuals with 
the same other risk factors), (log(Y )x = x0) will have 
a mixture of two normal distributions for individuals  
who reported non-smoking, while it will have a 
normal distribution for those who reported smoking. 
Figure 1 gives an example on how the conditional 
distributions look like, with x = x0 being fixed for 
both groups. For the dashed density, the two mixture 
components are the conditional distributions for  
the true nonsmokers and smokers, and the preva­
lence of misrepresentation is the mixture weight for 
the true smokers that has a higher mean. Note that in 
the mixture regression model, the two components are 
regression models that cannot be visually presented, 
although the model possesses the identifiability for 
estimating all parameters. This mixture regression 

consistent estimation of all parameters including p 
and q. This means we can consistently estimate the 
true relativity and the probability p with regular rate­
making data. Here, we will extend the work under the 
GLM ratemaking framework in three directions: (a) to  
include additional rating factors that are correctly 
measured, a situation we commonly face in insurance 
ratemaking; (b) to simultaneously include multiple 
rating factors that are subject to misrepresentation; 
and (c) to relax the assumption that the prevalence 
of misrepresentation does not change with values of 
rating factors.

2.1.  Model with correctly  
measured risk factors

In the GLM ratemaking model, we first assume 
that the loss outcome Y depends on the true status V. 
In order to formulate the problem for the first exten­
sion, we use x = (X1, X2, . . . , XK) to denote K correctly 
measured rating factors that are predictive of the 
loss outcome Y. The GLM ratemaking model can be 
written as

. . . ,0 1 1 1g X X VK K K( )µ = α + α + + α + α +

where µ = E(Y ) and Var(Y ) = jV(µ), with j being 
the dispersion parameter and V(•) being the variance 
function. Denote ` = (α0, α1, . . . , αK+1), and let i 
denote all other parameters including the dispersion 
parameter. We may use fY(y̀ , i, V, x) to denote the 
conditional distribution function of (YV, x) from 
the exponential family.

Assume that the misrepresentation is non-differential 
on Y (i.e., Y ⊥ V*V, x). That is, the outcome Y does 
not depend on whether the applicant misrepresents on 
the risk factor, given the true status V and other risk 
factors x. We can obtain the conditional distribution 
of the observed variables, (YV*, x), as

� �

� �

� �
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1 , , 0, . (2)
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i = j. Note that p and q are parameters of the model, 
for which we can perform inference using either 
frequentist or Bayesian approaches. For Bayesian  
methods, the posterior distributions of (pV*, x) and 
(qV*, x) do not have closed forms. Hence, we will 
need to use Markov chain Monte Carlo (MCMC) tech­
niques in order to make inference on the parameters.

2.2.  Multiple risk factors  
with misrepresentation

For the second extension, we denote v = (V1,  
V2, . . . , VJ) as the true status of J rating factors  
that are subject to misrepresentation, and v* = (V 1*, 
V 2*, . . . , V J

*) as the corresponding observed values 
for these rating factors. We may assume that the 
response variable Y depends on the rating factors v 
through a parameter vector ` (e.g., one intercept and 
J regression coefficients). We further assume that  
(Yv) has the probability function fY( y̀ , i, v). 
Under the assumption of non-differential misclassi­
fication, the conditional distribution of (Yv*) will 
either be a single distribution when v* = (1, 1, . . . , 1), 
or a mixture distribution with the number of com­
ponents and the mean of components determined 
by the values of the observed v*. For example, when 
there are two rating factors with misrepresentation 
(i.e., v = (V1, V2)), we can write the conditional dis­
tribution of observed variables, (Yv*), as

* 1, * 1 , , 1, 1

* 0, * 1 , , 1, 1

1 , , 0, 1

* 1, * 0 , , 1, 1

1 , , 1, 0

* 0, * 0 , , 1, 1

, , 0, 1

, , 1, 0

1 , , 0, 0 (4)
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structure allows us to estimate the mixture weight 
(the prevalence of misrepresentation), the true risk 
effect of smoking (i.e., the difference in the mean of 
the two components), and the regression coefficients 
associated with each of the risk factors in x, without 
observing V.

Example 2.1. (Gamma model) First, we give a 
simplified example of a gamma loss severity model 
commonly used for auto insurance. Denote by Y the 
amount of a liability loss for a given claim, by X the 
annual mileage traveled by the vehicle, and by V* 
the observed risk status on vehicle use status (e.g., 
business or not) that is subject to misrepresentation. 
We can use a gamma GLM severity model given by

, gamma ,

log

* , Bernoulli 1 , (3)

,

, 0 1 2

∼

∼

Y V X

V X

V V X p V

V X

V X

( )

( )

( )

( )

( ) ( )

ϕ µ

µ = α + α + α

−

where j is the shape parameter, and µV,X is the  
conditional mean of the gamma distribution given  
V and X. Note that the conditional distribution of the 
observed variables (YV*, x) have the same form as 
that in Equation (2). For this example, the conditional  
distribution fY(y̀ , i , V, x) takes the form of the 
above gamma distribution, with ` = (α0 , α1, α2) and  
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Figure 1.  Logarithm of loss amount log(Y ) by 
reported smoking status V* under lognormal 
ratemaking models, when comparing individuals 
with same other risk characteristics x
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identifiability of mixture regression models (Hennig  
2000, and Grün and Leisch 2008b), the model in (4) 
is identifiable for the common loss severity and fre­
quency distributions assumed in a GLM ratemaking 
model. This means all the regression coefficients in `  
(and the corresponding relativities), and the mixture 
weights (i.e., prevalence of misrepresentation qj,  
j = 1, 2, . . . , 5) can be consistently estimated from 
regular ratemaking data containing (Y, v*). The results 
can be extended straightforwardly to the case with 
more than two rating factors subject to misrepresen­
tation. Note that the distributional assumptions we 
adopted in the two previous paragraphs are for the 
purpose of obtaining analytical forms of the preva­
lence of misrepresentation qj’s. The identifiability 
of the model is obtained from the mixture structure 
we have in (4) and does not depend on the specific 
forms of qj’s.

Example 2.2 (Negative binomial model) We give 
an example of a negative binomial loss frequency 
model commonly used for auto insurance. Denote 
by Y the number of liability losses for a given policy 
year, and by (V 1*, V 2*) the observed risk status on 
the binary vehicle use and binary annual mileage 
(e.g., on whether it is over a certain threshold) that 
are subject to misrepresentation. In particular, we 
can write the negative binomial GLM model as

1, 2 negbin ,

log , (5)

,

, 0 1 1 2 2

1 2

1 2

∼Y V V

V V

V V

V V

( )

( )

( ) ϕ µ

µ = α + α + α

where j is a dispersion parameter and µV1,V2
 is the 

conditional mean of the negative binomial dis­
tribution given the true statuses (V1, V2). Note that 
the conditional distribution of the observed variables 
(YV 1*, V 2*) have the mixture structure given in Equa­
tion (4), and the prevalence of misrepresentation qj’s 
are the mixture weights that can be estimated using 
data on (YV 1*, V 2*). For this example, the condi­
tional distribution fY ( y̀ , i, V1, V2) takes the form 
of the above negative binomial distribution, with  
` = (α0, α1, α2) and i = j.

where the corresponding prevalence of misrepresen­
tation q1 = P(V1 = 1, V2 = 1V 1* = 0, V 2* = 1), q2 =  
P(V1 = 1, V2 = 1V 1* = 1, V 2* = 0), q3 = P (V1 = 1,  
V2 = 1V 1* = 0, V 2* = 0), q4 = P(V1 = 0, V2 = 1V 1* = 0, 
V 2* = 0) and q5 = P (V1 = 1, V2 = 0V 1* = 0, V 2* = 0).

In order to simplify the model, we may assume 
that there is no correlation in the two risk factors, 
and the occurrence of misrepresentation in one risk 
factor does not depend on the value or the mis­
representation status of the other. That is, we have 
V1 ⊥ V2, P(V 1* = 0V1 = 1, V2) = P(V1* = 0V1 = 1) = p1,  
P(V 2* = 0V1, V2 = 1) = P(V 2* = 0V2 = 1) = p2, and  
P(V 1* = 0, V 2* = 0V1 = 1, V2 = 1) = p1p2. Denote  
P(V1 = 1) = q1 and P(V2 = 1) = q2. Using Bayes’ theo­
rem, we derive specific forms of the prevalence of 
misrepresentation, the qj’s, in the Appendix. In par­
ticular, q1 and q2 have the same form as q in Equation 
(2). That is, qj = qjpj /[1 − qj(1 − pj)], j = 1, 2. In addi­
tion, we have q3 = p1p2q1q2/[p1p2q1q2 + p1q1(1 − q2) +  
p2(1 – q1)q2 + (1 – q1)(1 – q2)], q4 = p2(1 − q1)q2/
[p1p2q1q2 + p1q1(1 − q2) + p2(1 − q1)q2 + (1 − q1) 
(1 – q2)], and q5 = p1q1(1 – q2)/[p1p2q1q2 + p1q1(1 − q2) +  
p2(1 − q1)q2 + (1 − q1)(1 – q2)].

An alternative to the above conditional indepen­
dence assumption is the assumption on the preva­
lence of misrepresentation, the qj’s. For example, we 
can assume that the applicant has the same mis­
representation probability p1 = p2 for the two risk 
factors. When the true status is positive for both risk 
factors, it is reasonable to assume that there are only 
two possibilities on the misrepresentation status: the 
applicant either does not misrepresent on any risk 
factor, or misrepresents on both of them. That is,  
we have the prevalence of misrepresentation being 
q4 = q5 = 0. In such a case, the last mixture distribu­
tion in (4) will only have two components. This will 
dramatically simplify the model when there are more 
than two risk factors subject to misrepresentation.

From (4), the conditional distribution still has a 
mixture regression structure. Based on the observed 
status of v*, we know the number of components in 
the mixture regression structure, as well as which 
components (corresponding to the possible true 
values of v) each mixture contains. Owing to the 
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where µV,X is the conditional mean of the Poisson 
distribution given the true status (V, X). Note that 
the conditional distribution of the observed variables  
(YV*, x) have the same form as that in Equation (2), 
except for the fact that q varies with the covariate X.  
Here, the logit model on q is a latent model that 
requires no additional information other than observed 
data on X. For this example, the conditional distri­
bution fY( y̀ , i, V, x) takes the form of the above 
Poisson distribution with ` = (α0, α1, α2), and there is 
no parameter i needed for the Poisson model.

When there is a latent binomial or multinomial 
regression model (6) on the mixture weight q, the mix­
ture in (2) is called a mixture regression model with 
concomitant variables (see Grün and Leisch 2008a). 
According to Hennig (2000) and Grün and Leisch 
(2008b), such a mixture regression model is identifi­
able, provided that a simple mixture of the component 
distributions is identifiable. The identifiability will 
ensure that we would be able to make inference  
on how different characteristics (e.g., demographics 
and other risk factors) affect the prevalence of mis­
representation q. Based on the conditional distribution 
of the observed loss outcomes and risk factors, the 
model will require no extra data on the misrepresen­
tation itself.

Owing to the identifiability, we will be able to 
estimate the regression coefficients a for the latent 
model on the prevalence of misrepresentation using 
regular ratemaking data. The statistical significance 
of the variables indicates what characteristics of the 
applicants or insureds affect the probability that a 
reported negative risk status corresponds to a mis­
represented true positive status. Using such estimated 
predictive models that automatically update with new 
loss experience data, the prevalence of misrepresenta­
tion can be predicted at the policy level, during policy 
underwriting based on various risk characteristics. 
The applications with a high predicted prevalence of 
misrepresentation can then be selected for an under­
writing investigation on self-reported risk factors. 
For the claims department, the predicted prevalence 
of misrepresentation can be used as a flag for identi­
fying potential fraudulent claims. Such a risk profile 

2.3.  Embedded predictive analysis  
on misrepresentation risk

The last extension is very important for understand­
ing the characteristics of the insureds or applicants 
who are more likely to misrepresent on certain self-
reported rating factors. In addition to the regression 
relationship we are assuming between the mean of the 
loss outcome and the rating factors, we may further 
assume that the prevalence of misrepresentation q 
depends on certain risk factors. Without loss of gen­
erality, we assume the case in Equation (2) where 
there is one variable V subject to misrepresentation. 
Like in the case of zero-inflated regression models 
(see, e.g., Yip and Yau 2005), we may use a latent 
binary regression model for the relationship between 
the prevalence of misrepresentation and the rating 
factors. That is,

, (6)0 ag q z( ) = β +

where the link function g(•) can either take the logit 
or probit form, β0 is an intercept and the vector a con­
tains the effects of the rating factors on the prevalence 
of misrepresentation. For the latent model in (6), it 
usually requires a larger sample size to learn param­
eters with the same precision. In order to simplify the 
model in real practices, we recommend choosing a 
subset of meaningful risk factors from x such as z, in 
the case where there are many rating factors available.

Example 2.3 (Poisson model). We give an example 
of a Poisson loss frequency model commonly used for 
auto insurance. Denote by Y the number of liability 
losses for a given policy year, by V * the observed risk 
status on the binary vehicle use status with possible 
misrepresentation, and by X the annual mileage. In 
particular, we can write the Poisson GLM model as

, Poisson

log

logit log
1

, (7)

,
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0 1
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where φ1( yi) = f ( yivi = 0, xi) is the conditional dis­
tribution for the regression model of the true non­
smokers, and φ2( yi) = f ( yivi = 1, xi) is that of the 
true smokers.

Note that regular GLM can be implemented either 
using the frequentist approach based on maximum 
likelihood estimation (MLE) or Bayesian inference 
based on MCMC. This is true for the proposed model 
as well. For the current paper, we use Bayesian infer­
ence that is convenient to conduct, as well allowing 
prior information to be incorporated on the param­
eters of the interest, when external information is 
available. Information regarding likelihood-based 
inference based on the EM algorithm as well as that 
regarding the complete-data likelihood function can 
be found in standard references such as McLachlan 
and Krishnan (2007).

Treating zi (i = 1, 2, . . . , n) as latent variables, the 
Bayesian models can be implemented in the soft­
ware package R using MCMC methods such as 
the Metropolis-Hastings algorithm (as was done in 
Xia and Gustafson (2016). In addition, we may use 
Bayesian software packages such as WinBUGS and 
OpenBUGS to implement the models, by introduc­
ing a latent status on misrepresentation. In particular, 
the BUGS code for implementing the gamma model 
in Example 2.1 is as follows.

model {

  for (i in 1:n){

    V_star[i] ~ dbin(theta_star,1)

    Y[i] ~ dgamma(alpha, beta[i])

    �beta[i] <- alpha/exp(aa0 + aa1*V[i] +

      aa2*X[i])

    V[i] <- V_star[i] + (1-V_star[i])*Z[i]

    Z[i] ~ dbin(q,1)

  }

  theta_star <- theta*(1-p)

  q <- theta*p/(1-theta*(1-p))

based on the predicted prevalence will be helpful for 
identifying misrepresentation on policy applications, 
as well as fraud in insurance claims.

3.  Simulation studies

We perform simulation studies on the performance 
of the model under finite sample scenarios, in order 
to illustrate the model identifiability. In particular, we 
study the model performance under three scenarios 
where we have (1) another correctly measured  
rating factor, (2) multiple rating factors subject to 
misrepresentation, and (3) a misrepresented rating 
factor with the prevalence of misrepresentation vary­
ing with other factors.

3.1.  Model implementation

The proposed models given in Equations (2) to (7) 
all have tractable analytical forms. Hence, we can 
write out the full likelihood functions. For the model 
implementation, it is more convenient to work with 
the complete-data likelihood with a latent variable 
denoting the misrepresentation status.

Here, we use the gamma loss severity model 
in Example 2.1 to illustrate the implementation 
of the proposed models. Denote by ( y1, v 1*, x1),  
(y2, v 2*, x2), . . . , ( yn, v n

*, xn) a random sample of 
observed variables of size n. Maximum likelihood 
estimation (e.g., based on the expectation maximiza­
tion algorithm, EM, McLachlan and Krishnan 2007) 
and Bayesian inference (based on MCMC) uses the 
complete-data likelihood that includes the unobserved 
(i.e., latent) status on the misrepresentation. For 
observations where vi

* = 0, denote by zi(i = 1, 2, . . . , n) 
the latent binary indicator on whether Observation i 
is misrepresented (whether the true status vi = 1, i.e., 
whether Sample i is from the component distribu­
tion for true smokers).

The introduction of the latent misrepresentation 
indicators leads to a multiplicative likelihood func­
tion convenient for obtaining the log-likelihood 
function for the EM or MCMC algorithm. In particu­
lar, the log-likelihood function can be written as
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for obtaining the corresponding samples of V *. The 
samples of the additional factor X are generated from 
a gamma distribution with the shape and scale param­
eters being (2, 0.5). The corresponding samples of Y  
are then generated from those of V and X, with regres­
sion coefficients (α0, α1, α2) being (1.2, 1, 0.5), and a 
gamma shape parameter j = 5.

For the simulation study, we consider the five 
sample sizes of 100, 400, 1,600, 5,400, and 25,600. 
We compare the results from the proposed model 
in (2) with naive estimates from gamma regression 
using the observed values of V *, pretending there  
to be no misrepresentation. We denote the true 
model as gamma regression using the “unobserved” 
values of V that we used earlier for obtaining the 
samples of V *. For all the models, independent 
normal priors with mean 0 and variance 10 are used 
for the regression coefficients. For the probability  
parameters q and p, uniform priors on (0, 1) are used. 
We run three chains with randomly generated ini­
tial values. The first 15,000 samples are dropped 
to ensure that the Markov chain has converged. In 
order to reduce the autocorrelation in the posterior 
samples, we take every 10th sample for our model 
acknowledging misrepresentation. For all the other 
models with faster convergence, we take every 
10th sample after dropping the first 1,500 samples.

Figure 2 presents the 95% equal-tailed credible 
intervals for the regression effects α1 and α2 of the 
true risk status V and X, for each of the five sample 
sizes. The credible intervals are based on 5,000 pos­
terior samples, with an effective size over 4,500. For 
MCMC, an effect size close to the nominal size indi­
cates there is very little autocorrelation in the pos­
terior samples that may jeopardize the efficiency in  
the estimation. We observe that the naive estimates 
are biased downward compared to those from the true 
models using the corresponding values of V. That is, 
misrepresentation in the risk factor causes an attenu­
ation effect in the naive estimates for the risk effect 
α1 for V, an effect commonly seen in measurement 
error modeling. The center of the posterior distribu­
tion for the regression effect α1 from the proposed 

  # Prior distributions

  p ~ dunif(0, 1)

  theta ~ dunif(0, 1)

  aa0 ~ dnorm(0, 0.1)

  aa1 ~ dnorm(0, 0.1)

  aa2 ~ dnorm(0, 0.1)

  alpha ~ dgamma(0.5, 0.5)

}

Using the observed values of (y1, v1*, x1), (y2, v2*, x2), 
. . . , (yn, vn

*, xn), the above BUGS program will output 
posterior samples of the parameters α0, α1, α2, p, q,  
q and j. Note that the above normal and gamma 
prior distributions are chosen as vague priors that will 
work well for cases where the true parameters have 
values near 1, as in the simulation study. For real 
applications depending on the scales of the response 
and covariates, we may need to re-set the super-
parameters or standardize continuous covariates in 
order for the normal and gamma priors to cover a 
range reasonably larger than the scale of the param­
eters. The use of WinBUGS and OpenBUGS for 
actuarial modeling was illustrated in earlier papers 
such as Scollnik (2001, 2002). With R packages such 
as R2WinBUGS and BRUGS, we will be able to 
perform repeated computations using R.

3.2.  Impact from a correctly  
measured rating factor

Here, we include an additional risk factor X that  
is correctly measured. In the simulation study, we 
first generate the true risk status V, the additional 
factor X and the claim outcome Y from the true dis­
tributional structure for the gamma severity model 
in Example 2.1. The samples of V are then modified 
based on the true values of p in order to obtain the 
corresponding observed samples of V *. The pro­
posed model uses simulated samples of (Y, V *, X) to 
estimate the parameters in the gamma distributional 
structure given in Example 2.1.

For the true risk factor V, we generate a single 
sample of size n, using a Bernoulli trial with the 
probability q = 0.5. Two different values of p, 0.25 
and 0.5, are used as misrepresentation probabilities 
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obtain the number of misrepresented cases directly 
from data on the reported status. The credible intervals 
for the misrepresentation probability p have very 
similar patterns, and thus will not be presented here. 
The credible interval becomes narrower as the sam­
ple size increases, with all the intervals covering the 
true value of the probability. In both figures, there is 
larger variability in the estimation for the case with  
p = 0.50, where the issue of misrepresentation is 
more severe.

model is very close to that from the true model. 
There seems to be no noticeable difference concern­
ing the estimation of α2. The proposed model seems 
to give wider credible intervals, acknowledging the 
additional uncertainty due to the existence of the 
misrepresentation.

Figure 3 presents the credible intervals of the 
prevalence of misrepresentation q from the proposed 
model. For insurance applications, the prevalence q 
is a more meaningful measure that will allow us to 

0.
5

1.
0

1.
5

sample size

100 400 1600 6400 25600

` 1

sample size

` 2
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8

naive
true
proposed

100 400 1600 6400 25600

sample size

` 2
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8

100 400 1600 6400 25600

sample size

` 1

0.
5

1.
0

1.
5

naive
true
proposed

100 400 1600 6400 25600

(a) p = 0.25 (b) p = 0.5

(c) p = 0.25 (d) p = 0.5

Figure 2.  Credible intervals for the risk effects of V (top) and X (bottom) for the gamma loss severity 
model. The dashed line marks the true value
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earlier for obtaining the samples of (V 1*, V 2*). For all 
the models, independent normal priors with mean 0  
and variance 10 are used for the regression coeffi­
cients. For the probability parameters q1, q2, p1 and 
p2, uniform priors on (0, 1) are used. Other MCMC 
details are the same as those for the gamma model.

Figure 4 presents the 95% equal-tailed credible 
intervals for the regression coefficients α1 and α2 of 
the true risk statuses V1 and V2, for each of the five 
sample sizes. As expected, we observe that the naive 
estimates are biased downward to a certain extent, 
compared to those from the true models using the 
corresponding values of V1 and V2. That is, mis­
representation in the risk factor causes an attenua­
tion effect in the naive estimates. The centers of the 
posterior distributions for the regression effects α1 and 
α2 from the proposed model are very close to those 
from the true model, for sufficiently large sample 
sizes. For the negative binomial model, the pro­
posed method gives much wider credible intervals, 
when compared with those from a Poisson model we 
tried with two misrepresented risk factors. The exis­
tence of misrepresentation seems to cause a larger 
efficiency loss in the negative binomial model than its 
Poisson counterpart, owing to the weak identification  

3.3.  Multiple rating factors  
with misrepresentation

The second case we study is when we have two 
rating factors that are subject to misrepresentation. 
For the negative binomial loss frequency model 
in Example 2.2, we generate samples for the five 
sample sizes for the true risk statuses (V1, V2), using 
two Bernoulli trials with the binomial probabilities 
q1 = 0.5 and q2 = 0.4, respectively. Two different sets 
of values of (p1, p2), (0.25, 0.15) and (0.35, 0.25), 
are used for the two risk factors for obtaining the 
corresponding samples of (V 1*, V 2*). The correspond­
ing samples of negative binomial counts Y are then 
generated from those of V1 and V2, with regression 
coefficients (α0, α1, α2) being (−1, 1, 0.5), and a 
dispersion parameter j = 5. The proposed model 
uses simulated samples of (Y, V 1*, V 2*) to estimate the 
parameters in the negative binomial distributional 
structure given in Example 2.2.

We compare the results from the proposed model 
in (4) with naive estimates from negative binomial 
regression using the observed values of (V 1*, V 2*), pre­
tending there to be no misrepresentation. We denote 
the true model as negative binomial regression using 
the corresponding values of (V1, V2) that we used 

Figure 3.  95% credible intervals for the prevalence of misrepresentation q for the gamma loss  
severity model

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

q

100 400 1600 6400 25600

(a) p = 0.25 (q = 0.2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

q

100 400 1600 6400 25600

(b) p = 0.5 (q = 0.33)

14989-02_Xia-3rdPgs.indd   49 11/1/18   10:45 AM



Variance Advancing the Science of Risk

50	 CASUALTY ACTUARIAL SOCIETY	 VOLUME 12/ISSUE 1

as the sample size increases, with all the intervals 
covering the true value of the probability. In both fig­
ures, there is larger variability in the estimation for 
the case with (p1, p2) = (0.35,0.25), where the issue 
of misrepresentation is more severe.

3.4.  Embedded model on prevalence  
of misrepresentation

The last case we study is when there is a correctly 
measured risk factor X that affects the prevalence of 
misrepresentation q. The process of data simulation 

(Xia and Gustafson 2016) when the dispersion 
parameter is large. The results for the Poisson model 
have similar patterns as those in Figures 2 and 3, and 
are not presented here. We further observe that the 
model works better when the sample size increases, 
which suggests that it will work for large insurance 
claim datasets.

Figure 5 presents the credible intervals of the prob­
abilities p1 and p2 from the proposed model. The 
results on the five prevalence of misrepresentation qj’s 
are similar. The credible interval becomes narrower 

Figure 4.  Credible intervals for the risk effects of V1 (top) and V2 (bottom) for the negative binomial 
loss frequency model. The dashed line marks the true value
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risk status V*, using a Bernoulli trial with the prob­
ability q* = 0.5. The samples of the additional risk 
factor X are generated from a gamma distribution 
with the shape and scale parameters being 2 and 0.5, 
respectively. For the true model, we generate the 
corresponding samples of V, assuming that the pre­
valence of misrepresentation is given by logit (q) = 
β0 + β1X. We assume the regression coefficients  
in logistic regression, (β0, β1), take two sets of  
values, (0, −1) and (0, −2). For each sample of X, 
we calculate the prevalence of misrepresentation  

differs, as we need to determine the value of q for 
each sample X. We directly simulate samples of V* 
from a Bernoulli trial with a probability q* and use 
them to obtain those of V based on the calculated 
values of q. The samples of V and X are then used to 
obtain those for the outcome Y. The proposed model 
uses simulated samples of (Y, V*, X) to estimate the 
parameters in the Poisson distributional structure given 
in Example 2.3.

We use the Poisson model in Example 2.3 to 
generate a single sample of size n for the reported 

Figure 5.  Proposed 95% credible intervals for the probabilities p1 and p2 for the negative binomial  
loss frequency model
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representation using the observed risk status V *. 
For all the models, independent normal priors with 
mean 0 and variance 10 are used for all the regres­
sion coefficients and the logarithm of the dispersion 
parameter. For the probability parameter q, a uniform 
prior on (0, 1) is used. Other MCMC details are the 
same as those for the gamma model.

Figure 6 presents the 95% credible intervals for 
the regression coefficients α1 and α2 of the true risk 
status V and X, for each of the five sample sizes. For 
both α1 and α2, we observe that the naive estimates 

and obtain the corresponding true samples of V 
based on those of V *. The corresponding samples 
of Poisson counts Y are then generated from those 
of V and X, with regression coefficients (α0, α1, α2) 
being (1.2, 1, 0.5).

We compare the results from the proposed model 
with naive estimates from Poisson regression using 
the observed values of V *, pretending there to be 
no misrepresentation. We denote the true model as 
Poisson regression using the corresponding values 
of V. The proposed model is based on the mixture 
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Figure 6.  Credible intervals for the risk effects of V (top) and X (bottom) for the Poisson loss 
frequency model. The dashed line marks the true value
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and true models do not assume misrepresentation in 
the risk factor, so there is no inference for the coef­
ficient β1 from the latent model on the prevalence of 
misrepresentation.

4.  Case study on medical 
expenditures

The Medical Expenditure Panel Survey (MEPS, 
AHRQ 2013) is a set of national surveys on medical 
expenditures and frequencies of health care utiliza­
tion by the Americans. In the actuarial and statistical 
literature, the MEPS data have been used by earlier 
papers such as Frees et al. (2013), Xia and Gustafson 
(2014, 2016), Hua and Xia (2014) and Hua (2015) 
for exploring patterns concerning health care loss 
frequency and severity. For the case study, we use 
the 2013 MEPS consolidated data to illustrate the 
proposed GLM loss frequency and severity models 
that embed a predictive analysis on the misrepresen­
tation risk.

In the case study, we choose two response variables, 
the office-based visits and total medical charges, 
respectively, for our loss frequency and severity  
models. According to the Patient Protection and 

are biased downward compared to those from the 
true models using the corresponding values of V. This 
means misrepresentation in one risk factor may cause 
bias in the estimates of effects for both the risk factor 
itself (i.e., the attenuation effect), as well as for other 
risk factors. The centers of the posterior distributions 
for the regression effects α1 and α2 from the proposed 
model are very close to those from the true model. 
The proposed model seems to give a little larger pos­
terior standard deviation, acknowledging the uncer­
tainty due to the existence of misrepresentation.

Figure 7 presents the credible intervals of the risk 
effect β1 on the prevalence of misrepresentation from 
the proposed model. The credible interval becomes 
narrower as the sample size increases, with all the 
intervals covering the true value of the coefficient.  
In both figures, there is larger variability in the esti­
mation for the case with β1 = −2, where the pre­
valence of misrepresentation q varies more widely 
with the factor X. When compared with Figure 6, we 
observe that the credible intervals for the regression 
coefficients β1 are wider than those for α1 and α2 that 
have a similar scale. This indicates that latent models 
may require a larger sample size to learn the param­
eters with the same precision. Note that the naive 
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Example 2.3, despite differences in the distributional 
form of Y. The MCMC settings are similar to those 
in the previous section. For the regression coeffi­
cients α0, α1, α2, β0 and β1, we specify vague nor­
mal priors with mean 0 and variance 10 (100 for  
the gamma model to account for a larger scale of Y ). 
For the probability q, we assume a beta prior with both 
parameters being 2 (corresponding to prior mean 0.5 
and standard deviation 0.224). At the current sample 
sizes, the slightly more concentrate beta prior seems 
to help with the convergence of the negative binomial 
model. For the probabilities p and q, the prior distri­
butions are transformations of those for β0, β1 and q, 
according to the relationships of the parameters.

In Figure 8, we present the 95% equal-tailed cred­
ible intervals for the relativity exp(α1) and exp(α2) 
concerning the smoking and age effects on the aver­
age number of office-based visits and the average 
total medical charges. We observe that for the smok­
ing risk factor, the adjusted models give estimated 
relativities that are substantially higher than those 
from the unadjusted models. Note that the above dif­
ference in the estimated relativity is very large, as the 
relativity is the exponential of the regression coeffi­
cients. When we look at the regression coefficients, 

Affordable Care Act (PPACA), health insurance 
premiums can account for the five risk factors of  
age, location, tobacco use, plan type (individual vs. 
family) and plan category based on the level of 
coverage. For the MEPS data, we choose the two 
factors of age and smoking status that are available 
in the dataset. In particular, the self-reported smok­
ing status may be subject to misrepresentation, owing  
to social desirability concerns. For the empirical 
analysis, we include insured individuals from the 
age of 18 to 60 who were the reference person in 
their household. The sample sizes for the office-based 
visits and the total medical charges are 3,249 and 
2,948, respectively. The sample size is smaller for 
the total medical charges variable, as we only include 
individuals with a positive expenditure.

Due to the over-dispersed feature of the office-
based visits variable, we specify a negative binomial 
GLM for the loss frequency model. For the total medi­
cal charges variable, we use a gamma GLM for the 
loss severity model. We first perform an unadjusted 
analysis, using regular GLM ratemaking models, 
without adjusting for misrepresentation in the self-
reported smoking status. For the adjusted analysis, 
we adopt the same regression structures as those in 
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of misrepresentation (i.e., q/(1 − q)), the predicted 
misrepresentation probability p(x–), and the predicted 
prevalence of misrepresentation q(x–) for individuals 
at the average age of 42. We observe that the age 
effect is insignificant in predicting the prevalence 
of misrepresentation q regarding both outcomes  
on the office-based visits and total medical charges. 
For individuals at the average age, the predicted mis­
representation probabilities are 66% and 57% for 
office-based visits and total medical charges. The 
credible intervals overlap for the two models using 
samples on different outcomes, indicating no statisti­
cal difference in the two probabilities. The predicted 
prevalence of misrepresentation is about 57% and 
38%, with a larger difference caused by difference in 
the percentage of smokers in the gamma model that 
excludes individuals with no medical charge. Among 
people with an average age who identified themselves 
as nonsmokers, about 48% of them are estimated to 
have misrepresented their smoking status.

In Figure 10, we present the predicted prevalence 
of misrepresentation by age for individuals who iden­
tified themselves as nonsmokers. For both the office-
based visits and total medical charges, the predicted 
prevalence of misrepresentation does not seem to 
vary with age. For both models, we can predict the 
prevalence of misrepresentation for individuals with 
a specific age. For example, for respondents who 

the estimates are comparable to those from the  
simulation studies in the previous section. With the 
estimated prevalence q ranging from 0.38 to 0.57, 
such an estimated difference is likely to be attributed 
to misrepresentation. From a practical standpoint, 
the estimated smoking relativity from the unadjusted 
analysis is very close to one, contradictory to clinical 
findings on the health risks associated with smoking. 
For the current study, the estimates from the adjusted 
model are more likely to reflect the true smoking effect 
on the health outcomes. In general, however, business 
knowledge needs to be used when interpreting results 
from empirical studies. In the case of observation 
studies, there is a possibility of heterogeneity due to 
confounding from other risk factors, such as exposure 
to secondhand smoke in the current case. In such cases, 
the embedded analysis help us identify heterogeneity 
in the data that may require inclusion of other risk fac­
tors. The predictive model on the misrepresentation 
risk could provide insights to the underwriting depart­
ment that would help optimize the cost/benefit tradeoff 
of undertaking interventions to minimize the occur­
rence of such frauds. For the age effect, the adjustment 
results in no noticeable difference in the estimated rela­
tivity. Both the smoking and age effects are significant 
from the adjusted model, confirming our intuition.

In Figure 9, we present the 95% equal-tailed cred­
ible intervals for the relative age effect on the odds 

Figure 9.  Adjusted credible intervals for the age effect exp(a1) on the odds of misrepresentation,  
the predicted misrepresentation probability p(x–), and the prevalence of misrepresentation q(x–)  
for individuals at the average age of 42. In each panel, the left column corresponds to the negative 
binomial model on office-based visits, and the right column corresponds to the gamma model on  
total medical charges
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models with concomitant variables, we embedded 
a predictive analysis of misrepresentation risk by a 
latent logistic regression model on the prevalence 
of misrepresentation. For insurance companies that 
have information on various risk factors concerning 
an insured policy, such an embedded model on the  
prevalence of misrepresentation allows the under­
writing department to generate a misrepresentation 
risk profile based on models fitted from historical data. 
Using the risk profiles, the underwriting department 
may choose to undertake investigations on certain 
policies, in order to minimize the occurrence of mis­
representation frauds. By concentrating on policies 
with a higher misrepresentation risk, the analysis will 
help enhance the efficiency of underwriting practices. 
For the claims department, risk profiles on misrepre­
sentation on policy applications may be further used 
to identify fraudulent claims.
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Appendix

A.1.  Additional derivation for Section 2.2

Here we derive the forms of the prevalence of mis­
representation, the qj’s, for the model in Equation (2.4). 
Using Bayes’s Theorem, we have

were 60 years old, the predicted prevalence of mis­
representation is 56.6% and 38.7%, respectively, for 
the office-based visits and the total medical charges. 
It is not surprising for the predicted prevalence of mis­
representation to differ, as the percentages of smokers  
seem to differ in the sub-sample of individuals used  
for the gamma model who had positive medical 
charges. The predicted prevalence parameters of mis­
representation constitute risk scores concerning the 
misrepresentation risk. Here the age effect in Figure 9  
is an insignificant risk factor concerning the mis­
representation probability, as there is no evidence 
that people will become more honest or less honest 
over time. With real insurance data, we may be able 
to identify other significant factors when we have a 
much larger sample size as well as a larger number 
of risk factors.

5.  Conclusions

In the paper, we proposed an embedded predictive 
analysis of misrepresentation risk in GLM ratemaking 
models. Under the GLM ratemaking structure, we 
derived the mixture regression form for the condi­
tional distribution of the claim outcome given the 
observed risk factors when some of them are subject 
to misrepresentation. The mixture regression form 
ensures the model identifiability, so that all parameters 
including the true relativities and the prevalence of  
misrepresentation can be estimated consistently using 
regular ratemaking data. Based on mixture regression 
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