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Dependencies in Stochastic
Loss Reserve Models

by Glenn Meyers

ABSTRACT

Given a Bayesian Markov chain Monte Carlo (MCMC) sto­

chastic loss reserve model for two separate lines of insurance,

this paper describes how to fit a bivariate stochastic model that

captures the dependencies between the two lines of insurance.

A Bayesian MCMC model similar to the Changing Settlement

Rate (CSR) model, as described in Meyers (2015), is initially

fit to each line of insurance. Then taking a sample from the

posterior distribution of parameters from each line, this paper

shows how to produce a sample that represents a bivariate dis­

tribution that maintains the original univariate distributions as

its marginal distributions. This paper goes on to compare the

predicted distribution of outcomes by this model with the actual

outcomes, and a bivariate model predicted under the assump­

tion that the lines are independent. It then applies two Bayesian

model selection statistics to compare the fits of the two models.
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As we shall see below, the parameters RX
wd will be

functions of w and d and the parameters XX
d will be

subject to constraints for each line X. That feature can
be ignored for now as we are setting up the problem.

As shown in Meyers (2015), it is possible to use a
Bayesian MCMC model to generate a large sample,
say of size 10,000, from the posterior distributions of
{{iRX

wd}, {iXX
d}i=1

10000 for each line of insurance X.
The idea put forth by Zhang and Dukic is to fit a

bivariate Bayesian MCMC model of the following
form, given the Bayesian MCMC models described
by Equation (1.1).
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The correlation parameter, W, describes the depen­
dency between Line X and Line Y.

Zhang and Dukic then use a Bayesian MCMC
model to obtain a large sample from the posterior
distribution:
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The asterisk (*) on the R and X parameters calls
attention to the fact that the posterior distributions
from the models in Equation (1.1) may, and often do,
differ significantly from the corresponding marginal
posterior distributions from the models in Equa­
tion (1.2). To the actuary who prepares loss reserve
reports, this presents a problem. Typically, actuaries
analyze their reserves by individual line of insurance.
With a Bayesian MCMC model, they can quantify
the uncertainty of the outcomes for that line. Now
suppose that there is a demand to quantify the uncer­
tainty in the sum of losses for two or more lines of
insurance using the Zhang­Dukic framework. They
will need to explain, for example, why the univariate
distribution for Commercial Auto produces different
results than the marginal distribution for Commercial

1. Introduction

Recent attempts to apply enterprise risk manage­
ment principles to insurance have placed a high degree
of importance using stochastic models to quantify
the uncertainty on the various estimates. For general
insurers, the most important liability is the reserve for
unpaid losses. Over the years, a number of stochastic
models have been developed to address this problem.
Some of the more prominent nonproprietary models
are those of Mack (1993, 1994), England and Verrall
(2002) and Meyers (2015).

As good as these models may be, they fall short of
quantifying the uncertainty in the insurer’s liability as
they do not address the issue of correlation (or more
generally—dependencies) between lines of insurance.
The failure to resolve this problem analytically has
resulted in judgmental adjustments to various risk­
based capital formulas. Herzog (2011) provides a
summary of some current practices.

Zhang and Dukic (2013) describe what I believe
to be a very good attempt at solving this problem. As
this paper uses their paper as a starting point, it would
be good to provide an outline of their approach.1

But first, we need to set our notation. Let CX
wd be the

cumulative paid claim amount in line of insurance X

for accident year, w = 1,. . . . , K and development year
d = 1, . . . , K. Since this paper works with Schedule P
data taken from the CAS Loss Reserve Database,2 we
can set K = 10. In this paper, X will be CA for Com­
mercial Auto, PA for Personal Auto, WC for Workers
Compensation, or OL for Other Liability.

Now suppose that we have models for two differ­
ent lines of insurance such as
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1As this paper deals with lognormal models of claim amounts, its descrip­
tion of the Zhang­Dukic ideas are not as general as they put forth in their
paper. Their results apply for more general copulas, where this paper deals
only with the more specialized multivariate lognormal distribution.
2The CAS Loss Reserve Database is on the CAS website at http://www.
casact.org/research/index.cfm?fa=loss_reserves_data.
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The purpose of this paper is to present a framework
similar to that of Zhang and Dukic that preserves the
univariate models as the marginal distributions.

Before we go there, we should note that a sub­
optimal model might produce artificial dependen­
cies. To illustrate, consider Figure 1.1, where y1 and y2

are independent random deviations off two parabolic
functions of x. We want to fit a bivariate distribution
to the ordered pair (y1(x), y2(x)) of the form:
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Auto when combined with Personal Auto. And the
marginal distribution could be different still when
combined with Workers Compensation.

Scalability is also a problem. For example, the
univariate model used in this paper has 31 param­
eters. Using this model with the bivariate Zhang­
Dukic framework yields a model with 31 + 31 + 1
= 63 parameters. In theory, Bayesian MCMC soft­
ware can handle it, but in practice I have found that
running times increase at a much faster rate than the
number of parameters. I have coded models using
the bivariate Zhang­Dukic framework that work well
for some pairs of loss triangles, but others took sev­
eral hours of running time to obtain convergence of
the MCMC algorithm.
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Figure 1.1. Illustration of artificial correlation
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able for studying dependency models. Preferring to use
loss triangles that had already been vetted, I decided
to stick with these within­group pairs of triangles.

This paper will provide detailed analyses for two
illustrative insurers (Group 620 ­ Lines CA and PA
and Group 5185 Lines CA and OL). The complete
loss triangles and outcomes are in Table 2.1. The upper
data triangle used to fit each model is printed with the
ordinary font. The lower data triangle used for retro­
spective testing is printed with bold and italicized font.

A complete list of the insurer groups used in this
paper is included in a zip archive titled “Appendix.”
The files in the Appendix contain:

• The 200 groups along with the univariate model
calculations in Sections 3 and 6.

• The R scripts that produce the univariate model
calculations described in Section 3 and 6.

• The 102 within­group pairs with the bivariate
model calculations in Sections 4, 5 and 6.

• The R scripts that produce the bivariate model cal­
culations described in Sections 4, 5 and 6.

3. The changing settlement rate
(CSR) model

The univariate model used in this paper will be a
minor modification to the CSR model used in Meyers
(2015). Here is the model. Let:

1. ( )α Normal 0, 10w ∼  for w = 2, . . . ,10. F1 = 0.

2. logelr ~ Uniform(−1, 0.5).

3. Gd ~ Uniform(−5, 5) for d = 1, . . . ,9. G10 = 0.

4. S1 = 1, Sw = Sw–1
z (1 – L – (w − 2) z I) for w = 2, . . . ,10.

L ~ Normal (0, 0.05), I ~ Normal(0, 0.01).

5. Rwd = log(Premiumw) + logelr + Fw + Gd
z Sw.

6. ∑σ =
=

,2
10

ad i
i d

ai ~ Uniform(0, 1).

7. log(Cwd) ~ Normal(Rwd, Xd).

This model differs from the CSR model described
in Meyers (2015) in three aspects.

1. The parameter L allows for a speedup (or slow­
down when L is negative) of the claim settlements.

The upper plots of Figure 1.1 show the pairs
(x, y1(x)) and (x, y2(x)) with the suboptimal constant
models plotted in red, and the correct parabolic
models plotted in green. The lower left plot shows
a scatter plot of y1(x) – R1 and y2(x) – R2 for the sub­
optimal model. The lower right plot is a scatter plot
of y1(x) – R1(x) and y2(x) – R2(x) for the correct para­
bolic model. This example shows how suboptimal
models for the marginal distribution can cause an
artificial nonzero correlation the multivariate model.
Avanzi, Taylor and Wong (2016) discuss this phenom­
enon in greater detail.

The next section will describe the data used in this
paper. Section 3 will describe the univariate (mar­
ginal) models and illustrate some diagnostics to test
the appropriateness of the model. Section 4 will show
how to obtain a random sample from the posterior dis­
tribution of parameters subject to the constraint that
the marginal distribution is the same as those obtained
by the corresponding univariate models. Section 5
will describe statistical tests to test the hypothesis that
the correlation parameter, W, in the bivariate distribu­
tion is significantly different from zero. Section 6 will
address the sensitivity of the results to the choice of
models, and Section 7 will discuss the conclusions.

This paper assumes that the reader is familiar with
Meyers (2015).

2. The data

The data used in this paper comes from the CAS
Loss Reserve Database.3 The Schedule P loss tri­
angles taken from this database are listed in Appen­
dix A of Meyers (2015). There are 200 loss triangles,
50 each from the CA, PA, WC and OL lines of insur­
ance. Univariate models from all 200 loss triangles
will be analyzed in Section 3 and 6.

At the time of writing the monograph (Meyers
2015), I did not envision a dependency study. But
it turned out that there were 102 within­group pairs
of triangles (29 CA­PA, 17 CA­WC, 17 CA­OL,
14 PA­WC, 15 PA­OL and 10 WC­OL) that were suit­

3http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Table 2.1. Data for illustrative insurers

Group 620 - Commercial Auto

AY Premium DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10

1 30,224 4,381 9,502 15,155 18,892 20,945 21,350 21,721 21,934 21,959 21,960

2 35,778 5,456 9,887 13,338 17,505 20,180 20,977 21,855 21,877 21,912 21,981

3 42,257 7,083 15,211 21,091 27,688 28,725 29,394 29,541 29,580 29,595 29,705

4 47,171 9,800 17,607 23,399 29,918 32,131 33,483 33,686 34,702 34,749 34,764

5 53,546 8,793 19,188 26,738 31,572 34,218 35,170 36,154 36,201 36,256 36,286

6 58,004 9,586 18,297 25,998 31,635 33,760 34,785 35,653 35,779 35,837 35,852

7 64,119 11,618 22,293 33,535 39,252 42,614 44,385 44,643 44,771 45,241 45,549

8 68,613 12,402 27,913 39,139 45,057 47,650 50,274 50,505 50,554 50,587 50,587

9 74,552 15,095 27,810 35,521 44,066 48,308 50,061 51,337 51,904 52,016 53,895

10 78,855 16,361 28,545 40,940 50,449 54,212 56,722 57,658 57,734 57,883 57,906

Group 620 - Commercial Auto

AY Premium DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10

1 48,731 15,318 27,740 35,411 40,204 42,388 43,726 44,217 44,277 44,400 44,431

2 49,951 15,031 30,132 37,946 42,371 43,875 44,518 44,738 45,089 45,094 45,146

3 52,434 16,994 31,614 39,599 44,943 46,342 47,653 47,866 48,085 48,097 48,241

4 58,191 17,717 33,767 42,741 46,881 49,117 50,419 50,641 50,787 50,942 50,980

5 61,873 17,842 31,117 39,436 44,871 46,810 47,421 48,209 48,724 48,815 49,133

6 63,614 20,266 37,466 45,721 50,641 52,244 53,241 53,794 54,093 54,468 54,471

7 63,807 18,778 33,216 42,030 47,695 49,252 50,002 50,546 50,799 50,887 50,890

8 61,157 19,900 36,442 43,585 49,177 52,052 53,150 53,420 53,488 53,649 53,659

9 62,146 20,395 35,797 43,816 47,687 50,468 51,085 51,598 51,754 51,756 51,914

10 68,003 20,622 36,466 44,589 50,539 52,860 53,886 54,610 54,796 55,048 55,080

Group 5185 - Other Liability

AY Premium DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10

1 6,093 2,333 4,977 5,798 6,054 6,422 6,494 6,639 6,857 6,856 6,859

2 7,396 2,899 4,044 4,800 6,005 6,252 6,295 6,304 6,333 6,336 6,336

3 8,038 1,750 3,180 4,381 5,184 5,989 6,230 6,258 6,278 6,301 6,304

4 9,366 2,329 3,886 5,172 6,016 6,586 7,096 7,240 7,424 7,512 7,554

5 10,677 2,652 4,828 6,347 7,356 7,834 8,099 8,247 8,554 8,555 8,557

6 11,012 2,823 5,139 7,058 8,053 8,734 8,867 9,008 9,019 9,025 9,025

7 11,768 2,689 5,381 7,725 9,384 10,125 10,407 10,699 11,470 11,696 11,694

8 12,777 3,397 5,582 8,005 10,035 10,512 11,003 11,072 11,080 11,064 11,062

9 13,803 3,365 6,344 8,064 9,381 9,851 10,269 10,375 10,522 10,523 10,524

10 14,575 4,077 6,753 8,608 9,676 10,174 10,429 10,627 10,635 10,662 10,662

Group 5185 - Other Liability

AY Premium DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10

1 15,376 3,517 6,817 8,191 9,070 9,656 10,033 10,106 10,179 10,298 10,298

2 16,510 4,153 7,230 9,110 10,938 11,751 11,951 12,035 12,103 12,280 12,243

3 15,596 3,923 6,945 8,877 10,104 11,003 11,476 11,596 11,902 11,938 11,973

4 18,190 4,051 7,725 10,094 11,854 12,822 13,326 13,348 13,364 13,435 13,437

5 19,207 4,580 7,902 10,097 10,862 12,339 12,870 12,951 13,019 13,041 13,071

6 19,488 4,418 8,607 10,433 11,871 12,397 12,773 13,088 13,144 13,239 13,359

7 21,585 5,151 9,996 13,269 15,162 15,093 15,336 15,513 15,756 15,787 15,846

8 22,227 5,529 8,919 10,729 11,891 12,426 12,769 13,060 13,105 13,296 13,210

9 22,983 6,921 11,255 14,436 16,191 17,793 18,427 18,708 19,025 19,050 19,044

10 25,612 6,346 11,181 14,083 15,838 17,152 17,798 17,971 18,167 18,485 18,532
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By including the I parameter, this version of the
CSR model allows the settlement rate to change
over time.

2. Forcing F1 = 0 eliminates some overlap between
the Fw parameters and the logelr parameter. In the
Meyers (2015) version of the model, a constant
addition to each Fw parameters could be offset by
a subtraction in the logelr parameter. Correcting
features of this sort tends to speed up convergence
of the MCMC algorithm.

3. The MCMC software used for the calcula­
tion described in this paper is Stan. See http://
mc­stan.org for installation instructions. I have
found that, in general, the MCMC algorithm imple­
mented by Stan converges faster than that of JAGS.
Stan also allows one to compile a model (in C++)
in advance of its use. Using a compiled model can
greatly speed up the processing when one uses the
same model repeatedly (as we will do below) with
different inputs.

The R script that implements this version of the
CSR model is available in the appendix spreadsheet.
The script produces a sample from the posterior dis­
tribution of the parameters for line X,

logelr
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Following Meyers (2015), the script then simulates
10,000 outcomes {iC

X
w,10}i=1

10000 from which we can cal­
culate various summary statistics such as the predic­
tive mean and standard deviation of the outcomes
and the percentile of the actual outcome. Table 3.1
gives a summary of the result of these calculations for
the illustrative insurers in their two lines of business.

Figure 3.1 gives the test for uniformity of the pre­
dictive percentiles of this version of the CSR model.
When compared with Meyers (2015) Figure 22, we
see that allowing the claim settlement rate to change
over time improves the model so that the percentiles
are (within 95% statistical bounds) uniformly distrib­
uted for all four lines.

While the observation that the CSR model per­
forms well on a large number of old triangles with
outcome data is encouraging, it should not relieve
the actuary from testing the assumptions underlying
their model of their current data. Traditional tests,
such has those provided by Barnett and Zehnwirth
(2000), plot residuals (i.e., differences between
observed and expected values) along accident year,
development year and calendar year dimensions.

The Bayesian MCMC models in this paper provide
a sample of size 10,000 from a posterior distribution
of parameters. Given that we have this large sample,
I consider it to be more informative if we take a sub­
sample, S, of (say) size 100, then calculate the stan­
dardized residuals for each w and d in the upper loss
triangle, and s in the subsample

( )
= − µ

σ


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
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 ∈

log
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C
S
X wd

X
s wd

X
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In general we should expect these residual plots to
have a standard normal distribution with mean 0 and
standard deviation 1. Figure 3.2 shows plots of these
standardized residuals against the accident year,
development year and calendar year for the illus­
trative insurers. I have made similar plots for other
insurers as well. For accident years and development
years, the plots have always behaved as expected.
Deviations for the early calendar years as shown in
two of the four plots are not uncommon. I have cho­
sen to regard them as unimportant, and attach more
importance to later calendar years.

If the standardized residual plots look like those of
the illustrative insurers, we should not have to worry
about artificial correlations.

4. Fitting bivariate distributions

The previous section presented a univariate model
that performed well on data in the CAS Loss Reserve
Database. This section shows how to construct a
bivariate distribution with the CSR model as mar­
ginal distributions.
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Table 3.1. CSR Models on illustrative insurer data

CA Insurer Group 620 Outcome Percentile = 39.09

w Premium Estimate Std. Dev. CV Outcome

1 30,224 22,123 0 0 21,960

2 35,778 21,890 482 0.022 21,981

3 42,257 30,077 725 0.024 29,705

4 47,171 34,062 889 0.026 34,764

5 53,546 36,664 1,135 0.031 36,286

6 58,004 35,167 1,339 0.038 35,852

7 64,119 45,397 2,307 0.051 45,549

8 68,613 53,183 4,066 0.077 50,587

9 74,552 55,163 7,284 0.132 53,895

10 78,855 63,493 16,849 0.265 57,906

Total 553,119 397,219 26,901 0.068 388,485

PA Insurer Group 620 Outcome Percentile = 63.82

w Premium Estimate Std. Dev. CV Outcome

1 48,731 44,538 0 0 44,431

2 49,951 45,463 366 0.008 45,146

3 52,434 48,315 379 0.008 48,241

4 58,191 51,007 460 0.009 50,980

5 61,873 48,343 512 0.011 49,133

6 63,614 54,272 728 0.013 54,471

7 63,807 50,804 861 0.017 50,890

8 61,157 52,726 1,338 0.025 53,659

9 62,146 52,780 2,362 0.045 51,914

10 68,003 53,015 5,038 0.095 55,080

Total 589,907 501,264 8,529 0.017 503,945

CA Insurer Group 5185 Outcome Percentile = 21.82

w Premium Estimate Std. Dev. CV Outcome

1 6,093 6,937 0 0 6,859

2 7,396 6,517 214 0.033 6,336

3 8,038 6,228 227 0.036 6,304

4 9,366 7,102 292 0.041 7,554

5 10,677 8,491 401 0.047 8,557

6 11,012 9,100 543 0.060 9,025

7 11,768 10,718 813 0.076 11,694

8 12,777 11,181 1,245 0.111 11,062

9 13,803 12,732 2,469 0.194 10,524

10 14,575 17,192 6,606 0.384 10,662

Total 105,505 96,199 9,917 0.103 88,577

OL Insurer Group 5185 Outcome Percentile = 56.12

w Premium Estimate Std. Dev. CV Outcome

1 15,376 10,354 0 0 10,298

2 16,510 12,339 209 0.017 12,243

3 15,596 11,809 220 0.019 11,973

4 18,190 13,496 286 0.021 13,437

5 19,207 13,147 314 0.024 13,071

6 19,488 13,253 407 0.031 13,359

7 21,585 17,111 672 0.039 15,846

8 22,227 14,225 820 0.058 13,210

9 22,983 18,194 1,808 0.099 19,044

10 25,612 16,838 3,562 0.212 18,532

Total 196,774 140,766 6,055 0.043 141,013
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Figure 3.1. Uniformity tests for CSR model
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Figure 3.1. Uniformity tests for CSR model (continued)
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Figure 3.2. Standardized residual plots for the CSR model
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To shorten the notation let

i
X

i w
X

w i d
X

d i d
X

d

i
X

i
X

i
X

{ } { } { }
θ =

α β σ

γ δ













= = =, , ,

logelr , ,

2
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1

9

1

10

for line X and i = 1, . . . ,10000.
Let’s first consider what happens when we try the

Zhang­Dukic approach with the CSR model. Let’s
call this model the ZD­CSR model. Using Bayesian
MCMC to get a sample from the posterior distribu­
tion for X=CA and Y=PA of Insurer #620 yields:

{ } { }{ }θ θ ρ =, , ,
1

10,000
C Ci

CA
i

PA
i wd

CA
wd
PA

i

The prior distributions for the iVX parameters are
the same as they are for the CSR model. The prior
distribution for the W parameter is a G(2,2) prior dis­
tribution translated from (0,1) to (−1,1).

Using the parameter sets

{ } { }θ θ= =and
1

10,000

1

10,000
i

CA

i i
PA

i

I then simulated the marginal distributions, given in
Table 4.1, for each line of insurance. Notice that the
estimates and the standard deviations are significantly
higher for marginal distributions of the ZD­CSR model
than for the corresponding univariate distributions in
Table 3.2. Moreover, the posterior distribution of W
in the ZD­CSR model, given in Figure 4.1, appears
be clustered close to negative 1. This suggests that
something is wrong with the ZD­CSR model.

One way I found to improve the ZD­CSR model is
to allow the correlation parameter, W, to vary by settle­
ment lag. Let’s call this model the ZD2­CSR model.

Figure 4.2 shows that the Wds vary by settlement
lag. Table 4.2 shows that the marginal distributions
implied by the ZD2­CSR model are much closer to
the univariate distributions in Table 3.1. Outputs from
the ZD2­CSR model for other insurers show similar
results, but the pattern of the Wds are quite different.
For some insurers the Wds are predominantly positive.
Regardless of whether or not the Wds are positive or

Table 4.1. Marginal distributions implied by the ZD-CSR model

CA Insurer Group 620

w Premium Estimate Std. Dev. CV

1 30,224 22,487 0 0

2 35,778 22,193 1,964 0.089

3 42,257 33,353 4,831 0.145

4 47,171 36,883 4,712 0.128

5 53,546 36,886 3,996 0.108

6 58,004 36,776 6,131 0.167

7 64,119 43,263 7,585 0.175

8 68,613 55,233 14,135 0.256

9 74,552 48,469 19,779 0.408

10 78,855 75,545 109,914 1.455

Total 553,119 411,087 125,788 0.306

PA Insurer Group 620

w Premium Estimate Std. Dev. CV

1 48,731 44,362 0 0

2 49,951 45,020 1,190 0.026

3 52,434 46,936 1,828 0.039

4 58,191 50,226 1,716 0.034

5 61,873 47,966 1,671 0.035

6 63,614 55,290 3,394 0.061

7 63,807 52,204 3,108 0.060

8 61,157 53,211 4,788 0.090

9 62,146 59,579 8,853 0.149

10 68,003 61,237 15,835 0.259

Total 589,907 516,030 26,359 0.051
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Figure 4.1. The posterior distribution of q
for the ZD-CSR model
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Figure 4.2. Boxplot of posterior distribution
of Wds for ZD2-CSR model
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negative, the “outlier” Wds usually appear at different
settlement lags.4

This erratic behavior of the Wds suggests that a good
practice would be to force those Wds to be equal for
all settlement lags. This is what the ZD­CSR model
does! This model forces the other parameters to
account for the differences in the data that indicate
differing Wds in the ZD2­CSR model. It turns out that
the differences in the parameters are quite large.
Figure 4.3 shows the differences between some of
the parameters in the bivariate and the univariate
models. If we are to produce a model that has a

Table 4.2. Marginal distributions implied 
by the ZD2-CSR model

CA Insurer Group 620

w Premium Estimate Std. Dev. CV

1 30,224 22,123 0 0

2 35,778 21,693 455 0.021

3 42,257 30,382 725 0.024

4 47,171 34,608 886 0.026

5 53,546 36,304 1,047 0.029

6 58,004 36,060 1,357 0.038

7 64,119 45,315 2,280 0.050

8 68,613 52,114 3,953 0.076

9 74,552 55,389 7,482 0.135

10 78,855 65,215 17,864 0.274

Total 553,119 399,203 28,024 0.070

PA Insurer Group 620

w Premium Estimate Std. Dev. CV

1 48,731 44,569 0 0

2 49,951 45,215 332 0.007

3 52,434 48,006 419 0.009

4 58,191 51,071 446 0.009

5 61,873 48,083 487 0.010

6 63,614 55,237 813 0.015

7 63,807 51,009 859 0.017

8 61,157 53,200 1,343 0.025

9 62,146 53,836 2,608 0.048

10 68,003 55,091 5,414 0.098

Total 589,907 505,317 9,217 0.018

4The outputs for the other insurers are not provided here, but the reader
should be able to reproduce the outputs with the scripts for the ZD­CSR
and ZD2­CSR models that are in the Appendix worksheet.

single W parameter, we need to find a way to preserve
the marginal distributions produced by the univariate
models.

Let’s now move on to a two­step approach that
produces a bivariate model that preserves the uni­
variate distributions as the marginal distributions.

The first step is to obtain the univariate samples,
{iVX�{CX

wd}}i=1 
10,000 and {iVY�{CY

wd}}i=1
10,000 where CX

wd �
Upper Triangle of line X and CY

wd � Upper Triangle
of line Y. Then repeatedly for each i, use Bayesian
MCMC to take a sample from the posterior distribu­
tion of {W�{CX

wd}, {CY
wd}, iVX, iVY} where W has a G(2,2)

prior distribution translated from (0,1) to (−1,1). Next
we randomly select a single i W from that sample and
use {iVX, iVY, iW}i=1 

10,000 to calculate the derived param­
eters in the bivariate distribution given by Equa­
tion (1.2). This amounts to using the two univariate
distributions as the prior distribution for the second
Bayesian step. From that two­step bivariate distribu­
tion, one can simulate outcomes from the “posterior”
distribution of parameters and calculate any statis­
tic of interest. Be reminded that this can be differ­
ent from the usual Bayesian posterior distribution
{iVX, iVY, iW�{CX

wd},{CY
wd}} i=1 

10,000 that comes out of the
Zhang­Dukic approach.

At first glance, one might expect the run time for
10,000 Bayesian MCMC simulations to be unaccept­
ably long. But there are a number of considerations
that allow one to speed up the calculations.

1. The MCMC simulation is for a single parameter
that runs much faster than a multi­parameter sim­
ulation that one normally runs with stochastic loss
reserve models.

2. We have a good starting value, i W = 0. The burn­in
period is short and convergence is rapid.

3. Since we are repeatedly running the same model
with different inputs, we need only compile the
model once, which the Stan software permits.

4. Using the “parallel” package in R allows one to
distribute the simulations to separate cores on a
multi­core computer.

Taking these factors into account, my fairly
new high­end laptop usually turns out this bivariate
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As Figure 3.1 shows, the univariate models pass
our uniformity test, so one would think that a valid
bivariate model would also pass a uniformity test.
Figures 4.6 and 4.7 show the results.

It turns out that the two­step bivariate model just
barely fails the test and the independence assump­
tion passes the uniformity test. This suggests that the
lines of insurance are independent for many, if not
all, insurers. In the next section we will examine the
independence assumption for individual pairs of
loss triangles.

5. Model selection

Let’s start the discussion with a review of the Akaike
information criteria (AIC).

Suppose that we have a model with a data vector,
x, and a parameter vector V, with p parameters. Let
/̂ be the parameter value that maximizes the log­
likelihood, L, of the data, x = {xj}

J
j=1}. Then the AIC

is defined as

( )= − ϑAIC 2 2 ˆ (5.1)xi ip L

Given a choice of models, the model with the lowest
AIC is to be preferred. This statistic rewards a model

distribution in about 5 minutes. As I mentioned
above, the R scripts that produce these calculations
are made available to the reader in the Appendix.

The purpose of getting a bivariate distribution is
to predict the distribution of the sum of the outcomes
for the two lines of insurance. Table 4.3 gives results
analogous to Table 3.1 for the sum of the two lines
for the two illustrative insurers. Also included are the
sums of the two lines predicted under the assump­
tion of independence. Figure 4.4 contains histograms
of the two­step posterior distributions for W for the
illustrative insurers.

Table 4.3 and Figure 4.4 are notable in two aspects.
First, the output from the bivariate model is not all
that different from the output created by taking inde­
pendent sums of losses from the univariate model.
Second, the posterior distributions of W from the two­
step bivariate model have a fairly wide range.

Typically, the posterior mean W over all the within­
group pairs of lines is not all that different from zero.
Figure 4.5 shows the frequency distribution of poste­
rior mean Ws from the insurer group sample.

This section concludes with a test of uniformity
of the outcome percentiles of the within­group pairs
for the sum of two lines predicted by the two­step
bivariate model and the independence assumption.
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for ZD-CSR and univariate models
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Table 4.3. Bivariate CSR models on illustrative insurer data

Insurer Group 620 Outcome Percentile = 40.92

w Premium Estimate Std. Dev. C.V. Outcome

Two-Step
Bivariate
Model

1 78,955 66,656 0 0.0000 66,391

2 85,729 66,928 583 0.0087 67,127

3 94,691 78,353 872 0.0111 77,946

4 105,362 85,558 1,043 0.0122 85,744

5 115,419 84,336 1,199 0.0142 85,419

6 121,618 90,952 1,521 0.0167 90,323

7 127,926 96,004 2,445 0.0255 96,439

8 129,770 105,826 4,240 0.0401 104,246

9 136,698 107,563 7,596 0.0706 105,809

10 146,858 118,353 17,932 0.1515 112,986

Total 1,143,026 900,527 28,491 0.0316 892,430

Insurer Group 620 Outcome Percentile = 43.79

w Premium Estimate Std. Dev. C.V. Outcome

Independence
Assumption

1 78,955 66,661 0 0.0000 66,391

2 85,729 67,353 608 0.0090 67,127

3 94,691 78,392 820 0.0105 77,946

4 105,362 85,069 1,001 0.0118 85,744

5 115,419 85,007 1,243 0.0146 85,419

6 121,618 89,439 1,519 0.0170 90,323

7 127,926 96,201 2,464 0.0256 96,439

8 129,770 105,910 4,250 0.0401 104,246

9 136,698 107,943 7,637 0.0708 105,809

10 146,858 116,508 17,513 0.1503 112,986

Total 1,143,026 898,483 28,141 0.0313 892,430

Insurer Group 5185 Outcome Percentile = 24.35

w Premium Estimate Std. Dev. C.V. Outcome

Two-Step
Bivariate
Model

1 21,469 17,317 0 0.0000 17,157

2 23,906 18,628 286 0.0154 18,579

3 23,634 17,932 346 0.0193 18,277

4 27,556 20,766 414 0.0199 20,991

5 29,884 21,313 506 0.0237 21,628

6 30,500 23,088 688 0.0298 22,384

7 33,353 27,777 1,048 0.0377 27,540

8 35,004 25,453 1,496 0.0588 24,272

9 36,786 30,761 3,036 0.0987 29,568

10 40,187 34,870 7,765 0.2227 29,194

Total 302,279 237,904 11,839 0.0498 229,590
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for having a high log­likelihood, but it penalizes the
model for having more parameters.

There are problems with the AIC in a Bayesian
environment. Instead of a single maximum likelihood
estimate of the parameter vector, there is an entire
sample of parameter vectors taken from the model’s
posterior distribution. There is also the sense that the
penalty for the number of parameters should not be as
great in the presence of strong prior information.

Table 4.3. Bivariate CSR models on illustrative insurer data

Insurer Group 5185 Outcome Percentile = 27.01

w Premium Estimate Std. Dev. C.V. Outcome

1 21,469 17,292 0 0.0000 17,157

2 23,906 18,856 300 0.0159 18,579

3 23,634 18,037 318 0.0176 18,277

Independence 4 27,556 20,599 412 0.0200 20,991

Assumption 5 29,884 21,638 512 0.0237 21,628

6 30,500 22,353 686 0.0307 22,384

7 33,353 27,828 1,051 0.0378 27,540

8 35,004 25,406 1,493 0.0588 24,272

9 36,786 30,927 3,056 0.0988 29,568

10 40,187 34,030 7,531 0.2213 29,194

Total 302,279 236,966 11,647 0.0492 229,590

(continued)
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of outcome percentiles
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If the data vector, x, comes from a holdout sample,
i.e., x was not used to generate the parameters {i/}I

i=1,
then lpd� is an unbiased estimate of elpd.

But if the data vector, x, comes from the training
sample, i.e., x was used to generate the parameters
{i/}I

i=1, then we expect that lpd� will be higher than
elpd. The amount of the bias is called the “effective
number of parameters.”

With the above as a high­level view, let’s first con­
sider what is called “leave one out cross validation”
or “loo” for short. For each data point xk, one obtains
a sample of parameters {i/(–k)}I

i=1 by an MCMC simu­
lation using all values of x except xk. After doing this
calculation for all observed data points {xk}

J
k=1 one can

then calculate an unbiased estimate of elpd

∑∑ ( )≡ = ϑ





( )−

==
log

1
.

(5.4)
11

� �elpd lpd
I

p xloo loo k i
k

i

I

k

J

The effective number of parameters is then given
by ≡ −ˆ .p lpd elpdloo loo

��

As is done with the AIC in Equation (5.1), we can
express elpdloo

�  on the deviance scale by writing

= − = −LOO­IC 2 2 ˆ 2 .
(5.5)

� �i i ielpd p lpdloo loo loo

When comparing two models, the model with
the higher = − ˆelpd lpd ploo loo loo

� � , or equivalently, the
model with the lower LOO­IC should be preferred.

Our second model selection statistic, called the
Watanabe­Akaike information criteria (WAIC), is cal­
culated using only the training data, x = {xj}

J
j=1. Fol­

lowing Gelman et al. (2014) this statistic is given by

= − ˆ (5.6)� �elpd lpd pwaic waic

where6

∑ { }( )( )= ϑ =
=

ˆ log . (5.7)
1

1

p Var p xwaic j i i

I

j

J

To address these concerns, Gelman et al. (2014,
Chapter 7) describe statistics that generalize the AIC
in a way that is appropriate for Bayesian MCMC
models.5 Here is a brief overview of two of these
statistics.

First, given a stochastic model p(x�/), define the
log of predictive point density as

∫∑ ( )( ) ( )= ϑ ϑ ϑ
=

log . (5.2)
1

ielpd p x f dj
j

J

where f is the unknown density function of /.
If {i/}I

i=1, is a sample from the posterior distribution
of /, define the computed log predictive density as

∑∑ ( )= ϑ



==

log
1

. (5.3)
11

�lpd
I

p xj i
i

I

j

J

Note that if we replace {i/}I
i=1 with the maxi­

mum likelihood estimate, lpd� is equal to L(x�/̂) in
Equation (5.1).

5Another popular statistic designed for Bayesian MCMC models is the
deviance information criterion (DIC) that is available in the MCMC
software WINBUGS and JAGS. Gelman et al. (2014) make the case that
the WAIC is a better statistic as it is based on the entire sample from the
posterior distribution as opposed to a point estimate.

6Gelman et al. (2014) give an alternative mean­based formula for p̂waic.
They recommend using Equation 5.5 “because its series expansion has a
closer resemblance to the series expansion for p̂loo.”
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“loo” package to calculate the PSIS­LOO and WAIC
statistics for the two models we need to specify the
corresponding p(xj�/) function for each model.

Let (CX
wd, CY

wd) be an observation for accident year w
and development year d in the pair of loss triangles
for lines X and Y. Then for the two­step bivariate
model the probability density function is given by

( )( )
( )( )

( )

θ θ ρ

= φ θ θ ρ

, , ,

log , log , , (5.9),

p C C

C C

wd
X

wd
Y

i
X

i
Y

i

M wd
X

w d
Y

i
X

i
Y

i

where KM is the multivariate normal distribution that
is given in Equation (1.2) with parameters deter­
mined by Steps 5 and 6 of the model description in
Section 3.

For the bivariate independent model

( )( )
( )

( )

( )

( )

θ θ ρ

= φ θ φ θ

, , ,

log log (5.10),i

p C C

C C

wd
X

wd
Y

i
X

i
Y

i

U wd
X

i
X

U w d
Y

i
Y

where KU is the univariate normal distribution that is
given in Equation (1.1) with parameters determined by
Steps 5 and 6 of the model description in Section 3.

Table 5.1 gives the PSIS­LOO and WAIC statis­
tics for the illustrative insurers using the CSR model.
These tables show that the bivariate model assuming
independence is the preferred model. The appendix
spreadsheet shows these statistics for the each of
the 102 pairs of loss triangles, with the result that the
bivariate model assuming independence is the pre­
ferred model for every pair. When we compare the
differences in the elpd� statistics for the two models

On the deviance scale, Equation (5.6) becomes

= −WAIC 2 ˆ 2 . (5.8)�i ip lpdwaic

Generally speaking, performance on holdout data
is considered to be the gold standard for model eval­
uation and by that standard, the LOO­IC statistic
should be favored over the WAIC statistic. An argu­
ment favoring the WAIC statistic is computing time.
Applying Equation (5.4) for each of 55 data points
can be time consuming. For example, in my current
computing environment, it takes about five minutes
to run the single two­step bivariate model described
in Section 4 above. I really did not want to run this
model for 55 w 5 minutes for each of 102 pairs of
loss triangles. To address this problem, Vehtari,
Gelman, and Gabry (2015) propose an approxima­
tion, −elpd psis loo

�  to elpdloo
� , that can be calculated with

information available from single MCMC fit. PSIS
is an abbreviation for Pareto smoothed importance
sampling.

The calculations for this statistic, not described
here, are captured in the R “loo” package. This pack­
age calculates estimates of both the PSIS­LOO and
the WAIC statistics, along with their standard errors.
This package also has a “compare” function that cal­
culates the standard error of the difference between
the respective (PSIS­LOO or WAIC) statistics for
two models.

The goal of this section is to compare the two­step
bivariate model with a model that assumes that the
two lines of insurance are independent. To use the

Table 5.1. Model selection statistics for the illustrative insurer groups for the CSR model

Two-Step Bivariate Independent Bivariate

Group −elpdpsis loo
�

−p̂psis loo −elpdpsis loo
�

−p̂psis loo Difference Std Err.

620 218.17 37.63 222.23 31.19 4.07 1.36

5185 154.74 37.54 159.24 30.07 4.50 1.67

Two-Step Bivariate Independent Bivariate

Group elpdwaic
� p̂waic elpdwaic

� p̂waic Difference Std Err.

620 224.51 31.29 225.98 27.44 1.47 0.88

5185 161.65 30.63 162.96 26.35 1.31 1.00
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with their standard errors, the PSIS­LOO statistics
are in general more significant.

6. Illustration of model sensitivity

In discussions with my actuarial colleagues over the
years, I have sensed that a general consensus among
most actuaries is that there is some degree of depen­
dence between the various lines of insurance. But as
pointed out in the introduction, using a suboptimal
model can lead to artificial dependencies. This sec­
tion takes a stochastic version of a currently popular
model and demonstrates that it is suboptimal for
our sample of insurers. It also shows that given this
model, some insurers will find significant depen­
dencies between the various lines of insurance,
suggesting that the “general consensus” is under­
standable, given the state of the art that has existed
over the years.

One of the most popular loss reserving methodolo­
gies is given by Bornhuetter­Ferguson (1972). A key
input to the loss reserve formula given in that paper
is the expected loss ratio, which must be judgmen­
tally selected by the actuary. Presentations by Clark
(2013) and Leong and Hayes (2013) suggest that
the Bornhuetter­Ferguson method that assumes a
constant loss ratio provides a good fit to industry
loss reserve data.

Actuaries who want to use data to select the
expected loss ratio can use the Cape Cod model
that is given by Stanard (1985). A stochastic ver­
sion of the Cape Code model can be expressed
as a special case of the CSR model by setting the
parameters Fw = 0 for w = 1, . . . ,10, L = 0 and
I = 0. Let’s call this model the stochastic Cape Cod
(SCC) model.

Figure 6.1 gives the standardized residual plots of
the SCC model for the illustrative insurers that are
analogous to those in Figure 3.2. Figure 6.2 gives the
posterior distribution of the W parameters for the two­
step bivariate SCC model. In Table 6.1 we see that
both the PSIS­LOO and the WAIC statistics indicate
that the independent bivariate model is the preferred

model for Group 620. The two­step bivariate model
is the preferred model for Group 5185. The results for
all 102 pairs of loss triangles are given in the appen­
dix spreadsheet. For the SCC model, independence is
preferred for 95 of the 102 pairs of loss triangles with
the PSIS­LOO statistics and for 65 of the 102 pairs for
the WAIC statistics. All seven pairs that were favored
by the two­step bivariate model with the PSIS­LOO
statistic were also favored by the WAIC statistics.
Illustrative insurer group 5185 for CA and OL was
one of those seven.

Figures 6.3 and 6.4 explain the underlying cause
of the dependency for Group 5185. These figures
consist of scatterplots of the standardized residuals
for the first six accident years7 for the SCC and CSR
models. The scatterplots are reproduced six times,
with each accident year highlighted. In Figure 6.3 the
individual accident year residuals occupy noticeably
distinct regions of the scatterplots. The likely cause
for these distinct regions are the (either random or
systematic) deviations from the assumed constant
expected loss ratio assumed in the SCC model. If the
regions for the various accident years tend to fall
in opposite quadrants (see, for example, accident
years 1 and 3 in Figure 6.3) a significant correlation
could be indicated. If, as happens with many pairs for
the SCC model, the regions are more or less equally
spread out in the various quadrants, “independence”
will be preferred. By way of contrast, there are no
distinct regions by accident year indicated by the
CSR model in Figure 6.4.

It is also worth noting that, as shown in Figure 6.5,
the SCC model fails the uniformity test that the CSR
model passed, as shown in Figure 3.1.

Here we see an example where the suboptimal
SCC model leads to artificial dependencies between
lines, whereas the CSR model leads to indepen­
dence between lines for our sample of insurer loss
triangles.

7The R scripts for the CSR and SCC models in the appendix spreadsheet
create the scatterplots for all 10 accident years.
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7. Summary and conclusions

The reason that the dependency problem is so
important is that risk­based insurer solvency standards
are based on the total risk to the insurance company.
Ignoring a true dependency could understate the total
risk faced by an insurer. On the other hand, too strin­
gent of a solvency standard could limit the supply of
insurance. If this holds, then the current practice in
some jurisdictions could limit the supply of insurance.

The purpose of this paper was to illustrate how
to build a model that creates a bivariate distribution
given two univariate Bayesian MCMC models that
preserve the original univariate distributions. While
this modeling technique was applied to lognormal
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Figure 6.1. Standardized residual plots for the SSC model
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Figure 6.2. Posterior distribution of q 
for SCC model
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Table 6.1. Model selection statistics for the illustrative insurer groups for the SCC model

Two-Step Bivariate Independent Bivariate

Group −elpdpsis loo
�

−p̂psis loo −elpdpsis loo
�

−p̂psis loo Difference Std Err.

620 102.83 19.68 104.2 17.79 1.37 0.47

5185 59.36 21.48 58.21 18.36 −1.15 2.59

Two-Step Bivariate Independent Bivariate

Group elpdwaic
� p̂waic elpdwaic

� p̂waic Difference Std Err.

620 105.01 17.49 105.94 16.05 0.93 0.35

5185 62.03 18.8 60.26 16.31 −1.78 2.10
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Figure 6.3. Bivariate standardized residual plots for the SCC model
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stochastic loss reserve models, it should not be diffi­
cult to apply this two­step approach to other Bayesian
MCMC models using bivariate copulas as was done
by Zhang and Dukic (2013).

The conclusion that the within­group pairs of loss
triangles are independent for the CSR model may
come as a surprise to some. But the evidence sup­
porting this conclusion is as follows.

1. The univariate models did well in two fairly restric­
tive tests (i.e., the retrospective test in Figure 3.1
and the standardized residual tests in Figure 3.2)
that could disqualify many suboptimal models.
Thus we should not expect to see an artificial
appearance of dependency due to a bad model.

2. The retrospective results of Section 4 indicate
support for the independence assumption over
the bivariate two­step model.

3. The prospective model selection statistics in
Section 5 indicated a preference for the inde­
pendence assumption for all 102 within­group
pairs of lines.

The range of Ws for the 102 within­group pairs
contained both positive and negative values, which
appear to be random in light of the tests performed
in this paper.

While a statistical study such as that done in
this paper can never carry the weight of a math­
ematical proof, its conclusion was derived from the
analysis of a large number of within­group pairs of
loss triangles. It should be noted that these loss tri­
angles came from NAIC Schedule Ps reported in
the same year.

As Bayesian MCMC models become used to set
capital requirements, my advice would be test for
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Figure 6.4. Bivariate standardized residual plots for the CSR model
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dependence using the statistics described in this
paper. If dependence is indicated, one should try
to develop a more refined model.

For now, the CSR model with the independence
assumption is looking pretty good. But in light of
the high stakes involved, assumptions of this sort
need a stringent peer review and replication with
new and different data. I look forward to seeing this
happen.
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