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A Model for Policy-Size  
and Diversification Discounts

by Jay M. Call

ABSTRACT

An actuarial approach for calculating a relativity based on  
geographic diversification is presented. The method models  
correlation as a function of distance between two exposures, and 
uses that to calculate a risk margin for each policy. It assumes 
that any premium provision for a company risk margin is  
currently allocated in proportion to policy risk-free premium, 
which results in a uniform risk-loading uprate for all policies. 
It is suggested that a better approach would be to allocate com-
pany risk margin in proportion to policy risk margin so that more 
diverse policies incur a smaller risk factor. This approach results 
in a range of diversification relativities that tends to be very 
narrow, so a revenue-neutral method for magnifying the impact 
of the diversification relativity is also presented. Approaches for 
reflecting non-geographic forms of diversification (such as for 
package policies) are also discussed. And, since policies with 
many insured items have a greater potential for diversity than 
policies with fewer insured items, the diversification relativities 
presented herein could also be viewed as a type of policy-size 
relativity.
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But how does one construct a diversification dis-
count that is actuarially sound, given that diversifi-
cation does not reduce loss expectation but only loss 
variation and uncertainty? If the insurer maintains 
an explicit premium provision for any kind of risk 
margin, a more diverse book of business can help 
reduce it. And even if there is no explicit risk margin, 
one can argue that a risk margin is still being carried 
implicitly—buried inside the target underwriting 
profit—because if an adverse scenario develops, the 
required funds will come out of surplus.

The current practice is for insurers to bake a risk 
margin direction into their base rates by adjusting the 
permissible loss ratio. This means that the company 
risk margin is being allocated to policyholders in 
proportion to their premium. It also means that every 
policy gets exactly the same uprate in order to fund 
the risk margin. This approach fails to recognize 
the outsized contribution of more diverse policies 
toward reducing the company risk margin. A better 
approach would be to calculate risk margins at the 
policy level and allocate the company risk margin to  
policies not by premium, but by policy risk margin. 
This would result in more tempered risk-loading 
uprates for diverse policies, and steeper ones for less 
diverse policies.

To illustrate this, consider a simple example. 
Imagine a book of business involving just three 
policies (A, B, and C) with an aggregate risk-free 
premium of $1,000—$100 from Policy A, $200 from 
Policy B, and $700 from Policy C. If the insurer 
requires a $100 risk margin, the current method would 
result in a 10% uprate for each policy. So $10 would 
come from Policy A, $20 from Policy B, and $70 
from Policy C to fund the company risk margin.  
The proposed approach would result in a different 
allocation—perhaps $20 from Policy A, $30 from 
Policy B, and just $50 from Policy C. Instead of a 
10% risk-loading uprate for everyone, this means a 
20% uprate for Policy A, 15% for Policy B, and just 
over 7% for Policy C.

A diversification relativity can then be calculated 
for each policy by dividing the uprate using the new 
allocation method by what it would have been under 

1.  Introduction

The primary function of insurance is to transfer 
risk from consumers, who are not well-equipped 
to tolerate it, to insurance corporations, which can 
draw upon large amounts of capital and which benefit 
from the uncertainty-mitigating effect of diversifi-
cation. This diversification places the insurer in a 
unique position for bearing relatively high levels of 
risk. To further encourage this diversification for 
its book (as well as more complete buy-in from folks 
who may be considering insuring additional items 
or purchasing additional coverages), an insurer may 
find it advantageous to offer premium discounts for 
policies that present a high level of diversification 
in themselves.1 For example, even if four quarter-
million-dollar homes spread over a large geographic 
area present roughly the same loss expectation as a 
single million-dollar home, the associated risk level 
is lower for the geographically diverse homes since 
it is unlikely all four would experience a total loss 
during a short window of time.

Perhaps the best candidate for a geographic diver-
sification discount is a homeowners or farmowners 
(HO/FO) policy because buildings are relativity 
easy to geocode2 with today’s technology. In order 
to calculate a geographic diversification relativity 
for such a policy, we first must know the location 
and risk-free premium3 (or, alternatively, the limit  
of insurance) of each insured building. Ideally, the 
geocode should be at the rooftop level. If possible, 
latitude and longitude coordinates4 should be obtained 
for a position near the center of each building.

1This could be in the form of geographic diversification, coverage or 
business-line diversification, or possibly other types of diversification.
2The term “geocode” is used here to refer to the process of identifying 
the physical location of an item and recording its latitude and longitude 
coordinates to a high degree of precision.
3We define “risk-free premium” as expense-loaded premium without 
a risk load. Throughout this paper, risk-free premium is what we shall 
mean whenever we refer to “premium” without an explicit descriptor, 
like “risk-loaded” or “pure,” meaning expense-free.
4It should be sufficient to store these coordinates out to the fifth  
or sixth decimal place—down to a precision of a few feet, or a few 
inches, respectively. Additional precision would likely not be useful 
or meaningful.
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on the size of confidence interval that is selected. 
(See Section 2.4.)

5.	 The diversification relativity is calculated at the 
policy level from the risk margin using the ratio 
of risk factors (or risk-loading uprates) under 
(1) policy-risk-margin-based allocation of the com-
pany risk margin to (2) premium-based allocation. 
(See Section 2.5.)

An instrumental quantity that is calculated during 
this process is the CV ratio, which is the ratio of the 
coefficient of variation for an aggregate loss distribu-
tion (like for a policy, or for the company as a whole) 
to that for an individual building (or insured item). 
This CV ratio quantifies the degree of diversification 
inherent in a group of insured items. By definition, the 
CV ratio is 1 for a single item (no diversification), 
and we’ll see that it approaches 0 in the limit as the 
number of uncorrelated items in a group grows without 
bound (maximum diversification).8

Section 3 illustrates how one can scale the magni-
tudes of the diversification discounts calculated in 
Section 2, and Section 4 presents various alternative 
formulations that broaden the potential application to 
non-geographic types of diversification. Each formu-
lation of the method is, by design, revenue neutral.

2.  The geographic  
diversification model

Each of Sections  2.1 through 2.5 is dedicated  
to one of the five primary steps in this method.  
An example is developed in parallel to the theory as 
it is presented, and this example is revisited in each 
subsection.

the old method.5 In the example case, the relativities 
for the three policies are: 1.091 (a 9.1% surcharge6) 
for Policy A, 1.045 (a 4.5% surcharge) for Policy B, 
and 0.974 (a 2.6% discount) for Policy C.

The objective of this paper is to develop the 
mathematical model for calculating diversification 
relativities like these from geocode information in 
an actuarially sound way. A concise summary of the 
approach to be developed is as follows:

1.	 Distance is calculated between each pair of build-
ings on a policy using a formula that converts two 
pairs of latitude/longitude coordinates into a dis-
tance. This formula is robust to curvature effects 
of Earth over large distances. (See Section 2.1.)

2.	 The correlation between loss distributions for each 
pair of buildings on a policy is estimated from 
the separation distance using a distance-correlation 
model we develop. (See Section 2.2.)

3.	 The variance of the loss distribution is estimated 
at the policy level as a multiple of the variance for 
an individual building.7 This multiple is given by a 
weighted sum of elements in the correlation matrix. 
(See Section 2.3.)

4.	 Risk margin is estimated at the policy level from 
the estimated variance using the upper half of 
a pre-selected confidence interval. In this way, 
it is designed to supplement risk-free premium 
(which is based on the expectation value) in order 
to protect against the most adverse results that 
fall within the selected confidence interval. This 
results in a policy risk margin that is proportional 
to the standard deviation of the policy loss distri-
bution. The constant of proportionality depends 

5Equivalently, the relativity can be calculated by dividing the new risk-
loaded premium by the old one.
6The surcharges are necessary to maintain revenue neutrality while 
offering the discounts for the more diverse policies.
7This assumes that each building on a policy has a loss distribution that 
is identical up to a scale factor. In other words, the shape of each distri-
bution is the same, but the expected loss is building-specific. While true 
loss distributions may vary in shape, I believe that attempting to account 
for these differences would involve a lot of guess work, add a substantial 
amount of complexity to our method, and provide only a slight refine-
ment to the results of our model.

8If the number of independent insured items could be infinite, then 
there would be no need for a risk margin. Any remaining uncertainty in 
future loss expectation would be due to parameter variance (or modeling  
misspecification), not process variance. In the proposed model, risk 
margin is based exclusively on uncertainty due to variations in process, 
not in parameters. A more advanced model might include a component 
for both types of variation. But this would likely only serve to reduce 
the impact of the diversification relativities since the parameter vari-
ance component would not distinguish between more and less diverse 
policies.
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These formulas assume that the application per-
forming the calculations will apply the trigonometric 
functions in radian mode. If degree mode is used 
instead, then the meridianal angle q and the azimuthal 
angle j will not need the p/180° conversion factor, 
but will directly equal the latitude and longitude, 
respectively. Instead the final output for dij will need 
to be multiplied by this conversion factor.

Example
Consider the following four historical sites: the 

Ulysses S. Grant Memorial outside the U.S. Capitol 
building, the nearby Peace Monument, the President 
John F. Kennedy Gravesite at Arlington National 
Cemetery, and the Statue of Liberty. The latitude 
and longitude coordinates for these sites are shown 
in Table 1. Using Equations (2.2) and (2.3) to con-
vert these coordinates to radians, and plugging them 
into Equation (2.1) in pairs, we obtain the follow-
ing matrix of distances. To give a sense of scale, 
the separation calculated between the first two sites 
translates to 361 feet.

Separation distances (in miles)  
between pairs of sites in Table 1

1 2 3 4

0 0.0684 3.2009 200.7262

0.0684 0 3.2435 200.6633

3.2009 3.2435 0 203.5320

200.7262 200.6633 203.5320 0























1

2

3

4

2.1.  Measuring distances

Ideally, for this technique to work as intended, 
latitude and longitude coordinates should be avail-
able at (or near) the rooftop level for each insured 
building. If geocodes are only available at a lower 
level of precision (like street level), then the method 
can still be used, but correlations estimated (in Sec-
tion 2.2) between nearby buildings will also be less 
precise. Correlations between more distant buildings 
should be unaffected by anything other than major 
geocoding errors.

The following geometric formula converts the 
geocodes for two locations into a separation dis-
tance (as measured in miles along a great circle on 
the surface of the Earth). It assumes that Earth is a 
perfect sphere. Technically, this is not quite true,9 
but our mechanism for converting distances to cor-
relations will not be sufficiently precise as to be 
adversely impacted by this assumption.

d 3,959

acos
cos cos cos cos sin sin

sin sin
,

(2.1)
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i j i j i j

i j
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where the leading factor of 3,959 is the average radius 
of Earth (in miles), “acos” refers to the arccosine 
(or inverse cosine) function, and

180
latitude

as measured in decimal degrees , (2.2)( )

q = p
°

×

180
longitude

as measured in decimal degrees . (2.3)( )

j = p
°

×

9Earth is an oblate spheroid with mountainous topography in various 
regions.

Table 1.  Various sites and their geocodes

Site 
Number Site Name Latitude Longitude

1 Ulysses S. Grant 
Memorial

38.889780° –77.012926°

2 Peace Monument 38.890656 –77.012333

3 President John F. 
Kennedy Gravesite

38.881543 –77.071490

4 Statue of Liberty 40.689230 –74.044523
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An alternative for the distance-correlation func-
tion that does not require capping is a decaying 
exponential. As long as we don’t scale the exponential 
itself (but only the distance inside the exponential), 
it already has the appropriate values in the limits 
when d is large and small. We can also continue to 
allow the distance to be taken to some power without 
affecting the limiting values.

Exponential model for correlation

d d( )( )r = −k k > α >αexp ; 0, 0 (2.5)
?

In order to determine which model would be bet-
ter, and to guide our selections of the corresponding 
k and α parameters, we give some thought to what 
values of r would be reasonable for various dis-
tances d. Buildings separated by a few miles should 
probably be assigned a correlation in the vicinity  
of 5% since they could both be impacted by a  
single event (storm, wildfire, earthquake, flood, 
etc.), but likely only if it’s a catastrophe-type event.  
Even neighboring buildings are not likely to be 
perfectly correlated, though the correlation should 
be much higher—maybe something around or just 
above 50%—since even an isolated claim could 
impact both buildings. The values I selected are 
shown in Table 2, as well as in Figure 1, which also 
shows the power and exponential models that fit10 
them best.

The plot in either panel of Figure 1 compares the 
results of the power model (dotted curves) and the 
exponential model (solid curves) with the selected 
correlations (crosshairs) from Table  2. The panel 
on the left is linear in separation distance, while the 
one on the right provides a logarithmic scale on the 
horizontal axis. 

Even with correlation capped in the power model, 
treating two buildings as perfectly correlated probably  

Because four digits are carried on the Earth radius 
used in Equation (2.1), we can expect our calculated 
distances to be accurate to about the fourth signifi-
cant digit (assuming our geocodes are sufficiently 
accurate). One can corroborate these distances by 
right-clicking in Google maps to measure distance 
between pairs of points. Keep in mind that results 
will vary when measuring distance, depending on 
where exactly the user clicks.

2.2.  Estimating correlations  
between buildings

Now that we have separation distances between 
each pair of buildings on a policy, we consider  
a couple models that express correlation (of loss 
distributions) as a function of distance, rij = r(dij). 
The following assumptions underlie both distance-
correlation models.

1.	 Two buildings separated by a great distance are 
effectively independent.

2.	 Two buildings separated by a small distance have 
a strong correlation.

3.	 As the distance between two buildings increases, 
the correlation between them decreases.

These assumptions imply that r(d) must start at 1, 
and decrease asymptotically to 0 with increasing 
separation. The question remains: “How quickly 
does the correlation decrease as the distance between 
two buildings increases?” There likely is not a single 
objective answer to that question. And any answer 
will depend on what types of perils we’re consider-
ing. Perhaps correlation is inversely proportional to 
distance—or inversely proportional to the distance 
raised to some power.

The problem with this idea is that as d becomes 
very small, the correlation grows without bound. 
Since a correlation greater than 1 is not meaningful, 
this correlation model would need to be capped.

Power model for correlation

d d( )( )r = k k > α >−αmin ,1 ; 0, 0 (2.4)
?

10The selected k and α parameter values are “best-fit” in the least-squares 
sense.
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Best-fit power model

min 0.16 ,1 , (2.6)
? 0.30( )( )r = −d d

Best-fit exponential model

exp 1.99 . (2.7)
? 0.31( )( )r = −d d

It appears that the exponential model is the  
better of the two, at least for the values selected and 
shown in Table 2. (The sum of the squared residuals 
for this model is more than ten times smaller than 
for the power model, the root mean square is more 
than three times smaller, and the general shape of the 
exponential curve can be seen to follow the points 
much more closely, especially when distances are 
plotted logarithmically.) By the same token, other 
practitioners may come to other reasonable conclu-
sions about what correlations would make sense 
at various distances for their books of business. 
Selecting different values for Table  2 would result 
in different best-fit parameters. In Appendix A, we 
show how to tailor the parameters for these two 
models to an arbitrary list of selected correlations.

doesn’t make much sense unless they are essen-
tially on top of each other. The version of this 
model that best fits the selected points (k = 0.16 and  
α = 0.30) requires capping for anything closer than 
0.0022  miles (12  feet). This seems reasonable, 
but the exponential model does a much better job 
hovering close to our expectations at all distance 
ranges. Its best-fit parameters are k = 1.99 and  
α = 0.31.

If d is expressed in units of miles, the two sug-
gested correlation models with best-fit parameters 
(rounded to the second decimal place) are

1
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Figure 1. Power and exponential models for correlation

Table 2. Various distances and corresponding  
correlation selections

Distance d (feet) Distance d (miles) Correlation r

50 ∼0.0095 60 %

200 ∼0.0379 50 %

1,320 0.25 30 %

5,280 1 15 %

15,840 3   5 %

52,800 10   1 %
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relation are aggregated into the policy. Policies with 
many buildings spread over a geographically diverse 
area will tend to have smaller CVs than those with 
fewer buildings or a more concentrated collection 
of buildings.

In order to account for expenses in all subsequent 
calculations, whenever we refer to the loss distribution, 
we will mean the expense-loaded loss distribution. 
And whenever we refer to expected losses, we will 
mean expected losses plus expenses. So the mean 
of the loss distribution will equal the expense-loaded 
policy premium,12 and not just the pure premium.

We need a formula to calculate the variance of a 
sum of random variables, where each random variable 
corresponds to the loss distribution of one specific 
building. This formula could be used to aggregate 
the loss distributions of all the buildings on a policy  
in order to calculate policy variance, or it could 
be used to aggregate the loss distributions of every 
building insured by the company in order to calcu-
late company-level variance. We will need it for both 
applications.

It would be convenient if we could assume that 
the random variables are identically distributed, 
but in fact, they don’t even have the same expected 
value (since expected losses vary by building). The 
next-simplest assumption we can make is that each 
distribution has the same shape and differs from the 
others only by a scale factor. That scale factor is the 
expected loss (or premium) for the building. If each 
distribution has the same shape, then its mean and 
standard deviation will be proportional, and it will 
have the same CV. We’ll call this the base CV.

We can pull the scale factor by which the distribu-
tions differ outside the random variable and, instead, 

Example
Returning to our four example sites, and plugging 

the separation distances obtained at the end of Sec-
tion 2.1 into Equations (2.6) and (2.7), we find that 
the two models result in the following correlation 
matrices, rounded to the fourth decimal place.

Correlations between pairs of sites in Table 1

Best-fit power model

1 2 3 4

1 0.3577 0.1129 0.0326

0.3577 1 0.1124 0.0326

0.1129 0.1124 1 0.0325

0.0326 0.0326 0.0325 1























1

2

3

4

Best-fit exponential model

1 2 3 4

1 0.4204 0.0576 0.0000

0.4204 1 0.0569 0.0000

0.0576 0.0569 1 0.0000

0.0000 0.0000 0.0000 1























1

2

3

4

For future calculations, we will stick with the  
correlations estimated using the exponential model.11

2.3.  Estimating variance  
at the policy level

This is the most statistically intense step in  
calculating a diversification relativity. The basic idea 
behind this section is to use the variance to explore 
how the coefficient of variation (CV) for a policy 
shrinks as exposures with varying degrees of cor

11The off-diagonal correlations involving Site 4 are not identically 0,  
but they’re too small to show up in our matrix. They each work out to be 
on the order of 3 × 10−5.

12Expense-loaded premium may include loss adjustment expenses, 
other underwriting expenses (both fixed and variable), as well as an 
underwriting profit provision. Also, note that the expense-loaded loss 
distribution will be proportional to the original loss distribution if fixed 
expenses are omitted and loss adjustment expenses are assumed to be 
proportional to losses.
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be represented by a correlation matrix with elements 
rij, each somewhere between 0 and 1. We saw exam-
ples of such a correlation matrix in Section 2.2.

A little algebra shows that the aggregate variance 
is proportional to the sum of all the elements inside 
the correlation matrix, which is symmetric and has 1’s 
down the diagonal since each variable is, by defini-
tion, perfectly correlated with itself.
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This result is consistent with what we would expect 
to find in the two limiting cases.

1.	 If all the variables are mutually independent, then 
the correlations off the diagonal become 0 and the 
correlation matrix becomes the identity matrix.16 
In this case, the correlation elements sum to n. 
This is consistent with the fact that the variance 
of a sum equals the sum of the variance when the 
underlying variables are independent and identi-
cally distributed.

2.	 If all the variables are perfectly correlated, then 
every element of the correlation matrix is 1, 
so they sum to n2. This is consistent with the 
fact that n perfectly correlated and identically-

think of it as a weight.13 In that way, we’re back to a 
sum of identically-distributed random variables; it’s 
just that now we’re talking about a weighted sum.14

We stand to gain more intuition into the aggrega-
tion process if we first imagine how things would be 
without the weights. So we’ll develop the formula 
we need without weights, and then show how the 
result is impacted by including the weights.

Let Xi be the random variable associated with the 
prospective loss distribution for Building i, and let Pi 

be its mean—the risk-free premium. Without weights, 
the loss distribution is identical for every building, so

and , (2.8)0 0= =X X P Pi i

where the nought subscripts refer to a base exposure, 
such as a particular type of building insured over a 
policy period. Similarly, let X+ be the random variable 
from the aggregate loss distribution, and let P+ be 
the aggregate premium.

Of course, the aggregate premium is just the sum 
of individual building premiums since the mean of a 
sum of random variables is the sum of the means.

P X X X n X nPE E E E ,

(2.9)
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where n is the number of buildings we’re aggregating 
over (e.g., the number of buildings on a policy, or the 
total number of buildings insured by the company).

The aggregate variance, on the other hand, 
depends on the degree of correlation between build-
ings. Buildings could be mutually independent, they 
could be perfectly correlated, or anything between 
those two extremes.15 In general, these correlations can 

13The weight can be thought of as a count of perfectly correlated random 
variables which all move in sync. If they all move in sync, their impact is 
the same as a single random variable that has been scaled by the weight. 
In other words, we can think of a building with a $2,000 premium as 
equivalent to two perfectly correlated buildings, each with a $1,000 
premium.
14As an alternative to using premium as the loss distribution weight, one 
could use the (simpler, but less ideal) limit of insurance.
15We exclude the possibility of anticorrelation in the interest of keeping 
this geographic diversification model as simple as reasonably possible.

16The identity matrix has 1’s all down the diagonal and 0’s everywhere 
else. In other words, each variable is perfectly correlated with itself, 
and independent of every other variable.



A Model for Policy-Size and Diversification Discounts 

VOLUME 13/ISSUE 1	 CASUALTY ACTUARIAL SOCIETY	 101

and the aggregate variance to

. (2.15)2
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Aggregate variance is now proportional to the 
sum of elements in the correlation matrix, each 
weighted by both the relativity corresponding to 
the matrix row and the one corresponding to the 
column. So the correlation between two buildings 
is being weighted by the premium relativity of each 
building.

As for the CV (and CV ratio), we can replace the 
newly appearing relativities with the slightly-more-
intuitive premiums as weights.18
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The upper bound for the CV ratio is still 1 (perfect 
correlation), and the lower bound (mutual indepen-
dence) is now . . .

1
2

2
2 2+ + +P P Pn /(P1 + P2 + . . . + Pn).

Example
The variance and CV ratio for a hypothetical  

policy composed of buildings at the four example 
sites both depend on the expected losses of the 
individual buildings. In order to evaluate the per-
formance of Equations (2.15) and (2.16) in various 
situations, we consider three scenarios with different 
premium weightings (shown in Table  3). First we 
consider the situation where each building is equally 
weighted, then a scenario where a single dominant 
building is isolated from the others, and finally  
one where it’s close to most of the others. While 
the base premium is open to arbitrary selection, 
the base CV is a fundamental characteristic of the 
loss distribution for a building, and it needs to  

distributed random variables are equivalent to a 
single random variable scaled up by a factor of n, 
and that results in the variance being scaled up 
by a factor of n2.

In the general case where the correlations can vary 
from element to element, they could sum to any value 
not less than n and not more than n2.

One important consequence of less-than-perfect 
correlation between buildings is a decrease in the 
aggregate coefficient of variation,

, (2.11)= s
v

P

and a relative narrowing of the confidence interval. 
This narrowing is characterized by the ratio of the 
aggregate CV to the CV for a base exposure.
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This “CV ratio’’ is never larger than 1 (perfect 
correlation) and never smaller than 1/ n  (mutual 
independence). Here is our first glimpse at the role 
diversification plays because a narrower confidence 
interval means less uncertainty—less risk.

Now, consider what happens when we incorporate 
weights and allow the premiums to vary by building. 
The random variable and premium for Building i 
become

and , (2.13)0 0= =X R X P R Pi i i i

where Ri = Pi /P0 is the premium relativity-to-base for 
Building i.

While we don’t show the intermediate steps,17 the 
aggregate premium generalizes to

, (2.14)
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17It’s straightforward to replicate them following the line of reasoning 
from Equations (2.9) and (2.10).

18This is accomplished by multiplying top and bottom by P0 and distrib-
uting it into the square root in the numerator.
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the CV ratio (obtained by dividing root variance by the 
count of exposures) comes out to 0.5, so we know there 
is a moderate amount of narrowing going on.

In the second case, we square the sum of premium 
relativities19 and get 16. The higher variance means 
a greater degree of uncertainty in prospective losses 
because the individual losses all swing together. Con-
sequently, the CV ratio is 1, and there is no narrowing.

The difference between the two extremes is large 
in Scenario 1 because the weights are evenly distrib-
uted. When the weights are far from being evenly 
distributed, diversification is hampered because large 
dominant weights are mathematically equivalent to 
multiple smaller weights that are perfectly correlated. 
We’ll see this effect with Scenarios 2 and 3.

The actual variance in Scenario 1, obtained by plug-
ging the correlation matrix into Equation (2.15), is 
5.0701, and the CV ratio is 0.5629. The diversification 
has a significant impact, even though two of the sites 
are only a few hundred feet apart. Because the Statue 
of Liberty site is effectively independent of the other 
three, and the Arlington Cemetery site is almost inde-
pendent of the remaining two, the variance and CV 
ratio are only slightly higher than they would have 
been in the case of mutual independence.

Scenario 2
We again consider the maximum and minimum 

variances produced by the two special cases of 
independence and perfect correlation. Evidently, 

be estimated. Let’s use a base premium of $1,000 
and assume a base CV of 0.3 for our example. The 
reader is encouraged to reference Table  4 while 
reading through the example for a more clear com-
parison between scenarios.

Scenario 1
Before we apply the correlation matrix we found 

with the exponential distance-correlation model at 
the end of Section 2.2, it’s worth considering what 
the policy variance would be in each of the two 
special cases of mutual independence (buildings all 
far apart) and perfect correlation (buildings all close 
together).

In the first case, Equation (2.15) says we should 
take the sum of squared premium relativities to get the 
policy variance in units of the variance of a base expo-
sure. This works out to be 4. Because the exposures are 
perfectly independent, their variances add. Meanwhile, 

Table 4.  Policy variance and CV ratio by example scenario

Policy Variance  
(in units of s0

2) Policy CV Ratio

Base Exposure: 1 1

Scenario 1:

    Perfect Independence 4 0.5

    Actual Correlation 5.0701 0.5629

    Perfect Correlation 16 1

Scenario 2:

    Perfect Independence 7 0.6614

    Actual Correlation 7.2677 0.6740

    Perfect Correlation 16 1

Scenario 3:

    Perfect Independence 7 0.6614

    Actual Correlation 8.2237 0.7169

    Perfect Correlation 16 1

Table 3.  Example premiums by site under three scenarios

Site Number Site Name

Premium (weight)

Scenario 1 Scenario 2 Scenario 3

1 Ulysses S. Grant Memorial $1,000 $   500 $2,500

2 Peace Monument 1,000 500 500

3 President John F. Kennedy Gravesite 1,000 500 500

4 Statue of Liberty 1,000 2,500 500

19By factoring weights either by rows or columns, it becomes clear that 
the weighted sum of a matrix full of 1’s is the squared sum of the weights. 
Or think of it this way: four perfectly correlated buildings are equivalent 
to one building with a premium equal to the sum of the four individual 
premiums.
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tion is as the upper half of a 
confidence interval. In that 
way, the risk-free premium 
is a provision for expected 
losses and the risk margin 
serves as an additional buffer  
to protect against the pos-
sibility that losses turn out 
to be worse than expected. 
The extent of the protection 
depends on the size of the 
confidence interval used to 
define the risk margin. The 
critical value Z is the number  

of standard deviations that the confidence interval 
extends on either side of the distribution mean µ. 
The relationship between risk margin M and pre-
mium P is illustrated in Figure 2.

Because of the central limit theorem (or “law of 
large numbers”), the loss distribution over a large 
number of exposures is likely to be approximately 
normal.20 The premium is a provision for expected 
losses, which equals the mean of the loss distribution, 
while the risk premium (or risk margin) is a contin-
gent provision for losses exceeding expectations. In 
Figure 2, we model it as the difference between the 
upper bound of a confidence interval and the mean 
of the aggregate loss distribution. Consequently, the 
ratio of risk margin to expected losses is proportional 
to the CV of the loss distribution. And the constant 
of proportionality Z determines the width of the  
confidence interval.

The relationship between risk margin M and  
premium P is summarized by Equation (2.17).

(2.17)=Zv
M

P

This idea behind the risk margin can be applied  
to both the company as a whole, and to individual 

regardless of their geographic 
positioning, four buildings 
with the weightings shown in 
Scenarios 2 and 3 have a mini-
mum variance of (3 × 0.52) + 
2.52 = 7 and a maximum vari-
ance of (3 × 0.5 + 2.5)2 = 16, 
in units of the base variance. 
The minimum CV ratio is 
0.6614. The maximum vari-
ance has not changed from 
Scenario 1, but the minimum 
variance has almost doubled. 
This is due to the nonuniform  
distribution of weights. It’s not possible to separate  
(or uncorrelate) the 2.5 units of exposure in the 
building with the dominant weight, no matter how 
far apart the four sites are.

In this case, the actual variance is 7.2677 times 
the base variance, and the CV ratio is 0.6740, only 
slightly higher than the minimum for buildings with 
these weightings. This is undoubtedly because the 
dominant exposure is isolated from the others, while 
those that are partially correlated are more minor 
exposures.

Scenario 3
The maximum and minimum variances (and CV 

ratios) are the same as they were under Scenario 2  
because both scenarios used the same weightings (just 
in different orders). But now the variance obtained 
from the actual correlation matrix is 8.2237 times 
the base variance, and the CV ratio is 0.7169. These 
don’t sound much larger than the Scenario 2 values, 
but consider the fact that they’re both about four and 
a half times farther from the minimum values of 7 
and 0.6614, respectively. The higher variance in this 
case is due to the fact that the dominant exposure is 
at one of the partially correlated sites rather than the 
isolated site.

2.4.  Defining a risk margin

There are many ways that a risk margin can be 
defined. Perhaps the simplest meaningful defini-

20The distribution for individual exposures, though, is surely right-
skewed—perhaps similar to a shifted Tweedie distribution, with the 
large probability concentration just above 0, corresponding to expected 
expenses when there are no losses.

There are many ways that  
a risk margin can be defined. 

Perhaps the simplest meaningful 
definition is as the upper half of  

a confidence interval. In that way, 
the risk-free premium is a provision 

for expected losses and the risk 
margin serves as an additional 
buffer to protect against the  

possibility that losses turn out  
to be worse than expected.
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additional diversification, the company’s CV will 
necessarily be smaller than any individual policy’s, 
so the company risk margin is much smaller than 
the sum of individual policy risk margins. In other 
words, consumers are already benefitting from the 
insurer’s ability to diversify. This benefit can be 
expressed as the ratio of the insurer’s aggregate risk 
margin to the sum of individual policy risk margins. 
We’ll call this the book diversification ratio D. And 
its role will become clear in Section  2.5 when we 
build the diversification relativity out of the risk 
margins we have developed.

(2.20)
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It is useful to re-express D in terms of CVs, using 
Equation (2.17).
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The Z factors out of the sum in the denominator 
and cancels with the Z in the numerator, and we 
divide top and bottom by P.
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policies. So let M be the company risk margin (which 
may be calculated as shown here or by some other 
method) and let M{k} be the individual policy risk 
margin for Policy k. (The curly brackets around the 
subscript are to remind us that this is for a collec-
tion of exposures; we’ll express the risk margin for 
a single exposure i as Mi, while company-level vari-
ables will not have subscripts at all.) Combining this 
definition of risk margin with the formula for aggre-
gate variance, given by Equation (2.15), we obtain 
the following formulas for the company and policy 
risk margins.

(2.18)0
compcomp
∑∑≡ s = s r
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M Z Z R Ri j ij
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If the insurer is including a risk margin21 in the 
actual premiums charged, then it should reflect the 
impact of diversification over the insurer’s entire 
book. By combining many (independent or partially 
correlated) policies into its book, the company is 
able to achieve a level of diversification beyond that 
presented by individual policyholders. Due to this 
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Figure 2.  Multiple Z of the coefficient of variation as the  
risk-margin-to-premium ratio

21Depending on the company, this may appear as part of an underwriting 
profit margin or it may be in addition to the profit margin.
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This aggregate risk margin over the exposures at 
each of our four example sites is about 2.7 times  
the risk margin for a base exposure (which is $588). 
Here the impact of diversification crystalizes. These 
exposures present 4 times the expected losses of a 
base exposure but require only 2.7 times the risk 
margin. The ratio of these two numbers (inverted) 
equals the CV ratio, 0.6740. These relationships are 
shown in Table 5 for each scenario.

Next, we consider calculating D. We can do this 
either as a ratio of risk margins (Equation 2.20) or 
as a ratio of CVs (Equation 2.21). Either way, we 
may run into trouble with the numerator. A large  
insurer could provide coverage for upward of a  
million buildings, so calculating the numerator could 
involve a correlation matrix with more than a trillion 
elements. This may not be feasible from a computa-
tional standpoint.

We’ll see in Section  3 that we can get away  
without calculating D. But D has an insightful inter-
pretation, so it may still be worth developing a 
method to estimate it. A reasonable first-order esti-
mate can be produced based just on the policy 
count by assuming that each policy looks like an 
average policy and that each insured item looks like 
an average item.

Because the individual policy premiums sum to the 
company premium, the denominator is just a premium-
weighted average CV across all policies on the book 
(each of which is larger than the company CV).

(2.21)
avg

=D
v

v

We see that the book diversification ratio reflects 
the degree to which the company CV is smaller 
than that of the average policy. This supports our 
original claim that D indicates how much additional 
diversification is achieved by aggregating policies 
into a book.

Example
If we select a 95% confidence interval on which 

to base the risk margin, then the upper bound of that 
confidence interval is at the 97.5 percentile. So if we 
assume the aggregate loss distribution is approxi-
mately normal, then Z = N−1(0.975) ≈ 1.9600. The 
policy risk margin, given by Equation (2.19), is 
1.9600 times the square root of the variance we  
calculated in Section 2.3.

If we carry forward the results of Scenario 2, the 
risk margin is (1.9600 × $300) 7.2677  ≈ $1,585, 
where we have used s0 = v0P0 = 0.3 × $1,000 = $300. 

Table 5.  Risk margin by example scenario

Policy Variance  
(in units of s0

2) Policy CV Ratio Policy Risk Margin Policy Premium

Base Exposure: 1 1 $   588 $1,000

Scenario 1:

    Perfect Independence 4 0.5 1,176 4,000

    Actual Correlation 5.0701 0.5629 1,324 4,000

    Perfect Correlation 16 1 2,352 4,000

Scenario 2:

    Perfect Independence 7 0.6614 1,556 4,000

    Actual Correlation 7.2677 0.6740 1,585 4,000

    Perfect Correlation 16 1 2,352 4,000

Scenario 3:

    Perfect Independence 7 0.6614 1,556 4,000

    Actual Correlation 8.2237 0.7169 1,686 4,000

    Perfect Correlation 16 1 2,352 4,000
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applying the adjustment directly to base rates is that 
this allocates the company’s risk margin in propor-
tion to policy premium. Every policyholder receives 
the same benefit from the insurer’s diversification. 
Under premium-based allocation, risk-loaded premium 
P̃{k} 

(prem) for Policy k becomes24
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prem

thereby defining a company risk factor F . The com-
pany risk factor25 that is applied to premium is the 
same for all policies:

F M
P

Zv1 1 . (2.24)= + = +

The way to credit policyholders for their contribu-
tions to the book’s diversification is to allocate the 
company risk margin in proportion to policy risk 
margins (instead of premium). In this way, larger, 
more diverse policies will experience a smaller risk 
charge per premium dollar.

Under policy-risk-margin-based allocation,  
Policy k’s share of the company risk margin changes 
from

to .
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This new allocation results in a risk-loaded  
premium of
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thereby defining a risk factor specifically for Policy k.

Let n be the number of policies on the book and  
m the average number of items per policy. An esti-
mate of the average correlation between items on a 
policy—call it γ—must also be provided, as well as 
an estimate for the average correlation between items 
on separate policies—call that β. One example of 
potentially reasonable estimates for γ and β may be 
in the neighborhood of 0.4 and 0.0005, correspond-
ing to average separations between buildings on 
the order of 500  feet and 100  miles, respectively 
(using the exponential distance-correlation model 
presented in Section 2.2).22

As shown in Appendix B, these assumptions lead 
to the following estimate for the book diversifica-
tion ratio.

D
m m n
n m

1 1 1
1 1

(2.22)[ ]
[ ]

( ) ( )
( )≈

+ − γ + − β
+ − γ

So if there is an average of three items per policy 
and there are 50,000 policies, for example, and if the 
estimates of γ and β above are deemed appropriate, 
this works out to be D ≈ 0.0292. So in this situation, 
the company risk margin is just less than 3% what 
it would need to be in aggregate if each policy were 
self-insured.

This is the benefit of insurance. While overhead 
causes premium to exceed pure losses, the needed 
risk margin is much less than it would be using 
self-insurance.23

2.5.  Calculating the  
diversification relativity

The approach to calculating a diversification 
relativity r can be understood by considering the 
way the company risk margin is incorporated into 
the rates. And this is likely done through an adjust-
ment to base rates—possibly by application of a 
multiplicative factor to base rates. The problem with 

22Reasonable estimates for these average correlations would certainly 
vary from one company to another.
23The situation with reinsurance is perfectly analogous. On average,  
an insurer might come out ahead by retaining risks rather than purchasing 
reinsurance, but the capital needed to offset the risk would be much greater.

24The (prem) superscript in P̃{k} 
(prem) is cluttering, but unfortunately, necessary 

to distinguish between allocation methods.
25Risk factors, as utilized in this paper, can be thought of as an uprate to 
load risk into the risk-free premium.
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CV will be fluid. But we assume that the number  
of policies on the book is significant so that the 
company values are effectively unchanged when one 
policy is amended. In practice, an insurer would need  
to periodically update its company CV and book 
diversification ratio, but this can be done either 
annually or in conjunction with the regular implemen-
tation of rate changes.

Example
Suppose the example book diversification ratio 

we estimated in Section 2.4 were applicable to the 
company insuring our imaginary policy. If the aver-
age policy CV ratio for that company turns out to 
be 0.75, then the example policy (with the 0.6740 
CV ratio we calculated in Section 2.4) will certainly 
qualify for a discount.

The CV for this example policy is v{Ex.} ≈ 0.6740 × 
0.3 ≈ 0.2022, while the one for the average policy is 
vavg ≈ 0.75 × 0.3 ≈ 0.225.

1 1.9600 0.2022 0.0292

1 1.9600 0.225 0.0292

1.0116

1.0129

0.9987

Ex. ≈ + × ×
+ × ×

≈

≈

{ }r

This is indeed a discount, but it’s awfully tiny  
(∼0.1%). To get a better idea of what’s going on here, 
let’s consider two other (very distinct) policies—the 
first with a single insured item (a base exposure) and 
an annual premium of P{4} = $1,000, and the second 
with 25 identical insured items (but not necessar-
ily base exposures) spread over a large geographic 
area and a total premium of P{5} = $12,500. Let’s call 
these Scenarios 4 and 5.

We’ll need to find the CV for each policy. The 
summations in Equation (2.16) go away for the first 
policy since it contains a single item. Consequently, 
its CV ratio is just 1, and the CV equals the base CV.

0.34 0= ={ }v v

As for the second policy, each item must have a  
premium equal to $12,500 / 25 = $500, and the mutual 
(or off-diagonal) correlations among them must be very 
small since we’re told they’re geographically diverse.

1 1 (2.26)
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So the policy risk factor can be seen to equal 1 plus 
the product of three component factors:

1.	 The critical value for the confidence interval  
selected to define risk margins,

2.	 The CV for Policy k’s loss distribution, given by 
Equation (2.16), and

3.	 The book diversification ratio, given by Equa-
tion (2.20).

Equivalent to just using policy-risk-margin-based 
allocation, the original company risk factor can  
be used to achieve overall rate adequacy on a risk-
loaded basis, and a diversification relativity can be 
applied at the policy level. Since this relativity is  
designed to simulate policy-risk-margin-based allo
cation, it divides out the company risk factor and 
multiplies in the individual policy risk factor. Con-
sequently, it must equal the ratio of the policy risk 
factor to the company risk factor.

1

1

1

1
(2.27)
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In the final step, we have used Equation (2.21) to 
express n in terms of D. Since we’re not changing the 
total amount of premium collected but just the way 
we allocate it among policies, we’re guaranteed that 
the approach is revenue neutral.

Note that, when calculating a diversification 
relativity for some policy, it’s not enough to have 
information about the diversification of the policy 
itself. We also need to know about the average level 
of policy diversification for the company. A policy 
that qualifies for a diversification discount with one 
company may need to be assessed a surcharge with 
another company. Only if the policy is more diversi-
fied than the average for a particular company will it 
qualify for a discount.

And whenever new policies are written or current 
policies are amended, the company-level variables 
will shift slightly in response, so the average policy 
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These can be used to calculate the risk-loaded  
premium under policy-risk-margin-based allocation, 
given by Equation (2.25).
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$1,000 $588
$132.3 million

$3,863,160

$1,017.17

$12,500 $1,233.75
$132.3 million

$3,863,160

$12,542.92

4
risk

5
risk

So the policy risk factors are

F

F

$1,017.17
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1.0172,

$12,542.92
$12,500

1.0034.
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We now proceed to calculate the policy diversi-
fication relativities using Equation (2.27) and the 
various factors we calculated before looking at the 
company risk margin allocation.

r

r

≈ + × ×
+ × ×

≈

≈

≈ + × ×
+ × ×

≈

≈

{ }

{ }

1 1.9600 0.3 0.0292

1 1.9600 0.225 0.0292

1.0172

1.0129

1.0042

1 1.9600 0.06 0.0292

1 1.9600 0.225 0.0292

1.0034

1.0129

0.9907

4

5

As expected, Equation (2.27) produces results that 
equal the ratio of the policy risk factors to the com-
pany risk factor. These results, along with their analogs 
for the three scenarios discussed earlier and a sixth 
scenario representing a policy with the average CV, 
are shown in Table 6.

What’s alarming, however, is that these diversifi-
cation relativities constitute a mere 0.4% surcharge 
and a 0.9% discount, respectively. This should imme-
diately raise a concern. Because no policy can be 
less diversified than the first policy, and few policies 

Ignoring the off-diagonal terms in the numerator’s 
summation, we have

25 $500 $500 1

25 $500
0.2 0.06.5 0 0= × × ×

×
= ={ }v v v

We now have all the needed pieces to calculate the 
two policy diversification relativities, but before we 
actually do that, it’s worth taking a look at the various 
allocations of the company risk margin as they relate 
to these two policies. And for that, we also need to 
know the total company premium. So let’s say that’s 
$300 million. We can use Equation (2.21) to calcu-
late the company CV: v = vavgD ≈ 0.225 × 0.0292 ≈ 
0.00657. We can then calculate the company-level 
risk margin and the sum of policy risk margins.

M ZvP

M
M

Dk
k∑

= ≈ × ×

=

= ≈ ={ }
∈

1.9600 0.00657 $300 million

$3,863,160

$3,863,160

0.0292
$132.3 million

comp

Under premium-based allocation, the risk-loaded 
premiums from Equation (2.23) for these two policies 
become

P

P

$1,000 $1,000
$300 million

$3,863,160

$1,012.88,

$12,500 $12,500
$300 million

$3,863,160

$12,660.96.

4
prem

5
prem

� ≈ +

≈

≈ +

≈

{ }
( )

{ }
( )

Each of these corresponds to a company risk factor 
of F = P̃{k} 

(prem)/P{k} ≈ 1.0129.
But the two policy risk margins are

M Zv P

M Zv P

1.9600 0.3 $1,000 $588,

1.9600 0.06 $12,500

$1,470.

4
risk

4 1

5
risk

5 2

≈ ≈ × × ≈

≈ ≈ × ×

≈

{ }
( )

{ } { }

{ }
( )

{ } { }



A Model for Policy-Size and Diversification Discounts 

VOLUME 13/ISSUE 1	 CASUALTY ACTUARIAL SOCIETY	 109

of just the risk margin (and not the rest of the pre-
mium), only a small fraction of the total risk-loaded 
premium is impacted.

So one way to magnify the impact is to increase the 
size of the risk margin relative to risk-free premium. 
While the magnitude of the required risk margin is 
already determined in part by the degree of diver-
sification, it is also influenced by the width of the 
confidence interval that risk margins are based on.  
In other words, we can simultaneously increase all 
risk margins by increasing Z. And this will increase 
the portion of total risk-loaded premium that gets 
reallocated. The result is that diversification dis-
counts and surcharges will be more pronounced.  
As a collective, we can dial their magnitude up and 
down at will simply by adjusting the parameter Z  
in Equation (2.27).

Consider the mathematical impact of varying Z. 
At one extreme, if Z = 0, the risk margin vanishes 
entirely, so there’s nothing to reallocate and all diver-
sification relativities go to 1. Diversification has 
no influence on premium in this case. At the other 

would be more diverse than the second, we can 
conclude that the variation in possible diversification 
relativities for this example company is quite small.

This is a valid concern. As currently prescribed, 
the diversification relativities generally have little 
impact on final premiums, and that makes it difficult 
to justify the effort to implement them. Most would 
find it desirable to find a way to magnify their 
impact while maintaining overall revenue neutrality. 
In Section 3, we show that this can be done without 
modifying our approach.

3.  Increasing the impact  
of the diversification relativity

First, we need to understand why the diversifica-
tion relativities are so muted. The reason has to do 
with the book diversification ratio. Because a com-
pany with a large book is able to achieve a high 
degree of diversification, the required risk margin 
may be small compared to the risk-free premium. 
And since the diversification relativity is a reallocation 

Table 6.  Diversification relativity by example scenario

Policy Variance  
(s0

2 units)
Policy  

CV Ratio
Policy Risk 

Margin
Policy  

Premium
Policy Diversification 

Relativity Discount/Surcharge

Scenario 1:

    Perfect Independence: 4 0.5 $1,176 $4,000 0.9958 –0.42%

    Actual Correlation: 5.0701 0.5629 1,324 4,000 0.9968 –0.32%

    Perfect Correlation: 16 1 2,352 4,000 1.0042 +0.42%

Scenario 2:

    Perfect Independence: 7 0.6614 1,556 4,000 0.9985 –0.15%

    Actual Correlation: 7.2677 0.6740 1,585 4,000 0.9987 –0.13%

    Perfect Correlation: 16 1 2,352 4,000 1.0042 +0.42%

Scenario 3:

    Perfect Independence: 7 0.6614 1,556 4,000 0.9985 –0.15%

    Actual Correlation: 8.2237 0.7169 1,686 4,000 0.9994 –0.06%

    Perfect Correlation: 16 1 2,352 4,000 1.0042 +0.42%

Scenario 4:

    The Small Policy (Base Exposure): 1 1 588 1,000 1.0042 +0.42%

Scenario 5:

    The Large, Diverse Policy: 25 0.2 1,470 12,500 0.9907 –0.93%

Scenario 6:

    A Policy with the Average CV: 0.75 1 0.00%
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Bottom line: The Z selected for classification 
does not necessarily need to be tied to the Z used for 
adequacy.

3.1.  Selecting the right value for Z

One way to pick Z is by observing how the 
extremal values for the diversification relativity  
(the maximum surcharge and discount) depend on Z. 
The maximum surcharge occurs for a policy with 
no diversification—just a single insured item. The 
CV ratio for such a policy is 1 (regardless of the 
premium). No policy will achieve the maximum 
discount (because you can always add more items 
to further increase the diversification), but there is 
a limit to how big the discount could ever get for 
a given value of Z. This can be calculated in asso-
ciation with a hypothetical policy having an infinite 
number of mutually independent items. The CV ratio 
for this policy is 0.

Plugging these extreme values for the CV ratio 
into Equation (2.27), we obtain the extreme values 
for the diversification relativity as a function of Z.

1

1
(3.1)max

0

avg

( ) = +
+

r Z
Zv D

Zv D

1

1
(3.2)min

avg

( ) =
+

r Z
Zv D

These functions are illustrated visually in Figure 3. 
Both panels show the potential range of the diversi-
fication relativities as a function of the critical value Z 
for our example company. But the panel on the left 
is constrained to values of Z that produce ranges that 
might be considered reasonable in various circum-
stances, while the panel on the right extends to larger 
values of Z (where the k appearing in the axis labels 
stands for thousands), and shows the global behavior 
of the relativity range. In particular, we see that the 
lower bound eventually approaches 0 from above, 
and the upper bound approaches v0/vavg (which is 
the reciprocal of the average CV ratio) from below. 
These represent an absolute limit on the possible 

extreme, in the limit as Z → ∞, effectively all of the 
risk-loaded premium is risk margin, so everything 
gets reallocated. The 1’s in both the numerator and 
denominator of r become insignificant and can be 
neglected. Consequently, the Z’s and D’s cancel.  
We find that the diversification relativity approaches 
the ratio of the CV for Policy k to the average policy 
CV. So a policy with the average CV experiences 
no premium adjustment (as is the case for any value 
of Z), while one with half the average CV ends up 
paying only half the pre-discounted premium. Once 
again, we see that the coefficient of variation plays 
the starring role. These limiting cases are summa-
rized in Table 7.

Adjusting Z for the purpose of tweaking the 
impact of the diversification relativity can be done 
independently of adjusting any actual provision that 
the company carries for risk. That is, if the com-
pany carries an explicit risk margin based on a 95% 
confidence interval, but wants to offer more signifi-
cant diversification discounts than those produced 
with Z = 1.96, they can select a higher value of Z 
(like 10 or 100) within the diversification relativity 
model for equitability/classification purposes while 
maintaining the appropriate risk load (based on their 
selected 95% confidence interval) for overall pre-
mium adequacy. Analogously, if a company carries 
no explicit risk margin, that doesn’t mean it’s unable 
to use the diversification relativities we have devel-
oped here. It just means that the actual risk margin 
selected is based on a 0% confidence interval, while 
the diversification relativities will be based on some 
other interval.

Table 7.  The spectrum of diversification 
relativity strengths available by varying Z

Limit
Diversification 

Relativity r Impact

Z → 0 1 None

Z +
+

{ }1

1 avg

Zv D

Zv D
k Intermediate

Z → ∞
{ }

avg

v

v
k

Maximized
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Alternatively, one could identify a hypothetical  
policy with a high degree (but finite amount) of 
diversification, like the one from our example with 
25 geographically diverse buildings. A reasonable 
diversification discount could be selected for this 
policy, and then Z could be backed into based on that 
constraint. This is the approach we’ll take with our 
example. We’ll set the diversification discount to 20% 
for our diverse policy and solve for Z.

Z
Z

Z0.8 1 0.06 0.0292
1 0.225 0.0292

57= + × ×
+ × ×

⇒ ≈

Then for the example policy that was based on 
the four historic sites, the diversification relativity 
becomes

1 57 0.2022 0.0292

1 57 0.225 0.0292

1.3365

1.3745
0.9724.Ex. ≈ + × ×

+ × ×
≈ ≈{ }r

So adjusting the value of Z has caused the discount 
for this policy to increase from the 0.1% we origi-
nally saw in Section  2.5 to 2.8%. This has indeed 
produced a much wider range of relativities, cor-
responding to a 9.1% surcharge for the single-item 
policy and the 20% discount we selected for the geo-
graphically diverse policy. We can also calculate the 

range of diversification relativities allowed by Equa-
tion (2.27) for this example company.

A desired relativity value for one of these extremes 
could be selected, allowing us to back into the cor-
responding value for Z. Because the lower bound 
(maximum discount) is based on a hypothetical policy 
with an infinite number of diverse items, no actual 
policies will receive a discount this big. But the upper 
bound (maximum surcharge) is based on any policy 
with a single insured item, and there are probably 
many of these. So it may be advisable to select Z 
based on a desired value for the maximum surcharge 
rather than the maximum discount, as basing Z on 
a selected maximum discount may have unexpected 
results.26 It’s interesting to note that, either way, one 
can take advantage of the fact that we’re adjusting Z 
in order to avoid having to calculate the book diver-
sification ratio.27
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Figure 3.  Extreme diversification relativities as a function of the critical value Z

26For example, if a 20% hypothetical maximum discount is selected, 
the actual maximum discount may turn out to be substantially smaller 
than this. Our highly diversified policy from the Section 2.5 example 
had a CV ratio of 0.2, and its discount works out to be only 14.7% in 
that case.
27Since we’re allowing Z to vary as needed, one could just absorb 

D into Z. Formally, define a new variable Z̃ ≡ ZD so that =
+
+

{ }1

1 avg

r
Zv

Zv
k

�
� ,

 
and vary it instead of Z.
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not involve a physical separation distance, such as 
diversification over multiple lines of business. We’ll 
refer to these forms of diversification collectively as 
“coverage-type” diversification. And we discuss two 
possible approaches toward incorporating them into 
a model.

The first approach models different types of cor-
relation separately and brings them together at the end. 
The second models them jointly and is more precise, 
but more computationally intensive. Which approach 
is more appropriate will depend on whether geocode 
information is available for items insured under 
lines of business other than HO/FO (like personal 
liability, auto, inland marine, workers compensation, 
umbrella, etc.).

4.1.  Homogeneous distribution of 
geographic diversification across lines

If geocodes are only available for HO/FO, then it 
will be necessary to make an assumption about the 
degree of geographic diversification for each addi-
tional line of business, compared to HO/FO. If we 

largest discount theoretically possible for this value 
of Z using Equation (3.2), and that turns out to be a 
27.2% discount.

These and the corresponding results for the  
scenarios discussed throughout the latter half of  
Section 2 are presented in Table 8.

Here, it also becomes evident just how big a role 
policy size can play in the diversification discount. 
Since small policies have little diversification in 
themselves, they will experience a surcharge, while 
larger policies are more likely to receive a discount. 
This is the sense in which the diversification discount  
can also be viewed as a policy-size discount.

4.  Non-geographic forms  
of diversification

The diversification relativity discussed in this 
paper hinges on quantifying the degree of correlation 
among exposures. In Section  2.2 we showed how 
to model correlation based on physical separation. 
But there are other forms of diversification that do 

Table 8.  Diversification relativity rescaling by example scenario

Policy  
CV Ratio

Diversification 
Relativity

Discount/ 
Surcharge

Rescaled  
Relativity

Rescaled  
Disc./Sur.

Scenario 1:

    Perfect Independence: 0.5 0.9958 –0.42% 0.9092 –9.08%

    Actual Correlation: 0.5629 0.9968 –0.32% 0.9320 –6.80%

    Perfect Correlation: 1 1.0042 +0.42% 1.0908 +9.08%

Scenario 2:

    Perfect Independence: 0.6614 0.9985 –0.15% 0.9678 –3.22%

    Actual Correlation: 0.6740 0.9987 –0.13% 0.9724 –2.76%

    Perfect Correlation: 1 1.0042 +0.42% 1.0908 +9.08%

Scenario 3:

    Perfect Independence: 0.6614 0.9985 –0.15% 0.9678 –3.22%

    Actual Correlation: 0.7169 0.9994 –0.06% 0.9880 –1.20%

    Perfect Correlation: 1 1.0042 +0.42% 1.0908 +9.08%

Scenario 4:

    The Small Policy (Base Exposure): 1 1.0042 +0.42% 1.0908 +9.08%

Scenario 5:

    The Large, Diverse Policy: 0.2 0.9907 –0.93% 0.8002 –19.98%

Scenario 6:

    A Policy with the Average CV: 0.75 1 0.00% 1 0.00%
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in fact, it’s conceivable that it could be greater than 1. 
This fundamental difference between geographic and 
coverage-type diversification owes to the fact that 
items on different policies are predominantly in dif-
ferent places, but not in different lines of business.28

Example
Assume now that in addition to the HO/FO policy 

from Scenario 2 with buildings at each of the four 
example sites, the policyholder has an auto policy 
(with the same company) for a vehicle with a $1,000 
annual premium.

We’ll use Equation (4.1) to capture both geo-
graphic and business-line diversification. The ratio 
of geographic risk factors will be exactly the same as 
it was in the Section 3.1 example. But we will need 
to calculate the ratio of business-line risk factors, and 
that will require determining business-line counter-
parts for each variable that goes into the ratio.

Premiums are aggregated over all items in a line 
of business, so we have the following correlation 
matrix and associated premiums.

Business-line correlation matrix	 Premium

HO Auto

1.000 0.500

0.500 1.000

$4,000

1,000





















HO

Auto

believe it’s reasonable to assume that the degree of 
geographic diversification is similar for all lines of 
business on a policy, then we can apply the geographic 
diversification relativity from the HO/FO line of 
business to all lines. We will need to make an addi-
tional assumption about policies that exclude HO/FO 
coverage. (Perhaps we could assume, for example, 
that an “auto only” policy has no geographic diversi-
fication, in which case v{k} would equal v0.)

With separate models for both geographic and 
coverage-type diversification, the homogeneous- 
distribution analog of Equation (2.27) is

. (4.1)geo covg
geo

geo

covg

covg= =












( ) ( )
( )

( )

( )

( ){ } { } { }
{ } { }r r r

F

F

F

F
k k k

k k

The only difference is the appearance of the second  
ratio of risk factors. The CVs buried inside each 
geographic risk factor will be based on the modeled 
geographic correlations among HO/FO items, while 
those inside the coverage risk factors will be based 
on correlations between lines of business. These will 
need to be judgmentally selected. The practitioner 
may, for example, select the line correlations shown 
in Table 9.

Before we look at an example, it’s worth point-
ing out that the book diversification ratio will behave 
very differently in the coverage-type diversification 
model. It may actually turn out that some policies 
have more coverage-type diversification than the 
company does as a whole! (Consider a policyholder 
with equal amounts of premium in two lines of 
business, but a company with an 80/20 split.) This 
suggests that the D related to coverage type will  
be much larger than the one related to geography;  

Table 9.  One possible set of judgmental selections for correlations between  
lines of business

Line of Business Homeowners Personal Liability Auto Inland Marine Umbrella

Homeowners 1 0.5 0.5 0.5 0.7

Personal Liability 0.5 1 0.5 0.5 0.7

Auto 0.5 0.5 1 0.5 0.7

Inland Marine 0.5 0.5 0.5 1 0.7

Umbrella 0.7 0.7 0.7 0.7 1

28While different clients will have different “portfolios” of policies, 
meaning different lists of lines of business, there’s a limited number of 
distinct portfolios. So a large number of policyholders look basically 
the same from a mix-of-business-lines vantage point. But they all look 
different from a mix-of-geographic-locations perspective.
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and the company CV is only 
slightly lower at 0.8819 ×  
0.3 ≈ 0.2646.

The value of Z that was 
selected in Section  3.1 to 
calibrate the geographic 
diversification relativities  
will not be appropriate for  
business-line diversification. 
So we’ll need to repeat that 
analysis for the business-
line relativities. If doing  
so suggests Z(covg) = 15, then 

the business-line diversification relativity will 
work out to

r ≈ + × ×
+ ×

≈ ≈

( )
{ }

1 15 0.2750 0.9799

1 15 0.2646

5.0421

4.9690
1.0147.

Ex.
covg

This just needs to be multiplied by the geographic 
diversification relativity, 0.9724, to get the combined 
diversification relativity, 0.9867.

In this case, we see that the benefit of geographic 
diversification was tempered by the relative lack of 
business-line diversification for this policy.

4.2.  Combined diversification relativity

If exposures under all lines of business (not 
just HO/FO) have been geocoded, then both types 
of diversification can be treated within the same 
model. The correlations appearing in Equation 
(2.16) will just need to be reduced by an additional 
factor reflecting business-line (or coverage-type) 
differences.29

We again use Equation (2.16) 
to find the CV ratio and get 
0.9165. This is much higher 
than the geographic CV ratio 
was (0.6740) because the vast 
majority of business on this 
example policy is in the HO 
line. The insured vehicle 
does produce a little cover-
age diversification, but not 
as much as it would if there 
were similar amounts of 
business in each line.

As we discussed before returning to the example, 
the coverage-based book diversification ratio will  
be much higher than the geography-based one. 
We’re about to see that the same is true for the 
company CV. Of the $300 million in total com-
pany premium, suppose $100 million is for HO and  
$200 million is in auto. Then the business-line 
company CV ratio is

v
v

1 $100 million 2 0.5

$100 million $200 million

1 $200 million
$100 million $200 million

0.8819.

covg

0
covg

2

2

( )
( ) ( )

( )
=

× + ×

× ×

+ ×
+

≈

( )

( )

(For comparison, the geographic company CV ratio 
was only 0.75 × 0.0292 = 0.0219.)

Let’s say that the business-line average policy CV 
ratio is 0.9, then we can calculate the book diversifi-
cation ratio using Equation (2.21).

0.8819

0.9
0.9799covg = ≈( )D

The base CV that is used to convert a CV ratio 
into a full-fledged CV is independent of the model 
type, so it will still be 0.3 for this example. Con-
sequently, the policy CV is 0.9165 × 0.3 ≈ 0.2750, 

If exposures under all lines of  
business . . . have been geocoded,  
then both types of diversification  

can be treated within the 
same model. The correlations 
appearing in Equation (2.16) 

will just need to be reduced by 
an additional factor reflecting 

business-line (or coverage-type) 
differences.

29It is reasonable to model the total correlation as the product of geo-
graphic correlation and any other types of correlation. If any type of 
correlation is small, the total correlation must also be small. In contrast, 
if each type of correlation is high, the total correlation will also be high, 
but never higher than any individual type of correlation.
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matrix. The vector of premiums is also shown for 
convenience.

Combined correlation matrix

1 2 3 4 5

1 0.4204 0.0576 0.0000 0.5

0.4204 1 0.0569 0.0000 0.2102

0.0576 0.0569 1 0.0000 0.0288

0.0000 0.0000 0.0000 1 0.0000

0.5 0.2102 0.0288 0.0000 1




















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
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1

2

3

4

5

Premium

$ 500

500

500

2,500

1,000










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













Next, Equation (2.16) tells us in order to get the 
CV, we need to take the square root of the sum of 
all the elements of the correlation matrix (weighted 
by the appropriate premiums), and divide it by the 
sum of the premiums. Doing so results in a CV ratio 
of 0.5878. This is a bit smaller than the 0.6740 CV 
ratio we originally obtained in Section  2.3, so 
adding coverage for the auto has increased the 
impact of diversification for this policy. However, 
the other multiline policies on the book will also 
benefit from including coverage-type diversification. 
So the company’s average policy CV will be less 
than it was when we considered only geographic 
diversification.

If we had actual data for this example com-
pany, we would apply the techniques demonstrated 
throughout Sections 2 and 3 to that data in order to 
calculate the company CV, the book diversification 
ratio, and an appropriate critical value for calibration, 
all based upon the combined correlations. Instead, 
we’ll have to take reasonable values for them as 

v
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The coverage-related correlations rij
(covg) will be 

the correlations between lines of business (like those 
shown in Table 9) corresponding to insured items i 
and j. Once v{k} and v have been adjusted to reflect 
coverage correlations, we can return to Equation (2.27) 
for the diversification relativity.

Example
Taking the auto to be garaged at Site 1, and using 

the business-line correlations shown in Table 9, we 
now have two correlation matrices: one for geographic 
correlation, and one for business-line correlation.

Geographic correlation matrix

1 2 3 4 5

1 0.4204 0.0576 0.0000 1

0.4204 1 0.0569 0.0000 0.4204

0.0576 0.0569 1 0.0000 0.0576

0.0000 0.0000 0.0000 1 0.0000

1 0.4204 0.0576 0.0000 1


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
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






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

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2

3

4

5

Business-line correlation matrix

1 2 3 4 5

1 1 1 1 0.5

1 1 1 1 0.5

1 1 1 1 0.5

1 1 1 1 0.5

0.5 0.5 0.5 0.5 1

























1

2

3

4

5

Rather than matrix multiplying them (as is common 
in linear algebra), Equation (4.2) indicates that we 
should multiply out the two matrices element-by-
element to get the following combined correlation 
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is more likely to happen in large cities which tend to 
be built in valleys, whereas freezing would be more 
common in mountainous areas. (Construction prac-
tices may or may not fully address expected tempera-
ture differences.)

The sums in the CV formulas would then be 
over each peril-specific exposure—that is, over each 
building/peril combination.

Example
For this example, consider an HO policy with two 

insured buildings, one at Site 2 with a premium of 
$500, and the other at Site 3 also with a premium of 
$500. And let this policy contain coverage against 
two perils: fire and earthquake. Suppose that, after 
taking the “fire following earthquake” phenomenon 
into account, the peril correlation between fire and 
earthquake is estimated to be 0.3, and that 80% of 
the premium for each building is associated with the 
fire peril.

We’ll use the exponential distance-correlation 
model given by Equation (2.7) for the fire peril, and 
the same model but with the k parameter adjusted 
from 1.99 down to 1.00 for the earthquake peril. This 
results in correlations that extend outward approxi-
mately ten times as far for the earthquake peril. We 
first work out the fire and earthquake geographic 
correlation matrices for these sites.

	 Fire peril	 Earthquake peril

2 3 2 3

1 0.0569

0.0569 1

1 0.2369

0.2369 1





















2

3

2

3

As anticipated, the correla-
tions are much higher for the 
earthquake peril.

The full geographic cor-
relation matrix will be a 
4 × 4 matrix with one col-
umn and one row for each  
building/peril combination.  

givens. So let the company CV be 0.004 (instead 
of 0.00657), the book diversification ratio be 0.08 
(instead of 0.0292), and the selected critical value 
be 25 (instead of 57). Then we can work out the 
combined diversification relativity.

r
1 25 0.5878 0.3 0.08

1 25 0.004

1.3527
1.1

1.2297

Ex.
( )

≈
+ × × ×

+ ×

≈ ≈

{ }

The higher relativity under this approach is due  
to the company parameters we selected. Evidently, 
the average policy using these selected values is 
significantly more diversified than the example 
policy.

Accommodating differences  
among perils

The current approach can also be used to accom-
modate different distance-correlation relationships  
by peril. This is good because it may not be  
reasonable to utilize a single distance-correlation  
relationship for all perils. Geographic correlation 
for the earthquake peril, for example, likely persists 
out to much greater distances than it does for the 
fire peril.

Premium would need to be allocated by peril,  
and the geographic correlation rij

(geo) would also need 
to be estimated separately for each peril, using the 
corresponding selected by-peril distance-correlation  
relationships. A different correlation matrix, analo-
gous to the one presented in Table  9, would be 
required to replace rij

(covg) with rij
(peril). The practitioner 

would need to select the correlation between each 
pair of perils. For example, 
the wind and hail perils may  
be highly correlated, while 
the water and theft perils 
may be independent. Nega-
tive correlations may even 
exist between perils. Con-
sider, for example, the freez-
ing and rioting perils. Rioting 

. . . it may not be reasonable to 
utilize a single distance-correlation 
relationship for all perils. Geographic 

correlation for the earthquake 
peril, for example, likely persists 

out to much greater distances than 
it does for the fire peril.



A Model for Policy-Size and Diversification Discounts 

VOLUME 13/ISSUE 1	 CASUALTY ACTUARIAL SOCIETY	 117

Peril correlation matrix

1

2

3

4

1 2 3 4

1 0.3 1 0.3

0.3 1 0.3 1

1 0.3 1 0.3

0.3 1 0.3 1





















Combined correlation matrix

1 2 3 4

1 0.3 0.0569 0.0348

0.3 1 0.0348 0.2369

0.0569 0.0348 1 0.3

0.0348 0.2369 0.3 1





















1

2

3

4

From this, we calculate the CV ratio from Equa-
tion (2.16), and get 0.4165. Using the same book 
diversification ratio and company CV as used in 
the previous example in this section, and using 
the same value for Z, the diversification relativity 
works out to

1 25 0.4165 0.3 0.08

1 25 0.004

1.2499

1.1
1.1363.

Ex.

( )
≈ + × × ×

+ ×

≈ ≈

{ }r

5.  Conclusions

Historically, any premium provision for a risk 
margin has been allocated to policies in proportion to 
risk-free premium. This has resulted in a situation 
where every policy incurs the same risk factor—or 
ratio of risk-loaded premium to risk-free premium. 
In other words, customers bringing highly diversi-
fied exposures pay the same amount of risk premium 
per risk-free premium dollar as those with highly 
concentrated exposures.

We have shown that this situation can be resolved 
by allocating risk premium in proportion to a policy’s 

The geographic correlation between two items that 
are associated with separate perils can be estimated 
as the geometric average of the values produced 
by the distance-correlation model for each peril. 
So, for example, the geographic correlation of fire 
coverage at Site 2 and earthquake coverage at Site 3  
can be estimated as ×0.0569 0.2369  = 0.1161.

Exposure description

1:  Site 2—Fire
2:  Site 2—Earthquake
3:  Site 3—Fire
4:  Site 3—Earthquake

Full geographic correlation matrix

1

2

3

4

1 2 3 4

1 1 0.0569 0.1161

1 1 0.1161 0.2369

0.0569 0.1161 1 1

0.1161 0.2369 1 1





















Premium

$400

100

400

100





















Because it doesn’t try to marry two separate  
correlation models, the peril correlation matrix 
(analogous to the coverage or business-line cor
relation matrix) is much simpler to construct.  
Correlation elements associated with the same peril 
in both row and column are 1, while those associ-
ated with fire in one and earthquake in the other 
are 0.3. The result is shown next, and we multi-
ply it element-by-element into the full geographic 
correlation matrix to get the combined correlation 
matrix, shown afterward.
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We also addressed the fact that the company risk 
margin tends to be small compared to expected 
losses and expenses. This means the diversification 
relativities tend to be very close to 1, thereby fall-
ing short of our objective to develop impactful 
diversification discounts. So we demonstrated that 
increasing the critical value Z (upon which confi-
dence intervals are based) produces more widely 
distributed diversification relativities, while pre-
serving revenue neutrality.

Finally, we showed how the concepts in this 
paper could be applied to non-geographic forms of 
diversification, including diversification by peril 
and across lines of business, and we showed how 
the model formulas would be impacted by these 
generalizations.
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∑[ ]( )( )∂
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= r − k k =−α −α2 ln 0 (A.3)
S
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We divide the first equation through by a factor of −2, 
and the second equation by a factor of 2k.
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We can then solve each equation for k.
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Since we now have two expressions for k, they must 
equal one another. Equating the two right-hand sides 
and cross-multiplying, we find that

∑ ∑ ∑ ∑( ) ( )( ) ( )r = r−α − α −α − αln ln .

(A.8)

2 2d d d d d d� �
�

� �
�
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This leaves us with a single equation that can be 
solved for α. (Everything else is known because it 
has been pre-selected.) It’s not a pretty equation, 
though, and it doesn’t have a closed-form solution of 
which I’m aware. But a person could solve for α by 
trial and error at this point.

Before we show how that can be done, let’s expend 
the effort to clean it up a little so that it’s easier to 
work with. For each side of the equation, each term 
of the first summation is multiplied by each term of 
the second. These terms can be distributed to pro-
duce a double summation (in place of the product of 
two single summations) on each side of the equation.

� �
�

� � �
�

d d d d d d∑∑ ∑∑( ) ( )( ) ( )r = r−α
λ
− α

λ
λ

−α
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− α

λ
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(A.9)

2 2

If we subtract the double summation on the right 
from both sides of the equation, we can express 
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Appendices

A.  Least squares estimate of 
correlation model parameters

We seek the parameters that minimize the sum of 
the squared residuals for each of our selected distance-
correlation pairs (d, r), where  counts pairs, such 
as those in Table 2.

A.1.  Best-fit parameters  
for the power model

As long as the resulting best-fit parameters produce 
a curve that gets capped only for distances less than 
those appearing in our selected distance-correlation 
pairs, we can ignore the capping for the sake of 
selecting parameters. That turns out to be the case 
for the pairs shown in Table 2. The function S to be 
minimized is

∑( )= r − k −α . (A.1)
2

S d� �
�

Since we’re minimizing k and α simultaneously, 
we have two equations to solve simultaneously.

∑[ ]( )( )∂
∂k

= r − k − =−α −α2 0 (A.2)
S

d d� � �
�
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some other known number raised to the power of α.  
It’s fairly straightforward to set up a spreadsheet 
with a row for each term in the double summation, 
a column for the first factor, and another column for 
the base of the second factor. One can then create  
an input cell with an initial guess for α and a third 
column with a formula that calculates the product of 
the two factors term-by-term. Finally, build a summa-
tion over the values in the third column and display 
the result in an output cell. Observe how this result 
changes as the guess for α is modified. We’re look-
ing for the input that results in an output as close 
to 0 as possible.

It’s a little extra work, and may or may not be 
worth the effort, but one can record the outputs that 
are generated from each selected input (or guess 
for α). The outputs can then be plotted against the 
inputs. One is then looking for the place where the 
output crosses the horizontal axis. As one zooms into 
a smaller and smaller neighborhood of the input, the 
output should become approximately linear, which 
will help to generate a better next guess, increasing 
the convergence rate, and decreasing the total number 
of guesses required before one arrives at a value that 
is within a selected tolerance of the solution for α. 
Figure 4 shows such a graph (at a couple different 

everything as a double summation of the difference 
between two terms.

∑∑ ( )r − r =−α
λ
− α

λ
−α

λ
− α

λ
ln ln 0 (A.10)2 2d d d d d d� � � � �

�

These terms are very similar. In fact, the only differ-
ence is which index appears on the distance inside 
the natural logarithm. We factor everything else  
out front.

� � �
�

d d d d∑∑ [ ]( )r − =−α
λ
− α

λ
λ

ln ln 0 (A.11)2

Finally, the two factors being raised to the power 
of integer multiples of α can be combined into a 
single quantity raised to the power of α, and the 
difference between two logarithms can be expressed 
as the logarithm of their quotient.

�
� ��
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d d d
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ln

1
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This still doesn’t look pretty, but it’s better than 
before! And now it’s much easier to understand what’s 
going on. We have n2 terms summing to 0, where  
n is the number of selected distance-correlation pairs. 
Each term is the product of some known number and 
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Figure 4.  Left-hand side of Equation (A.12) as a function of `
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We divide both equations through by a factor of 2.  
We also divide through the second equation by a 
factor of k.
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Because k appears inside the exponential functions 
along with d

α, it cannot simply be factored to the 
front of each term.30 Instead, we employ a glorified 
version of trial-and-error. We need values of k and α  
that make the left-hand-sides (L.H.S.’s) of both Equa-
tions (A.16) and (A.17) go to 0 simultaneously. It is 
not sufficient that one of the two equals 0 by itself. 
Consequently, we construct a “penalty” function, 
which will be equal to the sum of squares of the two 
L.H.S.’s. This positive-definite penalty function will 
go to 0 if and only if both L.H.S.’s go to 0 simul
taneously. We then plot the contours of the penalty 
function over a wide range of the parameters to see 
where the minimum, 0, occurs.

The contours of the penalty function (shown 
in Figure 5 on a logarithmic scale) have quite an 
irregular shape (panel on left), but as one zooms in 
much closer (panel on right) to the zero (or root), 
the penalty function becomes approximately linear  
in both k and α. This results in regular elliptical 
contours with a solution near k = 1.99078476,  
α = 0.30930634.

After rounding each parameter to the second deci-
mal place, we find that the best parameters for the 
exponential model are k = 1.99 and α = 0.31.

zoom levels) for the distance-correlation selections 
in Table 2.

The left-hand side of Equation (A.12) is a function 
of α. We are looking for the zero (or the root) of this 
function. While the function is not linear in α (left 
panel of Figure 4), if we zoom in on a small enough 
neighborhood (right panel), it is approximately  
linear. From this exercise, it becomes clear that the 
value of α that best fits the distance-correlation 
selections in Table  2 is close to 0.30031221. And 
substitution back into Equations (A.6) and (A.7) 
shows that the corresponding value for k is approxi-
mately 0.15972521. If desired, it can be plugged 
into both equations as a check. If the two equations 
produce different results for k (beyond just rounding 
error), then there is likely an error somewhere in the 
spreadsheet that was used to estimate α, or in one or 
both of the k calculations. 

We round those values back to the second decimal 
place for incorporation into our geographic diversi-
fication model, which was never intended to be so 
precise. Using this method, we identify the best-fit 
parameters as α = 0.30 and k = 0.16. 

A.2.  Best-fit parameters  
for the exponential model

Unfortunately, the procedure used to find the  
k and α parameters for the power model cannot be 
used here because it is not clear how to isolate k from 
the rest of the optimization equations as was done 
for the power model in Equations (A.6) and (A.7). 
The same general approach can be taken, but we’ll 
have to use a different method to solve the equations 
we obtain.

The function S to be minimized is

� �
�

S d∑[ ]( )= r − −k αexp . (A.13)
2

Since we’re minimizing k and α simultaneously, 
we have two equations to solve simultaneously.

� � �
�

S
d d∑[ ]( )( ) ( )∂

∂k
= r − −k =α α2 exp 0 (A.14)

30If k and d
α were added inside the exponential instead of multiplied, we’d 

be in business because we’d be able to express the exponential of that 
sum as a product of exponentials, and factor the exp(k) factor out front.  
But since it’s multiplication inside the exponential, we can’t even do that.
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B.  An estimate of the book diversification ratio

The simplifying assumptions are that there are n identical policies on the book, each with m identical insured 
items,31 and that the correlation between items on a policy is γ, while that between items on separate policies 
is β. Consequently, the correlation matrix becomes
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Figure 5.  Penalty function contours identifying optimal parameter values for the exponential model

31While it’s unlikely that the average number of items per policy will work out to be an integer, we can still think of m as an integer for the sake of this 
derivation. The formula that we end up with for estimating D will ultimately be extendable to non-integer values of m, as well.
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where each of the m × m sub-matrices along the 
diagonal represents the correlations among items 
on one particular policy, and there are n such 
sub-matrices.

Plugging Equations (2.18) and (2.19) into Equa-
tion (2.20), and with a little work, everything but  
the correlations cancels, and what remains of the 
numerator is just the square root of the sum of cor-
relation elements.

There are nm 1’s along the diagonal, (nm2 – nm) 
γ’s, and (n2m2 – nm2) β’s. So the correlation elements 
sum to [nm + nm(m – 1)γ + nm2(n – 1) β]. Factoring 
nm to the front, this can be expressed as

nm m m n[ ]

( )

( ) ( )≈ + − γ + − β

Sum of Correlation Elements

1 1 1 .

For the denominator, we will first need the sum 
of correlation elements within a single policy sub-

matrix. That will be m + (m2 – m)γ. This can be 
expressed as

m m[ ]( )






≈ + − γ
Sum of Correlation Elements

within a Single Sub-Matrix
1 1 .

The denominator takes the square root of this and  
multiplies it by n. A good approximation, then, for D is

[ ]
[ ]

( ) ( )
( )≈

+ − γ + − β
+ − γ

D
m m n
n m

1 1 1
1 1

.

Also, it’s worth noting that if m(n – 1) β <<  
(m – 1) γ, then the last term in the numerator becomes 
insignificant, the quantities in square brackets can-
cel from the numerator and denominator, and the 
approximation for D further simplifies to

D n1 .( )≈




