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ABSTRACT

One of the most commonly used data mining techniques is
decision trees, also referred to as classification and regres-
sion trees or C&RT. Several new decision tree methods are
based on ensembles or networks of trees and carry names
like TreeNet and Random Forest. Viaene et al. compared
several data mining procedures, including tree methods and
logistic regression, for modeling expert opinion of fraud/no
fraud using a small fixed data set of fraud indicators or
“red flags.” They found that simple logistic regression did
as well at matching expert opinion on fraud/no fraud as the
more sophisticated procedures. In this paper we will intro-
duce some publicly available regression tree approaches
and explain how they are used to model four proxies for
fraud in insurance claim data. We find that the methods
all provide some explanatory value or lift from the avail-
able variables with significant differences in fit among the
methods and the four targets. All modeling outcomes are
compared to logistic regression as in Viaene et al., with
some model/software combinations doing significantly bet-
ter than the logistic model.
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1. Introduction

In the past decade, computationally intensive
techniques collectively known as data mining
have gained popularity for explanatory and pre-
dictive applications in business. Many of the
techniques, such as neural network analysis, have
their roots in the artificial intelligence discipline.
Data mining procedures include several that
should be of interest to actuaries dealing with
large and complex data sets. One of the most
popular of the data mining tools, decision trees,
originated in the statistics discipline, although an
implementation of trees or classification and re-
gression trees (C&RT) known as C4.5 was in-
dependently developed by artificial intelligence
researchers. The seminal book by Brieman et
al. (1993) provided an introduction to decision
trees that is still considered the standard resource
on the topic. Two reasons for the popularity of
decision-tree techniques are (1) the procedures
are relatively straightforward to understand and
explain, and (2) the procedures address a number
of data complexities, such as nonlinearities and
interactions, that commonly occur in real data.
In addition, software for implementing the tech-
nique, including both free open source as well as
commercial implementations, has been available
for many years.
While recursive partitioning, a common ap-

proach to estimation, underlies all the implemen-
tations of trees, there are many variations in the
particulars of fitting methods across software
products. For instance, different kinds of trees
can be fit, including the classic single trees and
the newer ensemble trees. Also, different good-
ness-of-fit measures can be used to optimize par-
titioning in creating the final tree, including de-
viance and the Gini index.
The four objectives of this paper are to

² describe the principal variations in tree meth-
ods;

² illustrate the application of tree methods to the
identification of key parameters for the suc-

cessful claim investigation on suspicion of
fraud;1

² compare the accuracy of a number of tree-
based data mining methods; and

² assess the impact of a few modeling tools and
methods that different software implementa-
tions of tree-based methods incorporate.

A number of different tree methods, as well as
a number of different software implementations
of tree-based data mining methods, will be com-
pared for their explanatory accuracy in the fraud
application. Including the two baseline methods,
eight combinations of methods and software are
compared in this study. Our comparisons include
several software implementations in order to
show that specific implementations of the deci-
sion tree algorithms matter.
It should be noted that the tree-based software

compared in this paper incorporate both algo-
rithms and modeling techniques. The software
products differ not only with respect to algo-
rithms but also with respect to their modeling ca-
pabilities. Thus, graphical and statistical diagnos-
tics, procedures for validation, and methods for
controlling for over-parameterization vary across
the software implementations, and this variabil-
ity contributes to differences in accuracy (as well
as practical usefulness) of the products.
The fraud analyses in this paper use data from

a personal automobile bodily injury closed-claim
database to explain the outcomes of four differ-
ent fraud surrogates. This application is a classi-
fication application, where the modeler’s objec-
tive is the identification of two or more distinct
groups. Obviously, these methods can be used in
other classification problems, such as the deci-
sion to underwrite specific types of risks.

Our selection of tree methods will be com-

pared to two “baseline” prediction methods. The

baseline prediction methods are (1) logistic re-

1See Derrig, 2002, for a general discussion of fraud in insurance
claims.
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gression and (2) naïve Bayes. The baseline meth-
ods were selected as computationally efficient
procedures that make simplifying assumptions
about the relationship between explanatory and
target variables. We use straightforward imple-
mentations of the two methods without an at-
tempt to optimize the hyperparameters.2 Viaene
et al. (2002) applied a wider set of procedures,
including neural networks, support vector ma-
chines, and a classic general linear model, logis-
tic regression, on a small single data set of in-
surance claim fraud indicators or “red flags” as
predictors of expert opinion on the suspicion of
fraud. They found that simple logistic regression
did as well as the more sophisticated procedures
at predicting expert opinion on the presence of
fraud.3 Stated differently, the logistic model per-
formed well enough in modeling the expert opin-
ion of fraud that there was little need for the
more sophisticated procedures. There will be a
number of distinct differences between the data
and modeling targets used in our analysis and
that of Viaene et al. They applied their meth-
ods to a database with only 1,400 records, while
our database contained approximately 500,000
records, more typical of a database size for cur-
rent data mining applications. In addition, most
of the predictors used by Viaene et al. were
binary, that is, they could take on only two
values, whereas the data for this study con-
tain a more common mixture of numeric vari-
ables and categorical variables with many po-
tential values, such as treatment lag in days and
zip code.

2In other words, the baseline methods were applied in an automated
way. No attempt was made to optimize variable selection or vari-
able transformation, or search for significant interaction terms. The
baseline methods are intended to be simple and easily implemented
examples of their class of modeling procedures and thus serve as
an easy-to-hit modeling target that may be able to be improved.
3They also found that augmenting the categorized red flag variables
with some other claim data (e.g., age, report lag) improved the lift
as measured by AUROC across all methods but the logistic model
still did as well as the other methods (Viaene et al., 2002, Table 6,
pp. 400—401).

A wide variety of statistical software is now
available for implementing fraud and other ex-
planatory and predictive models through cluster-
ing and data mining. In this paper we will in-
troduce a variety of C&RT (pronounced “cart,”
but in this paper CART refers to a specific soft-
ware product) approaches4 and explain in gen-
eral how they are used to model complex depen-
dencies in insurance claim data. We also investi-
gate the relative performance of a few software
products that implement these models. As an il-
lustrative example of relative performance, we
test for the key claim variables in the decision
to investigate for excessive or fraudulent prac-
tices in a large claim database. The software pro-
grams we will investigate are CART, S-PLUS/
R-TREE, TreeNet, Random Forests, and Insight-
ful Tree and Ensemble from the Insightful Miner
package. The naïve Bayes benchmark method is
from Insightful Miner, while logistic regression
is from R/S-PLUS. The data used for this anal-
ysis are the auto bodily injury liability closed
claims reported to the Detailed Claim Database
(DCD) of the Automobile Insurers Bureau of
Massachusetts from accident years 1995 through
1997.5 Three types of variables are employed.
Several variables thought to be related to the de-
cision to investigate are included in the DCD,
such as outpatient provider medical bill amounts.
A few other variables are derived from publicly
available demographic data sources, such as in-
come per household for each claimant’s zip code.
Additional variables are derived by accumulat-
ing statistics from the DCD (e.g., the distance
from the claimant’s zip code to the zip code of
the first medical provider or claimant’s zip code
rank for the number of plaintiff attorneys per
zip code). The decision to order an independent
medical examination or a special investigation
for fraud, and a favorable outcome for each in

4A wider set of data mining techniques is considered in Derrig and
Francis (2006).
5See Section 2 for an overview of the database and descriptions of
the variables used for this paper.
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terms of a reduction or denial of the otherwise
indicated claim payment, are the four modeling
targets.
Eight modeling software results for each mod-

eling target are compared for effectiveness based
on a standard evaluation technique, the area un-
der the receiver operating characteristic curve
(AUROC) as described in Section 4. We find
that the methods all provide some explanatory
value or lift from the DCD variables, used as in-
dependent variables, with significant differences
in accuracy among the eight methods and four
targets. Modeling outcomes are compared to lo-
gistic regression as in Viaene et al. (2002) but the
results here are different. They show some soft-
ware/methods can improve significantly on the
explanatory ability of the logistic model, while
some software/methods are less accurate. The
different result may be due to the relative rich-
ness of this data set and/or the types of inde-
pendent variables at hand compared to the Vi-
aene data.6 This exercise should provide prac-
ticing actuaries with guidance on regression tree
software and market methods to analyze com-
plex and nonlinear relationship commonly found
in all types of insurance data.
The paper is organized as follows. Section 1

covers the general setting for the paper. Section
2 describes the data set of Massachusetts auto
bodily injury liability claims, and variables used
for illustrating the models and software imple-
mentations. Descriptions and illustrations of the
data mining methods appear in Section 3. In Sec-
tion 4 we describe software for modeling non-
linearities. Comparative outcomes for each soft-
ware implementation are described in Section 5
with numerical results shown in Section 6. Im-
plications for the use of the software models for
explanatory and predictive applications are dis-
cussed in Section 7.

6In a companion paper we show how “important” each variable
is within and across software implementations (Derrig and Francis
2006).

2. Description of the
Massachusetts auto bodily injury
data

The database we will use for our analysis is
a subset of the Automobile Insurers Bureau of
Massachusetts Detail Claim Database (DCD);
namely, those claims from accident years 1995—
1997 that had been closed by June 30, 2003 (AIB
2004). All auto claims7 arising from injury cov-
erages [Personal Injury Protection (PIP)/Medical
Payments excess of PIP,8 Bodily Injury Liabil-
ity (BIL), Uninsured and Underinsured Motorist]
are reported to DCD. While there are more than
500,000 claims in this subset of DCD data, we
will restrict our analysis to the 162,761 third
party BIL coverage claims.9 This will allow us
to divide the sample into large training, test, and
holdout subsamples, each containing in excess of
50,000 claims.10 The dataset contains fifty-four
variables relating to the insured, claimant, acci-
dent, injury, medical treatment, outpatient medi-
cal providers (2 maximum), and attorney pres-
ence. Note that many insurance databases, in-
cluding the DCD, do not contain data or variables
indicating whether a particular claim is suspected
of fraud or abuse. For such databases, other ap-
proaches, such as unsupervised learning meth-
ods, might be applied.11 In the DCD data, there
are three claims handling techniques for mitigat-

7Claims that involve only third-party subrogation of personal injury
protection (no fault) claims but no separate indemnity payment or
no separate claims handling on claims without payment are not
reported to DCD. Our sample removed all personal and company
identifying information to form an analytic subset of the actual
data.
8Combined payments under PIP and Medical Payments are re-
ported to DCD.
9BIL claim payments are the sum of the liability claim payment plus
a no-fault subrogation paid by the third-party carrier. Thus they are
representative of the full third-party liability on each claimant’s
injuries.
10With a large holdout sample, we are able to estimate tight confi-
dence intervals for testing model results in Section 6 using the area
under the ROC curve measure.
11See Brockett et al. (2002) for the use of the unsupervised PRIDIT
method to assign suspicion of fraud scores.
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ing claims cost of fraud or abuse that are reported
when present, as well as outcome, and formu-
laic savings amounts for each of the techniques.
These variables can serve as surrogates of suspi-
cion of fraud and abuse but they stand on their
own as applied investigative techniques.
The claims handling techniques tracked are In-

dependent Medical Examination (IME), Medi-
cal Audit (MA), and Special Investigation (SIU).
IMEs are performed by licensed physicians of
the same type as the treating physician.12 They
cost approximately $350 per exam with a charge
of $75 for no-shows. They are designed to verify
claimed injuries and to evaluate treatment modal-
ities. One sign of a weak or bogus claim is the
failure to submit to an IME and, thus, an IME can
serve as a screening device for detecting fraud
and build-up claims. MAs are peer reviews of the
injury, treatment, and billing. They are typically
done by physicians without a claimant examina-
tion, by nurses on insurers’ staff or by third-party
organizations, and sometimes also by expert sys-
tems that review the billing and treatment pat-
terns.13 Favorable outcomes are reported by in-
surers when the damages are mitigated, when the
billing and treatment are curtailed, and when the
claimant refuses to undergo the IME or does not
show.14 In the latter two situations the insurer is
on solid ground to reduce or deny payments un-
der the failure-to-cooperate clause in the policy
(Derrig and Weisberg 2004).
Special Investigation (SIU) is reported when

claims are handled through nonroutine investiga-

12This fact is a matter of Massachusetts law which at the time ap-
peared to permit only IMEs by the same type of physician, say a
chiropractor, as the type is treating physician. Recently, the Mas-
sachusetts Supreme Court in Boone v. Commerce Insurance, 451
Mass. 198 (2008) clarified that IMEs must be conducted by physi-
cians of a similar, but not necessarily exactly the same, specialty.
This situation may differ in other jurisdictions.
13Because expert bill review systems became pervasive by 2003,
reaching 100% in some cases, DCD redefined the reported MA to
encompass only peer reviews by physicians or nurses for claims
reported after July 1, 2003.
14The standard Massachusetts auto policy has a claimant coopera-
tion clause for IME both in the first party PIP coverage and in the
third party BI liability coverage.

tive techniques (accident reconstruction, exami-
nations under oath, and surveillance are the ex-
pensive examples), possibly including an IME
or Medical Audit, on suspicion of fraud. For the
most part, these claims are handled by Special
Investigative Units (SIU) within the claim de-
partment or by some third-party investigative ser-
vice. Occasionally, companies will be organized
so that additional adjusters, not specifically a part
of the company SIU, may also conduct special
investigations on suspicion of fraud. Both types
are reported to DCD within the special inves-
tigation category and we refer to both by the
shorthand SIU in subsequent tables and figures.
Favorable outcomes are reported for SIU if the
claim is denied or compromised based on the
special investigation.
For purposes of this analysis and demonstra-

tion of models and software, we employ 21 po-
tential explanatory variables and four target vari-
ables. The target variables are prescribed field
variables of DCD. Thirteen predicting variables
are numeric, two from DCD fields (F), eight from
internal demographic type derived data (DV), and
three from external demographic data (DM), as
shown in Table 1. A frequent data-mining prac-
tice is to “derive” explanatory or predictive vari-
ables from the primary dataset to be “mined” by
creating summary statistics of informative sub-
sets such as RANK ATT/ZIP, the rank of a sim-
ple count of the number of attorneys in the Mas-
sachusetts zip code with BIL claims. While many
such variables are possible, we use only a repre-
sentative few such derived variables, denoted by
DV.
The choice of predictor variables was guided

by prior published research on insurance fraud
and data mining. Thus, certain provider-related
variables, such as attorney involvement, the
amount of the provider 1 and provider 2 bills,
and the type of medical provider are included.
In addition, certain variables related to claimant
behavior, such as amount of time between occur-
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Table 1. Auto injury liability claim numeric variables

Variable N Type Minimum Maximum Mean Std. Deviation

Provider 1 BILL 162,761 F 0 1,861,399 2,671.92 6,640.98
Provider 2 BILL 162,761 F 0 360,000 544.78 1,805.93
Claimant Age 155,438 DV 0 104 34.15 15.55
Claim Report Lag (Days) 162,709 DV 0 2,793 47.94 144.44
Treatment Lag (Days) 147,296 DV 1 9 3.29 1.89
HouseholdsPerZipcode 118,976 DM 0 69,449 10,868.87 5,975.44
AverageHouseValue Per Zip 118,976 DM 0 1,000,001 166,816.75 77,314.11
IncomePerHousehold Per Zip 118,976 DM 0 185,466 43,160.69 17,364.45
Distance (MP1 Zip to CLT. Zip) 72,786 DV 0 769 38.85 76.44
Rankatt1 (rank att/zip) 129,174 DV 1 3,314 150.34 343.07
Rankdoc2 (rank prov/zip) 109,387 DV 1 2,598 110.85 253.58
Rankcity (rank claimant city) 118,976 DV 1 1,874 77.37 172.76
Rnkpcity (rank provider city) 162,761 DV 1 1,305 30.84 91.65
Valid N (listwise) 70,397

N=Number of nonmissing records; F=DCD Field, DV=Internal derived variable, DM=External derived variable

Source: Automobile Insurers Bureau of Massachusetts, Detail Claim Database, AY 1995–1997 and Authors’ Calculations.

Table 2. Auto injury liability claim categorical variables

Variable N Type Type Description

Policy Type 162,761 F Personal 92%, Commercial 8%
Emergency Treatment 162,761 F None 9%, Only 22%, w Outpatient 68%
Health Insurance 162,756 F Yes, 15%, No 26%, Unknown 60%
Provider 1—Type 162,761 F Chiro 41%, Physical Th. 19%, Medical 30%, None 10%
Provider 2—Type 162,761 F Chiro 6%, Physical Th. 6%, Medical 36%, None 52%
1993 Territory 162,298 F Rating Territories 1 (2.2%) Through 26 (1.3%); Territory 1–16 by increasing risk, 17–26 is Boston
Attorney 162,761 F Attorney present (89%), no attorney (11%)
1 SIU Done 162,761 F Special Investigation Done (7%), No SIU (93%)
2 IME Done 162,761 F Independent Medical Examination Done (8%), No IME (92%)
3 SIU Favorable 162,761 F Special Investigation Favorable (3.4%), Not Favorable/Not Done (95.6%)
4 IME Favorable 162,761 F Independent Medical Exam Favorable (4.4%), Not Favorable/Not Done (96.6%)
Injury Type 162,298 F Injury Types (24) including minor visible (4%), strain or sprain, back and/or neck (81%), fatality

(0.4%), disk herniation (1%) and others

N=Number of nonmissing records F=DCD Field

Note: Descriptive percentages may not add to 100% due to rounding

Source: Automobile Insurers Bureau of Massachusetts, Detail Claim Database, AY 1995–1997 and Authors’ Calculations.

rences of the accident and reporting of the claim
and amount of time between occurrences of the
accident and the first outpatient medical treat-
ment are included. Geographic and claim risk
indicators, i.e., rating territory and distance from
claimant to provider are also used. The four rank
variables15 are calculated to represent the rela-
tive claim, attorney, and provider activity at zip
code and city levels. One important caveat of

15Each of the rank variables uses the ranking, not the actual data
values.

this analysis is that it is based on closed claims,
so some of the variables, such as the amount
billed by outpatient medical providers, may not
be fully known until the claim is nearly closed.
When building a model to detect fraud and abuse
prospectively, the modeler will be restricted to in-
formation available relatively early in the life of
a claim or to probabilistic estimates of final val-
ues dependent on that early information. Tables 1
and 2 list the explanatory variables we use that
are numeric and categorical, respectively.
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Eight explanatory variables and four target
variables (IME and SIU, Decision and Favorable
Outcome for each) are categorical variables, all
taken as reported from DCD, as shown in Ta-
ble 2.
Similar claim investigation variables are now

being collected by the Insurance Research Coun-
cil (IRC) in their periodic sampling of country-
wide injury claims (IRC 2004a, pp. 89—104).16

Nationally, about 4% and 2% of BI claims in-
volved IMEs and SIU, respectively, only one-half
to one-quarter of the Massachusetts rate. Most
likely this is because (1) a majority of other states
have a full tort system and so BIL contains all
injury liability claims and (2) Massachusetts is
a fairly urban state with high claim frequencies
and more dubious claims.17 In fact, a recent IRC
study shows Massachusetts has the highest per-
centage of BI claims in no-fault states that are
suspected of fraud (23%) and/or buildup (41%)
(IRC 2004b, p. 25). It is, therefore, entirely con-
sistent for the Massachusetts claims to exhibit
more nonroutine claim handling techniques. Fa-
vorable outcomes average about 50% when an
IME is done or a claim is referred to SIU. We
now turn to descriptions of the types of models,
and the software programs that implement them,
in the next two sections before we describe how
they are applied to model the IME and SIU target
variables.

3. Data mining and software
models
3.1. How tree models handle data
complexity

Traditional actuarial and statistical techniques
often assume that the functional relationship be-

16The IRC also includes an index bureau check as one of the claims
handling activities but this practice is universal in Massachusetts.
17Prior studies of Massachusetts Auto Injury claim data for fraud
content included Weisberg and Derrig 1998, (suspicion regression
models), Derrig and Weisberg 1998, (claim screening with scor-
ing models) and Derrig and Weisberg 2004, (effect of investigative
technique on claim settlements).

Table 3. Example 1 and 2 data

Provider 2
Bill (Banded) Avg Provider 2 Bill Avg Total Paid Percent IME

Zero — 9,063 6%
1–250 154 8,761 8%
251–500 375 9,726 9%
501–1,000 731 11,469 10%
1,001–1,500 1,243 14,998 13%
1,501–2,500 1,915 17,289 14%
2,501–5,000 3,300 23,994 15%
5,001–10,000 6,720 47,728 15%
10,001+ 21,350 83,261 15%
All Claims 545 11,224 8%

tween the independent variables and the depen-
dent or target variable is linear or that some trans-
formation of the variables exists so that tech-
niques can treat the relationship as linear. In-
surance data, however, often contain variables
where the relationship among variables is com-
plex and not susceptible to transformation to the
linear world. Typically when nonlinear relation-
ships exist, the exact nature of the nonlinearity
(i.e., where some transformation can be used to
establish linearity) is not known. In the field of
data mining, a number of nonparametric tech-
niques have been developed which can model
complex relations without any assumption being
made about the nature of the nonlinearity. We il-
lustrate how each of our tree methods reviewed
in this paper models nonlinearities in the follow-
ing two relatively simple examples. The variables
in this example were selected because of a known
nonlinear relationship between independent and
dependent variables.

EXAMPLE 1 The dependent variable, a numeric
variable, is total paid losses and the independent
variable is provider 2 bill. Table 3 displays av-
erage paid losses at various bands of provider 2
bill.

EXAMPLE 2 The dependent variable, a binary
categorical variable, is whether or not an inde-
pendent medical exam is requested, and the in-
dependent variable again is provider 2 bill.
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Figure 1. CART example of parent and children
nodes: Total paid as a function of provider 2 bill

3.2. Trees

In this section we give a brief introduction to
decision tree methodology. Hadidi (2003) pro-
vides a more thorough introduction to trees and
their use in insurance. Trees, also known as clas-
sification and regression trees (C&RT), fit a
model by recursively partitioning the data into
two groups, one group with a higher value on
the dependent variable and the other group with a
lower value on the dependent variable. Each par-
tition of the tree is referred to as a node. When
a parent node is split, the two children nodes, or
“leaves” of the tree, are each more homogenous
(i.e., less variable) with respect to the dependent
variable.18 A goodness-of-fit statistic is used to
select the split which maximizes the difference
between the two children nodes. When the in-
dependent variable is numeric, such as provider
2 bill, the split takes the form of a cutpoint, or
threshold: x¸ c and x < c as in Figure 1, with the
value $4,043 for provider 2 bill as the cutpoint
in this example.

18There are Tree Software models that may split nodes into three
or more branches. The CHAID and Exhaustive CHAID techniques
in SPSS classification trees are an example of such software.

The cutpoint c is found by evaluating all possi-
ble values for splitting the numeric variable into
higher and lower groups, and selecting the value
that optimizes the split in some manner. When
the dependent variable is numeric, the split is
typically based on the value which results in the
greatest reduction in a residual sum of squares or
some function of the residual errors such as the
R2 or F statistic. For this example, all values of
provider 2 bill are searched and a split is made
at the value $4,043. All claims with provider 2
bills less than or equal to $4,043 go to the left
node and “explain” a total paid of $10,728 and
all claims with provider 2 bill greater than $4,043
go to the right node, and “explain” a total paid
of $48,465. This is depicted in Figure 1. The tree
graph shows that the total paid mean is signifi-
cantly lower for the claims with provider 2 bills
less than $4,043.
Alternatively, when a predictor variable is cat-

egorical, all possible two-way groupings of the
categories of the variable are tested. The group-
ing that optimizes the goodness-of-fit measure
for the variable is the one that is used to par-
tition the data into two groups that are signifi-
cantly different with respect to the value of the
dependent variable. For instance, if injury type is
used to model paid losses, the data can be split
into a group including back/neck injuries, neck
sprains, other sprains, minor lacerations, and a
group that includes all other injuries. The mean
claim payments of these two groups are approx-
imately $9,000 and $25,000, respectively.
One statistic often used as a goodness-of-fit

measure to optimize tree splits is the sum squared
error or the total squared deviation of actual val-
ues around the predicted values. The selected
cutpoint is the one which produces the largest re-
duction in total sum squared errors (SSE). That
is, for the entire database the total squared devi-
ation of paid losses around the predicted value
(i.e., the mean) of paid losses is 7:00£ 1013. The
SSE declines to 4:65£ 1013 after the data are par-
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Figure 2A and B. CART example with two and seven
nodes: Total paid as a function of provider 2 bill

titioned using $4,043 as the cutpoint. Any other
partition of the provider bill produces a larger
SSE than 4:65£ 1013. For instance, if a cutpoint
of $10,000 is selected, the SSE is 4:76£ 1013.
The two nodes in Figure 1 can each be split

into two more children nodes and these can then
be further split. The sequential splitting continues
until no (significant) improvement in the good-
ness of fit statistic occurs. The nodes containing
the result of all the splits resulting from apply-
ing a sequence of decision rules, i.e., the final
nodes, are often referred to as terminal nodes.
The terminal nodes provide the predicted values
of the dependent variables. When the dependent
variable is numeric, the mean of the dependent
variable at the terminal nodes is the prediction.
The curve of the predicted value resulting from

a tree fit to total paid losses is a step function.
As shown in Figure 2A, with only two termi-
nal nodes, the fitted function is flat until $4,043,
steps up to a higher value, and then remains flat.
Figure 2B displays the predicted values of a tree
with seven terminal nodes. The steps or increases
are more gradual for this function.
The procedure for modeling data where the

dependent variable is categorical (binary in our
example) is similar to that of a numeric variable.

For instance, one of the binary fraud surrogates is
independent medical exam (IME) requested, yes
or no. The target classifications are claimants for
whom an IME was requested and the group of
(presumably legitimate) claimants where an IME
was not requested. At each step, the tree proce-
dure selects the split that best improves or lowers
node heterogeneity. That is, it attempts to parti-
tion the data into two groups so that one partition
has a significantly higher proportion of the tar-
get category, IME requested, than the other node.
A number of statistical goodness-of-fit statistics
measures are used in different products to select
the optimal split. These include entropy/deviance
and Gini index. Kantardzic (2003), Breiman et al.
(1993), and Venibles and Ripley (1999) describe
the computation and application of the Gini in-
dex and entropy/deviance measures.19 A score or
probability can be computed for each node after
a split is performed. This is generally estimated
based on the number of observations in the target
groups versus the total number of observations at
the node. The terminal node score or probabil-
ity is frequently used to assign records to one
of the two classes. Typically, if the model score
exceeds a threshold such as 0.5, the record is as-
signed to the target class of interest; otherwise it
is assigned to the remaining class.
Figure 3A displays the result of using a tree

procedure to predict a categorical variable from
the AIB data. The graph shows that each time the
data is split on provider 2 bill, one child node has
a lower proportion and the other a higher propor-
tion of claimants receiving IMEs. The fitted tree
function is used to model a nonlinear relationship
between provider bill and the probability that a
claim receives an IME as shown in Figure 3B.
Tree models use categorical as well as numeric

independent variables in modeling complex data.

19For binary categorical data assumed to be generated from a bi-
nomial distribution, entropy and deviance are essentially the same
measure. Deviance is a generalized linear model concept and is
closely related to the log of the likelihood function.
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Figure 3A. CART example with seven nodes IME proportion as a function of provider 2 bill

However, because the levels on categorical data
may not be ordered, all possible two-way splits
of categorical variables must be considered be-
fore the data are partitioned.
The final tree model in a data mining applica-

tion will typically use many predictor variables,
with different predictor variables incorporated
into the model at different nodes. To prevent
overfitting, the technique of pruning is used. This
technique uses a goodness-of-fit measure to
“prune” or eliminate branches and nodes based
on eliminating those that do not contribute a sig-
nificant improvement in the model’s fit. Prun-
ing may be thought of as analogous to back-
wards stepwise regression, where the modeler
fits a full regression incorporating all possible
predictor variables, and then one by one removes
those variables that are not deemed “significant”

by a goodness-of-fit measure, such as the F

statistic.

3.3. Ensemble models—boosting

Ensemble models are composite tree models.
A series of trees is fit and each tree improves the
overall fit of the model. The ensemble model’s
prediction is a weighted average of the single tree
predictions. In the data mining literature the tech-
nique is often referred to as “boosting” (Hastie,
Tibshirani, and Friedman 2001; Freidman 2001).
The method initially fits a small tree of, say, 5
to 10 terminal nodes on a training dataset. Typ-
ically, the user specifies the number of terminal
nodes, and every tree fit has the same number
of terminal nodes. The error, or difference be-
tween the actual and fitted values on a test sam-
ple, is computed, and, in applications involving
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Figure 3B. CART example with four step functions: IME proportion as a function of provider 2 bill

numeric dependent variables, is used in another
round of fitting as a dependent variable.20 For
models with categorical dependent variables, the
error is often computed as a rate or proportion,
i.e., the number of total records for a given node
of a tree that were misclassified, compared to the
sample size of the node. For both numeric and
categorical dependent variables, the error is also
typically used in the computation of weights in
subsequent rounds of fitting, with records con-
taining larger errors receiving higher weighting
in the next round of estimation.

20If only two models were fit, one to the dependent variable and
one to the residual from that model, the predicted value would
be Ŷ1 +wt1 ê1, where Ŷ1 is the first round fitted value for the de-

pendant variable and ê1 is the fitted value of Y¡ Ŷ1 and wt1 is a
weight. Therefore, E(Y) = Ŷ1 +wt1E(Y¡ Ŷ1). That is, each tree in
the sequence further refines the fit by estimating the error for the
observation and adding it back to the prediction. When the depen-
dent variable is categorical, one can think of the actual value for an
observation as either 0.0 or 1.0, and the error as a positive or nega-
tive value between 0.0 and 1.0 representing the deviation between
the probability of the target variable from the model and the ac-
tual value of the dependent variable. The actual implementation in
boosting is typically more complex than this intuitive description.

One algorithm for computing weights is de-
scribed by Hastie, Tibshirani, and Friedman.21

Consider an ensemble of trees 1,2, : : : ,M . The er-
ror for the mth tree measures the departure of the
actual from the fitted value on the test data after
the mth model has been fit. When the dependent
variable is categorical, as it is in the illustrative
fraud application in this paper, a common error
measure used in boosting is:

errm =
PN
i=1wiI(yi 6= Fm(xi))PN

i=1wi
(3.1)

where N is the total number of records, wi is a
weight (which is initialized to 1=N in the first
round of fitting), I is an indicator function equal
to zero if the category is correctly predicted and
one if the class assigned is incorrect, yi is the
categorical indicator dependent variable, x is a
matrix of predictors, and Fm(xi) is the prediction
for the ith record of the mth tree.

21See p. 301. Note that the literature also describes other error and
weight functions.
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Then, the coefficient alpha is a function of the
weight.

®m = log
μ
1¡ errm
errn

¶
(3.2)

and the new weight is wi,m+1 = wm exp(®mI(yi 6=
Fm(xi))).
The process is performed many times until no

further statistical improvement in the fit is ob-
tained.
The formulas presented above describe a gen-

eral approach to boosting.22 The specific boost-
ing procedures implemented differ among soft-
ware products. For instance, TreeNet (Freidman
2001) uses stochastic gradient boosting.23 One of
the modeling issues one encounters when apply-
ing ensemble models is that of overfitting; that is,
the model being estimated contains many param-
eters and its fit is generally assessed by apply-
ing a goodness-of-fit measure only to the train-
ing sample. The model may provide an excellent
fit to the training data but a poor fit to valida-
tion or holdout data. Stochastic gradient boost-
ing incorporates a number of procedures which
attempt to build a more robust model by con-
trolling the tendency of large complex models to
overfit the data. A key technique used is resam-
pling. A new sample is randomly drawn from
the training data each time a new tree is fit to the
residuals from the prior round of model estima-
tion. The goodness-of-fit of the model is assessed
on data not included in the sample, the valida-
tion24 data. Another procedure used by TreeNet
to control overfitting is shrinkage or regulariza-
tion. Regularization refers to any procedure that
prevents overfitting. For instance, variable selec-
tion techniques such as stepwise regression miti-

22Boosting has been applied to fraud detection modeling in Viaene,
Derrig, and Dedene (2004).
23TreeNet is compared to the non-tree method of neural networks
for fraud detection in Francis (2005).
24A validation sample is used by many modeling procedures to tune
the parameters of a model. That is, it is a separate sample from the
training sample that is incorporated as part of the goodness of fitting
used in estimating the model. However, as it is not the sample the
model was fit to, it is resistant to overfitting. An additional sample,
referred to as the test sample, is used for a final test of the models
goodness of fit, after a final model is developed.

gate overfitting by selecting only significant vari-
ables for inclusion in the model. One kind of
regularization is shrinkage, where credibility is
perhaps the most familiar example of shrinkage
to actuaries. The approach shrinks or reduces the
parameter estimate associated with a given pre-
dictor variable25 in a given model. For instance, a
credibility procedure might “shrink” the weight
assigned to a given class, moving the estimate
for the class towards the overall mean. The ob-
jective of shrinkage is to reduce the tendency of
a model with many parameters to overfit, or to
fit noise, rather than pattern in the data.26

Alternatively, the Insightful Miner (Iminer)
Ensemble model employs a simpler implemen-
tation of boosting which does not use shrinkage
and applies nonstochastic boosting using all the
training data in each round of fitting.
The final estimate resulting from an ensemble

approach will be a weighted average of all the
trees fit. Note that:

² Using a large collection of trees allows many
different variables to be used. Some of these
would not be used in smaller simpler models.27

² Many different models are used. The predic-
tive modeling literature (Hastie et al. 2001;
Francis 2003) indicates that composites of
multiple models perform better than the pre-
diction of a single model.28

² Different training and validation records are
used in parameterizing the model (with sto-
chastic gradient boosting as implemented in
TreeNet and bagging as implemented in
Random Forest, but not the Iminer Ensemble
tree). This makes the procedure more robust to
the influence of a few extreme observations.

25Or it may shrink or reduce the parameter estimate associated with
a function, as in the case of stochastic gradient boosting
26See Harrell (2001), pp. 61—64, for a more detailed description of
shrinkage.
27Note that the ensemble tree methods employ all 21 variables in
the models.
28The ROC curve results in Section 6 show that TreeNet and Ran-
dom Forest generally provide the best explanatory models for the
Massachusetts data.
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The method of fitting many (often 100 or more)
small trees results in fitted curves which are al-
most smooth. Figures 4A and 4B display two
nonlinear functions fit to total paid and IME re-
quested variables by the TreeNet ensemble model
and show the increased flexibility of the output
functions compared to the simple tree step func-
tions.

3.4. Ensemble models—bagging

Bagging is an ensemble approach based on re-
sampling or bootstrapping. Bagging is an acro-
nym for “bootstrap aggregation” (Hastie et al.
2001). Bagging does not use the error from the
prior round of fitting as a dependent variable or
weight in subsequent rounds of fitting. Bagging
uses many random samples of records in the data
to fit many trees. For instance, an analyst may
decide to take 50% of the data as a training set
each time a model is fit. Under bagging, 100 or
more models may be fit, each one to a different
50% sample. The trees fit are unpruned and are
not necessarily small trees with 5 to 10 termi-
nal nodes as with boosting. Each tree may have
a different number of terminal nodes. By aver-
aging the predictions of a number of bootstrap
samples, typically using a simple average of all
the models fit, bagging reduces the prediction
variance.29 The implementation of bagging used
in this paper is known as Random Forest. Brie-
man (2001) points out that using different vari-
ables, as well as different records in the different
trees in the Random Forest ensemble, seem to re-
duce the correlation between the different models
fit and improve the accuracy of the overall pre-
diction. For the analysis in this paper, one-third
of the dataset was sampled as a training set for
each tree fit, while one-third was used as a val-
idation or “out of bag” sample for assessing the
goodness-of-fit of the tree at that iteration. The

29Hastie, Tibshirani, and Friedman describe how the estimate re-
sulting from bagging is similar to a posterior Bayesian estimate.

remaining third was the test sample. (See “Vali-
dation and Testing” in Section 4 for a more de-
tailed discussion of training, validation, and test
samples).
Figure 5A displays an ensemble Random For-

est tree fit to total paid losses and Figure 5B dis-
plays a Random Forest tree fit to IME.

3.5. Naïve Bayes

The naïve Bayes method is relatively simple
and easy to implement. In our comparison, we
treat it as one of two benchmark data mining
methods. That is, we are interested in how more
complex methods improve performance (or not)
against an approach where simplifying assump-
tions are made in order to make the computations
more tractable. We also use a logistic regression
models as the second benchmark.
The naïve Bayes method was developed for

categorical data. Specifically, both dependent and
independent variables are categorical.30 There-
fore, its application to fitting nonlinear functions
will be illustrated only for the categorical target
variable IME. In order to utilize numeric predic-
tor variables it was necessary to derive new cat-
egorical variables based on discretizing, or “bin-
ning,” the distribution of data for the numeric
variables.31

The key simplifying assumption of the naïve
Bayes method is the assumption of indepen-
dence. Given each category of the dependent
variable, all predictor variables are assumed to
act independently in influencing the target vari-
able. Interactions and correlations among the pre-
dictor variables are not considered.
Bayes rule is used to estimate the probabil-

ity that a record with given independent variable

30Although our implementation of naïve Bayes uses only cate-
gorical predictor variables, some implementations allow numerical
predictors.
31The numeric variables were grouped into five bins or into quin-
tiles in this instance.
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Figure 4A. Ensemble prediction of total paid

Figure 4B. Ensemble prediction of IME requested
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Figure 5A. Random Forest prediction of Total Paid

Figure 5B. Random Forest prediction of IME

vector X = fxig is in category C = fcjg of the
dependent variable.

P(cj jX) = P(X j cj)P(cj)=P(X): (3.3)

Because of the naïve Bayes assumption of condi-
tional independence, the probability that an ob-
servation will have a specific set of values for
the independent variables is the product of the

conditional probabilities of observing each of the
values given category cj

P(X j cj) =
Y
i

P(xi j cj): (3.4)

The method is described in more detail in Kan-
tardzic (2003). To illustrate the use of naïve
Bayes in predicting discrete variables, the pro-
vider 2 bill data was binned into groups based
on the quintiles of the distribution. Because about
50 percent of the claims have a value of zero for
provider 2 bills, only four categories are created
by the binning procedure. The new variable was
used to estimate the IME targets. Figure 6 dis-
plays a bar plot of the predicted probability of
an IME for each of the groups. Figure 7 displays
the fitted function. This function is a step func-
tion which changes value at each boundary of a
provider 2 bill bin.

3.6. Nonadditivity: interactions

Conventional statistical models such as regres-
sion and logistic regression assume not only lin-
earity, but also additivity of the predictor vari-
ables. Under additivity, the effect of each vari-
able can be added to the model one at a time.
When the exact form of the relationship between
a dependent and independent variable depends
on the value of one or more other variables, the
effects are not additive and one or more inter-
actions exist. For instance, the relationship be-
tween provider 2 bill and IME may vary by type
of injury (i.e. traumatic injuries versus sprains
and strains). Interactions are common in insur-
ance data (Weisberg and Derrig 1998; Francis
2003).
With conventional linear statistical models, in-

teractions are incorporated with multiplicative
terms:

Y = a+ b1X1 + b2X2 + b3 ¤X1 ¤X2: (3.5)

In the case of a two-way interaction, the interac-
tion terms appear as products of two variables.
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Figure 6. Bayes predicted probability IME requested vs. quintile of provider 2 bill

Figure 7. Naïve Bayes predicted IME vs. provider 2 bill

If one of the two variables is categorical, the
interaction terms allow the slope of the fitted
line to vary with the levels of the categorical
variable. If both variables are continuous, the
interaction is a bilinear interaction (Jaccard and

Turrisi 2003) and the slope of one variable
changes as a linear function of the other vari-
able. If both variables are categorical the model
is equivalent to a two factor ANOVA with in-
teractions.
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The conventional approach to handling inter-
actions has some limitations. Each of the tree-
based data mining techniques used in this paper
has efficient methods for searching for signifi-
cant interactions.

² Only a limited number of types of interactions
can be modeled easily.

² If many predictor variables are included in the
model, as is often the case in many data min-
ing applications, it can be tedious, if not im-
possible, to find all the significant interactions.
Including all possible interactions in the model
without regard to their significance likely re-
sults in a model which is over-parameter-
ized.

² Interactions are inherent in the method used
by trees to partition data. Once data have been
partitioned, different partitions can and typi-
cally do split on different variables and cap-
ture different interactions among the predictor
variables. When the decision rules used by a
tree to reach a terminal node involve more than
one variable, in general, an interaction is being
modeled.

² Ensemble methods incorporate interactions be-
cause they are based on the tree approach,

² Naïve Bayes, because it assumes conditional
independence of the predictors, ignores inter-
actions.

² Logistic regression incorporates interactions in
the same way ordinary least squares regres-
sion does: with product interaction terms. In
this analytic comparison study, no attempt was
made to incorporate interaction terms as this
procedure lacks an efficient way to search for
the significant interactions.

3.7. Multiple predictors

Thus far, the discussion of the tree-based mod-
els concerned only simple one or two variable
models. Extending the tree methods to incorpo-
rate many potential predictors is straightforward.
For each tree fit, the method proceeds as follows:

² For each variable determine the best two-way
partition of the data.

² Select the variable which produces the best
improvement in the goodness-of-fit statistic to
split the data at a particular node.

² Repeat the process (at each node) of partition-
ing the data until no further improvement in
fit can be obtained. Different variables can be
used to partition the data at different nodes.

4. Software for modeling nonlinear
dependencies and testing the
models

4.1. Software for modeling nonlinear
dependencies

Four software products were included in our
fraud comparison: They are CART, TreeNet,
S-PLUS (R) and Insightful Miner.32 One of the
products, R, is open source software that can be
downloaded and used for free,33 while the other
products are commercial software. A description
of some of the features of each product, includ-
ing features that are useful to the practitioner but
have no impact on the model’s accuracy can be
found in a related pdf document posted on the
Casualty Actuarial Society’s Variance Web Site.

4.2. Validating and testing

It is common for data mining practitioners to
partition the data into three groups (Hastie, Tib-
shirani, and Friedman 2001). One group is used
for “training,” or fitting the model. Another
group, referred to as the validation set, is used for
“testing” the fit of the model and re-estimating
parameters in order to obtain a better model. It
is common for a number of iterations of test-
ing and fitting to occur before a final model is
selected. The third group of data, the “holdout”

32Software products used in the comparison were based on (1)
software licensed to the authors, (2) free software, and (3) software
that the authors were granted temporary use of by the company
licensing the software.
33See Fox 2002 for a discussion of R.
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sample, is used to obtain an unbiased test of the
model’s accuracy. Cross validation is an alterna-
tive approach to a validation sample that is espe-
cially appropriate when the sample size used in
the analysis is relatively modest. Cross-valida-
tion is a method involving holding out a por-
tion of the training sample, say, one-fifth of the
data, fitting a model to the remainder of the data
and testing it on the held-out data. In the case
of five-fold cross-validation, the process is re-
peated five times and the average goodness-of-fit
of the five validations is computed. The various
software products and procedures have different
methods for validating the models. Some (In-
sightful Miner Tree) only allow cross-validation.
Others (TreeNet) use a validation sample.34 S-
PLUS (R) allows either approach35 to be used (so
a test sample of about 20% of the training data
was used as we had a relatively large database).
Neither validation sample nor cross-validation
was used with naïve Bayes or logistic regres-
sion36 to tune the parameters of the model during
fitting.37

In this analysis, approximately a third of the
data, about 50,000 records, was used as the hold-
out sample for the final testing and comparison
of the models. Two key statistics often used to
compare model accuracy are sensitivity and
specificity. Sensitivity is the percentage of events
(i.e., claims with an IME or referred to a special
investigation unit) that were predicted to be those
events. The specificity is the percentage of non-
events (in our applications claims believed to be
legitimate) that were predicted to be nonevents.
Both of these statistics should be high for a good
model. Table 4, often referred to as a confusion

34The TreeNet software also allows cross-validation, but it is easier
and probably more typical to use a validation sample.
35In general, some programming is required to apply either ap-
proach in S-PLUS (R).
36For a more extensive discussion of logistic regression see Hosmer
and Lemshow (1989).
37With parametric models such as logistic regression, validation
samples are not usually part of the estimation procedure. The im-
plementation of naïve Bayes used here did not provide a validation
procedure for tuning the model.

Table 4. Sample confusion matrix: Sensitivity and specificity

True Class

Prediction No Yes Row Total
No 800 200 1,000
Yes 200 400 600

Column Total 1,000 600

Correct Total Percent Correct

Sensitivity 800 1,000 80%
Specificity 400 600 67%

matrix (Hastie, Tibshirani, and Friedman 2001),
presents an example of the calculation. In the ex-
ample confusion matrix, 800 of 1,000 nonevents
are predicted to be nonevents so the sensitivity
is 80%. The specificity is 67% since 400 of 600
true positives are accurately predicted.
The sensitivity and specificity measures dis-

cussed above are dependent on the choice of
a cutoff value for the prediction. Many mod-
els score each record with a value between zero
and one, though some other scoring scale can
be used. This score is sometimes treated like a
probability, although the concept is much closer
in spirit to a fuzzy set measurement function.38

A common cutoff point is 50% and records with
scores greater than 50% are classified as events
and records with scores below that value are clas-
sified as nonevents.39 However, other cutoff val-
ues can be used. Thus, if a cutoff lower than 50%
were selected, more events would be accurately
predicted and fewer non-events would be accu-
rately predicted.
Because the accuracy of a prediction depends

on the selected cutoff point, techniques for as-
sessing the accuracy of models over a range of
cutoff points have been developed. A common
procedure for visualizing the accuracy of models
used for classification is the receiver operating

38See Ostaszewski (1993) or Derrig and Ostaszewski (1995).
39One way of dealing with values equal to the cutoff point is to
consider such observations as one-half in the event group and one-
half in the non-event group.
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characteristic (ROC) curve.40 This is a curve of
sensitivity versus specificity (or more accurately
1.0 minus the specificity) over a range of cut-
off points. It illustrates graphically the sensitivity
or true positive rate compared to 1-specificity or
false alarm rate. When the cutoff point is very
high (i.e., 1.0) all claims are classified as legit-
imate. The specificity is 100% (1.0 minus the
specificity is 0), but the sensitivity is 0%. As
the cutoff point is lowered, the sensitivity in-
creases, but so does 1.0 minus the specificity.
Ultimately a point is reached where all claims
are predicted to be events, and the specificity de-
clines to zero (1:0¡ specificity = 1:0). The base-
line ROC curve (where no model is used) can
be thought of as a straight line from the origin
with a 45-degree angle. If the model’s sensitiv-
ity increases faster than the specificity decreases,
the curve “lifts” or rises above a 45-degree line
quickly. The higher the “lift” or “gain,” the more
accurate the model is.41 ROC curves have been
used in prior studies of insurance claims and
fraud detection regression models (Derrig and
Weisberg 1998; Viaene et al. 2002). The use of
ROC curves in building models as well as com-
paring performance of competing models is a
well established procedure (Flach et al. 2003).
A statistic that provides a one-dimensional

summary of the predictive accuracy of a model as
measured by an ROC curve is the area under the
ROC curve (AUROC). In general, AUROC val-
ues can distinguish good models from bad mod-
els but may not be able to distinguish among
good models (Marzban 2004). A curve that rises
quickly has more area under the ROC curve. A
model with an area of 0.50 demonstrates no pre-
dictive ability, while a model with an area of 1.0
is a perfect predictor (on the sample the test is

40A ROC curve is one example of a so-called “gains” chart.
41ROC curves were developed extensively for use in medical di-
agnosis testing in the 1970s and 1980s (Zhou, McClish, and Obu-
chowski 2002 and more recently in weather forecasting (Marzban
2004).

performed on). For this analysis, SPSS was used
to produce the ROC curves and area under the
ROC curves. SPSS generates cutoff values mid-
way between each unique score in the data and
uses the trapezoidal rule to compute the AUROC.
A nonparametric method was used to compute
the standard error of the AUROC.42

We show the AUROC results for our analyses
in Section 6.

5. Modeling the decision to
investigate and favorable outcome

The remainder of this paper is devoted to illus-
trating the usefulness and effectiveness of eight
model/software combinations applied to our four
fraud applications, the decision to investigate via
IMEs or referral to SIU, and favorable outcomes
from IME or SIU referrals. We model the pres-
ence and proportion of favorable outcomes of
each investigative technique for the DCD sub-
set of automobile bodily injury liability (third
party) claims from 1995—1997 accident years.43

We employ 21 potentially predicting variables of
three types: (1) 11 typical claim variable fields
informative of injury claims as reported, both
categorical and numeric, (2) three external demo-
graphic variables that may play a role in captur-
ing variations in investigative claim types by ge-
ographic region of Massachusetts, and (3) seven
internal “demographic” variables derived from
informative pattern variables in the database.
Variables of type 3 are commonly used in predic-
tive modeling for marketing purposes. The vari-
ables used for these illustrations are by no means
optimal choices for all three types of variables.
Optimization can be approached by other proce-
dures (beyond the scope of this paper) that max-
imize information and minimize cross correla-
tions and by variable construction and selection
by domain experts.

42The details of the formula are supplied in SPSS documentation
that can be found at the SPSS Web Site, www.spss.com.
43The data set is described in more detail in Section 2 above.
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The eight model/software combinations we
will use here are

1) TreeNet 5) Iminer Ensemble
2) Iminer Tree 6) Random Forest
3) SPLUS Tree 7) Naïve Bayes
4) CART 8) Logistic

Numbers 1—6 are six tree models, and 7—8 are
benchmark models (naïve Bayes and logistic).
CART and TreeNet are Salford Systems stand-

alone software products that perform one tech-
nique. CART (Classification and Regression
Trees) does tree analysis, and TreeNet applies
stochastic gradient boosting to an ensemble of
trees using the method described by Freidman
(2001). The S-PLUS procedure used here in the
fraud comparison is found in both S-PLUS and
in a freeware version in R though S-PLUS does
not contain an implementation of Random For-
est,44 while R does. The S-PLUS GLM (general-
ized linear models) was used for logistic regres-
sion. The naïve Bayes, Tree, and Ensemble Tree
procedures from Insightful Miner are used here
in the fraud comparison.
Many of the products used in this comparison

contain the capability of ranking variables in im-
portance to the model. This capability is useful in
variable selection and as an aid in understanding
and interpreting the model. Because the meth-
ods for ranking variables and the results of the
ranking are significant additional topics, they are
outside the scope of this paper.45

We next turn to consideration of model perfor-
mance as a whole in Section 6 with an interpre-
tation of the models and variables relative to the
problem at hand in Section 7.

44For a discussion of the Random Forest freeware in R see Liaw
and Wiener 2003.
45See Derrig and Francis 2006 for a discussion of the importance
ranking of the 21 variables used here. Each independent variable
may have a differenent “importance” level depending on the target
variable.

Table 5. Area under the ROC curve—IME decision

CART Tree S-PLUS Tree Iminer Tree TreeNet

AUROC 0.669 0.688 0.629 0.701
Lower Bound 0.661 0.680 0.620 0.693
Upper Bound 0.678 0.696 0.637 0.708

Iminer Random Iminer Naïve
Ensemble Forest Bayes Logistic

AUROC 0.649 0.699 0.676 0.677
Lower Bound 0.641 0.692 0.669 0.669
Upper Bound 0.657 0.707 0.684 0.685

Table 6. Area under the ROC curve—IME favorable

CART Tree S-PLUS Tree Iminer Tree TreeNet

AUROC 0.651 0.664 0.591 0.683
Lower Bound 0.641 0.653 0.578 0.673
Upper Bound 0.662 0.675 0.603 0.693

Iminer Random Iminer Naïve
Ensemble Forest Bayes Logistic

AUROC 0.654 0.697 0.670 0.677
Lower Bound 0.643 0.676 0.660 0.667
Upper Bound 0.665 0.697 0.681 0.687

6. Comparing the models

Tables 5—8 show the values of AUROC for
each of eight model/software combinations in
predicting a decision to investigate with an IME
(Table 5), a favorable IME outcome (Table 6),
the decision to refer for special investigation SIU
(Table 7), and favorable SIU investigation out-
come (Table 8). For all models, the AUROC in
the comparison used sample test data. Upper and
lower bounds for the “true” AUROC value are
shown as the AUROC value§ two standard devi-
ations (95% confidence level). TreeNet and Ran-
dom Forest both do well with AUROC values
significantly better than the logistic model. The
Iminer models (Tree, Ensemble, and naïve Bayes)
generally have AUROC values significantly be-
low the top two performers, with two (Tree and
Ensemble) significantly below the Logistic and
the Iminer Naïve Bayes benchmarks. CART also
scores at or below the benchmarks and signifi-
cantly below TreeNet and Random Forest. On the
other hand, S-Plus (R) tree scores at or somewhat
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Table 7. Area under the ROC curve—SIU decision

CART Tree S-PLUS Tree Iminer Tree TreeNet

AUROC 0.607 0.616 0.565 0.643
Lower Bound 0.598 0.607 0.555 0.634
Upper Bound 0.617 0.626 0.575 0.652

Iminer Random Iminer Naïve
Ensemble Forest Bayes Logistic

AUROC 0.539 0.667 0.615 0.612
Lower Bound 0.530 0.658 0.605 0.603
Upper Bound 0.548 0.677 0.625 0.621

Table 8. Area under the ROC curve—SIU favorable

CART Tree S-PLUS Tree Iminer Tree TreeNet

AUROC 0.598 0.603 0.547 0.678
Lower Bound 0.584 0.589 0.555 0.667
Upper Bound 0.612 0.617 0.575 0.689

Iminer Random Iminer Naïve
Ensemble Forest Bayes Logistic

AUROC 0.575 0.643 0.607 0.610
Lower Bound 0.530 0.630 0.593 0.596
Upper Bound 0.548 0.657 0.625 0.623

above the benchmarks on SIU and IME decisions
but below on SIU and IME favorable.
We note that, in general, the model scores for

SIU as measured by AUROC are significantly
lower than for IME across all eight model/soft-
ware combinations. This reduction in AUROC
values may be a reflection of the explanatory
variables used in the analysis; i.e., they may be
more informative about claim build-up, for which
IME is the principal investigative tool, than about
claim fraud, for which SIU is the principal inves-
tigative tool.
Figures 8 to 11 show the ROC curves for

TreeNet compared to the Logistic for both IME
and SIU Decisions.46 As we can see, a simple
display of the ROC curves may not be sufficient
to distinguish performance of the models as well
as the AUROC values.
Tables 9 and 10 display the relative perfor-

mance of the model/software combinations ac-
cording to AUROC values and their ranks. With
naïve Bayes and Logistic as the benchmarks,

46All twenty ROC curves are available from the authors.

Figure 8. TreeNet ROC Curve—IME AUROC = 0:701

Figure 9. TreeNet ROC Curve—SIU AUROC = 0:643

TreeNet, and Random Forest do better than
the benchmarks, while CART, Iminer Tree, and
Iminer Ensemble do worse.
Finally, Figures 12A and 12B show the relative

performance in a graph. Procedures would work
equally on both IME and SIU if they lie on the
45-degree line. To the extent that performance is
better on the IME targets, procedures would be
above the diagonal. Better performance is shown
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Figure 10. Logistic ROC Curve—IME AUROC = 0:677

by positions farther to the right and closer to the
top of the square. This graph clearly shows that
TreeNet and Random Forest procedures do bet-
ter than the other tree procedures and the bench-
marks.

7. Conclusion

The focus of this paper has been to

² introduce a class of data mining techniques
with potential applications in insurance,

² compare a number of different techniques and
software implementations of those techniques,
and

² illustrate applications of the techniques in in-
surance to fraud modeling for claims.

Insurance data often involve both large volumes
of information and nonlinearity and complex-
ity of variable relationships. A range of data-
manipulation techniques have been developed by
computer scientists and statisticians that are now
categorized as data mining, techniques with the
principal advantages of the efficient handling of
large data sets and the fitting of nonlinear func-
tions to that data. In this paper we illustrate the
use of software implementations of six classifi-

Figure 11. Logistic ROC Curve—SIU AUROC = 0:612

Table 9. Ranking of methods by AUROC—decision

Method SIU AUROC SIU Rank IME Rank IME AUROC

Random Forest 0.667 1 2 0.699
TreeNet 0.643 2 1 0.701
S-PLUS Tree 0.616 3 3 0.688
Iminer Naïve
Bayes

0.615 4 5 0.676

Logistic 0.612 5 4 0.677
CART Tree 0.607 6 6 0.669
Iminer Tree 0.565 7 8 0.629
Iminer Ensemble 0.539 8 7 0.649

Table 10. Ranking of methods by AUROC—favorable

Method SIU AUROC SIU Rank IME Rank IME AUROC

TreeNet 0.678 1 2 0.683
Random Forest 0.643 2 1 0.697
S-PLUS Tree 0.603 5 5 0.664
Logistic 0.610 3 3 0.677
Iminer Naïve
Bayes

0.607 4 4 0.670

CART Tree 0.598 6 7 0.651
Iminer Ensemble 0.575 7 6 0.654
Iminer Tree 0.547 8 8 0.591

cation and regression tree methods together with
benchmark procedures of naïve Bayes and logis-
tic regression. Those eight model/software com-
binations are applied to closed claim data arising
in the Detail Claim Database (DCD) of auto in-
jury liability claims in Massachusetts. Twenty-
one variables were selected to use in the explana-
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Figure 12A. Plot of AUROC for SIU vs IME decision

Figure 12B. Plot of AUROC for SIU vs IME favorable

tory models using the DCD and external demo-
graphic variables. Four target categorical vari-
ables were selected to model: the decision to re-
quest an independent medical examination (IME)
or a special investigation (SIU) and the favorable
outcome of each investigation. The two decision

targets are the prime claim handling techniques
that insurers can use to reduce the asymmetry
of information between the claimant and the in-
surer in order to distinguish valid claims from
those involving buildup, exaggerated injuries, or
treatment, and outright fraud. Of course, there is
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also an interest in modeling the conditions un-
der which the investigation will be successful.
All our models are explanatory, relating the key
portions from the closed claim data with the in-
vestigation variables. Applying these techniques
to produce a real-time predictive model must rec-
ognize that closed claim data arrives at different
points in time. The explanatory models will at
least guide the process of choosing informative
features for real-time predictive models. It should
be noted that the topic of insurance fraud and
its drivers is an area of active research. For in-
stance, the December 2002 issue of the Journal of
Risk and Insurance was devoted entirely to fraud
research and the Web Site www.derrig.com lists
many studies at the IFRR tab. That said, the fo-
cus of this paper is the comparison of techniques
applied to a large complex insurance database,
rather than specific findings related to fraud and
abuse investigations.
Eight modeling software results were com-

pared for effectiveness of modeling the targets
based on a standard procedure, the area under
the receiver operating characteristic curve
(AUROC). We find that the methods all provide
some predictive value or lift from the predict-
ing variables we make available, with signifi-
cant differences at the 95% level among the eight
methods and four targets. Seven modeling out-
comes are compared to logistic regression as in
Viaene et al. (2002) but the results here are differ-
ent. They show that some software/methods can
improve on the predictive ability of the logistic
model. Straightforward applications of TreeNet
and Random Forest do significantly better than
the benchmark naïve Bayes and logistic meth-
ods, while Iminer Tree and Iminer Ensemble do
significantly worse. That some model/software
combinations do better than the benchmarks is
due to the relative size and richness of this data
set and/or the types of independent variables at
hand compared to the Viaene data (2002).

No general conclusions about auto injury
claims can be drawn from the exercise presented
here, except that these modeling techniques
should have a place in the actuary’s repertory of
data manipulation techniques. Technological ad-
vancements in database assembly and manage-
ment, especially the availability of text mining
for the production of variables, together with the
easy access to computer power, will make the use
of these techniques mandatory for analyzing the
nonlinearity of insurance data. As for our part
in advancing the use of data mining in actuar-
ial work, we will continue to test various soft-
ware products (with and without various bells
and whistles) that implement these and other data
mining techniques.
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