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ABSTRACT

Dynamic valuation models for the computation of optimum
fair premiums are developed using a new framework. The
concept of fair premiums which are also “best” is intro-
duced. Optimum fair premiums are defined as the mini-
mum discounted losses for an insurance firm or industry.
This notion extends the discrete and continuous discounted
cash flow models in many ways. The problem is cast in an
optimal control theoretic setting that assumes a world of
certainty. It is then extended to incorporate uncertainty in
claims occurrence. Using a simple example of the certainty
model, a closed-form formula for the rate of return for an
insurer or investor is derived. We show that the optimum
competitive equilibrium price is the sum of the marginal
cost of claims and an economic rent to the insurer.
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1. Introduction
The quest for fair premiums in the property-

liability (PL) insurance markets has attracted
much attention in recent times. A great deal of
attention and controversy in the debate for PL in-
surance regulation has been focused on the role
of investment income in setting prices. There has
always been the need for regulatory policies to
prevent excessive or inadequate pricing in insur-
ance (Doherty and Garven 1986).
Several models of rate regulation have been

developed and used, both in real life and in the
academic arena. Other models are the discrete
and continuous time discounted cash flow mod-
els (DCF). The Myers-Cohn (1987) model is a
prime example of the DCF models that have been
employed in the rate-setting process. Continuous
discounted cash flow models of insurance pricing
have been developed by Kraus and Ross (1982).
Option pricing models have also been used in in-
surance. These models are said to provide impor-
tant insight (Cummins 1988). A recent contribu-
tion to the research on the issue of rate regulation
is the application of the fuzzy logic approach to
insurance pricing (Young 1996).
This paper is an extension of the work by

Kraus and Ross (1982) and Cummins (1988),
who have developed continuous-time DCF mod-
els for the determination of fair premiums in
property-liability insurance. They introduced
deterministic and stochastic continuous-time
models for the analysis of insurance pricing. The
stochastic model is based on arbitrage pricing
theory. It allows for market-related uncertainty
in both frequency and severity.
In this paper, we introduce a new concept in

the insurance literature, the notion of optimum
(i.e., best) fair premiums (OFP). This leads to
the computation of premiums as the optimized
total discounted profits. The optimization is done
subject to a dynamical constraint that describes
the claims process and additional constraints due
to, for example, regulation or market structure.

Dynamic optimization models are rare in the lit-
erature, which may suggest that in the discussion
of fair premiums, efficiency has often been ig-
nored. However, insurers are rational economic
agents who seek to optimize, for example, their
underwriting profits or losses or the utility func-
tion (Borch 1990). In contrast to the DCF, this
model explicitly models insurers’ optimizing be-
havior. It is a dynamic simulation model for the
analysis of long-term insurance markets.
The focus in this paper is on a loss payout

pattern rather than incurred loss. The method al-
lows us to derive an equation that tracks the dy-
namics of claims settlement rates and prices over
time. It can be used to analyze different theoret-
ical and practical aspects of insurance pricing.
One advantage of this approach is that it can
provide a rich variety of dynamic paths that are
very useful in analyzing different policy issues.
It is also quite straightforward to use this model
to study different market structures. Capital in-
vestment can also be incorporated in the analysis
both under certainty and uncertainty (Dixit and
Pindyck 1993).
The paper is structured as follows. We begin

by developing general dynamic models of both
certain and uncertain worlds. This is then fol-
lowed by discussions of various concepts and
definitions. The concept of optimum fair premi-
ums is introduced and discussed. We then test
the model using a simple example of competi-
tive markets.

2. The dynamic model

In this section, a dynamic deterministic model
is developed. The dynamics of unsettled claims
are described by the differential equation

_n= f(n,u, t)¡ s (1)

where t represents time, n(t) is the number of
claims, u(t) is the number of policies in force
(also known as the state variable in control the-
ory), and s(t) is the number of claims settled per
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unit of time or the type of policy written (i.e., the
control variable). Note that this analysis could
be extended into a multivariable control problem,
but for the current paper we present only a single
variable control problem (Kamien and Schwartz
1991; Zimbidis and Haberman 2001). The func-
tion f(:) is the growth or additions to the claims
due to existing policies and current claims. One
simplification of f(:) is to assume that it is equal
to the accident frequency, as in Kraus and Ross
(1982) and Cummins (1988). That is, the fre-
quency process affects the evolution of claims.
For example, if we assume that frequency is pro-
portional to claims, that is, that there is a con-
stant percentage growth rate in claims, and if no
claims are settled, then the number of claims will
grow exponentially. Accordingly, if f(:) is con-
stant, the number of claims will be a linear func-
tion of time.
In Kraus and Ross (1982), s(t) is assumed to

be a fixed fraction of the number of claims, i.e.,
s(t) = n(t), where μ is the settlement rate. The
function can also be interpreted as a Cobb-Doug-
las production function, i.e., s(t) = μ0e(t)®n(t)¯ ,
where e(t) represents effort expended at time t.
Hence the claims settlement rate is a function
of the number of claims and the effort expended,
e.g., in claims investigation or processing. This is
a reasonable assumption. In this paper, however,
we will assume a more general specification.
Note that in control theory, n(t) and s(t) are

known as the state and the control variables, re-
spectively. The state variable describes the posi-
tion of the system, while the control is the vari-
able that is somehow controlled by the insurer.
Intuitively, the claims dynamic equation has the
interpretation that the number of unsettled claims
grows consistent with a function of claims that
are not settled at the end of the previous year, the
exposure and time. In practice, the function that
determines the growth in unsettled claims should
be chosen based on historical experience.

3. Fair premium

There are several definitions and methods for
calculating fair premiums in the literature. The
following definition is taken from Taylor (1994).
Taylor defines fair premium as the sum of the
pure premium, expense loading, and a margin to
service capital. The fair premium methods are
those that quantify the profit margin in such a
way as to provide shareholders with a fair return
but no more.
Let the fair price for an insurance contract be

P0 and ±(t) be the nominal interest rate; then we
have

P0 =
Z T

0
e¡±(t)L(s, t)dt, (2)

where L is the losses and T is the time horizon,
which can theoretically be finite or infinite. Note
that in this formulation, the discount rate is time
dependent. To simplify the subsequent analysis,
we will assume a constant discount rate, that is,
±(t) = tr. Hence, the fair premium is the total or
sum of the discounted losses. The above is the
fair premium formula derived in Kraus and Ross.
While the notion of fair premium is plausible, it
is still vague and arbitrary. The next section in-
troduces practicality to the concept of fair pre-
miums, while at the same time maintaining the
goal of optionality. Shareholders may want the
best or highest returns while policyholders want
to pay the lowest possible premium rates.

4. Optimum fair premium
(P̃0)-deterministic case

The concept of an optimum fair premium is
new in that it incorporates the idea that premiums
are optimally set to ensure efficiency from the
insurer’s perspective. Insurers have an incentive
to be cost effective in their business operations.
Hence, minimizing discounted losses will ensure
that not only are premiums fair but that they
are efficient as well. This leads to the problem
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of determining the minimal value of discounted
losses, which we shall denote P̃0:

P̃0 = mins

Z 1

0
e¡rtL(s, t)dt: (3)

Here the discounted losses are minimized subject
to the dynamics imposed by the claims equation
(1) and additional constraints due to regulations,
etc. For example, Kraus and Ross assumed that
the settlement rate is bounded from below by reg-
ulation or competition, since the notion of com-
petitive premium is meaningless if insurers are
free to make the settlement rate as low as de-
sired. Setting rates such that the premiums are
not only fair but also optimal will lead to the
maximization of both the policyholders’ and in-
surers/investors’ surplus.
The above constitutes an optimization problem

in an insurance context (Borch 1990). That is,
the determination of fair premium is now cast in
an optimal control framework, which is a power-
ful management tool in economics, management,
and finance.
To solve the above management problem, we

apply the maximum principles of control theory
by first constructing the Hamiltonian function. In
terms of the Hamiltonian function H, the prob-
lem is formulated as

H = e¡rtL(s, t)+¸ _n= e¡rtL(s, t) +¸(f ¡ s)
(4)

where ¸, often called the shadow price, is the
marginal valuation of the number of claims n
discounted to time zero. The Hamiltonian is the
sum of the current cash flows and the change in
the number of claims multiplied by the shadow
price. By modifying the settlement rate, two ef-
fects are realized. First, the current cash flows
are modified and, second, the stock of claims in
the future periods are also affected. This can be
written in terms of the current value Hamiltonian
as

H̃ = L(s, t) +m(f ¡ s), (5)

where m is the current value multiplier, that is,
the marginal valuation of the stock of claims at
time t. This has an interesting economic interpre-
tation. Equation (5) is the imputed price of the
cost of settling an additional claim at time t to
the insurer. Note that this is not the direct sales
value but the imputed value from the future pro-
ductivity of the asset.
The first order conditions satisfy

@H̃

@s
= Ls¡m= 0 (6)

and

_m= rm¡ @H̃
@n

) rm=
@H̃

@n
+
@m

@t
: (6a)

The above conditions are the optimality condi-
tions for an interior solution. Note that the con-
dition in (6a) can be interpreted as the asset pric-
ing equation for the price of a marginal unit of
the claim inventory. The left-hand side is an op-
portunity cost, i.e., the discount rate times the
price of the asset. The first term on the right-
hand side is the dividend of the asset measured
by the marginal contribution of the number of
claims to the Hamiltonian, and the last term is
the capital gain or loss when the price of the as-
set changes over time. Using equations (4)—(6) it
is easy to derive an equation for the dynamics of
claims settlement and hence the payout pattern.
From the dynamics of the number of unsettled
claims and the shadow price of the claims’ set-
tlement rate, it is in fact possible to perform an
equilibrium analysis of the system.

5. Extension to a stochastic model

This model extends the certainty model for
optimal fair premium to incorporate uncertainty.
The OFP is found by solving the following in-
tertemporal management problem

P0 = minsE
μZ 1

0
e¡rtL(s,n, t)dt

¶
(7)
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subject to the dynamical constraint given by the
stochastic differential equation

dn= f(n,s, t)dt+¾(s,n, t)dz, (8)

where E(:) denotes expected value and dz is the
increment of a stochastic process z that obeys
what is called a Brownian motion or Wiener pro-
cess and ¾2 is the variance (O’Brien 1986;
Kamien and Schwartz 1991; Tapiero 1982). The
Wiener process is independent and identically
distributed (iid) with mean zero and variance dt.
The dynamics of the unsettled claims are de-
scribed by the dynamic stochastic differential
equation (8). Now, the problem is the minimiza-
tion of the present value of expected losses sub-
ject to the constraints.
Following Kraus and Ross (1982), let V(n0, t0)

be the value at time t0 of the remaining cash out-
flows from claims settlement and n(t0) = n0. This
implies

V(n0, t0) = minsE
μZ 1

t0

e¡rtL(n,s)dt
¶
, (9)

which results in the determination of the OFP
as an expected value of the discounted net rev-
enues. Then, the basic optimality condition for
the stochastic optimal control problem is given
by the Hamilton-Jacobi-Bellman equation

Vt+mins(L(n,s)+Vng(n,s) + (1=2)¾
2(n,s, t)Vnn)

= 0 (10)

where the zero subscript is suppressed since no
confusion is likely to arise. This yields a sec-
ond order partial differential equation in n. The
derivation of this equation requires the applica-
tion of Ito’s stochastic calculus (Kamien and
Schwartz 1991). Note that the above reduces to
the deterministic formulation if the variance term
is zero.

6. Example of competitive market
pricing under certainty
To elicit the applicability of this model in the

policy decision-making process, we study the be-

havior of insurance markets in a deterministic
setting. As in the previous section the dynamics
of the unsettled claims are given by an equation
of the type

_n= f(n)¡ s (11)

where f(:) is the addition to the stock, which
for simplicity is assumed to be a function of the
current number of claims and s the number of
claims settled per unit of time.
For this example, let us assume that the firm’s

profits are given by the premiums less the undis-
counted losses. Then the management problem
will be the maximization of the present value of
the profits, i.e.,

maxs

Z 1

0
[q¡ c(n)]se¡rtdt (12)

subject to the dynamics of the claims and a min-
imum settlement rate that is required by regula-
tion. The discount rate r is assumed to be equal to
the market rate of interest. The current or undis-
counted shadow price associated with a unit of
unsettled claims is given by

m

8>><>>:
< q¡ c(n), s > s¤

= q¡ c(n), s= s¤

> q¡ c(n), s < s¤
(13)

where s¤ is the equilibrium rate of claims set-
tlement (the rate at which claims settlement is
somewhat steady). The above gives the so-called
Bang-Bang solution in control theory. It is obvi-
ous that the optimal solution is the corner solu-
tion, i.e., to delay payment as long as possible.
We will refer to such a solution as the “ideal” so-
lution for the insurer. However, reality will not
permit this solution because of competition, reg-
ulations, and probably potential lawsuits. It may
be assumed that, all things being equal, the equi-
librium level of the settlement rate will prevail.
Thus, we will assume that s= s¤ in the remain-
der of this section. This yields an equation for
the dynamics of price written in terms of the
shadow price of coverage. Note that, for a free
end point problem and a time horizon T as in
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equation (2), the boundary condition is given by
m(T) = 0. This implies that the price of a claim
at the end of the time horizon is zero. Using the
maximum principles, it can be shown that the im-
puted price evolves according to the differential
equation

_m= rm¡f 0(n)[q¡ c(n)]+ c0(n)s: (14)

This implies that the rate of capital gain on one
unit of unsettled claims must equal the total cost
of insuring the unit, i.e., the opportunity cost of
foregone interest plus the loss due to increase in
the total stock growth rate attributable to that unit
plus the change in total settlement cost resulting
from that unit. A simple algebraic manipulation
of equation (14) results in an expression for the
rate of return condition:

r =
_m
m
+f 0(n)¡ c

0(n)s
m

: (15)

That is, the total return associated with assuming
the risk of a unit of stock of unsettled claims
must equal the market rate of interest. Rewriting
this in terms of price inflation, i.e., rate of change
in price, we have

_q= r(q¡ c(n))¡f 0(n)(p¡ c(n))+ c0(n)f(n):
(16)

This equation describes the price dynamics for
competitive insurance. We see that the price of
the insurance contract grows at a rate equal to
the discount rate.

6.1. The competitive market equilibrium
price

To derive the competitive optimum equilibrium
market price, a steady-state equilibrium is de-
fined as _q= _n= 0, which implies that

q¤ = c(n)+
¡c0(n)f(n)
r¡f 0(n) : (17)

That is, the price is equal to the marginal cover-

age cost plus an economic rent or a profit margin.

Since f(n) = s if _n= 0, the competitive equilib-
rium rent is the capitalized value of the future in-
creases in the cost resulting from a unit increase
in the stock of claims. Hence, the capitalization is
based on a rate that reflects the opportunity cost
of the market interest rate less the contribution of
the unit to the stock growth. Note that r¡f 0(n)
is the net interest rate, i.e., the internal rate of re-
turn for the insurer or investor. This means that
increases in claims will lead to a reduction in
total returns.

6.2. Example using the uncertainty case

To make the previous example more realistic,
we look at the stochastic version of the certainty
case. As in the previous section, the dynamics of
unsettled claims are given by an equation of the
type

dn= (f(n)¡ s)dt+¾(n)dz, (18)

where ¾(n) is the diffusion term, which is zero in
the deterministic case. Again, dz is the increment
of a Wiener process. The dynamics of claims are
assumed to be in part deterministic and in part
random.
Let us assume that the firm’s profits are given

by the premiums minus the undiscounted losses.
Then the management problem will be the
maximization of the present value of the pro-
fits, i.e., the problem will be to find v(n0t0),
where

V(n0, t0) = maxsE
μZ 1

t0

[q¡ c(n)]se¡r(t¡t0)dt
¶
(19)

subject to the dynamics of the claims and a min-
imum settlement rate that is required by regula-
tion. Here, t0 is the time at which the policy is
issued and V(n0, t0) is the OFP. Assume also that
the profit is given by [p(s)¡ c(n)]s in this exam-
ple. Then the above results in the fundamental
equation of optimality (subscripts are again sup-
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pressed):

rV =maxs[(q¡ c(n))s+Vn(n)(f(n)¡ s)
+ 1
2¾

2Vnn(n)]: (20)

Maximizing the square bracketed term in (20)
with respect to s and ignoring the term [q0(s)s]
we have

Vn = q¡ c(n): (21)

Here, Vn is the rent and can be interpreted as
the social and market value of a marginal unit
of the stock of claims. It is the profit that can
be obtained by insuring the unit. Transforming
equation (21) gives s¤(n) = q¡1[Vn+ c(n)], which
implies that

rV =
Z s¤(n)

0
q(s)ds¡ c(n)s¤(n)+ [f(n)¡ s¤(n)]Vn

+ 1
2¾

2(n)Vnn: (22)

Differentiating with respect to n gives

rVn = [p¡ c(n)¡Vn]s¤n¡ c0(n)s¤+f 0(n)Vn
+¾0(n)¾(n)Vnn+[f(n)¡ s¤]Vnn
+ 1
2¾

2(n)Vnnn: (23)

The first term in the square brackets in (23) is
zero, hence the equation reduces to

rVn =¡c0(n)s¤+f 0(n)Vn+¾0(n)¾(n)Vnn
+(1=dt)Etd(Vn): (24)

Also, equation (21) leads to

(1=dt)E(Vn) = (1=dt)Et(d[p¡ c(n)]): (25)

Using equations (21), (24), and (25) and rear-
ranging yields an explicit condition for the rate
of return analogous to the case of certainty:

(1=dt)Etd(p¡ c)
(p¡ c) ¡f 0(n)¡ c

0(n)s¤

(p¡ c)
= r+¾0(n)¾(n)(¡Vnn=Vn), (26)

where (¡Vnn=Vn) can be referred to us the co-
efficient (Arrow-Pratt measure) of absolute risk

aversion (Silberberg 1990). It reflects in this case
premium that policyholders must pay due to un-
certainty in the growth of stock of claims. Since
¾0(n) is positive, the rate of return condition in
(26) is the deterministic rate augmented by an
“uncertainty premium load” equal to the increase
in stock growth variance due to the unit multi-
plied by the coefficient of implicit risk aversion.
The higher the coefficient of absolute risk aver-
sion, the higher the risk premium. That is, more
risk-averse insurers will demand higher returns,
all else being equal.

7. Summary and conclusion

This paper has used a new technique to analyze
rate regulation in an insurance context. A new
dimension has been added to the debate on rate
regulation and fair pricing in insurance ratemak-
ing. The continuous dynamic discounted cash
flow models introduced in this paper are the
counterparts of the discrete DCF models such as
the Myers-Cohn model used by the Massachu-
setts Worker Compensation Rating Bureau. They
can therefore be used to supplement the discrete
models and to shed more light on issues where
the DCF models are limited.
The analytical results can be very useful in

policymaking and can thus be used in the in-
surance rate-setting process. The concept of fair
premiums is good but it is too broad, subjec-
tive, and, at best, vague. If achievable, optimum
fair premiums are the ideal prices for insurance
contracts. The models presented here can be ex-
tended in various ways to include several realistic
features of insurance pricing, such as by exten-
sion to multivariable models. One important ex-
tension would be to model separately the capital
dynamics and investment income. Further exten-
sion may include the idea of salvage value for
a written policy to formulate the problem as dy-
namic differential games. These are worth pur-
suing in future research.

VOLUME 2/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 169



Variance Advancing the Science of Risk

References
Borch, K. H., Economics of Insurance, edited by K. Aase
and A. Sandmo, New York: Elsevier Science, 1990.

Cummins, J. D., “Risk-Based Premiums for Insurance Guar-
anty Funds,” Journal of Finance 43, 1988, pp. 823—839.

Dixit, A. K., and R. S. Pindyck, Investment under Uncer-
tainty, Princeton, NJ: Princeton University Press, 1993.

Doherty, N. A., and J. R. Garven, “Price Regulation in
Property-Liability Insurance: A Contingent-Claims Ap-
proach,” Journal of Finance 41, 1986, pp. 1031—1050.

Kamien, M. I., and N. L. Schwartz, Dynamic Optimization:
The Calculus of Variations and Optimal Control in Eco-
nomics and Management (2nd ed.), New York: Elsevier
Science, 1991.

Kraus, A., and S. Ross, “The Determination of Fair Prof-
its for the Property-Liability Insurance Firm,” Journal of
Finance 37, 1982, pp. 1015—28.

Myers, S., and R. Cohn, “Insurance Rate Regulation and
the Capital Asset Pricing Model,” in Fair Rate of Return
in Property-Liability Insurance, eds. J. D. Cummins and
S. E. Harrington, Boston: Kluwer, 1987, pp. 55—78.

O’Brien, T., “A Stochastic-Dynamic Approach to Pension
Funding,” Insurance:Mathematics and Economics 5, 1986,
pp. 141—146.

Silberberg, E., The Structure of Economics: A Mathematical
Analysis, New York: McGraw-Hill, 1990.

Tapiero, C., “Optimal Control of a Jump Mutual Insurance
Process,” ASTIN Bulletin 13, 1982, pp. 13—21.

Taylor, G., “Fair Premium Rating Methods and the Rela-
tionships Between Them,” Journal of Risk and Insurance
61, 1994, pp. 592—615.

Young, V. R., “Insurance Rate Changing: A Fuzzy Logic
Approach,” Journal of Risk and Insurance 63, 1996, pp.
461—484.

Zimbidis, A., and S. Haberman, “Controlling the Solvency
Interaction Among a Group of Insurance Companies,”
Journal of Actuarial Practice 9, 2001, pp. 151—187.

170 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 1


